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Notation: Throughout this article R denotes a commutative, unital integral domain
and K its fraction field. We write R• for R \ {0} and ΣR for the set of height one
prime ideals of R. R is dyadic if it possesses a prime ideal p such that R/p has
characteristic 2 and is otherwise nondyadic.

Introduction

The goal of this work is to set up the foundations and begin the systematic arith-
metic study of certain classes of (mostly) quadratic forms over a fairly general class
of integral domains. Much of our work is concentrated around that of two defini-
tions, that of Euclidean form and ADC form.

These definitions have a classical flavor, and various special cases of them can be
found (sometimes implicitly) in the literature. Our work was particularly motivated
by the similarities between two classical theorems.

Theorem 1. (Aubry, Davenport-Cassels) Let A = (aij) be a symmetric n × n
matrix with Z coefficients, and let q(x) =

∑
1≤i,j≤n aijxixj be a positive definite

integral quadratic form. Suppose that for all x ∈ Qn, there exists y ∈ Zn such that
q(x − y) < 1. Then if d ∈ Z is such that there exists x ∈ Qn with q(x) = d, there
exists y ∈ Zn such that q(y) = d.

Let us consider the form q(x) = x2
1 + x2

2 + x2
3. It satisfies the hypotheses of the

theorem: approximating a vector x ∈ Q3 by a vector y ∈ Z3 of nearest integer
entries, we get

(x1 − y1)
2 + (x2 − y2)

2 + (x3 − y3)
2 ≤ 3

4
< 1.

Thus Theorem 1 shows that every integer which is the sum of three rational squares
is also the sum of three integral squares. Thanks to the Hasse-Minkowski theory the
rational representation problem is routine: a rational number d is Q-represented by
q iff it is R-represented by q and Qp-represented by q for all primes p. Of course q
R-represents precisely the non-negative rational numbers. For odd p the quadratic
form is smooth over Zp and hence isotropic: it Qp-represents all rational numbers.
Finally, for a ∈ N there are no primitive Z2-adic representations of 4a · 7, so q
does not Q2-adically represent 7, whereas the other 7 classes in Q×

2 /Q
×2
2 are all

Q2-represented by q. We conclude:

Corollary 2. (Gauss-Legendre Three Squares Theorem) An integer n is a sum of
three integer squares iff n ≥ 0 and n is not of the form 4a(8k + 7).

One may similarly derive Fermat’s Theorem on sums of two integer squares. The
argument does not directly apply to sums of four or more squares since the hypoth-
esis is not satisfied: if qn(x) = x2

1+ . . .+x2
n and we take x = ( 12 , . . . ,

1
2 ), the best we

can do is to take y to have all coordinates either 0 or 1 which gives q(x− y) = n
4 .

1

This proof of Corollary 2 is essentially due to L. Aubry [Aub12], but was long

1On the other hand, one can easily deduce Lagrange’s Four Squares Theorem from the Three
Squares Theorem and Euler’s Four Squares Identity.
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forgotten until it was rediscovered by Davenport and Cassels in the 1960s. They
did not publish their result, but J.-P. Serre included it in his influential text [Se73],
and it is by now quite a famous and beloved proof.

On the other hand there is the following theorem.

Theorem 3. (Pfister [Pf65]) Let F be a field of characteristic different from 2, let
q(x) be a quadratic form over F , and view it by “base extension” as a quadratic
form over the polynomial ring F [t]. Suppose that for d ∈ F [t], there exists x =
(x1, . . . , xn) ∈ F (t)n such that q(x) = d. Then there exists y = (y1, . . . , yn) ∈ F [t]n

such that q(y) = d.

Corollary 4. (Cassels [Ca64]) Fix n ∈ Z+. A polynomial d ∈ F [t] is a sum of
squares of n rational functions iff it is a sum of squares of n polynomials.

Theorems 1 and 3 each concern certain quadratic forms q over a domain R with
fraction field K, and the common conclusion is that for all d ∈ R, q R-represents d
iff it K-represents d. This is a natural and useful property for a quadratic form R
over an integral domain to have, and we call such a form an ADC form.

The relationship between the hypotheses of the Aubry-Davenport-Cassels and Cassels-
Pfister theorems is not as immediate. In the former theorem, the hypothesis on q is
reminiscent of the Euclidean algorithm. To generalize this to quadratic forms over
an arbitrary domain we need some way of measuring the size of q(x−y). We do this
by introducing the notion of a norm function | | : R → N on an integral domain.
Then we define an anisotropic quadratic form q(x) = q(x1, . . . , xn) over (R, | |) to
be Euclidean with respect to the norm if for all x ∈ Kn, there exists y ∈ Rn

such that |q(x − y)| < 1. That this notion is a reasonable one is justified by our
carrying over the proof of the Aubry-Davenport-Cassels theorem to this context:
we show that for any normed ring (R, | |), a Euclidean quadratic form q/R is an
ADC form. This suggests a strategy of proof of the Cassels-Pfister theorem, as
follows: first, find a natural norm on the domain R = F [t], and second show that
any “constant” quadratic form over R is Euclidean with respect to this norm. This
strategy is carried out in Section 2.5 to give a proof of the Cassels-Pfister Theorem:
in fact, the proof gives a slightly more general result.2

After establishing that every Euclidean form is an ADC form, the natural question
is to identify all Euclidean forms and ADC forms over (normed) rings of arith-
metic interest. The intuition here is that Euclideanness is a sort of geometry of
numbers sufficient condition for the more purely algebraic ADC condition, so that
the latter class should be significantly wider than the former. In fact, one of the
goals of this work is to introduce “geometry of numbers” as a topic of interest over
a general normed integral domain and to see how the geometry is influenced by
the commutative-algebraic properties of R. Let us single out one result in this
direction: let (R, v) be a complete discrete valuation ring (R, v, ) endowed with the
norm x 7→ |x| = 2v(x). Then a quadratic form q/R is Euclidean for the norm iff the
corresponding quadratic lattice is maximal (Theorem 42).

2One may say that this is really a repackaging of the standard proof of the Cassels-Pfister
theorem, and we do not disagree, but we think the repackaging is suggestive and useful.
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For us the most interesting class of domains are the Hasse domains, i.e., S-integer
rings in a global field. Here it is interesting to compare notions of Euclidean and
ADC form with more standard properties like class number one forms and regular
forms. By doing so we get a new perspective on some classical theorems and also
bring up new problems, only some of which we are able to solve here. Perhaps
the most interesting unsolved question is the following: let R be a Hasse domain
endowed with its canonical norm. Must a Euclidean quadratic form q/R have class
number one?

Acknowlegements: It is a pleasure to thank F. Lemmermeyer, J.P. Hanke, D.
Krashen and W.C. Jagy, who each contributed valuable insights.

1. Norms and Ideal Norms

1.1. Normed rings.

A norm on a domain R is a function | | : R → N such that
(N0) |x| = 0 ⇐⇒ x = 0,
(N1) ∀x ∈ R, |x| = 1 ⇐⇒ x ∈ R×, and
(N2) ∀x, y ∈ R, |xy| = |x||y|.

Remark: Let Prin(R) be the multiplicative monoid of nonzero principal ideals of R.
Then a norm on R determines, and is determined by, a homomorphism of monoids
N : Prin(R) → Z+ which is nondegenerate in the sense that the only element which
maps under N to the identity of Z+ is the identity of Prin(R).

A norm | | is non-Archimedean (resp. metric) if for all x, y ∈ R, |x + y| ≤
max(|x|, |y|) (resp. |x+ y| ≤ |x|+ |y|).

A normed ring is a pair (R, | |) where | | is a norm on R. A ring admitting
a norm is necessarily an integral domain. We denote the fraction field by K. The
norm extends uniquely to a homomorphism of groups (K×, ·) → (Q>0, ·).

Example 1.1.1: The usual absolute value | |∞ (inherited from R) is a norm on
Z. It is easy to see that | |∞ is the unique metric norm on Z.

Example 1.1.2: Let k be a field, R = k[t], and let a ≥ 2 be an integer. Then
the map f ∈ k[t]• 7→ adeg f is a non-Archimedean norm | |a on R. When k is finite,
it is most natural to take a = #k. Otherwise, we may as well take a = 2.

Example 1.1.3: LetR be a discrete valuation ring (DVR) with valuation v : K× → Z
and residue field k. Choosing an integer a ≥ 2 we can define a norm | |a : R• → Z+

by |x|a = av(x).

Example 1.1.4: Let R be a UFD. Then Prin(R) is a free commutative monoid
on the set ΣR of height one prime ideals of R. Thus, to give a norm map on R it is
necessary and sufficient to map each prime element π to an integer nπ ≥ 2 in such
a way that if (π) = (π′), nπ = nπ′ . One simple choice is to fix a ∈ Z≥2 and put
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|π| = a for all prime elements π. For instance, if R is a DVR this agrees with the
norm | |a of Example 2.

1.2. Ideal norms.

If M and N are monoids (written multiplicatively, with identity element 1), a
monoid homomorphism f : M → N is nondegenerate if f(x) = 1 ⇐⇒ x = 1.3

For a domain R, let I+(R) be the monoid of nonzero ideals of R under multiplica-
tion and I(R) be the monoid of nonzero fractional R-ideals under multiplication.

An ideal norm on R is a nondegenerate homomorphism of monoids | | : I+(R) →
(Z+, ·). We extend the norm to the zero ideal by putting |(0)| = 0.

More generally, let M be a submonoid of I+(R). Then an M-ideal norm is
a nondegenerate homomorphism of monoids from M to Z+. Such a homomor-
phism induces a homomorphism on Grothendieck groups G(M) → G(Z+) = Q+.

Let Prin(R) be the submonoid of principal ideals. Then a Prin(R)-ideal norm
is nothing else than a norm function on R in the sense of the previous section. The
Grothendieck group of Prin(R) is the group PFrac(R) of principal fractional ideals.
R is a UFD iff Prin(R) is a free commutative monoid (on the nonzero principal
prime ideals). Thus every UFD admits a norm and all norms on UFDs arise as in
Example 4 above.

Let Inv+(R) be the submonoid of invertible ideals. The Grothendieck group of
Inv+(R) is the group Inv(R) of invertible fractional ideals. R is a Dedekind do-
main iff Inv+(R) = I(R) iff I(R) is a free commutative monoid (on the nonzero
prime ideals). Thus every Dedekind domain admits an ideal norm and all norms on
Dedekind domains arise as follows. . .. For an ideal R in a Dedekind domain, let ℓ(I)
be the length of R/I as an R-module. Equivalently, if I =

∏
prii , then ℓ(I) =

∑
i ri.

Then the map ℓ : I+(R) → (N,+) is a nondegenerate homomorphism of monoids,
so for any a ∈ Z≥2, the function | |a : I(R) → Z+, |I|a = 2ℓ(I) is an ideal norm on
R. The following result has an immediate proof.

Lemma 5. If a domain R admits an M-ideal norm, then the ideals in M satisfy
the ascending chain condition. In particular, a domain which admits a Prin(R)-
ideal norm is an ACCP domain (i.e., satisfies ACC on principal ideals), and a
domain which admits a I+(R)-ideal norm is Noetherian.

1.3. Divisorial norms.

For a domain R and a fractional R-ideal I, put (R : I) = {x ∈ K | xI ⊂ R}.
A fractional ideal is divisorial if it is the intersection of all the principal fractional
ideals in which it is contained. For any fractional ideal I, the minimal divisorial
ideal contianing I is I = (R : (R : I)). In particular all invertible ideals – and hence
all principal ideals – are divisorial.

3Note that, unlike the case of groups, a nondegenerate homomorphism need not be injective.
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The set Div(R) of divisorial fractional ideals forms a lattice-ordered monoid un-
der the operation I · J := IJ . The divisorial principal ideals form a submonoid
Div+(R). The monoid Div(R) is a group iff R is completely integrally closed, in
which case it is the Grothendieck group of its submonoid Div+(R).

A domain R is a Krull domain if: for every height one prime p ∈ ΣR, the lo-
calization Rp is a DVR, R =

∩
p∈ΣR

Rp and every x ∈ R• lies in only finitely many
height one primes. Equivalently, R is a Krull domain iff it is completely integrally
closed and satisfies the ascending chain condition on divisorial ideals. In a Krull
domain, every height one prime p induces a map vp : Frac(R) → Z: for a fractional
ideal I, the pushforward IRp is a fractional ideal of the DVR Rp and thus of the
form (pRp)

n, and we set vp(I) = n. Restricting to divisorial ideals induces an
isomorphism of groups

DivR
∼→

⊕
p∈ΣR

Z.

All this is to motivate the following definition: a divisorial norm on a domain R is
a nondegenerate homomorphism Div+(R) → Z+. When R is a Krull domain, just
as above such homomorphisms correspond to assigning to each height one prime
p a number np ≥ 2 and passing to Grothendieck groups gives a homomorphism
Div(R) → Q+.

Remark 1.3.1: In general a divisorial norm need not be an instance of the M-ideal
construction of the previous construction because in a Krull domain the product
of two divisorial ideals need not be divisorial. However, the notion of a divisorial
norm directly generalizes both that of an element-wise norm on a UFD and an ideal
norm on a Dedekind domain.

For later use we record two results on Krull domains.

Proposition 6. Let R be a Krull domain.
a) For divisorial fractional ideals I and J of R, TFAE:
(i) I ⊂ J ,
(ii) vp(I) ≥ vp(J) for all p ∈ ΣR.
b) (Krull Approximation Theorem) Let p1, . . . , pr be a finite set of height one prime
ideals of R and n1, . . . , nr ∈ Z. Then there exists x ∈ R such that
• For all 1 ≤ i ≤ r, vpi(x) = ni, and
• for all other height one primes p, vp(x) ≥ 0.

Proof. a) This is [LM71, Prop. 8.10]. b) This is [Bou98, Prop. VII.9]. �

1.4. Abstract number rings.

A commutative ring R has the property of finite norms (FN) if for all nonzero
ideals I of R, R/I is a finite ring [BW66], [CL70], [LM72].

Obviously any finite ring satisfies (FN). On the other hand, it can be shown that
any infinite ring satisfying property (FN) is necessarily a domain. We define an
abstract number ring to be an infinite integral domain satisfying (FN) which is
not a field. An abstract number ring is a Noetherian domain of Krull dimension
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one, hence it is a Dedekind domain iff it is integrally closed.

Example 1.4.1: The rings Z and Fp[t] are abstract number rings. From these
many other examples may be derived using the following result.

Proposition 7. Let R be an abstract number ring with fraction field K.
a) Let L/K be a finite extension, and let S be a ring with R ⊂ S ⊂ L. Then, if not
a field, S is an abstract number ring.
b) The integral closure R̃ of R in K is a Dedekind abstract number ring.
c) The completion of an abstract number ring at a maximal ideal is an abstract
number ring.

Proof. Part a) is [LM72, Thm. 2.3]. In particular, it follows from part a) that R̃ is

an abstract number ring. That R̃ is a Dedekind ring is part of the Krull-Akizuki
Theorem. Part c) follows immediately from part a) and [CL70, Cor. 5.3]. �

Let R be an abstract number ring. For a nonzero ideal I of R, we define |I| = #R/I.
In light of the previous sections, it is natural to ask whether I 7→ |I| gives an ideal
norm on R.

Proposition 8. Let I and J be nonzero ideals of the abstract number ring R.
a) If I and J are comaximal – i.e., I + J = R – then |IJ | = |I||J |.
b) If I is invertible, then |IJ | = |I||J |.

Proof. Part a) follows immediately from the Chinese Remainder Theorem. As for
part b), we claim that the norm can be computed locally: for each p ∈ ΣR, let |I|p
be the norm of the ideal IRp in the local abstract number ring Rp. Then

|I| =
∏
p

|I|p.

To see this, let I =
∩n

i=1 qi be a primary decomposition of I, with pi = rad(qi). It
follows that {q1, . . . , qn} is a finite set of pairwise comaximal ideals, so the Chinese
Remainder Theorem applies to give

R/I ∼=
n∏

i=1

R/qi.

Since R/qi is a local ring with maximal ideal corresponding to pi, it follows that
|qi| = |qiRpi |, establishing the claim.
Using the claim reduces us to the local case, so that we may assume the ideal
I = (xR) is principal. In this case the short exact sequence of R-modules

0 → xR

xJ
→ R

xJ
→ R

(x)J
→ 0

together with the isomorphism
R

J

·x→ xR

xJ
does the job. �

Thus I 7→ |I| is an Inv+(R)-ideal norm. When R is integrally closed (hence
Dedekind), every ideal is invertible so this is an ideal norm. Conversely, if I 7→ |I|
is an ideal norm then R is a Dedekind domain [BW66, Thm. 2].
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1.5. Euclidean norms. A norm | | on R is Euclidean if for all x ∈ K, there is
y ∈ R such that |x − y| < 1. More generally, let M be a submonoid of I(R) and
| | : M → Z+ be an M-ideal norm. Then I ∈ M is a Euclidean ideal for | | if
for all x ∈ K, there exists y ∈ I with |x− y| < |I|.

Remark 1.5.1: The norm | | on R is Euclidean iff the improper ideal I = R is
a Euclidean ideal.

Remark 1.5.2: The definition that | | is Euclidean agrees with the classical one
that | | be a Euclidean function on R.4

Remark 1.5.3: The definition of Euclidean ideal is modelled on that of [Le79].

The norm | |∞ on Z is Euclidean. The norms | |a on k[t] are Euclidean. For
a DVR, the norms | |a (c.f. Example 4) are Euclidean: indeed, for x ∈ K•,
x ∈ K \ R ⇐⇒ v(x) < 0 ⇐⇒ |x|a = av(x) < 1, so we may take y = 0. In
a similar way, to any semilocal PID R one can attach a natural family of Euclidean
norms (including the canonical norm if R is an abstract number ring).

Example 1.5.1: S = ZK is the ring of integers in a number field K. Then it is
a classical problem to determine whether R is Euclidean for the canonical norm:
such fields are called norm-Euclidean. Note that any norm-Eucliean number field
has class number one. Remarkably, conditional on GRH it is known that every
number field of class number one except Q = K(

√
−D) for D = 19, 43, 67, 163 is

Euclidean for some crazy (and possibly non-multiplicative, though this seems to
be poorly understood) norm. This is to be contrasted with the fact the standard
conjecture that there are infinitely many class number one real quadratic fields but
only finitely many norm-Euclidean real quadratic fields. The classification of such
fields was completed by Barnes and Swinnerton-Dyer [BSD52] and appears below.

2. Euclidean quadratic forms and ADC forms

2.1. Euclidean quadratic forms.

Let (R, | |) be a normed ring of characteristic not 2. A quadratic form over
R, is a polynomial q ∈ R[x] = R[x1, . . . , xn] which is homogeneous of degree 2.
Throughout this note we only consider quadratic forms which are non-degenerate
over the fraction field K of R. A nondegenerate quadratic form q/R is isotropic
if there exists a = (a1, . . . , an) ∈ Rn \ {(0, . . . , 0)} such that q(a) = 0; otherwise q
is anisotropic. A form q is anisotropic over R iff it is anisotropic over K. A qua-
dratic form q/R is universal if for all d ∈ R, there exists x ∈ Rn such that q(x) = d.

A quadratic form q on a normed ring (R, | |) is Euclidean if for all x ∈ Kn \ Rn,
there exists y ∈ Rn such 0 < |q(x−y)| < 1. We say that q is boundary-Euclidean
if for all x ∈ Kn \Rn, there exists y ∈ Rn such that 0 < |q(x− y)| ≤ 1.

4Classically, one often encounters a more general definition of Euclidean function in which the
multiplicativity is weakened to |a| ≤ |ab|, but this does not concern us here. In fact, as far as I

know it is an open problem whether a domain which admits a Euclidean function must necssarily
admit one which is multiplicative.
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Remark 2.1.1: An anisotropic quadratic form q is Euclidean (resp. boundary-
Euclidean) iff for all x ∈ Kn there exists y ∈ Rn such that |q(x − y)| < 1 (resp.
|q(x− y)| ≤ 1).

Proposition 9. The norm | | on R is a Euclidean norm iff the quadratic form
q(x) = x2 is a Euclidean quadratic form.

Proof. Noting that q is an anisotropic quadratic form, this comes down to:

∀x, y ∈ K, |x− y| < 1 ⇐⇒ |q(x− y)| = |(x− y)2| = |x− y|2 < 1.

�
Remark 2.1.1: Also (R, | |) is Euclidean iff the hyperbolic plane H = x1x2 is Eu-
clidean.

Example 2.1.1: Let n, a1, . . . , an ∈ Z+. Then the integral quadratic form q(x) =
a1x

2
1 + . . .+ anx

2
n is Euclidean iff

∑
i ai < 4.

2.2. Euclideanity. For a quadratic form q over a normed ring (R, | |) with fraction
field K, define for x ∈ Kn,

E(q, x) = inf
y∈Rn

|q(x− y)|

and
E(q) = sup

x∈Kn

E(q, x).

Let us call E(q) the Euclideanity of q. Thus an anisotropic form q is Euclidean
if E(q) < 1 and is not Euclidean when E(q) > 1. The case E(q) = 1 is ambiguous:
the form q is not Euclidean iff the supremum in the definition of E(q) is attained,
i.e., iff there exists x ∈ Kn such that E(q, x) = 1.

Let us also definite the Euclideanity E(R) of R itself to be the Euclideanity of
q(x) = x2.

Remark 2.2.1: If we change a norm within its equivalence class, the Euclideanity
of a quadratic form changes, but its place in the trichotomy E(q) < 1, E(q) = 1,
E(q) > 1 does not change. Moreover, passage to an equivalent norm does not dis-
turb the class of Euclidean quadratic forms.

The following results have immediate proofs.

Lemma 10. Let q be a quadratic form over R and a ∈ R•. Then

E(a · q, x) = |a|E(q, x)

and
E(a · q) = |a|E(q).

Lemma 11. Let | | be a metric norm on the domain R, and let q1 and q2 be
quadratic forms over R. Denote the orthogonal direct sum of q1 and q2 by q1 ⊕ q2.
a) We have E(q1 ⊕ q2) ≤ E(q1) + E(q2).
b) If (R, | |) = (Z, | |∞), and q1 and q2 are both positive definite, then

E(q1 ⊕ q2) = E(q1) + E(q2).
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Example 2.2.1: Let (R, | |) = (Z, | |∞), q1 = x2
1, q2 = −2x2. Then E(q1) = 1

4 ,

E(q2) =
1
2 , whereas E(q1 ⊕ q2) = E(x2

1 − 2x2
2) ≤ 1

2 < E(q1) + E(q2).

Two quadratic forms q, q′ over a domain R are unit-equivalent if there exists
a ∈ R× such that q′ ∼= a · q.

Lemma 12. Let q, q′ be two unit-equivalent quadratic forms over a domain R.
a) q is an ADC form iff q′ is an ADC form.
b) Let | | be any norm on R. Then E(q) = E(q′), and q is Euclidean iff q′ is
Euclidean.

Proof. a) It is enough to show: if q′ = a · q for some a ∈ R× and q is an ADC
form, then so is q′. Indeed, let d ∈ R be such that there exists x ∈ Kn such that
aq(x) = d. Then the element a−1d of R is K-represented by q; since q is ADC,
there exists y ∈ Rn such that q(y) = a−1d, and thus aq(y) = d.
This is immediate from Lemma 10. �

In view of Lemma 12, we may simplify matters by only considering quadratic forms
up to unit equivalence. For instance, when R = Z this amounts to identifying q
with −q: we speak of “definite” quadratic forms rather than positive and negative
definite quadratic forms. (Note that when q is indefinite, q and −q may or may not
aleady be isometric over Z. E.g, for forms x2 −Dy2, this depends on whether the
fundamental unit of the ring of integers of Q(

√
D) has positive or negative norm.)

2.3. ADC-forms.

A quadratic form q(x) = q(x1, . . . , xn) over R is an ADC-form if for all d ∈ R, if
there exists x ∈ Kn such that q(x) = d, then there exists y ∈ Rn such that q(y) = d.

Example 2.3.1: Any universal quadratic form is an ADC-form. If R = Z and q
is positive definite and positive universal – i.e., represents all positive integers
– then q is an ADC-form. Thus for each n ≥ 5 there are infinitely many positive
definite ADC-forms, e.g. x2

1 + . . .+ x2
n−1 + dx2

n for d ∈ Z+.

Example 2.3.2: Let R̃ be the integral closure of R in K. Then q(x) = x2 is

not an ADC-form iff there exists a ∈ R̃ \ R such that a2 ∈ R. In particular x2 is
an ADC-form if R is integrally closed.

Example 2.3.3: Let R be a UFD and a ∈ R•. Then q(x) = ax2 is an ADC-
form iff a is squarefree. (Further discussion of unary forms is given in §5 below.)

Example 2.3.4: Suppose R is an algebra over a field k, and let q/k be isotropic.
Then the base extension of q to R is universal. Indeed, since q is isotropic over k,
it contains the hyperbolic plane as a subform. That is, after a k-linear change of
variables, we may assume q = x1x2+q′(x3, . . . , xn), and the conclusion is now clear.

Example 2.3.5: The isotropic form q(x, y) = x2 − y2 is not an ADC-form over
Z: indeed it is universal over Q but not over Z.

2.4. The Main Theorem.
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Theorem 13. Let (R, | |) be a normed ring not of characteristic 2 and q/R a
Euclidean quadratic form. Then q is an ADC form.

Proof. For x, y ∈ Kn, put x · y := 1
2 (q(x+ y)− q(x)− q(x)). Then (x, y) 7→ x · y is

bilinear and x · x = q(x). Note that for x, y ∈ Rn, we need not have x · y ∈ R, but
certainly we have 2(x · y) ∈ R.

Let d ∈ R, and suppose there exists x ∈ Kn such that q(x) = d. Equivalently,
there exists t ∈ R and x′ ∈ Rn such that t2d = x′ · x′. Choose x′ and t such that
|t| is minimal. It is enough to show that |t| = 1, for then by (N1) t ∈ R×.

Apply the Euclidean hypothesis with x = x′

t : there is y ∈ R such that if z = x−y,

0 < |q(z)| < 1.

Now put

a = y · y − d, b = 2dt− 2(x′ · y), T = at+ b, X = ax′ + by.

Then a, b, T ∈ R, and X ∈ Rn.
Claim: X ·X = T 2d.
Indeed,

X ·X = a2(x′ · x′) + ab(2x′ · y) = b2(y · y) = a2t2d+ ab(2dt− b) + b2(d+ a)

= d(a2t2 + 2abt+ b2) = T 2d.

Claim: T = t(z · z).
Indeed,

tT = at2 + bt = t2(y · y)− dt2 + 2dt2 − t(2x′ · y)

= t2(y · y)− t(2x′ · y) + x′ · x′ = (ty − x′) · (ty − x′) = (−tz) · (−tz) = t2(z · z).
Since 0 < |z · z| < 1, we have 0 < |T | < |t|, contradicting the minimality of |t|. �

Remark 2.4.1: This proof is modelled on that of [Se73, pp. 46-47].

2.5. The Generalized Cassels-Pfister Theorem.

Lemma 14. Let q be an anisotropic quadratic form over a field k. Then q remains
anisotropic over the rational function field k(t).

Proof. If there exists a nonzero vector x ∈ k(t)n such that q(x) = 0, then (since k[t]
is a UFD) there exists y = (y1, . . . , yn) such that y ∈ Rn, gcd(y1, . . . , yn) = 1 and
q(y) = 0. The polynomials y1, . . . , yn do not all vanish at 0, so (y1(0), . . . , yn(0)) ∈
kn \ (0, . . . , 0) is such that q(y1(0), . . . , yn(0)) = 0, i.e., q is isotropic over k. �

Remark 2.5.1: The argument of Lemma 14 actually shows that a projective variety
V/k has a k-rational point iff it has a k(t)-rational point.

Theorem 15. (Generalized Cassels-Pfister Theorem) Let F be a field of charac-
teristic not 2, R = F [t], and K = F (t). Let q =

∑
i,j aij(t)xixj be a quadratic form

over R. We suppose that either:
(i) q is anisotropic and each aij has degree 0 or 1, or
(ii) Each aij has degree 0, i.e., q is the extension of a quadratic form over k.
Then q is an ADC form.
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Proof. Suppose first that q is isotropic over K and extended from a quadratic form
q over k. By Lemma 14, q/k is isotropic. Then by Example 2.3.4, q/R is universal.

Now suppose that q is anisotropic over K and that each aij has degree 0 or 1.
By Theorem 13, it suffices to show that as a quadratic form over R = k[t] endowed
with the norm | | = | |2 of Example 1.1.2, q is Euclidean.

Given an element x = ( f1(t)g1(t)
, . . . , fn(t)

gn(t)
) ∈ Kn, by polynomial division we may

write fi
gi

= yi +
ri
gi

with yi, ri ∈ k[t] and deg(ri) < deg(gi). Putting y = (y1, . . . , yn)

and using the non-Archimedean property of | |, we find

(1) |q(x− y)| = |
∑
i,j

ai,j(
ri
gi
)(
rj
gj

)| ≤
(
max
i,j

|ai,j |
)(

max
i

|ri
gi
|
)2

< 1.

�
Remark 2.5.2: Example 2.3.3 shows that extension of Theorem 15 to all forms with
maxi,j deg(aij) ≤ 2 is not possible.

2.6. Maximal Lattices.

When studying quadratic forms over integral domains it is often convenient to
use the terminology of lattices in quadratic spaces. Let R be a domain with frac-
tion field K, let V be a finite-dimensional vector space, and let q : V → K be a
quadratic form. An R-lattice Λ in V is a finitely generated R-submodule of V
such that Λ⊗R K = V . A quadratic R-lattice is an R-lattice Λ in the quadratic
space (V, q) such that q(Λ) ⊂ R.

In particular, if q : Rn → R is a quadratic form, then tensoring from R to K
gives a quadratic form q : Kn → K and taking V = Kn, Λ = Rn gives a quadratic
R-lattice. Conversely, a quadratic lattice Λ in Rn which is free as an R-module
may be identified with a quadratic form over R.

A quadratic R-lattice Λ is said to be maximal if it is not strictly contained in
another quadratic R-lattice.5 If R is Noetherian, then discriminant considerations
show that every quadratic R-lattice is contained in a maximal quadratic R-lattice.

Proposition 16. Let (R, | |) be a normed ring and q/R a Euclidean quadratic form.
Then the associated quadratic R-lattice Λ = Rn is maximal.

Proof. For if not, there exists a strictly larger quadratic R-lattice Λ′. Choose
x ∈ Λ′\Λ, so x ∈ Kn\Rn. For all y ∈ Λ = Rn, x−y ∈ Λ′, so |q(x−y)| ∈ |R| = N. �
Example 13: Let (R, | |) = (Z, | |∞), and let a ∈ Z•. Then:
a) The form ax2 is maximal iff a is squarefree.
b) The form x2 + ay2 is maximal iff a is squarefree and a ≡ 1, 2 (mod 4). In
particular the boundary-Euclidean form x2 + 3y2 is not maximal.

3. Localization

In this section we collect results about the effect of localization and completion on
the Euclidean and ADC-properties.

5For the sake of brevity, we will sometimes simply say that the quadratic form q is maximal if
its associated free quadratic lattice is maximal.
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3.1. Localization and Euclideanity.

Suppose first that (R, | |) is a normed UFD, and S is a saturated multiplicatively
closed subset. We shall define a localized norm | |S on the localization S−1R. To
do so, recall that S−1R is again a UFD and its principal prime ideals (π) are pre-
cisely those for which π ∩ S = ∅. Therefore we may view the monoid Prin(S−1R)
as a submonoid of Prin(R) by taking it to be the direct sum over all the height one
prime ideals (π) of R with (π) ∩ S = ∅: let ι be this embedding of monoids. We
define the localized norm | |S : Prin(S−1R) → Z+ by |x|S := |ι(x)|.

Remark 3.3.1: Here are two easy and useful properties of the localized norm:

• Any x ∈ R• may be written as sxx
′ with sx ∈ S and x′ prime to S, and we

have

|x|S = |sxx′|S = |x′|S = |x′|.
• For any x ∈ R•, |x|S ≤ |x|.

Theorem 17. Let (R, | |) be a UFD with fraction field K, let S ⊂ R• be a saturated
multiplicatively closed subset, and let RS be the localization of R at S. Let q(x) ∈
R[x] be a quadratic form, and suppose that E ∈ R>0 is a constant such that for all
x ∈ Kn, there exists y ∈ Rn such that |q(x− y)| ≤ E. Then for all x ∈ Kn, there
exists yS ∈ Rn

S such that |q(x− yS)|S ≤ E.

Proof. Let x ∈ Kn. We must find Y ∈ Rn
S such that |q(x − Y )|S ≤ E. Writing

x = a
b with a ∈ Rn and b ∈ R• and clearing denominators, it suffices to find

yS ∈ Rn
S such that

|q(a− byS)|S ≤ E|b|2S .
As above, we may factor b as sbb

′ with sb ∈ S and b′ prime to S, so |b′|S = |b′|.
Applying our hypothesis to the element a

b′ of Kn we may choose y ∈ Rn such that

|q(a− b′y)| ≤ E|b′|2. Now put yS = y
sb
, so

|q(a− byS)|S = |q(a− b′y)|S ≤ |q(a− b′y)| ≤ E|b′|2 = E|b′|2S = E|b|2S .

�

Corollary 18. Retain the notation of Theorem 17 and write qS for q viewed as a
quadratic form on the normed ring (RS , | |S). Then:
a) E(qS) ≤ E(q).
b) If q is Euclidean, so is qS.

Proof. a) By definition of the Euclideanity, for all ϵ > 0 and all x ∈ Kn, there
exists y ∈ Rn such that |q(x− y)| ≤ E(q) + ϵ. Therefore Theorem 17 applies with
E = E(q) + ϵ to show that for all x ∈ K, there exists yS ∈ RS with |q(x− yS)|S ≤
E(q) + ϵ, i.e., E(qS) ≤ E(q) + ϵ. Since ϵ was arbitrary, we conclude E(qS) ≤ E(q).
b) If in the statement of Theorem 17 we take E = 1 and replace all the inequalities
with strict inequalities, the proof goes through verbatim. �

The rings of most interest to us are Hasse domains, which of course need not be
UFDs but are always Dedekind domains. Thus it will be useful to have Dedekind
domain analogues of the previous discussion.
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Let R be a Dedekind domain endowed with an ideal norm | |. Let R′ be an over-
ring of R, i.e., a ring intermediate between R and its fraction field K: let ι : R ↪→ S
be the inclusion map. Then the induced map on spectra ι∗ : SpecR′ → SpecR is
also an injection, and S is completely determined by the image W := ι∗(SpecR′).
Namely [LM71, Cor. 6.12]

R′ = RW :=
∩

p∈W

Rp.

This allows us to identify the monoid I(RW ) of ideals of RW as the free submonoid
of the free monoid I(R) on the subset W of SpecR and thus define an overring

ideal norm | |W on RW as the composite map I(RW ) → I(R)
| |→ Z+.

Remark 3.1.2.: As above, we single out the following properties of | |W :

• Every ideal I ∈ R may be uniquely decomposed as WII
′ where WI is divisi-

ble by the primes of W and I ′ is prime to W , and we have

|I|W = |WII
′|S = |I ′|S = |I ′|.

• For all ideals I, |I|W ≤ |I|.
Theorem 19. Let R be a Dedekind domain with fraction field K, | | an ideal norm
on R, W ⊂ ΣR and RW =

∩
p∈W Rp the corresponding overring. Let q(x) ∈ R[x] be

a quadratic form, and suppose that E ∈ R>0 is a constant such that for all x ∈ Kn,
there exists y ∈ Rn such that |q(x − y)| ≤ E. Then for all x ∈ Kn, there exists
yW ∈ Rn

W such that |q(x− yW )|W ≤ E.

Proof. The argument is similar to that of Theorem 17. The only point which
requires additional attention is the existence of a decomposition of b ∈ R• as b =
wbb

′ with wb divisible only prime ideals in W and b′ prime to W . But this follows
by weak approximation (or the Chinese Remainder Theorem) applied to the finite
set of prime ideals p ∈ W which appear in the prime factorization of (b). �
Also as before, we deduce the following result.

Corollary 20. Retain the notation of Theorem 19 and write qW for q viewed as a
quadratic form on the ideal normed ring (RW , | |W ). Then:
a) E(qW ) ≤ E(q).
b) If q is Euclidean, so is qW .

Remark 3.1.3: There is another analogue of Theorem 17 for overrings of a Krull
domain endowed with a divisorial norm. The statement and proof are left to the
interested reader.

3.2. Localization and Completion of ADC-forms.

Theorem 21. Let R be a domain, S ⊂ R• a saturated multiplicatively closed subset
and RS = S−1R the localized domain. If a quadratic form q(x) ∈ R[x] is ADC,
then q viewed as a quadratic form over RS is ADC.

Proof. Let d ∈ R•
S be K-represented by qS , i.e., there exists x ∈ Kn such that

q(x) = d. We may write d = a
s with s ∈ S. If x = (x1, . . . , xn), then by sx we

mean (sx1, . . . , sxn). Thus q(sx) = s2q(x) = sa ∈ R. Since q is ADC over R, there
exists y ∈ Rn such that q(y) = sa. But then s−1y ∈ Rn

S and q(s−1y) = a
s . �
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Corollary 22. Let R be a Dedekind domain with fraction field K, let v : K• → Z be
a nontrivial discrete valuation which is “R-regular” in the sense that R is contained
in the valuation ring v−1(N) ∪ {0}. Let Kv be the completion of K with respect to
v and Rv its valuation ring. Suppose q ∈ R[x] is an ADC form. Then the base
extension of q to Rv is an ADC-form.

Proof. Under the hypotheses of the theorem, v = vp for a nonzero prime ideal p of
R. Let S = R \ p, and put RS = S−1R. By the previous theorem, the extension of
q to RS is an ADC form. Now suppose D ∈ R•

v is such that there exists X ∈ Kn
v

with q(X) = D. We may choose x ∈ Kn which is sufficiently v-adically close to X
so that q(x) = d ∈ RS and D

d = u2
d for some ud ∈ R×

v . (This is possible because:
Rn

S is dense in Rn
v , q, being a polynomial function, is continuous for the v-adic

topology, and R×2
v is an open subgroup of R•

v: e.g. [Ge08, Thm 3.39].) Since q is
ADC over RS , there exists y ∈ Rn

S such that q(y) = d. Thus q(udy) = u2
dd = D,

showing that D is Rv-represented by q. �

4. Imprimitive forms

Let R be a domain and x = (x1, . . . , xN ) ∈ RN . We say that the vector x is im-
primitive if there exists d ∈ R• \ R× such that d | xi for all i. Equivalently, the
ideal ⟨x⟩ := ⟨x1, . . . , xn⟩ generated by the coordinates of x is contained in some
proper principal ideal (d). (In particular the zero vector is imprimitive.) Otherwise
we say that x is primitive.

If R is a GCD-domain (recall PID =⇒ UFD =⇒ GCD-domain), then for
any nonzero vector x ∈ RN , we may put d = gcd(x1, . . . , xn) and then the vector
x′ = 1

dx is primitive: that is, every nonzero vector is a scalar multiple of a primitive
vector. In general (and even when R is the ring of integers of a number field of
class number greater than one) this sort of factorization is not possible.

In this section we analyze the following question: let q′/R be an ADC form. For

which d ∈ R• is q = d · q′ ADC? Of course the answer depends only on q up to unit
equivalence, i.e., on the class of d mod R×.

By looking at some basic examples, one swiftly acquires the sense that a key issue
is whether d is “squarefree”. In an arbitrary domain R, there are however several
reasonable ways to define a squarefree element. We list them as separate conditions
on an element x ∈ R•, as follows:

(SF1) For no d ∈ R• \R× do we have d2 | x.
(SF2) There does not exist a nontrivial discrete valuation v on R and elements
a, b ∈ R• such that x = a2b, v(a) ≥ 1 and v(b) ≤ 1.
(SF3) There do not exist a, b, p ∈ R• with p ̸∈ R×, x = a2b, p | a and p2 - b.

Remark: It is clear that (SF1) implies both (SF2) and (SF3).

Example: Suppose R is a domain which is not a field and which does not ad-
mit a nontrivial discrete valuation,6 and let x ∈ R• \ R×. Then x2 satisfies (SF2)

6For instance, take R = Z to be the ring of all algebraic integers.
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but not (SF1).

I believe (SF3) does not imply (SF1) but I don’t currently have an example.

Proposition 23. Let R be a Krull domain. Then each element of R• satisfies
(SF1) iff it satisfies (SF2) iff it satisfies (SF3).

Proof. By the above remark, it is enough to show that if x ∈ R• does not satisfy
(SF1), then it does not satisfy (SF2) or (SF3). Let d ∈ R• \R× be such that d2 | x.
Since d is not a unit, the set of height one primes p of R containing d is finite and
nonempty; choose one such prime p. By the Krull Approximation Theorem, there
exists p ∈ R• such that vp(p) = 1 and vq(p) = 0 for all other height one primes
q containing x. Then, putting k = vp(x), we may write x = pkx′ with x′ ∈ R•

and ordp(x
′) = 0. Moreover k ≥ 2, so we may write k = 2ℓ + ϵ with ℓ ∈ Z+ and

ϵ ∈ {0, 1} and then

x = (pℓ)2pϵx′.

Taking a = pℓ and b = pϵx′ shows that x does not satisfy (SF3), while the same
choice of a and b and v = vp shows that x does not satisfy (SF2). �

In view of this result, we may say that an element of a Krull domain is squarefree
if it satisfies any of the equivalent conditions (SF1), (SF2), (SF3).

(Should also show equivalence of (SF4): for all p ∈ ΣR, vp(x) ≤ 1.)

Lemma 24. Let q(x) be a primitive quadratic form over a Krull domain R. Then,
for every height one prime p of R, there exists x0 ∈ Rn such that vp(x0) = 0.

Proof. This is a souped up version of Exercise 2.18 in D.A. Cox’s book on binary
forms. (Details to be filled in!) �

Theorem 25. Let R be a Krull domain, d ∈ R• and let q′(X)/R be a primitive
quadratic form. If q(X) = dq′(X) is an ADC form, then d is squarefree.

Proof. We prove the contrapositive: suppose d is not squarefree, so there exists
a height one prime p of R and elements a, b ∈ R• with d = a2b, vp(a) ≥ 1,
vp(b) ≤ 1. By Lemma 24, choose x0 ∈ Rn such that vp(q(x0)) = 0. Then q R-
represents a2bq′(x0), so being an ADC form it also R-represents bq′(x0). But this
is an obvious contradiction: for all x ∈ Rn, vp(q(x)) = vp(a

2b) + vp(q
′(x)) ≥ 2,

whereas vp(bq(x0)) ≤ 1. �

For q/R, let D
•(q) be the set of nonzero values R-represented by q.

Theorem 26. Let R be a Krull domain, q′/R a quadratic form, and let d ∈ D•(q′)\
R×. Then for all a ∈ R•, q = (ad)q′ is not an ADC-form.

Proof. Seeking a contradiction, suppose q is an ADC form. By Krull Approximation
we may choose a height one prime p containing d and choose an element p which has
p-adic valuation 1 and q-adic valuation 0 at all other height one primes containing
d and a. If vp(a) ≥ 1, then vp(ad) ≥ 2, so ad is not squarefree and we are reduced
to the previous result. Otherwise, choose x0 ∈ Rn such that q′(x0) = d. Then q
R-represents ad2, so being an ADC form it also R-represents a, because all elements
represented by q have positive p-adic valuation. �
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Example: Let R = Z and q′(x, y) = x2 + y2, so q′ is Euclidean and thus ADC.
Let d ∈ Z+ and consider q(x, y) = d(x2 + y2). By the previous results, if q is
ADC then d is squarefree and not divisible by any n > 1 which is a sum of two
squares. (Since q′ is principal, in this case the second condition implies the first.)
In other words, d must be of the form

∏r
i=1 pi, where the pi’s are distinct primes

congruent to 3 modulo 4. Conversely, we claim that for all such values of d, q is an
ADC-form. The key fact here is that each prime pi which is 3 mod 4 is anisotropic
for q′, and it follows that for any x ∈ Z2, ordpi(q

′(x)) is even (CITE). So suppose
that q Z-represents an integer of the form a2b, i.e., there exist (x, y) ∈ Z2 such that
p1 · · · pr(x2 + y2) = a2b. Then for any i, ordpi of the LHS is odd, hence ordpi(a

2b)
is odd, so pi divides b. Since the pi’s are pairwise coprime p1 · · · pr | b, so we get

that the ADC form q′ Z-represents a2
(

b
p1···pr

)
, so q′ Z-represents b

p1···pr
, so q Z-

represents b.

Note: This argument should generalize to the case of any principal binary form
q over a Krull domain R so that the corresponding quadratic R-order is a UFD.
(More on this when time permits.)

4.1. Unary forms.

Theorem 27. Let R be a Krull domain, and a ∈ R•. Then q(x) = ax2 is an
ADC form iff a is squarefree, i.e., for each height one prime ideal p of R, we have
ordp(a) ≤ 1.

Proof. Step 1: R is a UFD, so all the ideals p are principal.
Suppose that a is not squarefree. Then there exists a prime element p, k ∈ Z+,

ℓ ∈ {0, 1} and a′ ∈ R such that a = p2kpℓa′ with gcd(a′, p) = 1. Thus q R-represents
p2kpℓa′, hence it K-represents the element d′ = pℓa′, with ordp(d) ≤ 1. However,
clearly any element d R-represented by q, has ordp(d) ≥ 2, so q is not ADC.

Suppose that a is squarefree and write it as a = p1 · · · pru where the pi are
mutually nonassociate prime elements of R and u ∈ R×. By passing to the unit-
equivalent form u−1q, we may assume without loss of generality that u = 1. Suppose

that d ∈ R• is K-represented by q, i.e., there exist x, y ∈ R• such that a
(

x
y

)2

= d.

Clearing denominators gives

(2) p1 · · · prx2 = dy2.

For any 1 ≤ i ≤ r, we have ordpi(p1 · · · prx2) = 2 ordpi(x) + 1 is odd, whereas
ordpi(dy

2) = 2 ordp(y) + ordp(d). Thus ordpi(d) is odd, and in particular pi | d.
Since the pi’s are pairwise coprime, p1 · · · pr | d and thus(

x

y

)2

=

(
d

p1 · · · pr

)
.

Thus x
y ∈ K is integral over R. Since R is integrally closed, we have y | x and thus

a
(

x
y

)2

= d is an R-representation of d.

Step 2: R is a Krull Domain.
Suppose that a is not squarefree, i.e., there exists a height one prime ideal p

such that ordp(a) ≥ 2. By the Krull Approximation Theorem, there exist elements
πa, a

′ ∈ R, a positive integer k and ℓ ∈ {0, 1} such that ordp(πa) = 1, ordp(a
′) = 0

and a = π2k
a πℓ

aa
′. The argument that q is not ADC then proceeds as above.
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Finally, suppose that a is squarefree, and d ∈ R• is K-represented by q, i.e., there

exist x, y ∈ R• such that a
(

x
y

)2

= d. As above, we wish to prove that y | x.
But since R =

∩
p∈ΣR

Rp, it is enough to check this divisibility locally, i.e., in
the localization Rp at each height one prime ideal p. However, Rp is a DVR, in
particular a UFD, so we are reduced to Step 1. �

5. Euclidean Algebras, Ideals and Modules

5.1. Normed division algebras over a field.

Let K be a field. Let A/K be a not necessarily associative K-algebra which is
finite-dimensional over K, has a multiplicative identity 1, and such that K = K · 1
lies in both the center and the nucleus of A: i.e., elements of K commute with all
elements of A and associate with all pairs of elements of K. We put A• = A \ {0}
as usual. We say that A is a right (resp. left) division algebra if for every x ∈ A•

there exists y ∈ A• such that xy = 1 (resp. yx = 1). A is a division algebra if it
both a right and left division algebra.

Let us say that the algebra A is 1-associative if every subalgebra generated by a
single element is associative (this is more commonly known as power-associative)
and 2-associative if every subalgebra generated by two elements is associative. By
a theorem of Artin, every alternative algebra – and in particular every composition
algebra – is 2-associative [Sch66].

A norm on such a K-algebra A is a homogeneous polynomial map N : A → K
such that N(1) = 1 and for all x, y ∈ A, N(xy) = N(x)N(y). We speak of a pair
(A,N) as a normed K-algebra.

Lemma 28. Let (A,N) be a normed K-algebra.
a) If A is a right (or left) division algebra, then N is anisotropic.
b) If N is anisotropic and A is 1-associative, then A is a division algebra.

Proof. a) Suppose A is a right division algebra, and 0 ̸= x ∈ A. Since A is a
division algebra, there exists y ∈ A such that xy = 1, and then 1 = N(1) =
N(xy) = N(x)N(y), so N(x) ̸= 0. The case of a left division algebra is similar (or
work in the opposite algebra).
b) Suppose N is anisotropic and x ∈ A•. Then x is neither a left nor a right divisor
of zero. Indeed, if say xy = 0, then N(x)N(y) = 0, contradicting the anisotropy of
N . Now since A is finite-dimensional over K, there exists a least n ∈ Z+ such that
xn is a K-linear combination of 1, x, . . . , xn−1 (here we use the 1-associativity to
speak unambiguously of xk). Thus there exist a0, . . . , an−1 ∈ K such that

xn + an−1x
n−1 + . . .+ a1x+ a0 = 0,

or

x(xn−1 + an−1x
n−2 + . . .+ a1) = (xn−1 + an−1x

n−2 + . . .+ a1)x = −a0.

Since x is not a zero divisor, a0 ̸= 0, and thus xn−1+an−1x
n−2+...+a1

−a0
is both a left

and right inverse to x. �

Henceforth we restrict ourselves to the case of division algebras, so N is anisotropic.
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Example 4.1.1 (Field extensions): Let A/K is a commutative field extension of
degree d. Then we may take N = NA/K to be the norm map in the sense of field
theory: it is homogeneous of degree d. In particular, from a quadratic field exten-
sion we get a binary norm form.

Example 4.1.2 (Associative division algebras) Let A be an associative K-algebra.
Put L = Z(A), so that L/K is a field extension of degree a (say). Then A is
a central division L-algebra; put [A : L] = b2. Let n : A → L be the reduced
norm, which is homogeneous of degree b, and let NL/K be the field norm. Then
N = NL/K ◦ n is a degree ab norm form on A.

An important special case is a = 1, b = 2: A/K is a quaternion algebra.

Example 4.1.3 (Octonion algebras): An octonion algebra is a normed algebra (A,N)
with dimA = 8 and degN = 2. Such algebras arise from a quaternion algebra by
applying the Cayley-Dickson-Albert construction.

If (A,N) is a normed division algebra and N is a quadratic form, then A is (by
definition) a division composition algebra. By a theorem of Hurwitz, dimK A ∈
{1, 2, 4, 8}, and A is either a quadratic, quaternion or octonion algebra.

Example 4.1.4 (Albert algebras): Let A/K be an Albert algebra, a certain kind
of 27-dimensional commutative Jordan algebra. The norm is a cubic form on A.

5.2. Orders in a normed division algebra.

Let O be a unital, but not necessarily associative, Z-algebra. We put O• = O\{0}:
this is a unital magma. A norm function on R is a homomorphism of unital magmas
|| || : O• → Z+ which is nondegenerate in the (usual) sense that ||x|| = 1 ⇐⇒
x = 1. We are not so much interested in this sort of structure for its own sake but
rather the special case which arises via the following construction.

Namely, let (R, | |) be a normed domain, and let (A,N) be an n-dimensional normed
division K-algebra.

A free R-order O in A is a unital R-subalgebra of A possessing an R-module
basis e1, . . . , en which is also a K-module basis for A. We make the following inte-
grality assumption on the norm form N : N(O) ⊂ R.

In such a situation, we may endow O with the structure of a normed Z-algebra
via the composite norm || || : O → N defined by ||x|| = |N(x)|.

The normed algebra (O, || ||) is Euclidean with respect to the norm if for all
x ∈ A, there exists y ∈ O such that ||x− y|| < 1.

Proposition 29. With notation as above, let O be a free R-order in the n-dimensional
normed division algebra (A,N) which is Euclidean with respect to the composite
norm || ||. Let (e1, . . . , en) be an R-basis of O. Then pulling back N under the
induced isomorphism O ∼= Rn gives rise to an n-ary Euclidean form of degree
deg(N).
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Proof. In fact this is a direct consequence of the definitions. �

Proposition 30. Let (A,N) be a 2-associative normed division algebra. If (O, || ||)
is a normed algebra, every left (or right) ideal of O is principal.

Proof. Let I be a nonzero left O-ideal, and choose a ∈ I of minimal nonzero norm.
We claim that I = aR. Indeed, let b ∈ I. Let b−1 be the (left = right, since the
hypothesis on A implies that it is power-associative) inverse of b. Our hypothesis
on associativity implies that b(b−1a) = (bb−1)a = a. Applying the Euclidean
hypothesis to x = ba−1, there exists y ∈ O such that ||ba−1 − y|| < 1. Multiplying
on the right by a gives ||b− ya|| < ||a||. Since b− ya is an element of I of smaller
norm than that of a, we must have b = ya, qed. The case of a right ideal is very
similar. �

Corollary 31. With notation as as above, if O is Euclidean with respect to the
norm, O is a maximal R-order in A.

Proof. This follows from Proposition 16. �

5.3. Euclidean ideal classes.

Let R be a domain with fraction field K, A/K a finite-dimensional associative
unital division algebra and O a free R-order in A. The two-sided O-ideals (resp.
two-sided fractional O-ideals) form a monoid under multiplication, which we denote
by I+(O) (resp. I(O).

Theorem 32. If R is a Dedekind domain, then I(O) (resp. I+(O)) is a free
commutative monoid (resp. free commutative group) with basis the two-sided prime
ideals.

Proof. See [Vi80, Thm. I.4.5]. �

In the general case we write Inv+(O) (resp. Inv(O)) for the monoid of invertible
two-sided O-ideals (resp. the group of invertible two-sided O-ideals). We define
Pic(O) to be the quotient of Inv+(O) by the normal subgroup of principal two-sided
fractional ideals.

We now come down to earth and restrict our attention to the case in which case
R is a Hasse domain with its canonical norm. In this case, for any R-lattice I
in A, we define ||I|| to be the fractional R-ideal generated by the reduced norms
n(x) of the elements x of I. It is not difficult to see that the function || || gives
a nondegenerate homomorphism of monoids from the monoid Inv+(O) = I(O) of
two-sided integral O-ideals to Z+. However (as usual in this subject) we are more
interested in one-sided O-ideals (even though they are more complicated). We need
the following result.

Lemma 33. Let I be a proper right O-ideal, J a proper left O-ideal, let M be an
R-lattice in A, and let x ∈ A•. Then:
a) ||IJ || = ||I||||J ||.
b) ||xM || = ||Mx|| = |n(x)|||M ||.

Proof. See Exercise 2.12 on p. 51 of John Voight’s book! �
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Definition: Let O be a free R-order in the associative K-division algebra A, and
let || || be an Inv+(O)-norm on O. A two-sided fractional O-ideal E is Euclidean
for || || if for all x ∈ A there exists y ∈ E such that

(3) ||x− y|| < ||I||.

Remark 4.3.1: When E = O, we recover the notion of a norm Euclidean order.

Remark 4.3.2: If the fractional ideal E is Euclidean, so are xE and Ex for all
x ∈ A•. Thus it makes sense to speak of Euclidean ideal classes [E]ℓ and [E]r.

From the perspective of our study of Euclidean forms, the motivation for this con-
struction is the following result.

♣ For the following Prop, it seems associativity is not used.

Proposition 34. Let E be a Euclidean ideal of O which is free as an R-module.

Let n : A → K be the norm map. For x ∈ E, put f(x) = n(x)
||E|| . Then upon choosing

an isomorphism I ∼= RdimK A, f defines a Euclidean form on R of degree equal to
that of n in dimK A variables. In particular, if A/K is a quadratic field extension
(resp. a quaternion algebra), f is a binary (resp. quaternary) quadratic form.

On the other hand, the existence of Euclidean ideals is of some interest in its own
right, because it places restrictions on the ideal theory of O. This observation was
made in the commutative case by H.W. Lenstra [Le79]. In the next two results we
extend Lenstra’s work to the non-commutative case.

Theorem 35. Let E be a Euclidean fractional ideal in (O, || ||). For every proper
right fractional O-ideal I, there exists n ∈ Z+ such that [IEn]ℓ = [O]ℓ.

Proof. If [E]ℓ = [O]ℓ, then by Remark 4.3.2 O is itself Euclidean and Proposition
30 implies that every right O-ideal is principal: a much stronger conclusion! So we
may assume that E is not of the form Ox for x ∈ A. For similar reasons we may
assume that E is an integral O-ideal.

Following Lenstra we introduce the quantity Ψ(I) := ||I||−1. Again because the
conclusion depends only on the left classes of the ideals involved, it is no loss of
generality to assume that I ⊃ O. Thus Ψ(I) ∈ Z+ and we will prove result by
induction on Ψ(I), the case Ψ(I) = 1 again being trivial.

To perform the induction step, choose x ∈ IE \E. By the Euclidean condition,
there exists y ∈ E such that ||x− y|| < ||E||. Put z := x− y. Then Ψ(z−1E) ≤ 1.
In fact equality here is equivalent to E = zO, a case which we have already ruled
out, so in fact Ψ(z−1E) < 1. Using Lemma 33 we get

Ψ(z−1IE) = |n(z)|−1Ψ(IE) = |n(z)|−1Ψ(I)Ψ(E) = Ψ(z−1E)Ψ(I) < Ψ(I).

Since z ∈ IE, Ψ(z−1IE) ∈ Z+; moreover the right order of z−1IE is O. Therefore
by induction there exists m with

[O]ℓ = [(z−1IE)Em]ℓ = [IEm+1]ℓ.

�

Remark 4.3.3: Of course there is an analogue of Theorem 35 for left ideals.
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Theorem 36. Suppose A/K is a central division algebra and O is a maximal R-

order in A. Moreover, suppose that there exists N ∈ Z+ such that Pic(R) =
Pic(R)[N ], and let A/K be a central division algebra with dimK A = P 2. Then if
O admits a Euclidean ideal E, we have

#Picℓ(O) = #Picr(O) ≤ NP.

Proof. Since the center of O is equal to R, the Picard group Pic(O) of O is canon-
ically isomorphic to the central Picard group Picent(O) [Re75, Thm. 37.18]. We
have a short exact sequence

1 → Pic(R) → Picent(O) →
∏
p

Z/epZ → 1,

where the product extends over all p ∈ ΣR which ramify in O, and ep is the
ramification index of A at p. By [Re75, Thm. 13.17], for all p ∈ ΣR one has ep | P .
It follows that Pic(O) = Pic(O)[NP ] is an NP -torsion abelian group.

Applying this to the class [E] of E in Pic(O) we get that for all n ∈ Z+, there
exists 1 ≤ i ≤ NP such that E−n = xnE

i for some xn ∈ A• (in fact such that
xO = Ox, but this is not needed). Using Theorem 35, for any projective left O-
ideal I we have IEn = xIO for some xI ∈ A•. Multiplying on the right by E−n

gives I = xiE
−n = xixnE

i, so [I]ℓ = [Ei]ℓ for some 1 ≤ i ≤ NP . This gives the
conclusion for Picℓ(O). It works the same way for Picr(O); alternatively, the map
I 7→ I−1 (always) induces a bijection between the left and right Picard sets. �
♣ Try to squeeze the following out of the proof:

♣ 1. Uniqueness (in some sense!) of the Euclidean ideal class E

♣ 2. Does the existence of E imply that O is hereditary?

We immediately derive the following quaternionic analogue of a result of Lenstra
on Euclidean ideal classes in the ring of integers of a quadratic number field.

Corollary 37. Let (R, | |) be a normed PID with fraction field K, B/K a division
quaternion algebra. If there exists a maximal order O and a Euclidean O-ideal
class, then the class number of B – i.e., the number of either left or right ideal
classes for any maximal R-order in B – is either 1 or 2.

5.4. Binary forms associated to Euclidean quadratic orders and ideals.
Rewrite this to be a special case of the above construction!

Let (R, | |) be a PID with fraction field K (of characteristic not 2, as usual). As in
§1, since R is a PID, the given norm may equally well be viewed as an ideal norm,
and we shall do so.

Let L = K(
√
D) be a quadratic extension of K and let S be a quadratic R-order

of L, i.e., an R-subalgebra of L which is free of rank 2 as an R-module and such
that S ⊗R K = L. Let α 7→ α be the nontrivial element of Aut(L/K): we assume
that S = S and SAut(L/K) = R, so that α 7→ |αα| is a norm on S. This allows us
to define a norm on ideals of S, |c|S := |cc|.

Example 13: take R to be a PID satisfying the condition (FN) and | | the canonical
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norm. Let L be a quadratic extension of K (the fraction field of R) and let S be the
integral closure of R in L. Then S satisfies the above hypotheses, and moreover,
for a nonzero ideal c of S, |c| = #S/c. (In particular, we may take R = Z!)

Let c be an invertible integral ideal of S. To the ideal c we will assign a quadratic
form qc, which up to multiplication by a unit of R, is well-defined and depends only
on the class of c in Pic(S).

Since c is invertible, it is a rank 1 locally free S-module and thus a rank 2 locally
free R-module. Since R is a PID, c is in fact free of rank 2 as an R-module, i.e., we
may choose α, β ∈ c such that c ∼=R Rα⊕Rβ. Moreover cc is a nonzero ideal of the
PID R; let c be a generator of this ideal. (Note that c is uniquely determined up to
an element of R× and it is here that the unit ambiguity arises in our construction.)
We define

qc(x1, x2) =
(x1α+ x2β)((x1α+ x2β)

c
.

The numerator of q is (αα)x2
1+(αβ+αβ)x1x2+(ββ)x2

2; clearly each of αα, αβ, αβ, ββ
lie in cc = cR hence are all divisible by c, so that indeed qc ∈ R[x1, x2]. It is easy
to see that qc is anisotropic.

Remark 7: The ideal c is principal iff the quadratic form qc is (up to a unit)
principal, i.e., represents 1 so can be put in the form x2

1 + bx1x2 + cx2
2.

The binary form qc is Euclidean (with respect to the fixed norm | | on R) iff for all
x = (x1, x2) ∈ K2, there exists y = (y1, y2) ∈ R2 such that

|qc(x− y)| < 1,

i.e., iff

|(x1 − y1)α+ (x2 − y2)β|S < |c|.
Putting X = x1α + x2β and Y = x1α + y2β, the conditions are equivalent to: for
all X ∈ L and Y ∈ c, |X − Y |S < |c|S . This is precisely the condition for the ideal
class c of the normed ring (S, | |S) to be Euclidean in the sense of [Le79].

We may therefore make use of Lenstra’s results, as follows:

Theorem 38. (Lenstra) Suppose that the binary quadratic form qc is Euclidean.
Then S is a Dedekind domain, Pic(S) = ⟨[c]⟩, and #Pic(S) ≤ 2.

Theorem 39. (Lenstra) Let R = Z with its canonical norm, L = Q(
√
D) be a

quadratic field, and let S = ZL be the ring of integers of L. Then S admits a
non-principal ideal class iff D ∈ {−20,−15, 40, 60, 85}.

The corresponding nonprincipal Euclidean binary quadratic forms are:

2x2
1 + 2x1x2 + 3x2

2, 2x2
1 + x1x2 + 2x2

2, 2x2
1 − 5x2

2, 3x2
1 − 5x2

2, 3x2
1 − 7x1x2 − 3x2

2.

Theorem 40. Let D < 0 be a fundamental discriminant, and let qD be the norm
form of the imaginary quadratic order of discriminant D. Then:

a) If D ≡ 0 (mod 4), E(qD) = |D|+4
16 .

b) If D ≡ 1 (mod 4), E(qD) = (|D|+1)2

16|D| .
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Thus the complete list of principal positive definite Euclidean forms is as follows:

• q−3(x, y) = x2 + xy + y2, E(q−3) =
1
3 .

• q−4(x, y) = x2 + y2, E(q−4) =
1
2 .

• q−7(x, y) = x2 + xy + 2y2, E(q−7) =
4
7 .

• q−11(x, y) = x2 + xy + 3y2, E(q−11) =
9
11 .

By the work of Lenstra, the remaining primitive, positive definite binary Euclidean
forms over Z are

q−15 = 2x2 + xy + 2y2, E(q−15) =
4

5
,

q−20 = 2x2 + 2xy + 3y2, E(q−20) =
9

10
.

the nonprincipal forms of discriminants −15 and −20, respectively.

5.5. Quaternary forms attached to Euclidean quaternion orders and ideals.

Let (R, | |) be a Hasse domain, A/K a division quaternion algebra, and let O
be a maximal, free R-order in A, and suppose that O admits a two-sided Euclidean
ideal E. By Corollary 37, the class number of O – and thus of A itself, since all
maximal orders have the same class number – is either 1 or 2.

Let us consider the case of definite quaternion algebras over R = Z. In this case,
there is the following well-known formula for the class number h(A) of A in terms
of its reduced discriminant D due to Eichler:

h(A) =
1

12

∏
p | D

(p− 1) +
1

4

∏
p | D

(
1− (

−4

p
)

)
+

1

3

∏
p | D

(
1− (

−3

p
)

)
.

From this one easily computes

h(A) = 1 ⇐⇒ D ∈ {2, 3, 5, 7, 13},

h(A) = 2 ⇐⇒ D ∈ {11, 17, 19, 30, 42, 70, 78}.
As a check on the accuracy of this calculation, we note that it agrees with the
results of [?], who enumerate all Eichler ZF -orders in totally definite quaternion
algebras over all totally real number fields F of class number at most 2.

Now using the MAGMA programming language it is a short, straightforward com-
putation to determine which of these quaternion algebras give rise to two-sided
Euclidean ideals for some maximal Z-order O.

Consider first the case in which h(A) = 1. Since the type number is always less
than or equal to the class number, this implies that the type number is one –
i.e., there is up to conjugacy a unique maximal order. The MAGMA command
MaximalOrder automatically supplies one maximal order O in a given quaternion
algebra over a number field. If B = e1, . . . , e4 is a Z-basis for O, then the Hessian
matrix of the quadratic norm form has (i, j) entry Trace(B[i]*Conjugate(B[j]))

. Dividing by 2 yields the Gram matrix, say M , and the MAGMA command
CoveringRadius(LatticeWithGram(M)) computes the Euclideanity of the norm
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form. The results are as follows:

E(q2) =
1
2 .

E(q3) =
2
3 .

E(q5) =
4
5 .

E(q7) =
8
7 .

E(q13) =
20
13 .

Thus there are precisely three norm-Euclidean definite quaternion orders over Z.
The corresponding quadratic forms are:

q2 : x2
1 + x1x2 + x1x3 + x1x4 + x2

2 + x2x4 + x2
3 + x3x4 + x2

4

q3 : x2
1 + x1x2 + x2

2 + x2
3 + x3x4 + x2

4

q5 : x2
1 + x1x2 + x1x3 + x1x4 + x2

2 + x2x3 + 2x2
3 + 2x3x4 + 2x2

4.

This same classification has recently been done by R.W. Fitzgerald [Fi10] by other
means.7

Let us now consider the cases of class number 2. These naturally subdivide into
D = 11, 17, 19 (prime discriminant) and D = 30, 42, 70, 78.

When D = 11, 17, 19, the type number of A is equal to 2: that is, there are pre-
cisely two nonconjugate maximal orders, say O1 and O2. We can compute this in
MAGMA by starting with one maximal order O1 := MaximalOrderQuaternionAlgebra(D),
computing a set of representatives for the left-ideal classes of O1

LL1 := LeftIdealClasses(O1) and comparing the corresponding right orders
IsIsomorphic(RightOrder(LL1[1]),RightOrder(LLL1[2]) .

We find in all three cases that these right-orders are not isomorphic. Let I to
be the unique class of ideal with right-order O1 and nonconjugate right order O2.
In particular, there are no nonprincipal two-sided O1-ideals, hence, since the class
number is greater than 1, no two-sided Euclidean O1-ideals. Doing the same for
the maximal order O2, we find again that the unique class of nonprincipal left O2-
ideals is represented by a one-sided ideal. Of course this should not be a surprise,
since [I] = [I−1] represents that class. In summary, the Brandt groupoid has
the following structure in this case: it may be viewed as a graph with two vertices,
corresponding to O1 and O2. Each of these vertices has a single loop, corresponding
to the two-sided ideal Oi. Moreover, there is one oriented edge running from O1 to
O2 corresponding to I and one oriented edge running from O2 to O1 corresponding
to I−1. It is easy to see that the norm form on the ideal class [I−1] = [I] is the same
as that on I, so altogether we get 3 nonisomorphic quadratic forms, q1, q2, q3 which
give a full set of representatives for the genus of any one of them. In particular,
each qi had class number 3, as one confirms using the MAGMA command
# GenusRepresentatives(L) on each of the quadratic lattices L.

When D = 30, 42, 70, 78, the Brandt groupoid has a different and simpler structure

7His work was done first, and we acknowledge it as a motivation for developing the present
theory.
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(the same in all four cases): in all four cases the type number is one, i.e., there
is a unique (up to conjugacy) maximal order O. Since the class number is 2, it
follows that there is a unique nonprincipal two-sided ideal I. This is an auspicious
sign for the existence of Euclidean ideals, but it turns out that nevertheless in all
all four cases the ideal is not Euclidean. Indeed the Euclideanities of norm forms
associated to O and I are as follows:

D = 30 : E(O) =
11

3
, E(I) =

7

3
.

D = 42 : E(O) =
11

2
, E(I) =

5

2
.

D = 70 : E(O) =
243

35
, E(I) =

27

7
.

D = 78 : E(O) =
161

26
, E(I) =

119

26
.

The maximal order O in the rational quaternion algebra of discriminant 2 is none
other than the Hurwitz order Z[1, i, j, k, 1+i+j+k

2 ]. This perhaps the most famous
of all non-commutative Euclidean rings, and its Euclidean property is used in one
of the well-known proofs of the Four Squares Theorem. From our perspective, it
is immediate from our theory that the form q2 is positive universal. On the other
hand, the four squares form corresponds to the nonmaximal order Z[1, i, j, k]. Thus
some argument is necessary in order to pass from the universality of q2 to that of
the Four Squares Theorem: this is due to Hurwitz. Extensions of this argument to
show that certain other nonmaximal diagonal quaternary forms are Euclidean are
considered in [Fi10].

5.6. A Euclidean octonion order.

There is a unique division octonion algebra A/Q, whose norm form is the sum
of eight squares form. Moreover, there are precisely 7 maximal Z-orders O in A.
These 7 orders are isomorphic as algebras and also give rise to a unique (up to
isomorphism) quadratic Z-lattice q: namely the E8-root lattice scaled by a factor
of 1

2 . The Euclideanities of all of the root lattices are classically known (see e.g.

[CSl99]) and in particular one has E(q) = 1
2 . It follows that the octonion order O

is norm Euclidean!

These facts are given a stylish presentation in [CSm03, Ch. 9]. They also ex-
plore the ideal theory of O, which is surprisingly meager: it turns out that the only
(left-, right- or two-sided ideals) in O are nO for n ∈ Z+. In particular there is no
hope of deriving further Euclidean forms from the ideals of O.

6. Maximal Lattices, Hasse Domains and Complete DVRs

6.1. CDVRs and Hasse Domains.

Let (R, v) be a discrete valuation ring (DVR) with fraction field K and residue
field k. As usual, we require that the characteristic of K be different from 2; how-
ever, although it is invariably more troublesome, we certainly must admit the case
in which k has characteristic 2: such DVRs are called dyadic. We will be especially
interested in the case in which R is complete, a CDVR.
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A Hasse domain is the ring of S-integers in a number field K (where S is some
finite set of places of K including all of the Archimedean place) or the coordinate
ring of a regular, integral algebraic curve over a finite field k = Fq. (The terminol-
ogy is taken from [OM00].) In particular, a Hasse domain is a Dedekind abstract
number ring.

Let ΣK denote the set of all places of K, including Archimedean ones in the number
field case. Let ΣR = ΣK \ S denote the subset of ΣK consisting of places which
correspond to maximal ideals of R; these places will be called finite. The comple-
tion Rv of a Hasse domain R at v ∈ ΣR is a CDVR with finite residue field.

If R is a Hasse domain and Λ is a quadratic R-lattice in the quadratic space (V, q),
then to each v ∈ ΣR we may attach the local lattice Λv = Λ ⊗R Rv. Being a
finitely generated torsion-free module over the PID Rv, Λv is necesssarily free. In
particular, we may define δv, the valuation of the discriminant over Rv and then
the global discriminant may be defined as the ideal ∆(Λ) =

∏
v∈ΣR

pδvv .

Lemma 41.
a) The R-lattice Λ is maximal iff Λv is a maximal Rv-lattice for all v ∈ ΣR.
b) For any nondyadic place v such that δv(Λ) ≤ 1, the lattice Λv is Rv-maximal.

6.2. Classification of Euclidean forms over CDVRs.

In this section R is a CDVR with fraction field K of characteristic different from
2, endowed with the norm | |a (for some a ≥ 2) of Example 3. In this setting we
can give a very clean characterization of Euclidean forms.

Theorem 42. A quadratic form over a complete discrete valuation domain is Eu-
clidean for the canonical norm iff the corresponding quadratic lattice is maximal.

For the proof we require the following preliminary results.

Theorem 43. (Eichler’s Maximal Lattice Theorem) Let q be an anisotropic qua-
dratic form over a complete discrete valuation field K with valuation ring R. Then
there is a unique maximal R-lattice for q, namely

Λ = {x ∈ Kn | q(x) ∈ R}.

Proof. See [Ei52] or [Ge08, Thm. 8.8]. �

Theorem 44. Let (V, q) be a finite-dimensional quadratic space over K and Λ ⊂ V
a maximal quadratic R-lattice. Then there exists a decomposition

V =
r⊕

i=1

HK ⊕ V ′

with q|V ′ anisotropic such that

Λ =
r⊕

i=1

HR ⊕ Λ′,

where Λ′ = Λ ∩ V ′.
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Proof. See [Sh10, Lemma 29.8], wherein the result is stated for complete discrete
valuation rings with finite residue field. However, it is easy to see that the finiteness
of the residue field is not used in the proof. �
Proof of Theorem 42: According to Proposition 16, a Euclidean form over any
normed ring is maximal, so it is enough to suppose that q is maximal and deduce
that it is Euclidean.

Suppose first that q is anisotropic over R. In this case, the Euclideanness of
q follows immediately from Eichler’s Maximal Lattice Theorem: indeed, we have
Rn = {x ∈ Kn | |q(x)|a ≥ 1}, where |x|a = av(x) is the norm of Example 4.
Therefore, x ∈ Kn \Rn ⇐⇒ |q(x)|a = |q(x− 0)|a < 1.
We now deal with the general case. By Theorem 44, we may write Λ =

⊕r
i=1 HR⊕Λ′

with Λ′ anisotropic. With respect to a suitable R-basis of Λ, q takes the form

q(X) = q(x, x′) = x1x2 + . . .+ x2r−1x2r + q′(x′),

where x′ = (x2r+1, . . . , xn) and q′ is anisotropic. Let X = (x, x′) ∈ Kn \ Rn. We
must find Y = (y, y′) ∈ Rn such that v(q(X − Y ))) < 0. By symmetry, we may
assume that v(x1x2) ≥ . . . ≥ v(x2r−1x2r) and v(x2r) ≤ v(x2r−1).
Case 1: v(x2r) ≥ 0. Then x = (x1, . . . , x2r) ∈ R2r so that we must have x′ ∈
Kn−2r \Rn−2r. Put Y = (y, y′) = 0. Then v(x1x2 + . . .+ x2r−1x2r) ≥ 0, whereas
by Eichler’s Maximal Lattice Theorem, v(q′(x′)) < 0, so

v(q(X)) = v(x1x2 + . . .+ x2r−1x2r + q′(x′)) < 0.

Case 2: v(x2r) < 0. We choose y′ = 0 and y1 = . . . = y2r−2 = 0. Also define

α = q2(x
′), β = x1x2 + . . .+ x2r−3x2r−2.

If v(α+ β + x2r−1x2r) ≤ v(x2r), then since v(x2r) < 0, we may take y = 0, getting

v(q(X)) = v(α+ β + x2r−1x2r) < 0.

If v(α+ β + x2r−1x2r−2) > v(x2r), we may take y2r−1 = 1, y2r = 0, getting

v(q(X − Y )) = v(α+ β + x2r−1x2r − x2r) = v(x2r) < 0.

Corollary 45. Let R be a Hasse domain and q/R a quadratic form. Then q is
locally Euclidean iff the corresponding lattice Λq is maximal.

Proof. This is an immediate consequence of Theorem 42 and Lemma 41. �
6.3. ADC forms over Hasse domains.

Let q/R be a nondegenerate quadratic form. We define the genus g(q) as fol-
lows: it is the set of R-isometry classes of quadratic forms q′ such that: for each
v ∈ S, q ∼=Kv q′, and for each v ∈ ΣR, q ∼=Rv q′.

Theorem 46. For any nondegenerate quadratic form q over a Hasse domain R,
the genus g(q) of q is finite.

Proof. See e.g. [OM00, Thm. 103:4]. �
This allows us to define the class number h(q) of a quadratic form q as #g(q).
Of particular interest are forms of class number one, i.e., for which q is (up to
isometry) the only form in its genus.
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A quadratic form q/R is regular if it R-represents every element of R which is
represented by its genus. In other words, q is regular if for all d ∈ R, if there is
q′ ∈ g(q) and x ∈ Rn such that q′(x) = d, then there is y ∈ Rn such that q(y) = d.

Theorem 47. Let q/R be a nondegenerate quadratic form over a Hasse domain,
and let d ∈ R. Suppose that for all v ∈ S, q Kv-represents d and for all v ∈ ΣR, q
Rv-represents d. Then there exists q′ ∈ g(q) such that q′ R-represents d.

Proof. [OM00]. �

Theorem 48. For a quadratic form q over a Hasse domain R, TFAE:
(i) q is an ADC form.
(ii) q is regular and “locally ADC”: for all p ∈ Σ(R), q is ADC over p.

Proof. (i) =⇒ (ii): Suppose q is ADC. By our theorems on localization, q is
locally ADC. Now let d ∈ R be represented by the genus of q: i.e., there exists
q′ ∈ g(q) such that q′ R-represents d. Since for all v ∈ ΣK , q′ ∼=Kv q, it follows that
q Kv-represents d for all v. By Hasse-Minkowski, q K-represents d, and since q is
an ADC-form, q R-represents d.
(ii) =⇒ (i): Suppose q is regular and locally ADC, and let d ∈ R be K-rationally
represented by q. Then for all v ∈ Σ(R), d is Kv-represented by q, hence using the
local ADC hypothesis, is Rv-represented. Moreover, for all places v ∈ Σ(K)\Σ(R),
d is Kv-represented by q. By Theorem 47, there exists q′ ∈ g(q) which R-represents
d, and then by definition of regular, q R-represents d. �

A quadratic form q over a Hasse domain R is sign-universal if for all d ∈ R, if q
Kv-represents d for all real places v ∈ ΣK , then q R-represents d.

Proposition 49. Let n ≥ 4, and let q(x1, . . . , xn) be a nondegenerate quadratic
form over a Hasse domain R. Then q is ADC iff it is sign-universal.

Proof. Indeed, by the Hasse-Minkowski theory of quadratic forms over global fields,
any nondegenerate quadratic form in at least four variables over the fraction field
K is sign-universal. The result follows immediately from this. �

6.4. Definite quadratic forms over Z.

In the case of R = Z, Conjecture 59 is related to some classical problems and
work in the geometry of numbers. Especially, the classification of definite Eu-
clidean forms q/Z can be rephrased as the classification of all integral lattices in
Euclidean space with covering radius strictly less than 1. This problem has been
essentially solved by G. Nebe [Ne03]: in particular, her paper contains 69 Euclidean
lattices.

W.C. Jagy and I had been independently searching for Euclidean lattices before
we learned of Nebe’s work. When we compared our list (not claimed to be com-
plete) to hers, we found that she lists several lattices we had not found. However,
one of our Euclidean lattices does not appear on Nebe’s list, namely

q(x1, x2, x3, x4, x5) = x2
1 + x1x4 + x2

2 + x2x5 + x2
3 + x3x5 + x2

4 + x4x5 + 2x2
5.

We are of the opinion that the method behind the classification – namely a clever
exploitation of root sublattices – is sound and the error is one of tabulation only.
Needless to say, it seems worthwhile to revisit this classification and check whether
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there are indeed only 70 = 69 + 1 Euclidean lattices over Z, and Jagy and I plan
to do this in a future joint paper.

Each of these 69 + 1 Euclidean lattices has class number one. Therefore verify-
ing Nebe’s work will probably show that Conjecture 60 holds for definite quadratic
forms over Z. The case of indefinite forms seems much more difficult, for instance
because the indefinite forms of class number one are believed to be infinite in num-
ber.

Let us turn now to definite ADC forms over Z.

Unary forms: A unary form qa(x) = ax2 is ADC iff a is squarefree. In partic-
ular there are infinitely many definite unary forms over Z.

Binary forms: The classical genus theory shows that a regular binary form q(x, y) =
ax2+bxy+cy2 has class number one in the above sense. Alternately, if ∆ = b2−4ac
is the discriminant of q, q is regular iff the Picard group of the quadratic order of
discriminant ∆ has exponent dividing 2. The disccriminants ∆ ≡ 0 (mod 4) in
question are precisely Euler’s idoneal numbers. This set is known to be finite but
its explicit computation is known only conditionally on the Generalized Riemann
Hypothesis (GRH). Assuming GRH, it becomes a finite problem to determine all
ADC forms, and we will address this in a future work.

Ternary forms: Again there are only finitely many definite regular ternary forms.

Theorem 50. (Jagy-Kaplansky-Schiemann [JKS97]) There are at most 913 prim-
itive positive definite regular forms q(x1, x2, x3)/Z.

More precisely, in [JKS97] the authors write down an explicit list of 913 definite
ternary forms such that any regular form must be equivalent to some form in their
list. Further they prove regularity of 891 of the forms in their list, whereas the
regularity of the remaining 22 forms is conjectured but not proven.

Fortunately, all 22 of the forms whose regularity was not shown by Jagy-Kaplansky-
Schiemann are seen not to be ADC by the easy method of finding integers a and
b such that the form represents a2b but not b. Indeed, Jagy has found such “non-
ADC certificates” for most of the regular ternary forms: this process leads to a list
of 104 definite ternary regular forms which are probably ADC. By Theorem 48,
it suffices to decide whether each of these forms are locally ADC over Zp for all
primes p. These local calculations are certainly doable but somewhat intricate and
are deferred to a later work.

n = 4: A quadratic form q/Z in at least four variables is ADC iff it is sign-universal.
Thus the following result solves the problem for us when n = 4.

Theorem 51. (Bhargava-Hanke [BH05]) There are precisely 6436 positive definite
sign-universal forms q(x1, x2, x3, x4)/Z.

So there are precisely 6436 positive definite quaternary ADC forms over Z.

n ≥ 5: It seems hopeless to classify positive definite sign-universal forms in 5
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or more variables. Certainly there are infinitely many such primitive forms, e.g.
x2
1 + . . .+ x2

n−1 +Dx2
n. More generally, any form with a sign-universal subform is

obviously sign-universal, and this makes the problem difficult. However, there is
the following relevant result.

Theorem 52. (Bhargava-Hanke [BH05]) For n ≥ 4, a positive definite quadratic
form q(x1, . . . , xn)/Z is sign-universal iff it Z-represents all of the following integers:

1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, 290.

Thus a definite integral form q(x1, . . . , xn), n ≥ 4, is ADC iff it represents all the
integers in the above list. So this is a sort of classification result for definite ADC
forms in at least five variables, perhaps the best that can reasonably be hoped for.

6.5. Some preliminary results over Z.

Lemma 53. Let R be a nondyadic integrally closed local domain. Let q(x) be a
unimodular binary form over R. If q is isotropic, then it is hyperbolic, and in
particular ADC.

Proof. It is known that any form q over such a ring can be diagonalized [Ba78], so
we may assume q(x, y) = ax2 + by2 with a, b ∈ R×. Moreover q = a(x2 + b

ay
2) ∼

a(x2+aby2) is isotropic iff −ab is a square in the fraction field iff −ab ∈ R×2 (since
R is integrally closed). Therefore q ∼ a(x2 − y2) ∼ axy. The change of variables
(x, y) 7→ (a−1x, y) shows that q ∼ xy, the hyperbolic plane. Thus q R-represents
every element of R and is ADC. �

Theorem 54. Let a, b ∈ Z• be relatively prime, and put q(x, y) = ax2 + by2.
a) If a, b ∈ Z+ and q(x, y) is ADC over Z, then ab is squarefree.
a) Suppose ab is squarefree. Then q is an ADC form over Z iff it is regular and
ab ̸ ≡ − 1 (mod 8).

Proof. a) Since a and b are coprime, ab is squarefree iff both a and b are squarefree.
By symmetry, it is enough to show that a is squarefree. Suppose not: then there
exists a prime p, k, a′ ∈ Z+ and ϵ ∈ {0, 1} such that a = p2kpϵa′ with gcd(a′, p) = 1.
Now q(1, 0) = a = (pk)2pϵa′, so since q is ADC, it Z-represents pϵa′.
Case 1: ϵ = 1. Then 1 < pϵa′ < a, so if q(x, y) = pϵa′ = pa′, then x = 0, i.e.,
by2 = pa′. Since (p, b) = 1, ordp(by

2) is even, whereas ordp(pa
′) = 1, contradiction.

Case 2: Suppose ϵ = 0. Then a′ < a, so if q(x, y) = pϵa′ = a′, then x = 0
and by2 = a′, so b | a′. Since gcd(b, a′) = 1, this forces b = 1 and a′ = A2 i.e.,
q(x, y) = p2kA2x2 + y2. Thus q is Q-equivalent to x2 + y2 so Q-represents 2, but it
clearly does not Z-represent 2, contradiction.
b) Suppose ab ≡ −1 (mod 8). Then q is Z2-equivalent to a(x2 − y2). Note that
the form q′ = x2 − y2 over Z2 is isotropic but not hyperbolic: indeed it is does
not represent any d ∈ Z2 with ord2(d) = 1. Since a ∈ Z×

2 , the same holds for
q ∼ a(x2 − y2). So q is not ADC over Z2; by Corollary 22 it is a fortiori not ADC
over Z.

Now we assume that q is regular, ab is squarefree and ab ̸ ≡ − 1 (mod 8). We
want to show that q is ADC: for this, by Theorem 48, it suffices to show that for
all primes p, q is ADC as a form over Zp.
Case 1: p ̸= 2, gcd(p, ab) = 1.
We suppose first that q(x, y) is isotropic, i.e., −ab ∈ Z×2

p . By Lemma 53 q is
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hyerbolic, hence ADC. Otherwise (−ab
p ) = −1 and q is anisotropic over Zp. Because

ordp(disc(q)) = 1, it is a maximal lattice in an anisotropic quadratic space. Using
Theorem 6 and Corollary 7 of [?], such a form is necessarily Euclidean and thus
ADC over Zp.
Case 2: p ̸= 2, gcd(p, ab) = p. Since vp(−disc(q)) = 1, q is again anisotropic over
Zp and gives a maximal lattice in its quadratic space, so it is once again ADC over
Zp.

Case 3: p = 2. As above, q is isotropic over Z2 iff −ab ∈ Q×2
2 iff ab ≡ 7 (mod 8).

Since we are excluding this caes, q is anisotropic. If ab ̸ ≡3 (mod 4), then again
the lattice is maximal and arguing as before we deduce that q is ADC over Z2.
The remaining case is ab ≡ 3 (mod 8), when the lattice is not Z2-maximal. In
this case q is Z2-equivalent to a(x2 + 3y2). Since a ∈ Z×

2 and ADC only matters
up to unit equivalence, it comes down to showing that x2 + 3y2 is ADC over Z2.
But indeed, as is well-known, it is ADC over Z. One way to see this is as follows:
the corresponding Z-maximal lattice is x2 + xy + y2, which is Euclidean, hence
ADC, and an elementary argument shows that every integer which is represented
by x2 + xy + y2 is also represented by x2 + y2. (Or see [?, Cor. 18] in which in an
elementary manner all integers represented by x2 + 3y2 are determined.) �
This result allows us to write down (conditionally on GRH) all primitive diagonal
positive definite integral binary forms q(x, y) = ax2 + by2 which are ADC. The
precise tabulation, together with the non-diagonal case, is left for a later work.

6.6. Some preliminary results over Fp[t].

Let F be a finite field of odd order, δ ∈ F× \ F×2,R = F[t] be endowed with
its canonical norm, K = F(t), and ∞ be the infinite place of K (corresponding to

the valuation v∞( fg ) = deg(g)− deg(f)), so that K∞ = K((1t )).

Recall that K has u-invariant 4: i.e., the maximum dimension of an anisotropic
quadratic form over R is 4. We call a quadratic form q/R definite if q is anisotropic
as a quadratic form over K∞: in particular, such forms are aniostropic.

The following recent result is a significant departure from the number field case.

Theorem 55. (Bureau [Bu07]) Suppose that #F > 3. Then every regular definite
form q/F[t] has class number one.

It is known that there are only finitely many definite quadratic forms over F[t] of
any given class number. So it follows Conjectures 59 and 60 hold for definite qua-
dratic forms over F[t] (except possibly when F = F3).

In general the function field situation seems to be a bit more tractable than the
number field case. Again we hope to give a complete classification of Euclidean
and ADC forms over Fq[t] in a future work. However by making use of other recent
work we can give some preliminary results.

Theorem 56. For a definite quaternary quadratic form q over F[t], TFAE:
(i) q is ADC.
(ii) q is universal.
(iii) The discriminant of q has degree 2.
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Proof. (i) ⇐⇒ (ii) is a case of Proposition 49.
(ii) ⇐⇒ (iii): this is a result of W.K. Chan and J. Daniels [CD05, Cor. 4.3]. �

Theorem 57. For a diagonal definite quaternary quadratic form q over F[t],
TFAE:
(i) q is Euclidean.
(ii) q is universal.
(iii) The discriminant of q has degree 2.

Proof.
(i) =⇒ (ii) follows from Theorem 13 and Proposition 49.
(ii) =⇒ (iii) is immediate from the previous result.
(iii) =⇒ (i): Suppose

q = p1x
2
1 + p2x

2
2 + p3x

2
3 + p4x

2
4

with Without loss of generality, we may assume that deg(p1) ≤ deg(p2) ≤ deg(p3) ≤
deg(p4). If deg(p3) = 0, then q contains a 3-dimensional constant subform and
is thus isotropic. Since

∑
i deg(pi) = 2, the only other possibility is deg(p1) =

deg(p2) = 0, deg(p3) = deg(p4) = 1, and now the fact that q is Euclidean follows
from the Generalized Cassels-Pfister Theorem. �

Theorem 58. If q is a diagonal definite ternary form over F[t] with deg(∆(q)) ≤ 2,
then q is ADC.

Proof. By [CD05, Thm. 3.5] any definite ternary form over F[t] with deg(∆(q)) ≤ 2
has class number one, hence is regular. Therefore, by Theorem 48 it is sufficient to
show that q is locally ADC.

If deg(∆(q)) ≤ 1, then sinceR is nondyadic, the corresponding lattice is maximal,
hence locally ADC by Theorem 48 and Corollary 45.

Suppose deg(∆(q)) = 2 and write q = p1(t)x
2
1+p2(t)x

2
2+p3(t)x

2
3 with deg(p1) ≤

deg(p2) ≤ deg(p3). If deg(p3) = 1, then by the Generalized Cassels-Pfister Theorem
q is Euclidean. Otherwise deg(p1) = deg(p2) = 0 and deg(p3) = 2. If p3 is
squarefree then so is ∆(q), hence q is maximal and thus locally ADC. Otherwise
there exist a ∈ F×, b ∈ F such that p3 = a(t−b)2, but then q is equivalent over K to
the constant form p1x

2
1+ p2x

2
2+ ax2

3 and is therefore isotropic, a contradiction. �

7. Conjectures and Open Problems

7.1. Conjectures On Euclidean Forms.

Conjecture 59. For any Hasse domain R, there are only finitely many isomor-
phism classes of anisotropic Euclidean forms q/R.

Conjecture 60. Let q be an anisotropic Euclidean quadratic form over a Hasse
domain R. Then q has class number one.

Conjecture 60 has a striking consequence. Consider the set S1 of all class number
one totally definite quadratic forms defined over the ring of integers of some totally
real number field. Work of Siegel shows that S1 is a finite set. Thus Conjecture 60
implies the following result, which we also state as a conjecture.

Conjecture 61. As R ranges through all rings of integers of totally real number
fields, there are only finitely many totally definite Euclidean quadratic forms q/R.
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