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AMERICAN MATHEMATICAL SOCIETY 
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FINITE GROUPS AS ISOMETRY GROUPS 

BY 

D. ASIMOV 

ABSTRACT. We show that given any finite group G of cardinality 

k + 1, there is a Riemannian sphere Sk-i (imbeddable isometrically as a 

hypersurface in Rk) such that its full isometry group is isomorphic to G. We 

also show the existence of a finite metric space of cardinality k(k + 1) whose 

full isometry group is isomorphic to G. 

Let G be a finite group of k + 1 elements {1, gl,... 9 g0}. 

THEOREM. There exists a Riemannian metric on the sphere Sk-1 such 

that the isometry group is isomorphic to G. 

PROOF. Label the k + 1 vertices of a regular k-simplex Ak by the names 

1, gl, . . ., gk of the elements of G. Assume Ak to be inscribed in a standard 

Sk- l sitting in Rk as usual. TY(Sk l ) denotes the tangent space at y. 
Now in T1(Sk-1) pick an orthonormal frame (v1, ... , Vkl). Pick e > 

0 small and let 

wi= e(1 + (i - 1)/4k2)vP, 1 < i<k -1. 

Let 

Q ={expl(w)I1 < i < k- 1} U {expl(O)} U {w1/1O}. 

exp1 is the exponential map expl: T1 (Sk-1) >Sk-1 . 

Think of G as acting on Sk- 1 by the isometries induced from the permu- 

tation representation on the vertices of Ak. Let X = fgQ Ig E G}. 

PROPOSITION. With the induced metric from Rk, the metric space X has 
its group of isometries isomorphic to G. 

PROOF. Clearly G acts as a group of isometries of X, since X= 

hfgQ Ig G G} = {hgQ Ig E G} = fgQ Ig E G} = X. 

Conversely, any isometry of X must take the point 1 to some point g, 

since the points g are characterized by being the only points in X having their 
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two nearest neighbors at distance of e/1O and e respectively. Once we know 
that 1 - g, the conflguration gQ determines the image of the frame (w1, .... 
Wk-1) at 1, and hence determines the unique isometry of X defined by the ele- 
ment g E G. Of course e must be chosen small enough so that the configura- 
tions gQ, g E G do not "interfere" with one another. 

Now we add bumps to Sk- 1 at the points of X using scalar multiplication 
in RK. Let 

8 = (1/3)min{dist XI(x, y)ix, y EX}. 

Let f: [0, 6 -- R be a smooth function satisfying 
(a) f(s) 100,0<s<6/2, 
(b) f(5) 1 f (k)(5) = O, k = 1, 2, . ... 
(c) f(k)(6/2) = 0, k = 1, 2, ... . and 
(d) f'(s) <0 if 6/2 <s <6. 
Now for each point x E X we remove the disk exp.(Ds) from Sk- 1 and 

replace it by the point set BX = {(f(lvl))expx(v) Iv E Ds }, where D6 is the 
(6)-disk about the origin of TX(Sk-1). Clearly the set Sk-1 - UxExexpx(Do) 
u UxExBx is a smooth Sk-1 imbedded in Re. We give it the induced Rieman- 
nian metric from Re and denote it by M. 

CLAIM: Isom(M) t G. 

PROOF. First we notice that the points of 100 * X C M must be taken to 
themselves by any isometry I of M, by the choice of the function f. Clearly the 
same arguments above for X hold for 100 X, hence the isometry 1: M M re- 
stricted to 100 X comes from the action of G. 

Let us now consider the "bump" B1 above the point 1. Let us define for 
r > 0, Sr = {f(r) * exp1(v)I lv I = r, v E T1(Sk- 1)}. In other words, Sr is the 
(k - 2)-sphere of B1 lying above the (k - 2)-sphere about 1 of radius r, for 
0< r <6, and for r = Owe set So = p, the peak point of Bl. 

Now it is easy to show that the orthogonal trajectories of the Sr's are 
geodesics of M and as such must be preserved under any isometry taking p to p. 

Thus any isometry I of M which takes p to p (and which must thus leave 
all points of 100 - X fixed) must be a "rotation" on all of B1, determined by 
I 3i BI, carrying each Sr into itself by the "same" element of O(k - 2). Simi- 
larly, this I must rotate each bump Bx, x E X. 

Also this rotation must extend past the boundary of the bumps for some 
ways, so we can easily extend I I (M - UXBX) to an isometry I of Sk- to 
itself, by simply "coning" I over expx(D6), x E X. Clearly we will have l(x) = 
x for x E X, and it follows easily that 1: Sk 1 i k 1 is the identity. Hence 
1: M -+ M must have been the identity. 
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Now it is clear that for each g E G there is one isometry of M determined 
by the a"tion of g on Sk-, extended to Rk, restricted to M. Now if there is 
another isometry l: M -Msuch that I jX=g IX, then 1 o g-1: M-M 
must leave points of X fixed, so by the above discussion must be the identity. 
This establishes Isom(M) - G. 

COROLLARY. Any finite group G is isomorphic to the (full) isometry 
group of a finite subset XG of euclidean space. If card(G) = k then the XG can 
be found with card(XG) = k2 - k in euclidean space of dimension k - 1. 

PROOF. Simply take XG = X in the proof of the Theorem, and count 
(noting that we initially took card(G) = k + 1). 

REMARK. Further considerations can very likely reduce the necessary 
cardinality for XG to k(k - 3). The various numbers 

d = min{card(X) G Isom(X)} and 

e = min{NIG has a faithful representation into O(N)} 
seem to be interesting invariants of a filnite group G. 
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