

Finite Groups as Isometry Groups Author(s): D. Asimov Source: Transactions of the American Mathematical Society, Vol. 216 (Feb., 1976), pp. 389-391 Published by: American Mathematical Society Stable URL: <u>http://www.jstor.org/stable/1997706</u> Accessed: 15/11/2010 18:21

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Transactions of the American Mathematical Society.

FINITE GROUPS AS ISOMETRY GROUPS

ΒY

D. ASIMOV

ABSTRACT. We show that given any finite group G of cardinality k + 1, there is a Riemannian sphere S^{k-1} (imbeddable isometrically as a hypersurface in \mathbb{R}^k) such that its full isometry group is isomorphic to G. We also show the existence of a finite metric space of cardinality k(k + 1) whose full isometry group is isomorphic to G.

Let G be a finite group of k + 1 elements $\{1, g_1, \ldots, g_k\}$.

THEOREM. There exists a Riemannian metric on the sphere S^{k-1} such that the isometry group is isomorphic to G.

PROOF. Label the k + 1 vertices of a regular k-simplex Δ_k by the names $1, g_1, \ldots, g_k$ of the elements of G. Assume Δ_k to be inscribed in a standard S^{k-1} sitting in \mathbb{R}^k as usual. $T_v(S^{k-1})$ denotes the tangent space at y.

Now in $T_1(S^{k-1})$ pick an orthonormal frame (v_1, \ldots, v_{k-1}) . Pick $\epsilon > 0$ small and let

$$w_i = \epsilon (1 + (i - 1)/4k^2)v_i, \quad 1 \le i \le k - 1.$$

Let

$$Q = \{ \exp_1(w_i) | 1 \le i \le k - 1 \} \cup \{ \exp_1(0) \} \cup \{ w_1/10 \}.$$

 \exp_1 is the exponential map $\exp_1: T_1(S^{k-1}) \longrightarrow S^{k-1}$.

Think of G as acting on S^{k-1} by the isometries induced from the permutation representation on the vertices of Δ_k . Let $X = \{gQ | g \in G\}$.

PROPOSITION. With the induced metric from \mathbf{R}^k , the metric space X has its group of isometries isomorphic to G.

PROOF. Clearly G acts as a group of isometries of X, since $X = h\{gQ | g \in G\} = \{hgQ | g \in G\} = \{gQ | g \in G\} = X$.

Conversely, any isometry of X must take the point 1 to some point g, since the points g are characterized by being the only points in X having their

Copyright © 1976, American Mathematical Society

Received by the editors May 8, 1975.

AMS (MOS) subject classifications (1970). Primary 53C20, 54E40, 20C99; Secondary 20D99, 54E35, 53C40.

Key words and phrases. Group, isometry, Riemannian, manifold, the metric space.

two nearest neighbors at distance of $\epsilon/10$ and ϵ respectively. Once we know that $1 \mapsto g$, the configuration gQ determines the image of the frame (w_1, \ldots, w_{k-1}) at 1, and hence determines the unique isometry of X defined by the element $g \in G$. Of course ϵ must be chosen small enough so that the configurations gQ, $g \in G$ do not "interfere" with one another.

Now we add bumps to S^{k-1} at the points of X using scalar multiplication in \mathbb{R}^{k} . Let

$$\delta = (1/3)\min\{\operatorname{dist}_{S^{k-1}}(x, y) | x, y \in X\}.$$

Let $f: [0, \delta] \longrightarrow \mathbf{R}$ be a smooth function satisfying

(a) $f(s) = 100, 0 \le s \le \delta/2,$

(b) $f(\delta) = 1; f^{(k)}(\delta) = 0, k = 1, 2, ...,$

(c) $f^{(k)}(\delta/2) = 0, k = 1, 2, ..., and$

(d) f'(s) < 0 if $\delta/2 < s < \delta$.

Now for each point $x \in X$ we remove the disk $\exp_x(D_{\delta})$ from S^{k-1} and replace it by the point set $B_x = \{(f(|v|))\exp_x(v) | v \in D_{\delta}\}$, where D_{δ} is the (δ) -disk about the origin of $T_x(S^{k-1})$. Clearly the set $S^{k-1} - \bigcup_{x \in X} \exp_x(D_{\delta})$ $\cup \bigcup_{x \in X} B_x$ is a smooth S^{k-1} imbedded in \mathbb{R}^k . We give it the induced Riemannian metric from \mathbb{R}^k and denote it by M.

CLAIM: Isom(M) $\approx G$.

PROOF. First we notice that the points of $100 \cdot X \subset M$ must be taken to themselves by any isometry I of M, by the choice of the function f. Clearly the same arguments above for X hold for $100 \cdot X$, hence the isometry $I: M \longrightarrow M$ restricted to $100 \cdot X$ comes from the action of G.

Let us now consider the "bump" B_1 above the point 1. Let us define for $r \ge 0$, $S_r = \{f(r) \cdot \exp_1(v) | |v| = r, v \in T_1(S^{k-1})\}$. In other words, S_r is the (k-2)-sphere of B_1 lying above the (k-2)-sphere about 1 of radius r, for $0 < r \le \delta$, and for r = 0 we set $S_0 = p$, the peak point of B_1 .

Now it is easy to show that the orthogonal trajectories of the S_r 's are geodesics of M and as such must be preserved under any isometry taking p to p.

Thus any isometry I of M which takes p to p (and which must thus leave all points of $100 \cdot X$ fixed) must be a "rotation" on all of B_1 , determined by $I \mid \partial B_1$, carrying each S_r into itself by the "same" element of O(k-2). Similarly, this I must rotate each bump B_r , $x \in X$.

Also this rotation must extend past the boundary of the bumps for some ways, so we can easily extend $I | (M - \bigcup_x B_x)$ to an isometry \widetilde{I} of S^{k-1} to itself, by simply "coning" I over $\exp_x(D_\delta), x \in X$. Clearly we will have $\widetilde{I}(x) = x$ for $x \in X$, and it follows easily that $\widetilde{I}: S^{k-1} \to S^{k-1}$ is the identity. Hence $I: M \to M$ must have been the identity.

390

Now it is clear that for each $g \in G$ there is one isometry of M determined by the action of g on S^{k-1} , extended to R^k , restricted to M. Now if there is another isometry $I: M \to M$ such that I | X = g | X, then $I \circ g^{-1}: M \to M$ must leave points of X fixed, so by the above discussion must be the identity. This establishes $Isom(M) \approx G$.

COROLLARY. Any finite group G is isomorphic to the (full) isometry group of a finite subset X_G of euclidean space. If card(G) = k then the X_G can be found with $card(X_G) = k^2 - k$ in euclidean space of dimension k - 1.

PROOF. Simply take $X_G = X$ in the proof of the Theorem, and count (noting that we initially took card(G) = k + 1).

REMARK. Further considerations can very likely reduce the necessary cardinality for X_G to k(k-3). The various numbers

 $d = \min\{\operatorname{card}(X) | G \approx \operatorname{Isom}(X)\}$ and

 $e = \min\{N | G \text{ has a faithful representation into } O(N)\}$

seem to be interesting invariants of a finite group G.

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455

Current address: School of Mathematics, The Institute for Advanced Study, Princeton, New Jersey 08540