Finite Groups as Isometry Groups
Author(s): D. Asimov
Source: Transactions of the American Mathematical Society, Vol. 216 (Feb., 1976), pp. 389-391
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/1997706
Accessed: 15/11/2010 18:21

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Transactions of the American Mathematical Society.

FINITE GROUPS AS ISOMETRY GROUPS

BY
D. ASIMOV

Abstract

We show that given any finite group G of cardinality $k+1$, there is a Riemannian sphere S^{k-1} (imbeddable isometrically as a hypersurface in R^{k}) such that its full isometry group is isomorphic to G. We also show the existence of a finite metric space of cardinality $k(k+1)$ whose full isometry group is isomorphic to G.

Let G be a finite group of $k+1$ elements $\left\{1, g_{1}, \ldots, g_{k}\right\}$.
Theorem. There exists a Riemannian metric on the sphere S^{k-1} such that the isometry group is isomorphic to G.

Proof. Label the $k+1$ vertices of a regular k-simplex Δ_{k} by the names $1, g_{1}, \ldots, g_{k}$ of the elements of G. Assume Δ_{k} to be inscribed in a standard S^{k-1} sitting in \mathbf{R}^{k} as usual. $T_{y}\left(S^{k-1}\right)$ denotes the tangent space at y.

Now in $T_{1}\left(S^{k-1}\right)$ pick an orthonormal frame $\left(v_{1}, \ldots, v_{k-1}\right)$. Pick $\epsilon>$ 0 small and let

$$
w_{i}=\epsilon\left(1+(i-1) / 4 k^{2}\right) v_{i}, \quad 1 \leqslant i \leqslant k-1
$$

Let

$$
Q=\left\{\exp _{1}\left(w_{i}\right) \mid 1 \leqslant i \leqslant k-1\right\} \cup\left\{\exp _{1}(0)\right\} \cup\left\{w_{1} / 10\right\}
$$

$\exp _{1}$ is the exponential map $\exp _{1}: T_{1}\left(S^{k-1}\right) \longrightarrow S^{k-1}$.
Think of G as acting on S^{k-1} by the isometries induced from the permutation representation on the vertices of Δ_{k}. Let $X=\{g Q \mid g \in G\}$.

Proposition. With the induced metric from \mathbf{R}^{k}, the metric space X has its group of isometries isomorphic to G.

Proof. Clearly G acts as a group of isometries of X, since $X=$ $h\{g Q \mid g \in G\}=\{h g Q \mid g \in G\}=\{g Q \mid g \in G\}=X$.

Conversely, any isometry of X must take the point 1 to some point g, since the points g are characterized by being the only points in X having their

[^0]two nearest neighbors at distance of $\epsilon / 10$ and ϵ respectively. Once we know that $1 \mapsto g$, the configuration $g Q$ determines the image of the frame $\left(w_{1}, \ldots\right.$, w_{k-1}) at 1 , and hence determines the unique isometry of X defined by the element $g \in G$. Of course ϵ must be chosen small enough so that the configurations $g Q, g \in G$ do not "interfere" with one another.

Now we add bumps to S^{k-1} at the points of X using scalar multiplication in \mathbf{R}^{κ}. Let

$$
\delta=(1 / 3) \min \left\{\operatorname{dist}_{S^{k-1}}(x, y) \mid x, y \in X\right\}
$$

Let $f:[0, \delta] \longrightarrow \mathbf{R}$ be a smooth function satisfying
(a) $f(s)=100,0 \leqslant s \leqslant \delta / 2$,
(b) $f(\delta)=1 ; f^{(k)}(\delta)=0, k=1,2, \ldots$,
(c) $f^{(k)}(\delta / 2)=0, k=1,2, \ldots$, and
(d) $f^{\prime}(s)<0$ if $\delta / 2<s<\delta$.

Now for each point $x \in X$ we remove the disk $\exp _{x}\left(D_{\delta}\right)$ from S^{k-1} and replace it by the point set $B_{x}=\left\{(f(|v|)) \exp _{x}(v) \mid v \in D_{\delta}\right\}$, where D_{δ} is the (δ)-disk about the origin of $T_{x}\left(S^{k-1}\right)$. Clearly the set $S^{k-1}-\bigcup_{x \in X} \exp _{x}\left(D_{\delta}\right)$ $\cup \cup_{x \in X} B_{x}$ is a smooth S^{k-1} imbedded in \mathbf{R}^{k}. We give it the induced Riemannian metric from \mathbf{R}^{k} and denote it by M.

Claim: $\operatorname{Isom}(M) \approx G$.
Proof. First we notice that the points of $100 \cdot X \subset M$ must be taken to themselves by any isometry I of M, by the choice of the function f. Clearly the same arguments above for X hold for $100 \cdot X$, hence the isometry $I: M \rightarrow M$ restricted to $100 \cdot X$ comes from the action of G.

Let us now consider the "bump" B_{1} above the point 1. Let us define for $r \geqslant 0, S_{r}=\left\{f(r) \cdot \exp _{1}(v)| | v \mid=r, v \in T_{1}\left(S^{k-1}\right)\right\}$. In other words, S_{r} is the $(k-2)$-sphere of B_{1} lying above the $(k-2)$-sphere about 1 of radius r, for $0<r \leqslant \delta$, and for $r=0$ we set $S_{0}=p$, the peak point of B_{1}.

Now it is easy to show that the orthogonal trajectories of the S_{r} 's are geodesics of M and as such must be preserved under any isometry taking p to p.

Thus any isometry I of M which takes p to p (and which must thus leave all points of $100 \cdot X$ fixed) must be a "rotation" on all of B_{1}, determined by $I \mid \partial B_{1}$, carrying each S_{r} into itself by the "same" element of $O(k-2)$. Similarly, this I must rotate each bump $B_{x}, x \in X$.

Also this rotation must extend past the boundary of the bumps for some ways, so we can easily extend $I \mid\left(M-\bigcup_{x} B_{x}\right)$ to an isometry \tilde{I} of S^{k-1} to itself, by simply "coning" I over $\exp _{x}\left(D_{\delta}\right), x \in X$. Clearly we will have $\tilde{I}(x)=$ x for $x \in X$, and it follows easily that $\widetilde{I}: S^{k-1} \rightarrow S^{k-1}$ is the identity. Hence $I: M \longrightarrow M$ must have been the identity.

Now it is clear that for each $g \in G$ there is one isometry of M determined by the antion of g on S^{k-1}, extended to R^{k}, restricted to M. Now if there is another isometry $I: M \rightarrow M$ such that $I|X=g| X$, then $I \circ g^{-1}: M \rightarrow M$ must leave points of X fixed, so by the above discussion must be the identity. This establishes $\operatorname{Isom}(M) \approx G$.

Corollary. Any finite group G is isomorphic to the (full) isometry group of a finite subset X_{G} of euclidean space. If $\operatorname{card}(G)=k$ then the X_{G} can be found with $\operatorname{card}\left(X_{G}\right)=k^{2}-k$ in euclidean space of dimension $k-1$.

Proof. Simply take $X_{G}=X$ in the proof of the Theorem, and count (noting that we initially took $\operatorname{card}(G)=k+1$).

Remark. Further considerations can very likely reduce the necessary cardinality for X_{G} to $k(k-3)$. The various numbers

$$
\begin{aligned}
& d=\min \{\operatorname{card}(X) \mid G \approx \operatorname{Isom}(X)\} \text { and } \\
& e=\min \{N \mid G \text { has a faithful representation into } O(N)\}
\end{aligned}
$$

seem to be interesting invariants of a finite group G.
SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455

Current address: School of Mathematics, The Institute for Advanced Study, Princeton, New Jersey 08540

[^0]: Received by the editors May 8, 1975.
 AMS (MOS) subject classifications (1970). Primary 53C20, 54E40, 20C99; Secondary 20D99, 54E35, 53 C 40.

 Key words and phrases. Group, isometry, Riemannian, manifold, the metric space.

