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Abstract. We show that there are only finitely many isomorphism classes of
groups of the form E(F )[tors], where F is a number field such that [F : Q] is

prime and E/F is an elliptic curve with complex multiplication (CM). There
are six “Olson groups” which arise as torsion subgroups of CM elliptic curves
over number fields of every degree, and there are precisely 17 “non-Olson” CM

elliptic curves defined over a prime degree number field.
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We denote by P the set of all prime numbers. For n ∈ Z+ let ζn = e
2πi
n ∈ C, and

put Q(ζn)
+ = Q(ζn + ζ−1

n ). A real number field is a number field which admits
an embedding into R. Thus every odd degree number field is real.
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1. Introduction

This paper continues an exploration on torsion points on elliptic curves with com-
plex multiplication (CM) over number fields initiated by the last two authors in
collaboration with B. Cook, P. Corn and A. Rice [CCS13], [CCRS14].

The entire subject began with the following result.

Theorem 1.1. (Olson [Ols74]) Let E/Q be a CM elliptic curve. Then E(Q)[tors]
is isomorphic to one of: the trivial group {•}, Z/2Z, Z/3Z, Z/4Z, Z/6Z or Z/2Z×
Z/2Z. Conversely, each such group occurs for at least one CM elliptic curve E/Q.

We say a finite commutative group G is an Olson group if it is isomorphic to one
of the six groups given in the conclusion of Theorem 1.1. An elliptic curve E/F is
Olson if E(F )[tors] is an Olson group.

The tables of [CCRS14, §4] show that for all d ≤ 13, every Olson group arises
as the torsion subgroup of a CM elliptic curve over some degree d number field. It
follows from Theorem 2.1a) that for all d ≥ 2, all six Olson groups occur in the
list of torsion subgroups of CM elliptic curves in degree d, and moreover for any
d1 | d2, the list in degree d2 contains the list in degree d1. So it is more penetrating
to ask which new groups arise in degree d: for d ∈ Z+, let TCM(d) be the set of
isomorphism classes of torsion subgroups of CM elliptic curves defined over number
fields of degree d, and for d ≥ 2 we put

T new
CM (d) = TCM(d) \

[
d′|d, d′ ̸=d

TCM(d′).

From [CCRS14, §4] we compile the following table.

d 2 3 4 5 6 7 8 9 10 11 12 13
#T new

CM (d) 5 2 9 1 7 0 14 3 4 0 13 0

table 1

Remark 1.2. (a) The size of T new
CM (d) is strongly influenced by the 2-adic valuation

v2(d): for all 2 ≤ d1, d2 ≤ 13, v2(d1) < v2(d2) =⇒ #T new
CM (d1) < #T new

CM (d2).
(b) There is very little new torsion when d is odd.
(c) When we restrict to prime values of d, the sequence of values is 5, 2, 1, 0, 0, 0.

Remark 1.2c) was made to us by M. Schütt. He also asked the following question.

Question 1.3. (Schütt) Is #T new
CM (p) = 0 for all sufficiently large primes p?

We will answer Question 1.3 affirmatively. In fact we get a more precise result. To
state it requires some notation. For b, c ∈ F we define the Kubert-Tate curve

E(b, c) : y2 + (1− c)xy − by = x3 − bx2.

For λ ∈ F we define the Hesse curve

Eλ : X3 + Y 3 + Z3 + λXY Z = 0.

Theorem 1.4. Let E be a non-Olson CM elliptic curve defined over a prime degree
number field F . Then F is isomorphic to one of the fields listed below, and over
that field E is isomorphic to exactly one of the 17 listed elliptic curves.



TORSION POINTS ON CM ELLIPTIC CURVES OVER REAL NUMBER FIELDS 3

Number Field F Elliptic Curve E(F )[tors]

Q(
√
−3) E0 Z/3Z⊕ Z/3Z

Q(i) E(−1
8 , 0) Z/2Z⊕ Z/4Z

Q(
√
2) E(1 + 3

4

√
2, 0) Z/2Z⊕ Z/4Z

Q(
√
2) E(− 1

32 , 0) Z/2Z⊕ Z/4Z
Q(
√
2) E( 1+

√
2

8 , 0) Z/2Z⊕ Z/4Z
Q(
√
−7) E(−31+3

√
−7

512 , 0) Z/2Z⊕ Z/4Z
Q(
√
−7) E(−1+3

√
−7

32 , 0) Z/2Z⊕ Z/4Z
Q(
√
−3) E(− 2

9 ,−
1
3 ) Z/2Z⊕ Z/6Z

Q(
√
3) E( 1−

√
3

9 , −2+
√
3

3 ) Z/2Z⊕ Z/6Z
Q(
√
3) E( 49 ,

1
3 ) Z/2Z⊕ Z/6Z

Q(
√
−3) E(−1+

√
−3

2 ,−1) Z/7Z
Q(i) E(i, i) Z/10Z

Q[b]/(b3 − 15b2 − 9b− 1) E( 14b
2 + 5

2b+
1
4 , b) Z/9Z

Q[b]/(b3 + 105b2 − 33b− 1) E(− 17
76b

2 + 25
19b+

1
76 , b) Z/9Z

Q[b]/(b3 − 4b2 + 3b+ 1) E(−2b2 + 4b+ 1, b) Z/14Z
Q[b]/(b3 − 186b2 + 3b+ 1) E( 2

27b
2 + 10

27b−
1
27 , b) Z/14Z

Q[b]/(b5 − 9b4 + 6b3 + 42b2 − 7b− 1) E(− 1
16b

4 + 1
4b

3 + 5
8b

2 + 1
4b−

1
16 , b) Z/11Z

We further probe the even/odd dichotomy with the following conditional result.

Theorem 1.5. Assume Schinzel’s Hypothesis H. As F ranges over all number
fields of degree 2p for a prime number p and E ranges over all CM elliptic curves
over F , the set of prime numbers which divide the order of some torsion subgroup
E(F )[tors] is infinite. In particular:

lim sup
p∈P

#T new
CM (2p) ≥ 1.

The results of this paper lead us to the following question.

Question 1.6. Is there an absolute bound on #E(F )[tors] as E ranges over all
CM elliptic curves defined over a number field F of odd degree?

To prove Theorem 1.4 we need results of the form: “if an O-CM elliptic curve
defined over a number field F has an F -rational point of order N , then [F : Q]
is divisible by some function of N and O.” Prototypical results of this type were
given by Silverberg and later by Prasad-Yogananda [Si88] and [PY01]: the SPY-
bounds. They were refined by Clark-Cook-Stankewicz [CCS13, Theorem 3].

While pursuing further refinements of the SPY-bounds sufficient to prove The-
orem 1.4, we noticed another pattern in the tables of [CCRS14]: for every CM
elliptic curve E/F in our tables containing an F -rational point of order N ≥ 3, F

contains either the CM field K or Q(ζN )+. In particular, if F has odd degree then
F ⊃ Q(ζN )+. This striking real cyclotomy phenomenon has not previously been
observed. We prove real cyclotomy in many cases. First, if we assume that N is
prime to the discriminant ∆ of the CM order then we show that F contains an index
2 subfield of Q(ζN ) if it does not contain the CM field. For general N ≥ 3 there
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is more than one such subfield of Q(ζN ), but when N is an odd prime power the
unique one is Q(ζN )+. When N is an even prime power we get the slightly weaker
result that F contains Q(ζN/2)

+ if it does not contain the CM field. Moreover

Q(ζN )+ is characterized among index 2 subfields of Q(ζN ) by being a real number
field, so real cyclotomy is also confirmed when F has a real embedding.

When F is real we can show that it contains Q(ζN )+ even without the assump-
tion gcd(N,∆) = 1. This requires a more detailed argument involving an explicit
matrix representation of the O-module structure and the complex conjugation ac-
tion on E[N ] (Theorem 4.9). Here we combine the theory of uniformizations of real
elliptic curves by real lattices Λ = Λ ⊂ C with the ideal theory of quadratic orders.
This material has such a classical feel that we suspect that much of it was known
in some form to Weber and Deuring. We develop it in detail in §3.

We prove Theorem 1.4 in §5, using the results of §4 and a Theorem of J.L. Parish
which is recalled in §5.1. The proof highlights the relevance of Sophie Germain
primes, which provided motivation for Theorem 1.5. We prove a more general form
of Theorem 1.5 in §6.1. In §6.2 we show that Question 1.6 with “CM” removed has
a negative answer. On the other hand, in §6.3 we show that if F/Q has odd degree
d and Galois group Sd, then every CM elliptic curve E/F is Olson.

Acknowledgments: We thank Jordan Ellenberg, Paul Pollack, Damien Robert,
Will Sawin, and Matthias Schütt for useful discussions. J.S. was supported by
the Villum Fonden through the network for Experimental Mathematics in Number
Theory, Operator Algebras, and Topology.

2. Torsion Points on Quadratic Twists of Abelian Varieties

Theorem 2.1. Let A/F be an abelian variety over a number field, and let d ≥ 2.
a) There are infinitely many L/F such that [L : F ] = d and A(L)[tors] = A(F )[tors].
b) If d is prime, then for all but finitely many L/F with [L : F ] = d, we have
A(L)[tors] = A(F )[tors].
c) For all but at most finitely many quadratic twists At of A/F we have At(F )[tors] =
At(F )[2] = A(F )[2].

Proof. a) By work of Masser [Ma87, Corollary 2], there is N ∈ Z+ depending
only on [L : Q] such that A(L)[tors] = A(L)[N ]. Let M = F (A[N ]). Then
A(L)[tors] ) A(F )[tors] implies A(L)[N ] ) A(F )[N ] and thus M ∩ L ) F . For
each d ≥ 2 there are infinitely many degree d L/F with M ∩ L = F : let v be a
finite place of F which is unramified in M , and choose L/F to be totally ramified at
v. This gives one extension L1/F ; replacing M with L1M gives another extension
L2/F ; and so forth.
b) If d = [L : F ] is prime, then M ∩ L ) F implies L ⊂M .
c) For t ∈ F×/F×2, we denote by At

/F the quadratic twist by d and the involution

[−1] on A. We have monomorphisms A(F ) ↪→ A(F (
√
t)), At(F ) ↪→ A(F (

√
t)), and

A(F ) ∩At(F ) = A(F )[2] = At(F )[2].

By part b), for all but finitely many t we have A(F )[tors] = A(F (
√
t))[tors] and

thus At(F )[tors] = At(F )[2] = A(F )[2]. �
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Remark 2.2. In 2001, Qiu and Zhang used Merel’s theorem to prove Theorem
2.1b) when A is an elliptic curve [QZ01, Theorem 1]. When A is an elliptic curve
and F = Q, Theorem 2.1c) was proved by Gouvea and Mazur [GM91, Proposition
1]. This extends to a number field F unless A has complex multiplication by an
imaginary quadratic field K ⊂ F . Results of Silverberg [Si88] handle the case of
all abelian varieties with complex multiplication. Alternately, Mazur and Rubin use
Merel’s theorem to establish Theorem 2.1c): however, as in their application A(F )
has no points of order 2, they record the result (only) in the form that all but finitely
many quadratic twists of A/F have no odd order torsion [MR10, Lemma 5.5]. It
seems that the full statement of Theorem 2.1c) for elliptic curves first appears in a
preprint of F. Najman [Na13, Theorem 12].

3. R-Structures, Complex Conjugation and Cartan Subgroups

3.1. Orders and Ideals in Imaginary Quadratic Fields.

Let K be a number field. A lattice in K is a Z-module Λ ⊂ K obtained as
the Z-span of a Q-basis for K. An order O in K is a lattice which is also a sub-
ring. The ring of integers OK is an order of K; conversely, since every element of
an order O is integral over Z, O ⊂ OK with finite index. For any lattice Λ,

O(Λ) = {x ∈ K | xΛ ⊂ Λ}
is an order of K, and Λ is a fractional O(Λ)-ideal of K. For all α ∈ K× we have
O(αΛ) = O(Λ). For any order O, a fractional O-ideal Λ is proper if O = O(Λ).
A fractional OK-ideal is necessarily proper, whereas for any nonmaximal order O,
[OK : O]OK is an O-ideal which is not proper.

For a field F , let F be an algebraic closure, let F sep be the maximal separable
subextension of F/F , and let gF = Aut(F sep/F ) = Aut(F/F ) be the absolute
Galois group of F .

Lemma 3.1. Let O be an order in a quadratic field K, and let Λ be a fractional
O-ideal. The following are equivalent:
(i) Λ is a projective O-module.
(ii) For every prime number p, Λ⊗Z Z(p) is a principal fractional O ⊗Z Z(p)-ideal.
(iii) Λ is a proper O-ideal.

Proof. To prove (i) ⇔ (ii) is an exercise in commutative algebra [E, Exercise 4.11].
The local characterization of lattices in any number field gives (ii) =⇒ (iii) [Lan87,
p. 97] and the converse is standard [Lan87, Theorem 9, p. 98]. �

From now on we assume that K is an imaginary quadratic field. If O′ ⊂ O are
quadratic orders in K, their discriminants are related as follows:

∆(O′) = [O : O′]2∆(O).
For an order O in K, we define the conductor f = [OK : O]. Let us write ∆K for
∆(OK). Then if O has conductor f, we have

∆(O) = f2∆K .

Observe that ∆(O) is negative and congruent to 0 or 1 modulo 4; we call such inte-

gers imaginary quadratic discriminants. For anyK and f ∈ Z+, Z[ f
2∆K+f

√
∆K

2 ]
is the unique order O in K of conductor f [Lan87, p. 90]. It follows that for every
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imaginary quadratic discriminant ∆, there is a unique imaginary quadratic order
O(∆) of discriminant ∆.

3.2. Basics on CM Elliptic Curves.

Let A/F be an abelian variety over a field F . By EndA we mean the ring of
endomorphisms of A/F sep , endowed with the structure of a gF -module. It is known
that End◦ A = EndA ⊗Z Q is a semisimple Q-algebra and EndA is an order in
End◦ A. When F has characteristic 0 and A = E is an elliptic curve, End◦ E is
either Q or an imaginary quadratic field K: in the latter case we say that E has
complex multiplication (CM). Thus EndE is1 an imaginary quadratic order
O, and we say that E has O-CM. We summarize some basic facts of CM theory
[CCS13, Fact1]. Proofs are found throughout the literature [Cox89, Lan87, Sil94].

Fact 1. (a) There exists at least one complex elliptic curve with O-CM.
(b) Let E, E′ be any two complex elliptic curves with O(∆)-CM. The j-invariants

j(E) and j(E′) are Galois conjugate algebraic integers. In other words, j(E) is
a root of some monic polynomial with Z-coefficients, and if P (t) is the minimal
such polynomial, P (j′(E)) = 0 also.

(c) Thus there is a unique irreducible, monic polynomial H∆(t) ∈ Z[t] whose roots
are the j-invariants of all O(∆)-CM complex elliptic curves.

(d) The degree of H∆(t) is the class number h(∆) = #PicO(∆). In particular,
when O = OK we have deg(H∆(t)) = h(K), the class number of K.

(e) Let F∆ := Q[t]/H∆(t). Then F∆ can be embedded in the real numbers, so in
particular is linearly disjoint from the imaginary quadratic field K. Let K∆

denote the compositum of F∆ and K. Then K∆/K is abelian, with Galois
group canonically isomorphic to Pic(O).

Let E/C be an elliptic curve with O-CM; by the Uniformization Theorem there
is a lattice Λ ⊂ C such that 1 ∈ Λ and E ∼= C/Λ. Then Λ is a fractional O-ideal
of K and O(Λ) = O, so by Lemma 3.1 Λ is a projective O-module. Conversely, if
Λ is a rank one projective O-module, then EΛ = (Λ ⊗O C)/Λ is an elliptic curve,
and the C-isomorphism class of EΛ depends only on the isomorphism class of Λ
as an O-module. The map Λ 7→ EΛ induces a bijection from PicO to the set of
isomorphism classes of elliptic curves E/C with EndE ∼= O.

3.3. R-structures on Elliptic Curves.

For a subset S ⊂ C, we put S = {z | z ∈ S}. We say a lattice Λ ⊂ C is real
if Λ = Λ. For a lattice Λ ⊂ C, we associate the complex torus C/Λ to the Weier-
strass equation

EΛ : y2 = 4x3 − g2(Λ)x− g3(Λ),

via the Eisenstein series g2, g3 [Sil94, Proposition VI.3.6].

Lemma 3.2. a) Let E/C be an elliptic curve. The following are equivalent:
(i) There is an elliptic curve (E0)/R such that (E0)/C ∼= E.
(ii) j(E) ∈ R.
(iii) E ∼= EΛ for a real lattice Λ.

1An imaginary quadratic order O has a unique nontrivial ring automorphism (complex con-

jugation), so there are two different ways to identify O with EndE. As is standard, we take the
identification which is compatible with the action of O on the tangent space at the origin.
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b) Let Λ1,Λ2 be real lattices. The following are equivalent:
(i) There is α ∈ R× such that Λ2 = αΛ1.
(ii) EΛ1 and EΛ2 are isomorphic as elliptic curves over R.

Proof. To prove (a), it is immediate that (i) =⇒ (ii). For (ii) =⇒ (iii), take
g2, g3 ∈ R such that E′ : y2 = 4x3−g2x−g3 is an elliptic curve with j-invariant j(E)
[Si86, Proposition III.1.4]. There is a unique lattice Λ ⊂ C such that g2(Λ) = g2
and g3(Λ) = g3 and thus E′ ∼= C/Λ [Si86, Theorem VI.5.1]. Since j(E) = j(E′) and

C is algebraically closed, we have E ∼= C/Λ. Since g2(Λ) = g2(Λ) = g2(Λ), g3(Λ) =

g3(Λ) = g3(Λ), we have Λ = Λ. Finally, if Λ is a real lattice then g2(Λ), g3(Λ) ∈ R
and (iii) =⇒ (i) is immediate. Alternately, since Λ = Λ, complex conjugation on
C descends to an antiholomorphic involution on C/Λ and thus gives descent data
for an R-structure on E.
To prove (b), if Λ1,Λ2 ⊂ C, we have C/Λ1

∼= C/Λ2 iff Λ2 = αΛ1 for some α ∈ C×.
In terms of Weierstrass equations, EαΛ is the quadratic twist of EΛ by α2. Thus
EΛ1

∼= EαΛ1 = EΛ2 if α ∈ R. Conversely, if EΛ1
∼= EΛ2 , then the standard theory

of Weierstrass equations [Si86, § III.1] shows: there is α ∈ R× with g2(Λ2) =
α4g2(Λ1) = g2(α

−1Λ1), g3(Λ2) = α6g3(Λ1) = g3(α
−1Λ2) and thus Λ2 = α−1Λ1. �

Lemma 3.3. a) Let Λ be a real lattice. If j(EΛ) ̸= 1728, then EiΛ and EΛ are
isomorphic as C-elliptic curves but not as R-elliptic curves. If j(EΛ) = 1728, then
Eζ8Λ and EΛ are isomorphic as C-elliptic curves but not as R-elliptic curves.
b) Let j ∈ R. Then there are precisely two R-isomorphism classes of elliptic curves
E/R with j(E) = j.

Proof. If j ̸= 1728 then g3(Λ) ̸= 0, so g3(iΛ) = −g3(Λ), whereas as above any real
change of variables takes g3(Λ) 7→ α−6g3(Λ). If j = 1728 then g3(Λ) = 0, so the
above argument shows instead that iΛ = Λ (as it should, since Λ is homothetic to
Z[i]). In this case g2(Λ) ̸= 0 and g2(ζ8Λ) = −g2(Λ), whereas any real change of
variables takes g3(Λ) 7→ α−4g3(Λ). The standard theory of real elliptic curves gives
(b) [Sil94, Prop. V.2.2]. �

Lemma 3.4. Let O be an order in the imaginary quadratic field K, and let I be a
proper fractional O-ideal. The following are equivalent:
(i) [I] = [I] ∈ PicO.
(ii) I2 is principal.
(iii) j(EI) ∈ R.

Proof. a) Since II = NK/Q(I)O, we have [I] = [I]−1 ∈ PicO, so (i) ⇐⇒ (ii).
Work of Shimura gives (ii) ⇐⇒ (iii) [Sh, (5.4.3)]. �

For an imaginary quadratic discriminant ∆, let τ∆ = ∆+
√
∆

2 , so O(∆) = Z[∆+
√
∆

2 ]
is the imaginary quadratic order of discriminant ∆. Then j(C/O) = j(τ∆). Let
σ1, . . . , σh(∆) : Q(j(τ∆))/Q ↪→ C be the #PicO(∆) field embeddings, with σ1 taken
to be inclusion. By Lemma 3.4, j(τ∆) ∈ R. The other embeddings σ2, . . . , σh may
in general be either real or complex: Lemma 3.4 implies that the number of real
embeddings is #(PicO)[2].

Lemma 3.5. For an imaginary quadratic discriminant ∆, let r be the number of
distinct odd prime divisors of ∆. We define µ as follows:
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µ =

8><>:
r, ∆ ≡ 1 (mod 4) or ∆ ≡ 4 (mod 16)

r + 1, ∆ ≡ 8, 12 (mod 16) or ∆ ≡ 16 (mod 32)

r + 2, ∆ ≡ 0 (mod 32).

a) We have (PicO(∆))[2] ∼= (Z/2Z)µ−1.
b) There are precisely 2µ R-homothety classes of O-CM real lattices.

Proof. Part (a) is due to Gauss [Cox89, Theorem 3.15],[HK, Theorem 5.6.11]. Part
(b) is given by combining part (a) with Lemmas 3.3 and 3.4. �

A fractional O-ideal I is primitive if I ⊂ O and for all e ≥ 2, I ̸⊂ eO.

Lemma 3.6. a) Let E ∼=R EΛ be a real O-CM elliptic curve. The R-homothety
class of Λ contains a unique primitive O-ideal I. The ideal I is proper and real.
b) ([HK, Theorem 5.6.4]) There are precisely 2µ primitive proper real O-ideals.

Proof. The lattice Λ contains an element a + bi with a ̸= 0. Since Λ is real, we
have a − bi ∈ Λ and thus also 2a = (a + bi) + (a − bi) ∈ Λ. Then 1

2aΛ is a proper
O-ideal which is R-homothetic to Λ. If two fractional O-ideals are R-homothetic,
then one is real iff the other is real, and the R-homothety class of any fractional
O-ideal contains a unique primitive O-ideal. To prove part (b), combine part (a)
with Lemma 3.5b). �

Ideals of this type are completely classified. We use the following notation: for
α, β ∈ C which are linearly independent over R, we define the lattice

[α, β] = {aα+ bβ | a, b ∈ Z}.

Theorem 3.7. [HK, Theorem 5.6.4] Let O be an order in K of discriminant ∆.
A primitive proper O-ideal I is real iff it is one of the following two types:

(1) I =

�
a,

√
∆

2

�
, where a ∈ Z+, 4a|∆ and

�
a,

∆

4a

�
= 1

(2) I =

�
a,

a+
√
∆

2

�
, where a ∈ Z+, 4a|a2 −∆ and

�
a,

a2 −∆

4a

�
= 1.

Moreover, if ∆ ≡ 1 (mod 4), there are no such ideals of type (1).

Corollary 3.8. Let I be a primitive proper real O-ideal. Then [O : I] | ∆.

Proof. For all ideals I of the form (1) and (2) above, we have that [O : I] = a | ∆
[HK, Theorem 5.4.2]. �

Theorem 3.9. Let ∆ be an imaginary quadratic discriminant.
a) Let F ⊂ R, and let E/F be an O-CM elliptic curve. Then there is an O-CM
elliptic curve E′

/F such that E′
R
∼= EO and an F -rational isogeny φ : E → E′.

b) Let N be a positive integer which is prime to ∆. Then the isogeny φ of part a)

induces a gF -module isomorphism E[N ]
∼→ E′[N ].

Proof. a) For a nonzero ideal I of O, let E[I] = {x ∈ E(F ) | ∀φ ∈ I, φ(x) = 0}, so
E[I] is a finite subgroup which is gFK-stable. Put E′ = E/E[I]. If E ∼=R EΛ, then

E′ ∼=C E 1
[O:I]

IΛ.
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Suppose now that I is real and proper. Then E[I] is gF -stable and

E′ ∼=R E 1
[O:I]

IΛ
∼= EI−1Λ.

Applying this with I = Λ gives the result. Part b) follows immediately. �

Remark 3.10. After this section was written we found a paper of S. Kwon [Kw99]
which contains related results. Especially, an equivalent form of [Kw99, Prop. 2.3a)]
appears in the proof of Theorem 2.9a), and the classification of primitive, proper
real ideals in an imaginary quadratic order is given in [Kw99, §3] and is used to
classify cyclic isogenies on CM elliptic curves rational over Q(j(E)).

3.4. Cartan Subgroups.

Let Λ ⊂ C be a lattice, and let EΛ = C/Λ. For N ∈ Z+ and ℓ ∈ P, put

ΛN = (
1

N
)Λ/Λ = EΛ[N ]

TℓΛ = lim←−Λℓn = Tℓ(EΛ),bΛ =
Y
ℓ∈P

TℓΛ.

If F ⊂ C and E/F is an elliptic curve, then E/C ∼= EΛ for some lattice Λ, uniquely
determined up to homothety. If F ⊂ R, then E/R ∼= EΛ for some real lattice Λ,
uniquely determined up to real homothety.

We have E(C)[tors] = E(F )[tors], so Aut(C/F ) acts on ΛN , TℓΛ and bΛ. We
assume that Aut(C/F ) is a normal subgroup of Aut(C/F ): this holds if F is a
number field or if F = R. Then we get an induced action of gF on ΛN . If moreover
F ⊂ R, then complex conjugation c ∈ Aut(C/R) ⊂ Aut(C/F ) � gF acts on ΛN .

Let O be an imaginary quadratic order. For N, ℓ as above, consider the O-algebras

ON = O ⊗Z Z/NZ,

Tℓ(O) = O ⊗Z Zℓ = lim←−Oℓn ,ÒO = O ⊗Z Ẑ =
Y
ℓ

TℓO.

Let E/F be an O-CM elliptic curve. As above, there is a proper integral O-ideal Λ,
with uniquely determined class in PicO, such that E/C ∼= EΛ. Then ΛN (resp. TℓΛ,

resp. bΛ) has a natural ON -module (resp. TℓO-module, resp. ÒO-module) structure.
If F ⊂ R we may take Λ to be a real ideal: Λ = Λ.

Lemma 3.11.
a) For every N ∈ Z+, Λ[N ] = E[N ] is free of rank 1 as an ON -module.

b) Tℓ(Λ) = Tℓ(E) (resp. bΛ =
Q

ℓ∈P Tℓ(E)) is free of rank 1 as Tℓ(O)-module (resp.

as a ÒO-module).

Proof. Part (b) is known by work of Serre and Tate [ST68, p. 502] while part (a)
can be deduced from work of Parish [Pa89, Lemma 1]. Either part can be used to
deduce the other. �
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In particular, for all primes ℓ we have a homomorphism of Zℓ-algebras

ιℓ : Tℓ(O)→ EndTℓE.

The map ιℓ is gF -equivariant; further, it is injective with torsionfree cokernel [M,
Lemma 12.2]. Tensoring with Z/ℓnZ and applying primary decomposition, we get
for each N ∈ Z+ an injective gF -equivariant ring homomorphism

ON ↪→ EndE[N ].

Tensoring to Qℓ gives

ι0ℓ : Vℓ(O) ↪→ EndVℓ(E).

We define the Cartan subalgebras

Cℓ = ιℓ(Tℓ(O)) ⊂ EndTℓ(E),

C0ℓ = ιℓ(Vℓ(O)) ⊂ EndVℓ(E)

and the Cartan subgroups

C×ℓ ⊂ AutTℓ(E),

(C0ℓ )× ⊂ AutVℓ(E).

Then C0ℓ ∼= K ⊗ Qℓ is a maximal etale subalgebra of EndVℓ(E) ∼= M2(Qℓ). We
may view C0ℓ ↪→ M2(Qℓ) as the regular representation. We write C(C0ℓ ) for the
commutant and N(C0ℓ ) for the normalizer of C0ℓ inside EndVℓ(E). By the Double
Centralizer Theorem [Pi, §12.7], we have

C(C0ℓ ) = C0ℓ .

Using the Skolem-Noether Theorem [Pi, §12.6], we find that

NC0ℓ /(C0ℓ )× ∼= AutQℓ
C0ℓ

has order 2.
The fixed field of the kernel of the representation gF → Vℓ(O) is FK, so

ρℓ∞(gFK) ⊂ C0ℓ ,

and if FK ) F then

ρℓ∞(gF ) ̸⊂ C0ℓ .
In fact [ST68, §4, Corollary 2] we have

ρℓ∞(gFK) ⊂ ιℓ(Tℓ(O)×).

Moreover, gF -equivariance of ι0ℓ gives

ρℓ∞(gF ) ⊂ NC0ℓ .

This recovers a standard result of Serre [Se66, Theorem 5].

Lemma 3.12. Let Gℓ∞ = ρℓ∞(gF ) be the image of the ℓ-adic Galois representation.
The following are equivalent:
(i) Gℓ∞ lies in the Cartan subgroup.
(ii) Gℓ∞ is commutative.
(iii) K ⊂ F .

We now deduce a stronger version of a result of Serre [CCS13, Lemma 15]. Let
us first note the following in the case Λ = O.
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Lemma 3.13. Let K = Q(
√
∆0) be an imaginary quadratic field, and let O be an

order in K of discriminant ∆ = f2∆0: thus O = Z
�
∆+

√
∆

2

�
. Let c be the nontrivial

element of Aut(K/Q). Let N ≥ 2, put ON = (1/N)O/O and iON = ( i
N )O/(iO).

a) If ∆ is even or N is odd, then 1
N ,

√
∆

N (resp. i
N ,

√
−∆
N ) is a Z/NZ-basis for ON

(resp. iON ). The corresponding matrix of c is

�
1 0
0 −1

�
(resp.

�
−1 0
0 1

�
).

b) In all cases 1
N , ∆+

√
∆

2N (resp. i
�
∆+

√
∆

2N

�
) is a Z/NZ-basis for ON (resp. iON ).

The corresponding matrix of c is

�
1 ∆
0 −1

�
(resp.

�
−1 −∆
0 1

�
).

Corollary 3.14. a) If N ≥ 3, then c acts nontrivially on ON .
b) If N = 2, then c acts nontrivially on ON iff ∆ is odd.

Lemma 3.15. Let K be an imaginary quadratic field, and let O be an order in K
of discriminant ∆ = f2∆0. Let F be a field of characteristic 0, and let E/F be an

O-CM elliptic curve. Let N ∈ Z+, and suppose at least one of the following holds:
• N ≥ 3;
• N = 2 and ∆ is odd.
Then F (E[N ])) ⊃ K.

Proof. We may certainly assume K ̸⊂ F . Let σ ∈ gF be any element which
restricts nontrivially to KF . Then by Corollary 3.14, σ acts nontrivially on ON .
Since ιN : ON ↪→ EndE[N ] is injective and gF -equivariant, it follows that σ acts
nontrivially on EndE[N ]. It can be shown that for any G-module M , if σ ∈ G acts
nontrivially on End(M) then σ acts nontrivially on M . �

3.5. A Result on Torsion Fields.

Theorem 3.16. Let O be an order in an imaginary quadratic field K. Let F be a
field of characteristic 0, and let E/F be an O-CM elliptic curve. Let N ∈ Z+. Let

h/FK : E → P1 be a Weber function for E: that is, h is the composition of the

quotient map E → E/(AutE) with an isomorphism E/(AutE) ∼= P1. Then the
field FK(h(E[N ])) contains the N -ray class field K(N) of K.

Remark 3.17. When O = OK , the equality K(j(C/OK), h(E[N ])) = K(N) is
one of the central results of the classical theory of complex multiplication [Sil94,
Theorem II.5.6]. We believe that the general case is also “classically known”, but
for lack of a suitable reference we include a proof. In fact we include two proofs: the
first one is intended for readers who are using Silverman’s text [Sil94] as a primary
reference and shows how to modify the proof given there for OK to the general case.
The second uses the adelic perspective [Lan87].

Proof. The fields generated by values of a Weber function h are independent of the
F -rational model of E [Sil94, Example II.5.5.2]. Since E has a model over Q(j(E)),
we may and shall assume F = Q(j(E)).
First Proof: Let L = FK(h(E[N ])). When O = O(∆K), we consider the proof
of L = K(N) given in Silverman [Sil94, Theorem II.5.6]. The argument proceeds
by showing that for all but finitely many degree 1 prime ideals p of OK , p ∈ P (N)
(that is, p = (π) for some π ≡ 1 (mod NOK)) if and only if p splits completely in
L. The “only if” direction uses that K(j(E)) = K(1) is the Hilbert class field of
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K. In general

L ⊃ K(j(E)) = KD ⊃ K(1)

so this implication is not valid for (most) non-maximal orders. However, the “if”
direction, which relates Frobenius elements of K∆ to the Frobenius on reductions
of O(∆)-CM elliptic curves, goes through essentially verbatim with one proviso (to
be addressed shortly).

Granting that, we get that for all but finitely many primes p of O , if p splits
completely in L then it splits completely in KD, and then Chebotarev Density
implies that L ⊃ KD. Recall that if ι : O ↪→ OK is the natural inclusion, then
ι∗ : p 7→ pOK induces a bijection between maximal ideals of O prime to f and
maximal ideals of OK prime to f which preserves degrees.

The proviso is that the proof given [Sil94, Proposition II.5.3] is only valid for
∆ = ∆K . But it is easy to reduce the general case to the O(∆K)-CM case: there is
a cyclic degree f F -isogeny φ : E → E′, where EndE′ = OK [CCS13, Proposition
25]. Let σp = (p,KD/K) be the Frobenius element. Then the composite map

E′ λ−→ (E′)σp
bφσp

−→ Eσp

factors through E: to see this, it suffices to show that the kernel K of bφ is contained
in the kernel of the composite map: the first map takes K to Kσp , and the kernel
of the second map is Kσp . So we get an isogeny

λ : E → Eσp

whose reduction modulo any prime of KD lying over p is the pth power Frobenius.
second proof: We use the results and notation of Lang [Lan87, §10.3]. Applying
Theorem 7 first with a = O and u = 1

N and then with a = OK and u = 1
N . We

observe that for an idele b, bO = O =⇒ bOK = OK . This is much as in Theorem
6. We conclude

L ⊃ K(j(C/O), h( 1
N

+O)) ⊃ K(j(C/OK), h(
1

N
+OK)).

But as an OK-module, 1
NOK/OK is generated by 1

N +OK [Lan87, p. 135], so

K(j(C/OK), h(
1

N
+OK)) = K(j(C/OK), h(E[N ]) = K(N). �

4. Results on Torsion Points on CM Elliptic Curves

Throughout this section we will use the following setup: O is an imaginary quadratic
order with fraction field K. Let ∆K be the discriminant of OK , f the conductor of
O, and ∆ the discriminant of O, so ∆ = f2∆K . Let F be a subfield of C, and let
E/F be an O-CM elliptic curve. Again h/FK will denote a Weber function.

4.1. Points of Order 2.

Let O be an imaginary quadratic order of discriminant ∆ < −4, with fraction field
K. Let E/C be an O-CM elliptic curve. Let F = Q(j(E)), and let L = F (E[2]), so
L/F is Galois of degree dividing 6. By Fact 1, the isomorphism class of F depends
only on ∆. Since ∆ < −4, the x-coordinate is a Weber function on E, and thus
L does not depend upon the chosen Weierstrass model (a fortiori, any two O-CM
elliptic curves with the same j-invariant are quadratic twists of each other, and
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2-torsion points are invariant under quadratic twist). Thus as an abstract number
field and a Galois extension thereof, F and L depend only on ∆.

Theorem 4.1. (Parish) For all ∆ < −4, F ( L.

Proof. Equivalently, E does not have full 2-torsion defined over F = Q(j(E)). This
follows from more precise results of Parish [Pa89, Table 1]. �

Theorem 4.2. Let O be an imaginary quadratic order of discriminant ∆ < −4 and
with fraction field K. Let E/C be an elliptic curve with O-CM. Let F = Q(j(E)),
and let L = F (E[2]).
a) We have K ⊂ L iff ∆ is odd.
b) If ∆ ≡ 1 (mod 8), then L = FK and thus [L : F ] = 2.
c) If ∆ ≡ 5 (mod 8), then [L : F ] = 6.
d) If ∆ is even, then [L : F ] = 2.

Proof. a) If ∆ is odd, then Lemma 3.15 gives K ⊂ L. Suppose ∆ is even. Then
Lemma 3.13 implies E[2](R) = Z/2Z× Z/2Z. Since K ̸⊂ R, the result follows.
b) If ∆ ≡ 1 (mod 8), then the mod 2 Cartan subgroup is isomorphic to (Z/2Z)××
(Z/2Z)×, better known as the trivial group. It follows that FK(E[2]) = FK.
Together with part a) this shows L = F (E[2]) = FK.
c) By part a) we have K ⊂ L, and thus by Theorem 3.16 we have L ⊃ K(2), the
2-ray class field of K. Since ∆ ≡ 5 (mod 8), we have [K(2) : K(1)] = 3. Since for
any elliptic curve E/F we have [F (E[2]) : F ] | 6, the result follows.

d) Since ∆ is even, the mod 2 Cartan subgroup is cyclic of order 22−2 = 2, and thus
[FK(E[2]) : FK] | 2. It follows by using the result of part a) that K ̸⊂ F (E[2]),
or just the fact that [L : F ] | 6 so we cannot have [L : F ] = 4, that [L : F ] | 2.
Combining with Theorem 4.1 we get the result. �

Corollary 4.3. Suppose ∆ ̸= −4. Let F be a number field, and let E/F be an
O(∆)-CM elliptic curve. If Z/2× Z/2Z ⊂ E(F ), then 2 | [F : Q].

Proof. Step 1: Suppose ∆ = −3. Then E has an equation of the form y2 = x3+B.
Since E(F ) has full 2-torsion, x3 +B splits in F and Q(

√
−3) ⊂ F .

Step 2: Suppose ∆ < −4. Since Q(E[2]) = Q(h(E[2])), the 2-torsion field is
independent of the model of E. We may thus assume without loss of generality
that E is obtained by base extension from an elliptic curve E/Q(j(E)). Applying
Theorem 4.2 we get

2 | [Q(j(E), E[2]) : Q(j(E)] | [F : Q]. �

Remark 4.4. The elliptic curve E/Q : y2 = x3 − x shows that the hypothesis
∆ ̸= −4 in Corollary 4.3 is necessary.

Corollary 4.5. If [F : Q] is odd, E/F is a CM elliptic curve and (Z/2Z)2 ⊂ E(F )

then E(F )[12] = (Z/2Z)2.

Proof. By Corollary 4.3 we may assume ∆ = −4. It is enough to show that E(F )
has no subgroup isomorphic to Z/6Z or Z/2Z × Z/4Z. This is immediate from
Table 2. �
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4.2. A refinement of the SPY bounds.

Theorem 4.6. Let O be an imaginary quadratic order of discriminant ∆; put
K = Q(

√
∆). Let F be a number field, and let E/F an elliptic curve with O-CM.

Let w(K) = #O×
K . Suppose E(F )[tors] contains a point of prime order ℓ > 2.

a) If (∆ℓ ) = −1, then �
2(ℓ2 − 1)

w(K)

�
h(K) | [FK : Q].

b) If (∆ℓ ) ̸= −1, then �
2(ℓ− 1)

w(K)

�
h(K) | [FK : Q].

When O = OK and ℓ - ∆, Theorem 4.6 was proved in part by the last two authors
[CCS13, Theorem 2]. Further, the hypothesis O = OK comes into the proof only
via the statement that K(j(E))(h(E[N ])) = K(N), the N -ray class field of K. In
fact the argument uses only that the former field contains the latter field, and this
holds by Theorem 3.16.

Proof. Suppose ℓ > 2 ramifies in K. Thus

Oℓ = O ⊗ Z/ℓZ ∼= Fℓ[t]/(t
2).

Thus its image Cℓ = ι(Oℓ) ⊂ EndE[ℓ] ∼= M2(Fℓ) is is generated over the scalar
matrices by a single nonzero nilpotent matrix g. Since the eigenvalues of g are Fℓ-
rational we can put it in Jordan canonical form over Fℓ, and thus we get a choice
of basis e1, e2 of E[ℓ] such that

Cℓ ∼=
§�

α β
0 α

�
| α, β ∈ Fℓ

ª
.

We will show that under the hypotheses of Theorem 4.6, we have

(3)
2(ℓ− 1)h(K)

w(K)
| [FK : Q].

Let x = ae1 + be2 ∈ E(F ) have order ℓ. For all S =

�
α β
0 α

�
∈ ρℓ(gFK) we have

(αa+ βb)e1 + (αb)e2 = Sx = x = ae1 + be2,

and thus

(α− 1)b = (α− 1)a+ βb = 0.

If α ̸= 1, then b = 0 and thus also a = 0 – contradiction – so α = 1 and ρℓ(gFK)

consists of elements of the form

�
1 β
0 1

�
and ρℓ(gFK) has size 1 or ℓ.

Case 1: Suppose #ρℓ(gFK) = 1. By Theorem 3.16 we have FK ⊃ K(j(E), h(E[ℓ])),
and so [CCS13, Corollary 9]

[K(j(E), h(E[ℓ])) : Q] =

�
2(ℓ− 1)h(K)

w(K)

�
ℓ | [FK : Q].

This gives (3), in fact with an extra factor of ℓ.
Case 2: If #ρℓ(gFK) = ℓ, then trivialize ρℓ by passing to a degree ℓ field extension
F ′. Applying Case 1 to F ′, the extra factor of ℓ over F ′ gives (3) for F . �
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4.3. The Real Cyclotomy Theorems.

Lemma 4.7. Let ∆ be an imaginary quadratic discriminant, and let K = Q(
√
∆).

Let F be a number field, and let E/F be an elliptic curve. Let N ≥ 3, and suppose

(Z/NZ)2 ⊂ E(FK). Then:
a) We have [Q(ζN ) : Q(ζN ) ∩ F ] ∈ {1, 2}.
b) Suppose F is real. Then Q(ζN ) ∩ F = Q(ζN )+.
c) Suppose gcd(N,∆K) = 1. Then Q(ζN ) ( FK.
d) If K ̸⊆ F (ζN ), then Q(ζN ) ⊂ F .
e) Suppose N is an odd prime power. Then Q(ζN )+ ⊂ F .
f) Suppose N = 2a with a ≥ 3. Then Q(ζN/2)

+ ( F .

Proof. a) Let χN : gF → (Z/NZ)× be the mod N cyclotomic character, and let
HF = χN (gF ). As usual the Weil pairing gives Q(ζN ) ⊂ FK, so χN (gFK) ≡ 1,
and thus #HF ≤ 2. Moreover F = F (ζN )HF ⊃ Q(ζN )HF , and the result follows.
b) Since N ≥ 3, Q(ζN ) ̸⊆ F and by part a) we have [Q(ζN ) : Q(ζN ) ∩ F ] = 2.
Further, Q(ζN ) ∩ F ⊂ Q(ζN ) ∩ R = Q(ζN )+.
c) We have Q(ζN ) ⊂ FK; if equality held, then K ⊂ Q(ζN ). But K is ramified at
some prime ℓ - N and Q(ζN ) is ramified only at primes dividing N .
d) The hypothesis implies that FK and F (ζN ) are linearly disjoint over F , χN |gFK ≡
1 implies #HF = {1} and Q(ζN ) ⊂ F .
e) If N is an odd prime power, then (Z/NZ)× is cyclic , so either HF = 1 and
Q(ζN ) = Q(ζN )HF ⊂ F or HF = {±1} and Q(ζN )+ = Q(ζN )HF ⊂ F .
f) Since N = 2a with a ≥ 3, (Z/NZ)× has three elements of order 2: −1 and
2a−1 ± 1. So we have HF ( {±1, 2a−1 ± 1}, and thus

F ⊃ Q(ζN )HF ) Q(ζN ){±1,2a−1±1} = Q(ζN/2)
+. �

Theorem 4.8. (Real Cyclotomy I) Let ∆ be an imaginary quadratic discriminant,

and let K = Q(
√
∆). Let N ∈ Z+ be such that gcd(N,∆) = 1. Let F ̸⊇ K be

a number field, and let E/F be an O(∆)-CM elliptic curve. Suppose that E(F )
contains a point of order N .
a) We have (Z/NZ)2 ⊂ E(FK).
b) F contains an index 2 subfield of Q(ζN ).
c) If N is an odd prime power, then Q(ζN )+ ( F . If N ≥ 8 is an even prime
power, then Q(ζN/2)

+ ( F .

d) If F is real and N ≥ 3, then Q(ζN )+ ( F .

Proof. a) We immediately reduce to the case that N = ℓa is a power of a prime
number ℓ. Let Tℓ(O) = O ⊗ Zℓ, and identify Tℓ(O) with its isomorphic image in
EndTℓE. For b ∈ Z+, let Oℓb = Tℓ(O)/⟨ℓb⟩. The hypothesis gcd(N,∆) = 1 implies
that Tℓ(O) is the maximal Zℓ-order in Kℓ = K ⊗ Qℓ. We know that Tℓ(E) is free
of rank one as a Tℓ(O)-module.

Case 1: Suppose
�
∆
ℓ

�
= 1. Then Tℓ(O) ∼= Zℓ ⊕ Zℓ. Put ι =

�
0 1
1 0

�
. Then

NTℓ(O)× = ⟨Tℓ(O)×, ι⟩. Because F does not contain K, there is σ ∈ gF such
that ρℓ∞(σ) ∈ NTℓ(O)× \ Tℓ(O)×. We may choose a Zℓ-basis Üe1, Üe2 of Tℓ(E) and

represent the Tℓ(O)-action on Tℓ(E) via {
�
α 0
0 β

�
| α, β ∈ Zℓ}. Let

ÜI1 =

�
1 0
0 0

�
, ÜI2 =

�
0 0
0 1

�
∈ Tℓ(O).
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For i = 1, 2, let ÜVi = ⟨Üei⟩Zℓ
, and observe that each ÜVi is an Tℓ(O)-submodule of

Tℓ(E). For i = 1, 2, put Vi = ÜVi (mod ℓ) ⊂ E[ℓ](F ). Because we may write ρℓ∞(σ)
as ιM with M ∈ Tℓ(O)×, we have

ρℓ∞(σ)(fV1) =fV2, ρℓ∞(σ)(fV2) =fV1

and thus also
ρℓ(σ)(V1) = V2, ρℓ(σ)(V2) = V1.

Lift P ∈ E[ℓn](F ) to a point P̃ = aÜe1 + bÜe2 ∈ Tℓ(E). We claim a, b ∈ Z×
ℓ : if not,

P ′ = [ℓn−1]P ∈ V1 ∪ V2 \ {0}, and ρℓ(σ)(P
′) = P ′ gives a contradiction. It follows

that for i = 1, 2, ⟨eIiP̃ ⟩Zℓ
= ÜVi, so the Tℓ(O)-submodule generated by P̃ is Tℓ(E).

Going modulo ℓa we get that the Oℓa-submodule generated by P is E[ℓa], and

thus (Z/ℓaZ)2 ⊂ E(FK). Case 2: Suppose
�
∆
ℓ

�
= −1. Then Tℓ(O) is a discrete

valuation ring with uniformizing element ℓ and fraction field Kℓ and thus Oℓa is a
finite principal ring with maximal ideal ⟨ℓ⟩. The elements of (Oℓa ,+) of order ℓa

are precisely the units, so O×
ℓa acts transitively on the order ℓa elements of E[ℓa]

and thus the Oℓa-submodule of E[ℓa] generated by P is E[ℓa].
b) This follows from Lemma 4.7a).
c) If N ≥ 3 is an odd prime power then by Lemma 4.7e) we have Q(ζN )+ ⊂ F .
Applying Lemma 4.7c) we get

1 < [FK : Q(ζN )] = [F : Q(ζN )+].

The case of an even prime power N ≥ 8 is similar but easier, since the strictness
in the containment Q(ζN/2)

+ ( F comes from Lemma 4.7f). For part d) we apply
Lemma 4.7b) and deduce the strictness of the containment as above. �
In the case when F is real, we can dispense with the hypothesis gcd(∆, N) = 1.

Theorem 4.9. (Real Cyclotomy II) Let O be an order of discriminant ∆ in an
imaginary quadratic field K, let F be a real number field, and let E/F be an O-CM
elliptic curve. Let N ≥ 1, and suppose E(F ) contains a point of order N . Then:
a) Q(ζN ) ⊂ FK and Q(ζN )+ ⊂ F .
b) If gcd(N,∆K) = 1 and N ≥ 3, then Q(ζN )+ ( F .

Proof. To establish Q(ζN ) ⊂ FK we reduce to the case in which N = ℓn is a prime
power. It will then follow that Q(ζN )+ = Q(ζN )c ⊂ (FK)c = F . The proof of part
b) is the same use of Lemma 4.7 as in the proof of Theorem 4.8.

Let Λ be the real lattice associated to E, unique up to R-homothety. There is
r ∈ R× such that Λ′ = rΛ is a primitive proper O-ideal.

First suppose ∆ = 4D. Then O = [1,
√
D], and Λ′ is of type I or II as in Theorem

3.7 above. If it is of type I, it follows that

Λ =

�
t

r
,

√
D

r

�
, where t ∈ N, t|D and

�
t,
D

t

�
= 1.

With respect to this basis the action of complex conjugation is given by

T =

�
1 0
0 −1

�
,

and the action of O on Λ is given by

α+ β
√
D 7→

�
α β

�
D
t

�
βt α

�
.
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We may choose a Zℓ-basis Üe1, Üe2 for Tℓ(E) such that the image of the Cartan
subgroup in GL2(Zℓ) is

C×ℓ =

¨�
α β

�
D
t

�
βt α

�
| α2 − β2D ∈ Z×

ℓ

«
and the element c ∈ gF induced by complex conjugation corresponds to ρℓ∞(c) = T .
Let ei = ẽi (mod ℓn). For x ∈ E(F )[ℓn] \E(F )[ℓn−1], we may choose a, b ∈ Z/ℓnZ
such that x = ae1 + be2. Then

ae1 + be2 = x = Tx = ae1 − be2,

so 2b ≡ 0 (mod ℓn). We assume for the moment that ℓ is odd, so it follows that
b ≡ 0 (mod ℓn). Thus a ∈ (Z/ℓnZ)×.

For S =

�
α β

�
D
t

�
βt α

�
∈ C×ℓ ∩Gℓ, we have

(4) ae1 + be2 = x = Sx =

�
αa+ βb

�
D

t

��
e1 + (βat+ αb)e2.

Modulo ℓn this becomes

ae1 = x = Sx = αae1 + βate2.

It follows that α ≡ 1 (mod ℓn) and βt ≡ 0 (mod ℓn), and thus

S ≡
�

1 β
�
D
t

�
0 1

�
(mod ℓn).

Let σ ∈ gFK . Then there exists β0 = β0(σ) such that

ρℓn(σ) =

�
1 β0

�
D
t

�
0 1

�
.

By Galois equivariance of the Weil pairing, σζℓn = ζ
det ρℓn (σ)
ℓn = ζℓn , so ζℓn ∈ FK.

If ℓ = 2, assume without loss of generality that n ≥ 2 because if N = 2M
with M odd then Q(ζN ) = Q(ζM ) and Q(ζN )+ = Q(ζM )+. We must adjust our
approach by working mod 2n−1. Indeed, Tx = x will only imply b ≡ 0 (mod 2n−1)
and a ∈ (Z/2nZ)×. For S ∈ C×2 ∩ G2, Sx = x gives α ≡ 1 (mod 2n−1), βt ≡ 0
(mod 2n−1). In fact, βt ≡ 0 (mod 2n) as well. Indeed, by (4), b = βat+ αb, which
means

a−1b(1− α) ≡ βt (mod 2n).

As 2n−1 | b and 2n−1 | (1− α), the claim follows since n ≥ 2. Thus

detS = α2 − β2D = α2 − β2t
D

t
≡ α2 ≡ 1 (mod 2n),

and det ◦ρ2n |gFK is trivial. We conclude ζ2n ∈ FK.
If Λ′ is of type II, then

Λ =

�
t

r
,
t+
√
∆

2r

�
, where t ∈ N, 4t|t2 −∆ and

�
t,
t2 −∆

4t

�
= 1.

With respect to this basis the action of complex conjugation is given by

T =

�
1 1
0 −1

�
,
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and the action of O on Λ is given by

α+ β
√
D 7→

"
α− β

�
t
2

�
−β

�
t2−∆
4t

�
βt α+ β

�
t
2

� #
.

This gives rise to the Cartan subgroup

C×ℓ =

("
α− β

�
t
2

�
−β

�
t2−∆
4t

�
βt α+ β

�
t
2

� #
| α2 − β2 t

2

4
+ β2

�
t2 −∆

4

�
∈ Z×

ℓ

)
As before, we may choose a Zℓ-basis Üe1, Üe2 for Tℓ(E) such that ρℓ∞(gFK) ⊂ C×ℓ and
the element c ∈ gF induced by complex conjugation corresponds to ρℓ∞(c) = T .

Let ei = ẽi (mod ℓn). For x ∈ E(F )[ℓn] \ E(F )[ℓn−1], we may choose a, b ∈
Z/ℓnZ such that x = ae1 + be2. Then

ae1 + be2 = x = Tx = (a+ b)e1 − be2,

so b ≡ 0 (mod ℓn) and a ∈ (Z/ℓnZ)×. For S =

"
α− β

�
t
2

�
−β

�
t2−∆
4t

�
βt α+ β

�
t
2

� #
∈

C×ℓ ∩Gℓ, we have

ae1 = x = Sx =

�
α− β

�
t

2

��
ae1 + βate2 (mod ℓn).

Thus α− β
�
t
2

�
≡ 1 (mod ℓn) and βt ≡ 0 (mod ℓn). It follows that

α+ β

�
t

2

�
≡ α+ β

�
t

2

�
− βt = α− β

�
t

2

�
≡ 1 (mod ℓn).

Hence

S ≡
�

1 −β
�
t2−∆
4t

�
0 1

�
(mod ℓn).

We conclude ζℓn ∈ FK as before. Finally, we consider the case when ∆ ≡ 1

(mod 4). Then O =
�
1, 1+

√
∆

2

�
and Λ′ is of type II as in Theorem 3.7. Thus

Λ =

�
t

r
,
t+
√
∆

2r

�
, where t ∈ N, 4t|t2 −∆ and

�
t,
t2 −∆

4t

�
= 1.

Following the method used above, we may choose a Zℓ-basis Üe1, Üe2 for Tℓ(E) such
that the image of the Cartan subgroup in GL2(Zℓ) consists of matrices of the form"

α− β
�
t−1
2

�
β
�
∆−t2

4t

�
βt α+ β

�
t+1
2

� #
and the element c ∈ gF induced by complex conjugation corresponds to

T =

�
1 1
0 −1

�
.

Let ei = ẽi (mod ℓn). For x ∈ E(F )[ℓn] \ E(F )[ℓn−1], we again choose a, b ∈
Z/ℓnZ such that x = ae1 + be2. Then Tx = x gives b ≡ 0 (mod ℓn) and hence

a ∈ (Z/ℓnZ)×. For S =

"
α− β

�
t−1
2

�
β
�
∆−t2

4t

�
βt α+ β

�
t+1
2

� # ∈ C×ℓ ∩Gℓ, we have

ae1 = x = Sx =

�
α− β

�
t− 1

2

��
ae1 + βate2 (mod ℓn).
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As before, this implies α− β
�
t−1
2

�
≡ 1 (mod ℓn) and βt ≡ 0 (mod ℓn). Since

α+ β

�
t+ 1

2

�
≡ α+ β

�
t+ 1

2

�
− βt = α− β

�
t− 1

2

�
≡ 1 (mod ℓn),

we have

S ≡
�

1 β
�
∆−t2

4t

�
0 1

�
(mod ℓn).

It follows that ζℓn ∈ FK. �

Remark 4.10. When ℓn = 2, Theorem 4.9a) is vacuous. Part b) holds in this case
unless F = Q and j ∈ {0, 54000,−153, 2553}. These curves have CM by O(∆) for
∆ ∈ {−3,−12,−7,−28}, and a point of order 2.

Corollary 4.11. a) Let N ≥ 5, let F be an odd degree number field, and let E/F

be a CM elliptic curve such that E(F ) contains a point of order N . Then there is
a prime p ≡ 3 (mod 4) and a positive integer a such that N ∈ {pa, 2pa}.
b) Let S be the set of positive integers N such that there is an odd degree number
field F and a CM elliptic curve E/F such that E(F ) contains a point of order N .
Then S has density 0.

Proof. a) By Real Cyclotomy II (Theorem 4.9) we have Q(ζN )+ ⊂ F , so φ(N)
2 |

[F : Q] and thus 4 - φ(N). Since φ(N) is divisible by 4 if N > 4 is divisible by 4,
by a prime p ≡ 1 (mod 4), or by two odd primes, the result follows.
b) This follows easily from part a). More precisely, the Prime Number Theorem
gives S ∩ [1, X] = O( X

logX ). �

4.4. Square-Root SPY Bounds.

Proposition 4.12. ([Coh00, Corollary 3.2.4]) Let K be a number field, and let m
a nonzero ideal of OK , hence also a modulus in the sense of class field theory. Let
U = O×

K and Um = {α ∈ U : ordp(α− 1) ≥ ordp m for all p | m}. Then

[Km : K] = [K1:K]
[U :Um] [OK : m] ·

Q
p|m

�
1− [OK : p]−1

�
.

Theorem 4.13. (Square-Root SPY Bounds) Let O be an imaginary quadratic order
of discriminant ∆ and fraction field K, let F be a number field, and let E/F be an
O-CM elliptic curve. Let N ≥ 3.
a) If (Z/NZ)2 ⊂ E(FK), then

φ(N) ≤
Ê

[F : Q]wK

hK
.

b) The hypothesis of part a) is satisfied when K ̸⊆ F and gcd(∆, N) = 1.

Proof. a) We haveY
p|NOK

�
1− [OK : p]−1

�
=
Y
p|N

Y
p|pOK

�
1− [OK : p]−1

�
.

Further, we have

Y
p|pOK

�
1− [OK : p]−1

�
=

8><>:
(1− 1

p )
2,

�
∆K

p

�
= 1

(1− 1
p ),

�
∆K

p

�
= 0

(1− 1
p2 ),

�
∆K

p

�
= −1

,
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so Y
p|NOK

�
1− [OK : p]−1

�
≥
Y
p|N

�
1− 1

p

�2

.

Applying Lemma 3.15 and Theorem 3.16, we get

FK = F (E[N ]) ⊃ K(N)

and thus

[F : Q] =
[FK : Q]

2
≥ [K(N) : Q]

2
= [K(N) : K]

=
hK

[U : UNOK ]
[OK : NOK ]

Y
p|NOK

�
1− [OK : p]−1

�

≥ hK

wK
N2

Y
p|N

�
1− 1

p

�2

=
hK

wK
φ(N)2.

b) This is Theorem 4.8a). �

Example 4.14. Let N ≥ 3, let F be a cubic number field, and let E/F be a CM
elliptic curve such that E(F ) contains a point of order N . The SPY Bounds give
φ(N) ≤ [F : Q]wK ≤ 18; in particular the largest prime value of N permitted is 19.
The odd order torsion subgroup of E(F ) has size at most 13 [CX08, Corollary 2];
in particular, the largest prime value permitted is 13. Real Cyclotomy II (Theorem
4.9) gives φ(N) | 6 and thus N | 4, N | 14 or N | 18; in particular, the largest
prime value permitted is 7. Theorems 2.1 and 1.4 show that all of these values of
N are actually attained except for N = 18.

Suppose now that E/F is O(∆)-CM and gcd(∆, N) = 1. Then the Square Root
SPY Bounds give

φ(N) ≤ ⌊
√
18⌋ = 4, K = Q(

√
−3),

φ(N) ≤ ⌊
√
12⌋ = 3, K = Q(

√
−1),

φ(N) ≤ ⌊
√
6⌋ = 2, K /∈ {Q(

√
−3),Q(

√
−1)}.

Combining with Real Cyclotomy II, we get that the only prime values of N permitted
in this case are the “Olson primes” 2 and 3. The four elliptic curves in rows
13 through 16 of the table in Theorem 1.4 do not satisfy the Square Root SPY
Bounds. It follows from Theorem 4.13 that for N = 9 and N = 14 we do not
have (Z/NZ)2 ⊂ E(FK). This shows that the hypothesis gcd(∆, N) = 1 in Real
Cyclotomy I (Theorem 4.8) is necessary in order for this stronger form of real
cyclotomy to hold. On the other hand, we have

Q[b]/(b3 − 15b2 − 9b− 1) ∼= Q[b]/(b3 + 105b2 − 33b− 1) ∼= Q(ζ9)
+,

Q[b](b3 − 4b2 + 3b+ 1) ∼= Q[b]/(b3 − 186b2 + 3b+ 1) ∼= Q(ζ14)
+,

in accordance with Real Cyclotomy II (Theorem 4.9).
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5. Number Fields of Prime Degree

5.1. Parish’s Theorem.

The proof of Theorem 1.4 will make use of the following striking result.

Theorem 5.1. (Parish [Pa89, Theorem 2]) Let E/F be a CM elliptic curve defined
over a number field. If F = Q(j(E)), then E(F )[tors] is an Olson group.

The following consequence is immediate.

Corollary 5.2. If F is a number field of prime degree and E/F is a CM elliptic
curve with j(E) /∈ Q, then E/F is Olson.

5.2. Proof of Theorem 1.4.

Let F be a number field with [F : Q] = p a prime number: so F is real if p ̸= 2.
Let E/F be an elliptic curve with CM by an order O of discriminant D = f2D0 in
the imaginary quadratic field K. Suppose E/F is not Olson.

Step 1: Suppose p = 2. In this case, the result is in principle a very special
case of work of Müller-Ströher-Zimmer [MSZ89] shows that there are finitely many
pairs (E,F ) with F a quadratic number field and E/F a non-Olson elliptic curve
with integral moduli – i.e., j(E) ∈ OF – and lists all of them. In practice, we used
Parish’s Theorem, the SPY Bounds, and Table 2 to rederive the classification.

Step 2: Suppose p = 3. Work of Pëtho-Weis-Zimmer [PWZ97] shows that as
E/F ranges over all elliptic curves over cubic number fields with integral moduli,
the only non-Olson group which arises infinitely many times is Z/5Z. By Corollary
4.11, there is no CM elliptic curve over a cubic field with a point of order 5. As
above, although these results suffice in principle, in practice we used Parish’s The-
orem, the SPY Bounds, work of Clark-Xarles [CX08, Corollary 2], and Table 2 to
rederive the classification.

Step 3: Suppose p ≥ 5. Suppose E(F )[tors] has a point of prime order ℓ ≥ 5.
By Corollary 5.2, j(E) ∈ Q. Thus O has class number 1, so

(5) ∆ ∈ {−3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163}.
If ℓ is unramified in K then by Real Cyclotomy II (Theorem 4.9), Q(ζℓ)

+ ( F and
thus ℓ−1

2 properly divides p. Since ℓ ≥ 5, this is a contradiction. If ℓ is ramified in

K then ℓ ∈ {7, 11, 19, 43, 67, 163}. Real Cyclotomy II gives ℓ−1
2 | p, so p = ℓ−1

2 .
• If ℓ = 7 then p = 3.
• If ℓ = 11 then p = 5.
• If ℓ ∈ {19, 43, 67, 163}, then ℓ−1

2 is not a prime.
Step 4: It follows from Table 2 that no CM elliptic curve E with rational j-invariant
defined over number field F of prime degree p ≥ 5 can have any of the following as
subgroups of E(F ):

Z/8Z,Z/9Z,Z/12Z,Z/2Z× Z/4Z, Z/2Z× Z/6Z.
Therefore p ≤ 5, and if p = 5 then ∆ = −11, F = Q(ζ5)

+ and E(F ) has a point of
order 11. It follows that there is such an elliptic curve [CCRS14, §4.5]. The same
kind of computation shows that this curve is unique. Alternately, any other such
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elliptic curve would be a quadratic twist of E/F by F (
√
d)/F , say. For any odd

N ≥ 3, if E/F and the quadratic twist E
(d)
/F each have points of order N , then E

has full N -torsion over F (
√
d). This would force F (

√
d) = FK = Q(ζ11) and thus,

by Theorem 3.16, Q(ζ11) ⊃ K(11), but [Q(ζ11) : Q] = 10 and [K(11) : Q] = 110.

Remark 5.3. Theorem 1.4 is proved by ruling out non-Olson torsion in prime
degree p ≥ 7 and then computing all non-Olson CM elliptic curves over number
fields of degree p ∈ {2, 3, 5}. These calculations were done en route to previ-
ous results [CCRS14, §4.2, §4.3, §4.5], but each group structure which arose in
a given degree was recorded only once [CCRS14, Algorithm 3.2]. The proof ex-
plains how one could extract the needed calculations from tables appearing in previ-
ous work [MSZ89, PWZ97, CCRS14], Corollary 4.11 and some modest calculations
with genus zero torsion structures.

However, we did not feel that this was a good approach. Rather, the last two
authors knew from our prior work that it would not be overly onerous to recalculate
all non-Olson torsion in degrees 2,3 and 5 from scratch. To achieve the most
meaningful corroboration, this recalculation was done by the first author. They are
fully consistent with (but more detailed than) the results of [CCRS14].

6. Beyond Prime Degrees

6.1. Proof of Theorem 1.5. We give the proof of Theorem 1.5. For the reader’s
convenience we begin by recalling the statement of Schinzel’s Hypothesis H.

Conjecture 6.1. (Schinzel’s Hypothesis H) Let f1, . . . , fr ∈ Q[t] be irreducible and
integer-valued. Suppose: for all m ≥ 2 there is n ∈ Z+ such that m - f1(n) · · · fr(n).
Then {n ∈ Z+ | |f1(n)|, . . . , |fr(n)| are all prime numbers} is infinite.

Theorem 6.2. Assume Schinzel’s Hypothesis H, and let d ∈ Z+. Then

lim sup
p∈P

#T new
CM (2dp) ≥ 1.

Proof. Applying Schinzel’s Hypothesis H with f1(x) = x, f2(x) = 6dx + 1, we get
infinitely many prime numbers p such that N = 6dp+1 is prime. Thus N−1

3 = 2dp.

In particular N ≡ 1 (mod 3), so N splits in K = Q(
√
−3), and then there is an

OK-CM elliptic curve E defined over a number field F of degree N−1
3 = 2dp with

an F -rational point of order N [CCS13, Theorem 3]. We claim that for sufficiently
large N , E(F )[tors] ∈ T new

CM (2dp): if so, the result follows. Now there is a positive
integer N0 (as yet inexplicit) such that for all primes N ≥ N0, if E/F is a CM
elliptic curve over a number field F with an F -rational point of order N , then
[F : Q] ≥ N−1

3 [CCS13, Theorem 1]. Thus for all primes N ≥ N0, E(F )[tors] is
a torsion subgroup that does not occur in any degree smaller than [F : Q], which
certainly implies E(F )[tors] ∈ T new

CM (2dp). �

6.2. Unboundedness of Odd Degree Torsion Points on Elliptic Curves.

Theorem 6.3. Let d,N ∈ Z+ with d ≥ 2. The set of algebraic numbers j ∈ Q
such that there is a number field K with gcd([K : Q], d) = 1 and an elliptic curve
E/K with j(E) = j and a point of order N in E(K) is infinite.
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Proof. Let S ⊂ Q be finite. Identifying Y1(1) with A1, we view S as a finite set of Q-
valued points of Y1(1). Let Z1 be a finite closed Q-subscheme of X1(1)/Q containing
(the image in X1(N) of) S and all the cusps, and let ZN be the preimage of Z1

under π : X1(N) → X1(1), so ZN is a finite closed Q-subscheme of X1(N). Let
U = X1(N) \ ZN . The least positive degree of a divisor on U is the least positive
degree of a divisor on X1(N) [Cl07, Lemma 12]. Since the cusp at∞ is a Q-rational
point on X1(N), this common quantity is 1, and thus there is a divisor

P
i ni[Pi]

on U such that
P

i ni[Q(Pi) : Q] = 1. It follows that for at least one i we have
d - [Q(Pi) : Q]. The point Pi corresponds to at least one pair (E, x)/Q(Pi) where E
is an elliptic curve and x ∈ E(Q(Pi)) has order N [DR73, Proposition VI.3.2]. �

6.3. Number Fields of Sd-Type.

Let G be a finite group. A number field F is of G-type if the automorphism
group of the normal closure of F/Q is isomorphic to G.

Theorem 6.4. Let d be an odd positive integer, and let F be a degree d number
field of Sd-type. Then every CM elliptic curve E/F is Olson.

Proof. Step 1: Let M be the normal closure of F/Q, and choose an isomorphism
Sd
∼= Aut(M/Q). Let A (resp. B) be the maximal abelian subextension of F/Q

(resp. of M/Q). Then

B = M [Sd,Sd] = MAd ,

so [B : Q] = 2. Since Q ⊂ A ⊂ B ∩ F and [F : Q] = d is odd, we have A = Q.
Step 2: Let E/F be a CM elliptic curve. Since F has odd degree, it is real, so if E(F )
contains a point of order N , by Real Cyclotomy II (Theorem 4.9) F contains the
abelian number field Q(ζN )+. Thus Q(ζN )+ = Q and N ∈ {1, 2, 3, 4, 6}. Because
d is odd, we have Q(ζ3) ̸⊆ F and thus (Z/3Z)2 ̸⊆ E(F ). Applying Corollary 4.5,
we conclude that E/F is Olson. �

Appendix: Table of Degree Sequences

Let m | n be positive integers; we exclude the pairs (1, 1), (1, 2), (1, 3), (2, 2).
Then the modular curve Y (m,n) classifying (roughly: the precise description of
the moduli problem involves a Cartier-equivariant isomorphism and is omitted here)
(µm × Z/nZ)-structures on elliptic curves is a fine moduli space. For every j ∈ Q,
the fiber of the morphism Y (m,n)→ Y (1) over j is a finite Q(j)-subscheme. The

reduced subcheme of the fiber is therefore isomorphic to a finite product
QN

i=1 Ki

of number fields. By the degree sequence for (m,n) and j we mean the sequence
of degrees of the number fields Ki(ζm), written in non-decreasing order. These are
the degrees of the (unique minimal) fields of definition K such that there is an
elliptic curve E/K with O(∆)-CM and an injection Z/mZ× Z/nZ ↪→ E(K).

In the table below we list the degree sequences for the 13 class number one imagi-
nary quadratic discriminants for certain pairs (m,n). The results of this table are
used in the proofs of Corollary 4.5 and Theorem 1.4.
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-3 -4 -7 -8 -11 -12 -16
(1, 4) 2 1,2 2,2,2 2,4 6 2,4 1,1,4

(1, 5) 4 2,4 12 12 4,8 12 4,8

(1, 6) 1,3 2,4 4,8 2,2,4,4 6,6 1,2,3,6 4,8

(1, 7) 2,6 12 3,21 24 24 6,18 24

(1, 8) 8 4,8 4,4,8,8 8,16 24 8,16 4,4,16

(1, 9) 3,9 18 36 6,12,18 6,12,18 9,27 36

(1, 10) 12 2,4,4,8 12,24 12,24 12,24 12,24 4,8,8,16

(1, 11) 20 30 10,50 10,50 5,55 60 60

(1, 12) 4,12 8,16 16,16,16 8,8,16,16 24,24 4,8,12,24 8,8,32

(1, 13) 4,24 6,36 84 84 84 12,72 12,72

(2, 4) 4 2,2,2 2,2,2,2,4 2,2,4,4 12 4,4,4 2,2,4,4

(2, 6) 2,6 4,4,4 8,8,8 4,4,4,4,4,4 6,6,12 2,2,2,6,6,6 8,8,8

(2, 8) 16 8,8,8 4,4,4,4,8,8,16 8,8,16,16 48 8,8,16,16 4,4,8,16,16

(3, 3) 2,2,2 4,4 8,8 4,4,4,4 4,4,4,4 6,6,6 8,8

-19 -27 -28 -43 -67 -163
(1, 4) 6 6 2,4 6 6 6

(1, 5) 4,8 12 12 12 12 12

(1, 6) 12 3,9 4,8 12 12 12

(1, 7) 6,18 6,18 3,21 24 24 24

(1, 8) 24 24 4,4,16 24 24 24

(1, 9) 36 3,6,27 36 36 36 36

(1, 10) 12,24 36 12,24 36 36 36

(1, 11) 10,50 60 10,50 10,50 60 60

(1, 12) 48 12,36 16,32 48 48 48

(1, 13) 84 12,72 84 12,72 84 84

(2, 4) 12 12 4,4,4 12 12 12

(2, 6) 24 6,18 8,8,8 24 24 24

(2, 8) 48 48 8,8,16,16 48 48 48

(3, 3) 8,8 6,6,6 8,8 8,8 8,8 8,8

table 2
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