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Abstract. A classical result, often called the Davenport-Cassels Theorem,

gives a sufficient condition for an integral quadratic form to integrally represent

every integer that it rationally represents. We present a version of this result
which allows one to pass from rational to integral representations for certain

quadratic forms over a normed ring. Applying our theorem to the ring k[t]

we recover the Cassels-Pfister theorem. This motivates a closer study of both
the class of forms which satisfy the hypothesis of our theorem (“Euclidean

forms”) and its conclusion (“Aubry-Davenport-Cassels forms”). We give a

very preliminary analysis of these classes, mainly concentating on formulating
some natural conjectures and questions concerning their classification.

1. Euclidean Forms and ADC-Extensions

1.1. Normed rings.

Let R be a commutative, unital ring. We write R• for R \ {0}.

A norm on R is a function | | : R• → Z+ such that
(N1) ∀x ∈ R, x ∈ R× ⇐⇒ |x| = 1, and
(N2) ∀x, y ∈ R, |xy| = |x||y|.

When convenient, we extend | | to R by putting |0| = 0.

In other words, a norm on R is a homomorphism of multiplicative monoids (R•, ·) →
(Z+, ·) satisfying the additional condition that nonunits map to nonunits.

A norm | | is non-Archimedean if for all x, y ∈ R, |x + y| ≤ max(|x|, |y|).1

By a normed ring, we shall mean (here) a pair (R, | |) where | | is a norm on
R. Note that a normed ring is necessarily an integral domain. We denote the
fraction field by K. The norm extends uniquely to a homomorphism of groups
(K×, ·) → (Q>0, ·) via |xy | =

|x|
|y| , and the induced norm on K is non-Archimedean

iff the norm on R is non-Archimedean.

Example 1: Let R = Z. The usual Euclidean absolute value is a norm on R.

Example 2: Let k be a field, R = k[t], and let a ≥ 2 be an integer. Then the
map f ∈ k[t]• 7→ adeg f is a non-Archimedean norm | |a on R. When k is finite,
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1Note that we do not require that a general norm satisfy the triangle inequality.
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it is most natural to take a = #k (see below). Otherwise, we may as well take a = 2.

Example 3: Let R be an infinite integral domain with property (FN): for every
nonzero ideal I of R, R/I is finite. (In particular, R may be an order in a number
field, the ring of regular functions on an affine algebraic curve over a finite field, or
any localization or completion thereof.) Then the map x ∈ R• 7→ #R/(x) gives a
norm on R [Cl10, Prop. 5], which we will call the canonical norm on R. The given
norm | | on Z is the canonical norm, as is the norm | |q on the polynomial ring Fq[t].

A norm | | on a ring R is Euclidean if for all x ∈ K \ R, there exists y ∈ R
such that |x−y| < 1. A domain which admits a Euclidean norm is a principal ideal
domain (PID). It is known that the converse is not true, both in the sense that a
given norm on a PID need not be Euclidean and in the stronger sense that there
are PIDs which do not admit any Euclidean norm. However, for our purposes we
wish to consider the norm as part of the given structure on R, so when we say “R
is Euclidean”, we really mean “the given norm | | on R is a Euclidean norm”.

1.2. Euclidean quadratic forms.

Let (R, | |) be a normed ring of characteristic different from 2. By a quadratic
form over R, we mean a polynomial q ∈ R[x] = R[x1, . . . , xn] which is homoge-
neous of degree 2. Recall that a quadratic form q/R is isotropic if there exists
a = (a1, . . . , an) ∈ Rn \{(0, . . . , 0)} such that q(a) = 0; otherwise q is anisotropic.
It is easy to see that q is anistropic as a quadratic form over R iff it is anisotropic
over the fraction field K.

Now for the first of two fundamental definitions of this paper.

A quadratic form q on a normed ring (R, | |) is Euclidean if for all x ∈ Kn \ Rn,
there exists y ∈ Rn such 0 < |q(x− y)| < 1.

Remark: An anisotropic quadratic form q is Euclidean iff for all x ∈ Kn there
exists y ∈ Rn such that |q(x− y)| < 1.

Proposition 1. The norm | | on R is a Euclidean norm iff the quadratic form
q(x) = x2 is a Euclidean quadratic form.

Proof. Noting that q is an anisotropic quadratic form, this comes down to:

∀x, y ∈ K, |x− y| < 1 ⇐⇒ |q(x− y)| = |(x− y)2| = |x− y|2 < 1.

�

Example 4: The sum of n-squares form x2
1 + . . . + x2

n is Euclidean over Z iff n ≤ 3.
Indeed, a moment’s thought shows that for a given x ∈ Qn, the quantity |q(x− y)|
is minimized by choosing each yi to be a nearest integer to xi, thus |xi−yi| ≤ 1

2 for
all i, and these inequalities are sharp. So the optimal estimate is |q(x− y)| ≤ n

4 .

1.3. Principal binary forms. Similarly, under the natural correspondence be-
tween principal (i.e., representing 1) binary forms over R and quadratic orders of
R, Euclidean quadratic forms correspond to Euclidean quadratic orders.
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(This section has not yet been written, but we doubt that the interested reader
will have any trouble verifying the above statement.)

1.4. ADC-extensions and ADC-forms.

Now for the other key definitions of this paper.

Let R ↪→ S be an extension of domains, and let q/R be a quadratic form. We
say that S/R is an ADC-extension2 for q if: for all d ∈ R, if there exists x ∈ Sn

such that q(x) = d, there exists y ∈ Rn such that q(y) = d. If R is a domain
with fraction field K, we say that q is an ADC-form if the extension K/R is an
ADC-extension for q.

Example 5: If R is integrally closed, then q(x) = x2 is an ADC-form. Indeed,
a ∈ R• is K-represented by q iff the monic polynomial t2−a has a K-rational root.
An explicit example of a domain R for which x2 is not an ADC-form is R = Z[

√
−4],

in which q represents −1 over the fraction field but not over R.

Example 6: Let k be a field (of characteristic different from 2), and let q be an
isotropic quadratic form over k. Then any extension S/k is an ADC-extension
for q. Indeed, since q is isotropic over k, it contains the hyperbolic plane xy as
a subform. More precisely, after a k-linear change of variables, we may assume
q = x1x2 + q′(x3, . . . , xn). It is then clear that for any ring extension S of k and
any s ∈ S, q S-represents s: take x1 = s, x2 = 1, x3 = · · · = xn = 0.

Example 7: If q(x1, . . . , xn) is a quadratic form over Q with n ≥ 4, then R/Q
is an ADC-extension for Q, i.e., q rationally represents all rational numbers per-
mitted by sign considerations. (This was first shown by A. Meyer [Me84] and is
nowadays viewed as a consequence of the Hasse-Minkowski theory.)

The ADC-condition can be made quite concrete, as follows. Suppose a ∈ R and the
R-quadratic form q K-represents a. Then there exist x1, . . . , xn ∈ R and d ∈ R•

such that q(x1
d , . . . , xn

d ) = a, and thus q(x1, . . . , xn) = d2a; and conversely. In
other words, for any a ∈ R, we can “rationally” represent a iff we can “integrally”
represent some nonzero square times a, and thus the ADC-condition can be viewed
as a desquaring property. It is thus a natural and useful property to have when
trying to understand integral representations in terms of rational representations:
e.g. in the case R = Z it reduces Z-representation of arbirary elements of Z to
Z-representation of squarefree integers.

Example 8: The form q(x, y) = x2 − y2 is isotropic over Z but is not an ADC-
form. Indeed, over the field Q the isotropic form q is isomorphic to the hyperbolic
plane and thus represents every number: concretely, a = (a+1

2 )2−(a−1
2 )2. However,

reducing modulo 4 shows that q does not Z-represent any a ≡ 2 (mod 4).

Example 9: In 1912, the amateur mathematician L. Aubry showed that q(x) =

2ADC stands for Aubry-Davenport-Cassels. The reasons for this nomenclature will become
clear shortly.
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x2
1 + x2

2 + x2
3 is an ADC-form [Aub12]. This leads to an elegant and conceptual

proof of the Legendre-Gauss Three Squares Theorem, since already by Aubry’s day
the theory of rational quadratic forms had been systematically understood by H.
Minkowski.

We observed in Example 4 that q is Euclidean. Indeed, Aubry’s proof exploits the
Euclidean property. However, his argument seems to have been forgotten for many
years, and circa 1960 Davenport and Cassels (unpublished) rediscovered Aubry’s
argument. The result which is generally attributed to Davenport and Cassels may
be stated in our terminology as follows.

Theorem 2. (Aubry-Davenport-Cassels-Serre-Weil)
Every Euclidean quadratic form q over Z is an ADC-form.

Remarks on the history: as mentioned above, in the special case of the three
squares form this result goes back to L. Aubry. The work of Davenport and Cas-
sels was unpublished, so I don’t know exactly what they proved. In his widely
read text [Se73], Serre states and proves this theorem with the additional hypothe-
ses that q be positive-definite and classically integral: i.e., that the bilinear form
1
2 (q(x+ y)− q(x)− q(y)) be Z-valued (and attributes it to Davenport and Cassels).
The first statement of Theorem 2 in full generality seems to have been given by
A. Weil in [We84, p. 294]. He states this result rather casually, so one has to
read carefully to find it (and indeed, until recently it does not seem to have been
well-known). Finally, in late December of 2009, Serre communicated a new proof
to Bjorn Poonen. Poonen posted Serre’s proof on the website MathOverflow.net on
December 31, 2009 [SeMO]. This argument proves a slightly more general result,
namely q in Theorem 2 can be a quadratic polynomial instead of a quadratic form.

ADC-forms also appear in the literature via the following result.

Theorem 3. (Cassels-Pfister [Ca64] [Pf65]) Let k be a field of characteristic dif-
ferent from 2. Let q/k be a quadratic form, and consider q as a quadratic form over
the polynomial ring R = k[t]. Then q/R is an ADC-form: that is, every polynomial
p ∈ k[t] which is represented by q over the field k(t) of rational functions is also
represented by q over the ring k[t] of polynomial runctions.

The standard proofs of Theorems 2 and 3 have a classical flavor as well as a marked
resemblance to each other. As above, the matter of it is to assume that, for d ∈
R, we have x ∈ Rn such that q(x) = t2d for some t ∈ R• and deduce an R-
representation of d. This is done by a process of descent: taking a y ∈ Rn such
that |q(x− y)| < 1, we intersect the line ` joining x and y with the surface q = d.
One of the two points of intersection is x, so the associated quadratic equation has
another rational root x′, and then – and this is the magical part! – a straightforward
computation shows that q(x′) = (t′)2a, with |t′| < |t|. Repeating this process yields
an R-representation.

1.5. The Main Theorem.

We are now ready to state and prove the main result of this note, a generaliza-
tion of Theorem 2 which yields Theorem 3 as a corollary.

Theorem 4. Let (R, | |) be a normed ring not characteristic 2 and q/R a Euclidean
quadratic form. Then q is an ADC-form.
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Proof. We will make use of the well-known correspondence between quadratic forms
and bilinear forms outside of characteristic 2. Namely, for x, y ∈ Kn, put x · y :=
1
2 (q(x+y)− q(x)− q(x)). Then (x, y) 7→ x ·y is bilinear and x ·x = q(x). Note that
for x, y ∈ Rn, we need not have x · y ∈ R, but certainly we have 2(x · y) ∈ R. Our
computations below are parenthesized so as to emphasize this integrality property.
Let d ∈ R, and suppose that there exists x ∈ Kn such that q(x) = d. Equivalently,
there exists t ∈ R and x′ ∈ Rn such that t2d = x′ ·x′. We choose x′ and t such that
|t| is minimal, and it is enough to show that |t| = 1, for then by (MN1) t ∈ R×.

Applying the Euclidean hypothesis with x = x′

d , there exists a y ∈ R such that
if z = x− y we have

0 < |q(z)| < 1.

Now put

a = y · y − d,

b = 2(dt− x′ · y),

T = at + b,

X = ax′ + by.

Then a, b, T ∈ R, and X ∈ Rn.
Claim: X ·X = T 2d.
Indeed,

X ·X = a2(x′ · x′) + ab(2x′ · y) = b2(y · y) = a2t2d + ab(2dt− b) + b2(d + a)

= d(a2t2 + 2abt + b2) = T 2d.

Claim: T = t(z · z).
Indeed,

tT = at2 + bt = t2(y · y)− dt2 + 2dt2 − t(2x′ · y)

= t2(y · y)− t(2x′ · y) + x′ · x′ = (ty − x′) · (ty − x′) = (−tz) · (−tz) = t2(z · z).

Since 0 < |z · z| < 1, we have 0 < |T | < |t|, contradicting the minimality of |t|. �

Remark: This proof is modelled on that of [Se73]. The modifications were made in
two steps. First, circa 2008, I realized that the hypotheses of positive-definiteness
and classical integrality in Serre’s proof can be removed (by taking absolute values
and noting that the necessary factors of 2 appear in all the formulas, respectively).
This writeup appears in my Math 4400/6400 course notes (CITE). Once I realized
(in early September, 2010) the statement could be generalized to replace Z by
a normed ring, the modifications in my proof were immediate: indeed, what is
presented above is word-for-word identical to the proof in loc. cit. except for
replacing Z by R and Q by K! The proof given by Weil [We84] and the new
proof given by Serre [Se73] speak of gcd’s and denominators, so on the face of
things seem to require that R be a UFD. However, none of the proofs are really so
different from each other, and there is no doubt that e.g. Serre’s generalization to
possibly inhomogeneous quadratic polynomials can also be made in this context.
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1.6. Deducing the Cassels-Pfister Theorem.

We now deduce Theorem 3 as a corollary of Theorem 4.

Lemma 5. Let q be an anisotropic quadratic form over a field k. Then q remains
anisotropic over k(t).

Proof. Arguing contrapositively, suppose that there exists a nonzero x ∈ k(t) such
that q(x) = 0. Clearing denominators, there exists y = (y1, . . . , yn) such that
y ∈ Rn\(0, . . . , 0), gcd(y1, . . . , yn) = 1 and q(y) = 0.3 In particular, the polynomials
y1, . . . , yn do not all vanish at 0, for otherwise t would be a common factor, so
(y1(0), . . . , yn(0)) ∈ kn \ (0, . . . , 0) is such that q(y1(0), . . . , yn(0)) = 0, i.e., q is
isotropic over k. �

Remark: The proof of Lemma 5 has nothing to do with quadratic forms. Really it
shows that a variety V/k has a k-rational point iff it has a k(t)-rational point.

Proof of Theorem 3: let q be a quadratic form over k; without loss of general-
ity, we may assume

q = a1x
2
1 + . . . + anxn, ai ∈ k•.

We view q as a quadratic form over R = k[t] via base extension. If q is isotropic
over k, then by Example 6, q R-represents every element of R.
So suppose q is anisotropic over k, hence also, by Lemma 5, over k(t). By Theorem
4, it suffices to show that as a quadratic form over R = k[t] endowed with the norm
| |2 of Example 2, q is Euclidean.

Given an element x = ( f1(t)
g1(t)

, . . . , fn(t)
gn(t) ) ∈ Kn, by polynomial division we may

write fi

gi
= yi + ri

gi
with yi, ri ∈ k[t] and deg(ri) < deg(gi). Putting y = (y1, . . . , yn)

and using the non-Archimedean property of | |2, we find

|q(x− y)| = |
n∑

i=1

ai(
ri

gi
)2| ≤ max

i
|ai||

ri

gi
| < 1.

�

2. Classification of Euclidean forms

Let (R, | |) be a normed ring. It seems to be the case that there are relatively few
anisotropic Euclidean forms and ADC-forms over R. This raises the prospect of
classfying all such forms, and in particular understanding how much stronger the
Euclidean property is than the ADC-property.

2.1. Euclidean forms over Z.

Problem 1. Show that there are only finitely many anisotropic Euclidean forms
over Z, and give a complete list of them.

Here is some prior work on this problem. In [Co07, §5.4.2], H. Cohen reports on
the Davenport-Cassels Theorem as stated in Serre’s (CITE), in particular including
the extra hypotheses of positive definiteness and classical integrality.4 He

3Here we use the fact that k(t) is the fraction field of the UFD k[t].
4Cohen even uses the name “strongly Euclidean” for these forms. To the best of my knowledge,

he is the first to explicitly identify the hypothesis of the Davenport-Cassels theorem as being a
sort of Euclidean property.
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reports that, with these additional restrictions in place, upon his request J. Houriet
computed the full list. There are precisely 8 such forms:

x2, 2x2, 3x2,

x2 + y2, x2 + 2y2, 2x2 + 2xy + 2y2,

x2 + y2 + z2, x2 + 2y2 + 2yz + 2z2.

Example 10: a principal binary form q(x, y) = x2 + bxy + cy2 is Euclidean iff the
quadratic order O of discriminant b2 − 4c – is a norm-Euclidean domain. Thus the
principal positive definite Euclidean binary forms are:

x2 + y2, x2 + 2y2, x2 + xy + y2, x2 + xy + 2y2, x2 + xy + 3y2.

Thus there are at least 11 Euclidean positive-definite (not necessarily classically)
integral quadratic forms.

Although Cohen does not report on the details of Houriet’s (unpublished) cal-
culation, it seems likely that Houriet used elementary geometry of numbers con-
siderations. Moreover, it should be rather straightforward to relax the hypothesis
of classical integrality and compute a complete list of positive-definite Euclidean
quadratic forms over Z.5

The case of indefinite Euclidean forms is more involved. Indeed, as above the
classification of principal indefinite binary Euclidean forms amounts to the classifi-
cation of norm-Euclidean real quadratic fields, a solved – but nontrivial! – problem
in the geometry of numbers.

Theorem 6. The real quadratic fields for which the maximal order is norm-Euclidean
are as follows:

Q(
√

a) for a ∈ {2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73}.

Proof. This represents the work of several mathematicians over the first half of the
20th century, culminating in a 1952 work of Barnes and Swinnerton-Dyer [BSD52].

�

Problem 2. Prove or disprove: a primitive Euclidean integral binary quadratic
form is principal, i.e., represents 1 over Z.

Remark: I suspect this is true and easy to prove, but at this moment the argument
eludes me.

2.2. Euclidean forms over other rings.

The theory of quadratic forms over Fq[t] (with q odd) is known to be analogous in
many respects to the theory of integral quadratic forms. In particular, most of the
questions of the previous section apply. Note that, although any quadratic form
q which is base-changed from Fq is Euclidean, there are only finitely many such
anisotropic forms, so the finitude of all anisotropic Euclidean forms over Fq[t] still
seems plausible.

5Indeed I have this in mind as a possible research project for an undergraduate or early career

graduate student. Of course, you – whoever you are – are welcome to do the computation yourself,
but I would appreciate it if you would contact me if you start (or finish!) working on this problem.
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It seems interesting to look also at Euclidean forms over localizations of Z, since by
Theorem 4 these yield quadratic forms which have the ADC-property “away from
certain primes”. The case of Z[ 12 ] seems especially relevant.

Similarly, one can try to find Euclidean forms over the ring of integers ZK of a
number field K. In this regard, the following is relevant.

Question 3. Let (R, | |) be a normed domain which admits some (nonzero!) Eu-
clidean quadratic form. Is (R, | |) then necessarily a Euclidean domain?

By Proposition 1, an equivalent restatement of this question is: if there are any
Euclidean forms over R, is q(x) = x2 then necessarily a Euclidean form?

The following problem seems quite tractable (but I have not yet had the chance to
seriously consider it).

Problem 4. Let R be a complete discrete valuation ring with finite residue field, e.g.
Zp or Fq[[t]]. (Such a ring satisfies condition (FN) and therefore has a canonical
norm.) Classify all Euclidean forms over R.

It is easy to see that such rings are all norm-Euclidean, so that at least q(x) = x2

is a Euclidean form in every case.

3. Classification of ADC-forms

Proposition 7. Let q be an ADC-form over Z. Then q is regular: it Z-represents
every integer that is represented by its genus.

Proof. Let d ∈ Z. To say that the genus of q represents d is equivalent to saying
that for all p ≤ ∞, q represents d over Zp. It follows that q represents d over Qp

for all p ≤ ∞. Thus q Q-represents d by Hasse-Minkowski and thus Z-represents d
by the hypothesis that it is an ADC-form. �

This is significant because regular quadratic forms are known to be quite rare, at
least in the positive definite case in a small number of variables. Would that I were
more qualified even to survey known results here. We will have to content ourselves
for now with the following remarks.

Example 11: A primitive, positive definite binary quadratic form q is regular iff
every genus has a single class, iff the class group of Q(

√
∆(q)) is 2-torsion. It is

known that there are only finitely many such forms and there is suggested clas-
sification, but this is currently known to be complete only conditionally on the
Generalized Riemann Hypothesis [CB54].

Example 12: Work of Jagy and Kaplansky shows that the number N3 of regu-
lar positive-definite ternary quadratic forms satisfies 891 ≤ N3 ≤ 913. In 2008,
Byeong-Kweon Oh announced that N3 ≥ 899.6

Example 13: Work of Watson shows that there are infinitely many regular positive-
definite quaternary quadratic forms, only finitely many of which are diagonalizable
over Z.

6c.f. http://www.mathnet.or.kr/real/2008/1/Byeong-Kweon Oh.pdf
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Question 5. What can be said about the set of ADC-forms over Z? Are there, for
instance, only finitely many positive-definite such forms in at most 4 variables?

Again, the “local case” should be quite tractable. Indeed, I suspect that the an-
swer is probably already implicit in the theory of quadratic forms over DVRs (and
probably has something to do with maximal lattices).

Problem 6. Classify all ADC-forms over a complete DVR with finite residue field.

Acknowledgements I thank Keith Conrad and William C. Jagy for close readings
and helpful comments.
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