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PETE L. CLARK

Remark: This handout presents some of the most important results of algebraic
number theory. Although our intended application is to the case of K an imagi-
nary quadratic field, L/K a certain finite abelian extension, R = OK and S = OL,
whenever it was not obviously inconvenient I have presented the results in more
generality. Some of my motivations for doing this are as follows: first, in contrast
to the intended “basic graduate level” audience of Part II of Cox’s book, this course
is a topics course which – while, I hope, being mostly accessible to students with a
background in basic graduate algebra – is also intended to be useful for students
who are now doing or contemplate going on to do thesis work in algebraic number
theory and/or arithmetic geometry. For such students – i.e., for at least three out of
five – the extra generality I add over Cox’s treatment will almost certainly come in
handy later in your career. Moreover, Dino has recently taught two topics courses
which develop things in a similar level of generality (and, in fact, with even more
loving attention to inseparable field extensions), so it would be a disservice to stu-
dents who took either or both of his courses not to give the natural continuations
of some of the topics from Dino’s courses.

My recommendation to you is to pay especially close attention to the Frobenius
elements and Chebotarev Density – if you really understand the well-definedness of
Frobenius elements for unramified primes up to conjugacy, you will be well equipped
to appreciate the remarkable simplicity of Chebotarev’s theorem: it just says that
the probability that a conjugacy class C in Gal(L/K) is the Frobenius conjugacy
class of a randomly chosen prime ideal p is exactly what equidistribution would
predict: #C

#Gal(L/K) . What could be simpler?

In contrast, no one has ever accused class field theory of being simple. I think
it is fair to say that the material presented in this handout will be best understood
and appreciated by patiently parsing the complicated statements and then waiting
to see how it will be applied (which is now coming up very soon). You are entitled
to be a little confused!

1. Decomposition of ideals in separable extensions

The running hypotheses for this section are as follows: R is a Dedekind domain
with quotient field K, L/K is a separable field extension of degree n, and S is
the integral closure of R in L. Recall that S is a Dedekind domain and (by virtue
of the separability) is finitely generated as an R-module. If p is a prime of R, then
because the extension is integral it follows that pS is a proper ideal of S. Therefore
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it factors, say as

pS =

g∏
i=1

Pei
i .

It turns out to be critically important to understand this factorization, and espe-
cially how it changes depending on p.

The most important case for us is when K is a number field and R = OK the
full ring of integers, so that S = OL, the ring of integers in the number field L. In
particular, this allows us to define the Frobenius map. However, we will work
our way from the general case to this specific case, delaying the more restrictive
hypotheses until the time at which they are needed.

1.1. Discriminant ideal of an extension.

Our first task is to define the discriminant ∆(L/K), which will be a nonzero
ideal of R. (If the extension L/K were not separable, this ideal would be zero.)
Note that S is a finitely generated (because of the separability!) R-module; clearly
it is also torsionfree: i.e., if r ∈ R, 0 ̸= s ∈ S is such that rs = 0, then r = 0.

Step 1: Suppose R is a PID. Then finitely generated torsion free modules are
free; it is easy to see that S has rank n = [L : K], i.e., S ∼=R Rn. In partic-
ular we can choose a basis for S as an R-module, i.e., x1, . . . , xn ∈ S such that
S = Rx1 ⊕ . . . ⊕ Rxn. We define the discriminant ∆(x1, . . . , xn) to be the deter-
minant of the matrix whose (i, j) entry is M(i, j) = trL/K(xixj). Again, if we let

σ1, . . . , σn be the n embeddings of L/K into L, then it can be shown that

∆(x1, . . . , xn) = det(σi(xj))
2,

and as before, this shows that for any two integral bases of S, the ratio of the
discriminants is the square of a unit of R. In general R has plenty of units, but no
matter what ∆(S/R) is well-defined as a principal ideal of R.

Unfortunately, if R is not a PID, then in general S will not be free as an R-module.
Indeed Narkewicz shows that whenever OK is not a PID there exists a quadratic
extension L/K such that OL is not free as an OK-module. There are two ways of
remedying this: the global way and the local way.

Step 2 (global): We define ∆(L/K) to be the ideal generated by all elements
disc(x1, . . . , xn) as (x1, . . . , xn) ranges over n-tuples x1, . . . , xn ∈ S. (This will
give zero unless x1, . . . , xn are K-linearly independent, so one may restrict to this
case if desired.) With this definition it is easy to show that ∆(L/K) is nonzero.

Step 3 (local): From the structure theory of modules over a Dedekind domain, the
finitely generated torsionfree R-module S is at least locally free, which suggests
we should define the discriminant prime by prime. Namely, define the discriminant
of Sp/Rp, which is an ideal of Rp and therefore is equal to some power ap of the
unique maximal ideal pRp. It is not too hard to see that ap = 0 for all but finitely
many primes p; for instance let L = K[t]/P (t). Then it turns out that the only
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primes p for which p > 0 are those dividing the ideal generated by the discrim-
inant of the polynomial P in the usual sense. Therefore the ideal

∏
p∈PR

pap is
well-defined, and called the discriminant ideal.

Example 5.1.1.1: Let K be a number field and L = K(
√
α). Then the discrim-

inant can only be divisible by primes lying over 2 and those dividing α.

Example 5.1.1.2: Let n be a positive integer which is either odd or divisible by
4. Let ζn be a primitive nth root of unity. Let K = Q and L = Q(ζn). Then the
discriminant of L/K is divisible precisely by the primes dividing n. (Think about
why we have made the restriction on n.)

1.2. Decomposition of primes.

Let p be any (nonzero) prime (ideal) of R. Consider the pushed forward ideal
pS. As in any integral extension of domains, the pushforward of a proper (nonzero)
ideal is proper (nonzero), so we get a nontrivial factorization

pS =

g∏
i=1

Pei
i ,

where the Pi’s are precisely the primes lying over p, i.e., such that Pi ∩ R = p.
We write e(Pi/p) for the exponent ei and call it the ramification index of Pi

over p. We say that Pi is ramified if either ei > 1 or the residual field extension
S/P/R/p is not separable.1 We say p ramifies if some P lying over p is ramfied;
otherwise we say p is unramified in S/R.

Theorem 1. A prime p of R ramifies iff it divides the discriminant ideal ∆(S/R).
Therefore at most finitely many primes ramify.

For any prime Pi lying over p, we have an obvious composite homomorphism R →
S → S/Pi, the kernel of which is Pi ∩R = p. In other words we get an injection

(1) R/p ↪→ S/Pi.

Indeed, because nonzero prime ideals in a Dedekind ring are maximal, (1) is a field
extension, called the residual extension. A finite set of generators for S over R
(which, again, necessarily exists because L/K is separable) certainly gives a set of
generators for S/Pi/R/p, i.e., the residual degree fi is finite.

We have the following simple and important relation:

Theorem 2. For any prime p in R, in the factorization pS =
∏g

i=1 P
ei
i , we have

(2)

g∑
i=1

eifi = [L : K].

Proof: See, e.g. [ZS, Corollary, p. 287] for the general case; see almost any text on
algebraic number theory (or Matt Baker’s online notes) for the case of number fields.

1Since in the cases of interest to us, the residual extension is an extension of finite fields hence

automatically separable, the reader can safely ignore this part of the definition for the rest of the
course. But in general we need the more complicated definition in order for Theorem 1 to hold.
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More terminology: an unramified prime pi splits completely in S if g = n (equiv-
alently ei = fi = 1 for all i); we say it is inert in S if g = 1.

It is not hard to prove the following:

Proposition 3. Let R be a Dedekind domain with quotient field K, let K ⊂ L ⊂ M
be field extensions, and let S (resp. T ) denote the integral closure of R in L (resp.
M). Let p3 be a prime ideal in T ; let p2 = p3 ∩ S and p1 = p2 ∩R. Then:

e(p3/p1) = e(p3/p2) · e(p2/p1),
f(p3/p1) = f(p3/p2) · f(p2/p1).

That is, both ramification indices and inertial degrees are multiplicative in towers.

1.3. Prime decomposition in a Galois extension. Let us now assume that
L/K is Galois. This has the following important consequence:

Theorem 4. For any prime p, the Galois group G = Gal(L/K) acts transitively
on the set of primes Pi of S lying over p.

Proof: Let Pi ̸= Pj be distinct primes lying over p. Suppose, for the sake of
contradiction, that for all σ ∈ G we have σPi ̸= Pj . By CRT, there exists x ∈ S
such that x ≡ 0 (mod Pj) and for all σ ∈ G, x ≡ 1 (mod σPi). But NL/K(x) =∏

σ∈G σx lies in S ∩K = R and indeed in Pj ∩ R = p. But for all σ ∈ G, x is not

in σ−1Pi, i.e., σx ̸ ∈Pj . This contradicts the fact that
∏

σ∈G σx lies in the prime
ideal p.

Corollary 5. If the extension is Galois, then there exist integers e and f such that
for all 1 ≤ i ≤ g we have ei = e and fi = f . Therefore (2) simplifies to

(3) efg = [L : K].

Exercise 5.1.1: Prove Corollary 5.

Let P be a prime of S lying over p in R. We define the decomposition group

D(P/p) = {σ ∈ Gal(L/K) | σP = P}.
In other words, the decomposition group is the stabilizer of P under the action of
Gal(L/K) on the ideals lying above p. Because this action is transitive, we have
[Gal(L/K) : D(P/p] = g, so

#D(P/p) = ef.

In general, the decomposition group does depend upon the choice of P lying over
p, but only up to conjugacy: we know that any other prime Q lying over P is of
the form Q = σP for some σ ∈ Gal(L/K), and then as an easy fact of pure group
theory we have

D(σP/p) = σD(P/p)σ−1.

Exercise 5.1.2: Prove it.

In particular, if we are so fortunate so as to have Gal(L/K) abelian (and we will
be!), the decomposition group will depend only upon p.

Let us simplify the notation by writing k = R/p and l = S/P.
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The next key observation is that we have a canonical homomorphism Φ : D(P/p) →
Aut(l/k), σ 7→ σ. Namely, for x+ P ∈ l, we define

σ(x+ P) := (σ(x) + P).

This is well-defined since if x− x′ ∈ P, σ(x− x′) = σ(x)− σ(x′) ∈ σ(P) = P.

We now assume that the residue field k is perfect.

Theorem 6. The residual extension l/k is normal, hence Galois since k is per-
fect. The homomorphism Φ : D(P/p) → Gal(l/k) is surjective. Therefore, writing
I(P/p) for its kernel, we have a short exact sequence of finite groups

1 → I(P/p) → D(P/p)
Φ→ Gal(l/k) → 1,

and #I(P/p) = e.

Proof:2 First, since L/K is Galois, there exists a degree [L : K] monic poly-
nomial P (t) ∈ R[t], irreducible over K, and splitting completely in L, so that
L = K[t]/(P (t)). The field l is again the splitting field of the (possibly reducible!)
polynomial P (t) ∈ R/p[t], hence l/k is normal, and thus, by our assumption that
k is perfect, is Galois. In particular, since it is finite separable, there is a primitive
element, i.e., a single α ∈ l such that l = k(α). And because it is Galois, the num-
ber of automorphisms s of l/k is equal to the number of conjugates of α. Therefore
it is enough to show that every conjugate of α is of the form Φ(σ)(α) for some
σ ∈ D(P/p).

Invoking CRT, there exists an element α ∈ S whose class modulo P is α and also
satisfies α ∈ Q for every other prime Q lying over p. (Check that this is equivalent
to an assertion about solutions to a system of congruences modulo the various ideals
lying over p.) Suppose f(t) ∈ R[t] is the minimal polynomial of α over K and let
g(t) ∈ k[t] be the minimal polynomial of α over k. Since every root of f(t) is an
L/K-Galois conjugate of α, there exists a subset H ⊂ G such that

f(t) =
∏
σ∈H

(t− σ(α)).

Put H ′ = H ∩ D(P/p). If σ ∈ G \ D(P/p), then σ−1 is also not in D(P/p), so
σ−1(P) ̸= P, and then by our choice of α, α ∈ σ−1(P), i.e., σ(α) ∈ P. So

f(t) =
∏
σ∈H

(t− σ(α))

=
∏

σ∈H′

(t− σ(α))
∏

σ ̸∈H′

(t− σ(α)) = t#H−#H′ ∏
σ∈H′

(t− Φσ(α)).

This shows that all nonzero roots of f(t) are of the form Φσ(α) for some σ ∈
D(P/p). But f(α) = f(α) = 0, so g(t) | f(t). Since 0 is not a root of g, we
conclude

g(t) |
∏

σ∈H′

(t− Φ(σ)(α)).

This shows that every l/k-conjugate of α is of the form Φ(σ)(α for some σ ∈
D(P/p), QED.

2The proof of this takes a little while, but is a nice application of the things we’ve been talking
about. Parts of this proof come closely from Matt Baker’s notes.
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We call I(P/p) the inertia group. In fact we are most pleased when it is trivial,
which according to the theorem happens iff p does not ramify in L, so in particular
for all but finitely many primes.

Let us now assume further that the Dedekind ring R has finite quotients. Re-
call that the two most important examples of this are R = OK , the ring of integers
in a number field, and R = Fp[t], a polynomial ring over a finite field – or the in-
tegral closure of such an R in a finite separable field extension: i.e., the coordinate
ring k[C] of a nonsingular, geometrically integral affine curve over a finite field k.

What we are assuming is that k = Fq, and then l = Fqf . So we know that Gal(l/k)
is cyclic of order f . In fact we know more than this: we have a canonical iso-
morphism Z/fZ ∼= Gal(l/k), i.e., a canonical generator of Gal(l/k), namely the
Frobenius automorphism F : x 7→ xq. The preimage of the Frobenius map F
in D(P/p) gives a canonical coset τP + I(P/p). Better yet, for all but the at most
finitely many ramified primes p, the inertia group is trivial, and for such primes we
get a canonical Frobenius element

τP ∈ D(P/p) ⊂ Gal(L/K).

The Frobenius element τP depends on the choice of P lying over p only up to con-
jugacy, so that the Frobenius conjugacy class τp ⊂ Gal(L/K) makes sense for
any unramified prime. Note that if L/K is abelian, then each Frobenius conjugacy
class contains a single element.

Exercise 5.1.3: let L/K be a separable field extension, with Galois closure M/K.
Show that a prime p of K splits completely in L iff it splits completely in M .

2. Cebotarev Density Theorem

2.1. Final preparations.

Let k be either Q or Fp(t); o = Z or Fp[t]. Let K/k be a finite separable ex-
tension and L/K be a finite Galois extension. Let R be the integral closure of o in
K, S the integral closure of o in S. We further write ΣR (resp. ΣS) for the set of
nonzero prime ideals of R (resp. of S). For brevity, we summarize this situation
by saying that S/R is a Galois extension of global rings.

Notice that R and S are Dedekind rings with finite quotients, so all of the ma-
terial of the previous section applies: especially, for any prime p in R not dividing
∆(S/R), we have a Frobenius conjugacy class τp ⊂ Gal(L/K).

We also have (just!) one more thing: we have a norm map on the nonzero in-
tegral ideals of R, with the property that there are only finitely many ideals of
norm less than or equal to any given number.
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Let T ⊂ ΣR. We say that T has a natural density if

lim
x→∞

#{I ∈ T | N(I) ≤ x}
#{I ∈ ΣR | N(I) ≤ x}

exists; if so we define its natural density δ(T ) ∈ [0, 1] to be the above limit.

We say that T has a Dirichlet density if

lim
s→1+

∑
p∈T N(p)−s∑
p∈ΣR

N(p)−s

exists; if so we define its Dirichlet density δD(T ) ∈ [0, 1] to be the above limit.

Exercise 5.2.0: Let T ⊂ ΣR.
a) Show that if T has a natural density, then it has a Dirichlet density and
δD(T ) = δ(T ).
b) Exhibit a T which has a Dirichlet density but no natural density.

For any group G, a normal subset T ⊂ G will be a subset which is invariant
under conjugation: for all σ ∈ G, σTσ−1 = S.

Exercise 5.2.1: Show that a subset T of G is normal iff it is a disjoint union of
conjugacy classes.

A trivial but important remark: if G is abelian, all subsets are normal.

2.2. The Chebotarev Density Theorem.

Theorem 7. (Chebotarev, 1922) Let S/R be a Galois extension of global rings,
with G = Gal(L/K). Let X ⊂ G be a normal subset, and consider the Chebotarev
set TX ⊂ ΣR of prime ideals p which are unramified in S and such that the Frobe-
nius conjugacy class τp is contained in X.

a) The set TX has Dirichlet density #X
#G .

b) If charK = 0, then TX has natural density #X
#G .

Exercise 5.2.2: Suppose that you know Chebotarev Density when T ⊂ G is a single
conjugacy class. Deduce the general case.

Corollary 8. For any separable extension S/R of local rings with [L : K] = n, the
density of the set S of primes p of R which split completely in S is 1

#Gal(M/K) ,

where M is the Galois closure of L/K. In particular we have

1

n!
≤ δ(S) ≤ 1

n
.

Exercise 5.2.3: Prove Corollary 8. (Hint: use Exercise 5.1.3.)

Corollary 9. (Equidistribution of Frobenius elements in the abelian case)
With notation as above, suppose that G = Gal(L/K) is abelian. Then for any
σ ∈ G, the set of unramified primes p such that τp = σ has density 1

#G .

Rhe “intersection” of Corollaries 8 and 9 is important in of itself: that in an abelian
extension L/K of degree n, the set of unramified primes p of R for which τp = 1 –
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i.e., which split completely in L – has density 1
n .

3

Example 5.2.1.1: Let L/K be a quadratic extension. Then the set of ramified
primes is finite, and the set of primes which split completely and the set of inert
primes both have density 1

2 . Applying this in particular to K = Q, L = Q(
√
D),

this gives: for (p, 4D) = 1, the set of primes p such that (Dp ) = 1 and the set such

that (Dp ) = −1 each have density 1
2 .

Example 5.2.1.2: Let K = Q and L = Q(ζn), where ζn is (still) a primitive
nth root of unity. The well-known irreducibility of the cyclotomic polynomials
easily implies that Gal(L/K) = (Z/nZ)×, the isomorphism being given by a
(mod n) 7→ (ζn 7→ ζan). Recall that every prime not dividing n is unramified.
So for p with gcd(p, n) = 1, there is a well-defined Frobenius element τp in G; it is
a great exercise to check that under the above isomorphism τp is precisely the class
of p in (Z/nZ)×. Thus in this very special case we recover the following seminal
result:

Theorem 10. (Dirichlet’s Theorem) For n ∈ Z+ and any a with gcd(a, n) = 1,
the set of primes p which are congruent to a (mod n) has density 1

φ(n) .

Exercise 5.2.4: Let P (t) ∈ Z[t] be a monic polynomial of positive degree d. For

a prime number ℓ, let P̃ℓ ∈ Fℓ[t] denote the obvious (coefficientwise) modulo ℓ
reduction of P .
a) If P is reducible over Z[t], then for all ℓ, P̃ℓ is reducible over Fℓ[t]. Thus, applying
the contrapositive, we get a sufficient condition for irreducibility of P : it suffices
for P̃ℓ to be reducible for some ℓ.
b) Suppose that the degree d is a prime number. Show a (much more interesting)

converse: the set of primes ℓ such that P̃ℓ(t) is irreducible has positive density.
c)* Find an irreducible quartic (i.e., d = 4) polynomial all of whose mod ℓ reductions
are reducible.
d)** Show that a polynomial as in part c) exists for all composite degrees d.4

2.3. Some further remarks.

Theorem 7 was conjectured by Frobenius in 1896. He was able to prove a sub-
stantial special case: in the Frobenius Density Theorem the subset T must be
invariant under conjugation and also have the property that if σ ∈ T , so is every
other generator of the cyclic subgroup generated by σ, i.e., for all i prime to the
order of σ, σi ∈ T . Note that when G is a symmetric group (which is what the
Galois group of an extension of global fields will be “with probability 1”) the first
condition implies the second, since σi has the same cycle type as σ. Also Frobenius’
theorem applies in the case in which T is a normal subgroup of G; in particular it
applies to T = {e}, giving Corollary 8.

Nikolai Grigorevich Chebotarev was born in 1896 and died in 1947. He proved

3This special case was proved much earlier by Frobenius: see below.
4This is proved in a 1986 Monthly paper of Brandl. The generalization to polynomials over any

global ring is proved in Irreducible polynomials which are locally reducible everywhere, Guralnick,
Schacher and Sonn, Proc. AMS 133 (2005), 3171-3177.
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the density theorem in summer of 1922, having just turned 26, while being physi-
cally occupied with rather menial labor (e.g., bringing buckets of cabbages to the
market for his mother to sell) in the city of Odessa. He was not able to defend his
dissertation (on the density theorem) until 1927.

Stricitly speaking what Chebotarev proved was weaker than Theorem 7: he proved
the result when K is a number field and for the Dirichlet density δD(TX).

The generalization to natural density in the number field case is a significant piece
of analytic number theory. Even in the special case of Dirichlet’s Theorem (proved
in the case of Dirichlet density by....Dirichlet), the version for natural density was
not proven until much later by de la Vallée Poussin. Apparently the replacement
of Dirichlet density by natural density in the full-fledged Chebotarev Theorem was
first done by Hecke (and is sufficiently difficult not to be found in any of the stan-
dard texts that I have consulted). It should be noted that in the vast majority of
cases the real import of the Density Theorem is to show that the set of primes in
question is infinite, and for this it certainly doesn’t matter which density is used.

The proof in the function field case – charK > 0 – is not dramatically differ-
ent, and in some ways it is simpler. It seems to have first been proven by Reichardt
in 1936. The argument is similar to Chebotarev’s and in some ways simpler.

However, in the function field case it is not always true that the natural density
δ(TX) exists! It turns out that δD(TX) exists when the extension L/K has trivial
constant field extension – i.e., if the algebraic closure of Fp in K is algebraically
closed in L – but there are counterexamples in the general case. This was pointed
out to me by Melanie Matchett Wood on 6/19/13, correcting an error in the way
Theorem 7 had originally been stated (in spring 2008). Wood also suggests the
reference [Ba08] for more information on this phenomenon.

There are effective versions of the Chebotarev Density Theorem, i.e., one can
give an explicit upper bound on the norm of the least unramified prime p whose
Frobenius conjugacy class lies in the normal subset T of Gal(L/K). I have had
occasion to look at such estimates in joint work with A.C. Cojocaru: as one might
imagine, the estimates depend on all the quantities in question (especially, the
discriminant ∆(S/R)) in a somewhat complicated way. What is unconditionally
known is somewhat disappointingly weaker than what should be true: if one is will-
ing to assume the Generalized Riemann Hypothesis (GRH) then there are bounds
which are a full logarithm better than the unconditional bounds.

3. Class Field Theory

3.1. The Artin Map.

Let S/R be a Galois extension of global rings, such that G = Gal(L/K) is abelian.
Let ∆ be the discriminant of L/K. Let I(∆) denote the group of all fractional
ideals of R which are (in the obvious sense) prime to ∆. Then I(∆) is the free
abelian group generated by prime ideals p not dividing ∆; in particular, because of
this freeness, there is a unique homomorphism of abelian groups

r : I(∆) → Gal(L/K)
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which extends the map p 7→ τp on primes. This map goes by various intimidating
names: e.g. Artin symbol, reciprocity map.

Notice that Chebotarev Density asserts, in particular; that every element of Gal(L/K)
is hit by infinitely many primes p, so certainly the homomorphism r is surjective.

Evidently then p induces a canonical isomorphism of groups

I(∆)/ ker(r)
∼→ Gal(L/K).

Therefore the obvious question to ask – the main question of class field theory – is:

WHAT IS THE KERNEL OF r??

Notice that what is nice about I(∆) is that it doesn’t make reference to the ex-
tension L at all; certainly we can consider I(c) – the subgroup of fractional ideals
prime to c – for any (nonzero) integral ideal c of R. The goal of class field theory
is to similarly describe the kernel r in terms of “the arithmetic of K”. Admittedly
this a confusing statement, because obviously the abelian extension L has to come
into the picture somewhere; it already has by virtue of the discriminant ∆, but
we certainly need more information than this, because – as we shall see shortly! –
there can be more than one abelian extension L/K with a given discriminant. So
things must be a bit more complicated, and indeed they are.

3.2. Moduli and ray class fields.

What we can do is define a certain family {K(m)} of abelian extensions which
are parameterized solely by some arithmetic data m from K (you are not yet sup-
posed to know what this means; don’t worry). These field K(m) are called ray
class fields of K. Again, it is too much to hope for that every finite abelian ex-
tension of K is a ray class field, but what turns out to be true is that every abelian
extension L is contained in some ray class field – in fact, in infinitely many ray
class fields, but there will be a unique smallest ray class field containing L. The
Galois theory of subextensions of abelian extensions behaves beautifully – in par-
ticular every subextension is Galois – so that if we know all the ray class fields, we
have a good chance at understanding all the finite abelian extensions.

Let me now describe the objects m by which ray class fields are parameterized.

For this we need to say something about real places of number fields. Let us
say at the outset that our main application of all this will be in the case of K an
imaginary quadratic field, in which case there are no real places. So, on a first
reading, it might be a good strategic move to simply ignore the entire business
about real places, at least until you get to the example of K = Q, which goes a
long way towards clarifying what is going on with them.

Anyway, recall that ifK/Q is a number field of degree d, say given as Q[t]/(P (t)),
then the embeddings of K into R correspond precisely to the real roots of P (t): in
particular there is somewhere between 0 and [K : Q] such embeddings. Let us label
these embeddings ∞1,∞2, . . . ,∞r. We call such embeddings “real places.”
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Example 5.3.2.1: Q has, of course, one real embedding. For a squarefree D > 1,
the field Q(

√
D) has two real embeddings: the usual one a + b

√
D, and the one

obtained by applying Galois conjugation, namely a + b
√
D 7→ a − b

√
D. If D < 0

there are, evidently, no real embeddings.

The function field case is simpler: there are no real embeddings to worry about.5

Now a modulus m is a formal product of two different quantities: the first, fi-
nite part m0, is precisely a nonzero integral ideal of R, which we further view (as
we have before) as a formal product

∏
p p

ordp(m0). In the function field case m = m1;
if K is a number field which has real places, then there is also an infinite part
m∞, which you can think of as a subset of the real places but you write formally as
a product: if, say, Σ∞

S = {∞1, . . . ,∞r} is the set of real places of K, then for some
subset Z ⊂ Σ∞

S , we write the corresponding m2 as
∏

∞i∈Z ∞i. The whole modulus
is formally written as m1 ·m2. Let us write simply ∞ for the product of all the real
places of K (if there are any at all).

For a prime p of R and a modulus m, define ordp m just to be ordp(m0).

Example 5.3.2.2: When R = Z, a modulus is either the ideal generated by a
positive integer (n), or (n) · ∞.

For any modulus m, we define I(m) = I(m0), i.e., fractional ideals prime to the
finite part of the modulus. Now we also define a subgroup of I(m), namely P (m),
to be the subgroup generated by principal fractional ideals (α) with a generator α
satisfying:

(i) for all primes p, ordp(x− 1) ≥ ordp m, and (ii) For all ∞i ∈ m∞, ∞i(α) > 0.

Note (i) implies α ∈ R, i.e., these are principal integral ideals. So α−1 need
not be in R, and that is why we are taking the subgroup generated by these guys.
In fact this is one case where thinking solely in terms of integral ideals seems cleaner:

Exercise 5.3.1: Show that the quotient group I(m)/P (m) can be identified with
the quotient of the monoid of integral ideals prime to m by the submonoid of prin-
cipal integral ideals xR, where x satisfies (i) and (ii) above.

Example 5.3.2.3: Again let R = Z. If m = (n), then P (m) just consists of principal
ideals I which can be expressed in the form (x) with x ≡ 1 (mod n). Note that
the “expressed” is important here; since every nonzero ideal of Z has precisely two
generators – x and −x – what this really says is that I is generated by something
which is ±1 (mod n).

Exercise 5.3.2: Show that I((n))/P (n)) ∼= (Z/nZ)×/(±1).

5Nevertheless one hears about “real” and “imaginary” function fields: there is in fact a rea-

sonable analogue to real embeddings in the function field case. But I had better not say more
about this here.
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The other kind of modulus is m = (n)∞. Then P (m) consists of principal ideals I
which can be expressed in the form (x) with x > 0 and x ≡ 1 (mod n).

Exercise 5.3.3: a) Show that for n > 2, [P ((n)) : P ((n)∞)] = 2.
b) Show that I((n)∞)/P ((n)∞) ∼= (Z/nZ)×.

There is a fairly evident notion of divisibility of moduli: we say that m | m′ if
the finite part of m divides the finite part of m′ in the usual sense of ideal division
and if the set of real places in m is a subset of the set of real places in m′. So e.g.
for K = Q we have (2) | (12) | (60∞).

If L/K is a finite extension and ∞i is a real place of K, we say that it is un-
ramified in L if every extension of ∞i to an embedding ι : L ↪→ C has ι(L) ⊂ R.
Otherwise we say that it ramifies. For example, the place ∞ of Q ramifies in an
imaginary quadratic field but not in a real quadratic field. More generally, if K is
a number field, then K/Q is unramified at ∞ if for every embedding ι : K ↪→ C we
have ι(K) ⊂ R. Such number fields are called totally real. (When [K : Q] > 2
this is a stronger condition than just saying that K can be embedded into R.)

At last we can describe the ray class fields K(m), at least indirectly.

For each modulus m, there exists a finite abelian extension K(m)/K, called the
m-ray class field of K, with the following properties:

(RC1) p | ∆(K(m)/K) =⇒ p |m; also if an infinite place ∞i of K ramifies in
K(m) then ∞i | m.

In other words, the extension is only ramified at primes (including “infinite primes”)
dividing the modulus.

In view of (RC1), we may restrict the Artin map to have domain I(m):

r : I(m) → Gal(K(m)/K).

(Chebotarev tells us that this restricted map is still surjective.)

(RC2) The kernel of the restricted Artin map is precisely the subgroup P (m).

Therefore there is a canonical isomorphism

r : I(m)/P (m)
∼→ Gal(K(m)/K).

(RC3) If m ≤ m′, K(m) ⊆ K(m′).

The relation ≤ endows the moduli with the structure of a directed set (a par-
tially ordered set in which any pair of elements is less than or equal to some third
element). Therefore by (RC3) the ray class fields form a directed system of fields.

(RC4) lim
→m

K(m) = Kab, the maximal abelian extension of K.
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This is a somewhat fancy way of saying that every finite abelian extension is con-
tained in some ray class field. In fact we can be much more precise than this:

For a finite abelian extension L/K, put

Γ(L) = Ker(r : I(∆(S/R)) → Gal(L/K)).

(RC5) There exists a unique smallest modulus c such that L ⊂ K(m). Moreover,
tfor this minimal c: the finite part of c is divisible only by primes dividing ∆(L/K);
the infinite part of c includes no unramified inifnite places; and P (c) ⊂ Γ(L), so
that we have a short exact sequence

1 → Γ(L)/P (c) → I(c)/P (c) → Gal(L/K) → 1

exhibiting the Galois group of an arbitrary finite abelian extension L/K as a quo-
tient of a certain ray class group.

The minimal modulus c for L/K of (RC5) is called the conductor of L/K.6

The main result of (global) class field theory is that there is indeed a unique family
of fields satisfying all of these properties. (This was first shown by Artin, drawing
partly on Chebotarev’s proof of his density theorem.) There is no way we are go-
ing to discuss the proof here. Not only are all known proofs extremely long and
difficult, what is worse they are not really enlightening. The essential point is that
although the proof of the theorem involves “constructing” the ray class fields in
the sense of showing their existence, this construction is in general very far from
being constructive or explicit. One of the great open problems in algebraic number
theory is to give a reasonable explicit construction of the class fields of a given
number field K. There are only two cases which are completely understood: the
case of Q, which we will give (without proof) as an example below, and the case of
an imaginary quadratic field, in which the explicit construction of ray class fields
as torsion fields of suitable CM elliptic curves is the ultimate goal of our course.

3.3. The Hilbert Class Field.

First however let us note the following extremely important special case: take
m = 1, i.e., the “empty modulus.”

Theorem 11. Concerning the ray class field K(1)/K:
a) It is the maximal everywhere unramified abelian extension of K.

b) The map r induces a canonical isomorphism I(1)/P (1) = Pic(R)
∼→ Gal(K(1)/K).

c) A prime ideal p of R splits completely in K(1) iff it is a principal ideal of R.

Proof: (RC1) says that K(1) cannot be ramified anywhere (not even at the real
places, if any). Moreover, (RC5) implies that any finite everywhere unramified
abelian extension L is contained in K(1), establishing a). By definition the Picard
group of the Dedekind ring R is the fractional ideals modulo the principal fractional
ideals, i.e., I(1)/P (1), so b) follows from (RC2). Similarly part c) follows because
a prime splits completely iff its Frobenius element is trivial iff it lies in the kernel
P (1) of the Artin map, i.e., is principal.

6Yes, we will eventually be able to relate this to the conductor of a quadratic order.
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Definition: The extension K(1)/K is called the Hilbert class field of K.

As Theorem 11 shows, the Hilbert class field has some remarkable (and useful)
properties. In particular, the theorem implies that the maximum everywhere un-
ramified abelian extension of K is finite, which is certainly not obvious.7

We now have enough firepower to prove our Main Theorem when n is squarefree
and congruent to 1 or 2 mod 4, so that D = −4n is the discriminant of the field
Q(

√
D): using Theorems 7 and 11, we will be able to show that the density of the

set of primes p of the form x2 + ny2 is 1
2h(−4n) , where h(−4n) = #Pic(O(−4n)).

It would be good to think about this now; the only remaining problem in this case
is consolidating the Chebotarev condition for K1/K and the splitting condition
(Dp ) = 1 coming from the fundamental congruence.

Of course we also have to worry about the case of nonmaximal discriminant, which
is where the ray class fields fit in. For any discriminant D < 0, we will be able
to identify Pic(O(D) with the Galois group of some abelian extension KD/K. In
fact we will really need to use all the material we have summarized above, since
KD is not a ray class field but (like every finite abelian extension!) a subfield of
some minimal ray class field. It turns out that the conductor of the extension KD

we’re looking for is the conductor f (i.e., the principal ideal fR) of the order in the
previous sense, so that Gal(KD/K) ∼= I(f)/ΓD for a group ΓD properly containing
P (f); the group ΓD will be simultaneously interpretable in terms of certain principal
ideals of OK and certain principal ideals of O(D).

3.4. Class field theory over Q.

But first let us look at the one case where it is easy to at least state what the
class fields are: K = Q. Recall that we computed above that if m = n, the quotient
I(m/P (m) is isomorphic to (Z/nZ)×/±1, whereas if m = n∞, the same quotient is
isomorphic to (Z/nZ)×/±1.

So we would like to find, or at least to correctly guess, for every positive integer
n an abelian extension Q(n)/Q whose Galois group is (Z/nZ)×/±1 and another
abelian extension Q(n∞)/Q with Galois group (Z/nZ)×.

If we have made it this far, we would have to guess that Q(n∞) = Q(ζn), wouldn’t
we? It has the right Galois group and the right ramification properties: the only
finite primes at which if ramifies are those dividing n = m, in accordance with
(RC1). In fact in a previous exercise we computed the Artin map in this case, so
we can verify that these are the (n∞)-ray class fields: I leave it to you to do so.

What about the moduli m = n? The point here is that we have not included
∞, so that by (RC1) the ray class field Q(n) is not allowed to ramify at ∞: in
other words, it must be totally real.

7In fact, for some number fields K – not Q, but e.g. for certain quadratic fields – there exist
everywhere unramified (non-abelian) extensions of arbitrarily large degree.
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Exercise 5.4.1: Figure out what the ray class field Q(n) is.

Applying (RC3) we get a very important result:

Theorem 12. (Kronecker-Weber) A finite extension K/Q is abelian iff it is a
subfield of some cyclotomic field Q(ζn). Equivalently, the maximal abelian extension
Qab of Q is the (infinite algebraic) extension obtained by adjoining to Q all roots
of unity.

In particular, we have a single transcendental function, namely e(t) := e2πit which
maps R/Z isomorphically to the unit circle in the complex plane. Then for all n,
the n∞-ray class field of Q is obtained by adjoining to Q the value of the function
e at the n-torsion points of the one-dimensional torus R/Z, namely at 1

n , . . . ,
n−1
n

(or also at just 1
n , of course). Wouldn’t it be amazing if all (or a cofinal set) of class

fields for any number field K could be obtained just by adjoining special values of
a nice transcendental function? This was Kronecker’s Jugendtraum (“youthful
dream.”) We will see later that this dream comes true when K is an imaginary
quadratic field.8

Exercise 5.4.2: a) Notice that Q(1) = Q(∞), which shows that the association
of a ray class field to a modulus need not be injective.
b) Find all moduli m such that Q(m) = Q.
c) Show that if n is odd, then Q(n · ∞) = Q(2n · ∞).
d) Find all pairs m ̸= m′ such that Q(m) = Q(m′).

Remark: Unfortunately, this exercise implies that the conductor c of the m-ray
class field K(m) may be strictly smaller than m, unlike what virtually everyone
feels entitled to expect. However, Exercise 5.4.2 seems to suggest that the discrep-
ancy is small enough so that we should virtually pretend that c(K(m)) = m. Watch
for this in the quadratic case...

Exercise 5.4.3: Let p be an odd prime. Certainly Q(
√
p)/Q is an abelian extension.

What is its conductor?

Exercise 5.4.4*: Use class field theory to prove the quadratic reciprocity law.

3.5. Remarks.

We have given an exposition of the “ideal class” version of global class field theory.
This was indeed the approach of Artin and other early 20th century mathemati-
cians. Around the middle of the 20th century Chevalley developed another ap-
proach, using idéles: this is a theory which makes more direct contact with local
class field theory, and also has a more topological (and even Fourier-analytic)
flavor. Also in contemporary approaches to class field theory there is much more
emphasis on connections to Galois cohomology (and especially, to Brauer groups).

8Much of the work on automorphic functions in number theory in the last 50 years has been
motivated by a desire to extend this Jugendtraum to other fields. There are indeed some results

in this direction, but it is remarkable how much more complicated any other case is – even for
e.g. a real quadratic field there is not to my knowledge a complete, satisfactory answer.
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All these things are important to learn at some point, but it seems best to see just
a taste of what class field theory is, then see it applied to some nontrivial problem,
and then perhaps seeing the more sophisticated techonology appearing more help-
ful/inevitable down the line. (For instance, to properly treat aspects of complex
multiplication for non-maximal quadratic orders – an issue which has arisen in our
VIGRE group – seems to cry out for the idelic formalism.)
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