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PETE L. CLARK

1. Dedekind domains

To the reader: although this section is concerned with properties of Dedekind
domains, it turns out that many of the most important properties of Dedekind
domains are characteristic properties, i.e., not only does any Dedekind domain en-
joy the property, but conversely any integral domain which enjoys that property
is a Dedekind domain. Since the rings of initial interest to us, namely Z[

√
−n],

are in general non-maximal orders in quadratic fields, in the following section we
will be faced with the following task: knowing that certain desirable properties
of Dedekind domains cannot possibly hold for non-maximal orders, can we find
slightly weaker properties that still hold for these “almost Dedekind domains”? All
this is to say that in this section we will be performing the following dance: “Let
R be any integral domain; now let R be a Dedekind domain; now let R be any (or
maybe Noetherian, etc.) integral domain...” So prepare yourself for it!

Convention: As is common in the study of Dedekind rings, we will often use “ideal”
to mean “nonzero ideal.” Since it will be immediately apparent whether or not any
given assertion pertains to the zero ideal, this ought not to cause confusion.

1.1. Basic properties. Let us collect some basic (not necessarily easy!) properties
of Dedekind rings. I do not honestly expect to need to use all of these, but it is
comforting to have them in one place if we need them.

Theorem 1. (Localization of Dedekind domains) Let R be a Dedekind domain with
quotient field K and S ⊂ R a multiplicatively closed set.
a) The localization S−1R = {x

y ∈ K | x ∈ R, y ∈ S} is a Dedekind domain.
b) If p is a prime ideal of R, then Rp := (R− p)−1R is a discrete valuation ring.
c) Conversely, a domain whose localization at every (nonzero!) prime ideal is a
discrete valuation ring is necessarily a Dedekind domain.

In other words, the “local analogue” of a Dedekind domain is a discrete valuation
ring (DVR).1 The intermediate concept of PID is much more ephemeral.

The following is a serious theorem:

Theorem 2. (Krull-Akizuki) Let R be a one-dimensional Noetherian domain, with
quotient field K, and let L/K be a finite field extension. Let S be any intermediate
ring R ⊂ S ⊂ L.

1Topics such as localization and DVR’s are covered very casually here. They are not discussed

in Cox’s book and hence are not necessary to understand the main theorems in the case of orders
in quadratic fields, but they will be used for a theorem at the end of these notes.
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a) S is (at most) one-dimensional and Noetherian.
b) Thus S is a Dedekind domain iff it is integrally closed; this occurs, in particular,
if S is the integral closure of R in L.

Proof: For the proof of part a) see [Kap]. Observe that part b) follows immediately,
since integral closures are integrally closed.

Corollary 3. The ring of integers of a number field is a Dedekind domain.

Proof: Apply the theorem with R = Z, K = Q, L our number field. Since the ring
of integers of L is, by definition, the integral closure of R in L, it is integrally closed.

We would also like to know that the ring of integers of a number field is finitely gen-
erated as a Z-module. One can prove this in a down-to-earth way, or by appealing
to the following supplementary result.

Theorem 4. Let R be a Noetherian, integrally closed domain with quotient field
K, and L/K a finite separable field extension. Then the integral closure of R in
L is finitely generated as an R-module.

Proof: See e.g. [ZS, Ch. V, § 4].

Theorem 5. Let R be an integrally closed domain with quotient field K, let L/K
be a finite separable field extension, and let S be the integral closure of R in L.
For any maximal ideal p of R, the set of prime ideals P of S which lie over p –
i.e., such that P ∩R = p is nonempty and finite.

Proof: You should know that any homomorphism of rings ϕ : R → S, pulling back
ideals P 7→ ϕ−1(P) defines a map from ideals of S to ideals of R which carries prime
ideals to prime ideals (i.e., induces a map on prime spectra ϕ∗ : Spec S → Spec S).
When S/R is an extension ring – i.e., when ϕ is injective – the pullback map is
(visibly) just intersection with R. When, as here, S/R is an integral extension, the
Going Up Theorem [e.g. Atiyah-Macdonald] asserts (in particular) that ϕ∗ is
surjective, i.e., every prime ideal of R lies under some prime ideal of S. For the
finiteness, see Lang’s Algebra, Corollary VII.2.2 (p. 340 in the – presumably final
– revised third edition). The gist of it is that by separability, we can pass to the
Galois closure M of L/K and it suffices to prove the result there, in which case it
follows from the important fact that the (finite!) Galois group of M over K acts
transitively on the set of prime ideals lying over p.

1.2. Fractional ideals. In any commutative ring R, if I, J are ideals, we can
define the product IJ as the ideal generated by all products ij with i ∈ I, j ∈ J ;
slightly more concretely, this is the set of all finite sums

∑
n injn of such products.

This product operation is compatible with inclusion, in the sense that I1 ⊂ I2 im-
plies I1J ⊂ I2J . The collection of all nonzero ideals in a commutative ring R forms
a monoid under the ideal product, denoted I(R).

Exercise 2.1.1: (General Chinese Remainder Theorem) Let R be a commutative
ring and I1, . . . , In a set of ideals of R which are pairwise coprime: for all i 6= j,
Ii + Ij = R. Define a natural homomorphism of rings

Φ : R →
n⊕

i=1

R/Ii.
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Show that Φ is surjective and that its kernel is I = ∩n
i=1Ii =

∏n
i=1 Ii. (The last

equality is a bit tricky to show: you may wish to consult Lorenzini, An Invitation
to Arithmetic Geometry, Lemma III.2.4, p. 89).

Theorem 6. For an integral domain R, TFAE:
(i) R is a Dedekind domain.
(ii) All ideals of R factor uniquely into products of prime ideals.
(iii) For any ideal I of R, there is an ideal J of R such that IJ = (α) is principal.

Proof: See e.g. [ZS, Ch. V, §6].

In essence, Theorem 6 asserts that the multiplicative structure of the ideals in
a Dedekind domain is analogous to that of the usual positive integers under multi-
plication (which can be naturally identified with the ideals in the Dedekind domain
Z). More precisely, if P is the set of prime ideals of R, then I is

⊕
P∈P N , the free

commutative monoid with generating set P. In other words, any nonzero ideal can
be expressed as I =

∏
P P vP (I), where vP (I) ∈ N and all but finitely many expo-

nents are equal to zero. Note that if 0 6= f ∈ R, the factorization of the principal
ideal (f) =

∏
P P vP (f) associates to each prime P a discrete valuation f 7→ vP (f).

This has many important consequences:

Proposition 7. Let R be a Dedekind domain.
a) (Cancellation) If I1, I2, J are ideals of R such that I1J = I2J , then I1 = I2.
b) (To contain is to divide) For ideals I, J of R, TFAE:
(i) I ⊃ J .
(ii) There exists K such that IK = J .
(iii) For all primes P , vP (I) ≥ vP (J).
c) For ideals I =

∏
P P vP (I), J =

∏
P P vP (J), then

I + J =
∏
P

Pmin(vP (I),vP (J))

is the unique ideal A with the property that K | I, K | J =⇒ K | A. In other
words, it can be viewed as gcd(I, J), the greatest common divisor of I and J .
d) Similarly

I ∩ J =
∏
P

Pmax(vP (I),vP (J))

is the unique ideal B with the property that I | K, J | K =⇒ B | K. In other
words, it can be viewed as lcm(I, J), the least common multiple of I and J .

Exercise 2.1.2: Prove Proposition 7.

Exercise 2.1.3: (Dedekind’s Chinese Remainder Theorem) Let R be a Dedekind
domain. Let P1, . . . , Pn be distinct prime ideals.
a) Show that for any a1, . . . , an ∈ Z+, the ideals P a1

1 , . . . , P an
n are pairwise coprime.

b) Conclude that there is a canonical isomorphism of rings

R/(
n∏

i=1

P ai
i ) ∼→

n⊕
i=1

R/P ai
i .
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It is often more pleasant to deal with groups that monoids. If M is a commu-
tative monoid, then there is a canonical commutative group G(M) associated to
M , called the group completion (or Grothendieck group) of M along with
a monoid homomorphism G : M → G(M). G(M) is defined, up to unique iso-
morphism, by the following universal mapping property: for any group H and any
monoid homomorphism ϕ : M → H, there exists a unique group homomorphism
Φ : G(M) → H such that ϕ = Φ ◦G.

Exercise 2.1.4: Let G be a multiplicatively written commutative monoid.
a) Show that the group completion G(M) can be explicitly constructed as fol-
lows: it is the set of all equivalence classes of pairs (a, b) ∈ M × M , where
(a, b) ∼ (c, d) iff there exists m ∈ M such that mad = mbc, under the product
[(a, b)] · [(c, d)] = [(ac, bd)]. The map G is a 7→ [(a, 0)].
b) Show that the homomorphism G : M → G(M) is injective iff M has the cancel-
lation property: for a, b, m ∈ M , ma = mb =⇒ a = b.
c) For a set S, let FCM(S) =

⊕
s∈S N be the free commutative monoid on S.

Check that M has the cancellation property and the group completion is the free
commutative group

⊕
s∈S Z on S.

In particular the monoid I(M), being the free commutative monoid on the prime
ideals, injects into its group completion, which is

⊕
P∈P Z. We write Frac(R) for

G(I(M)) and call it the group of fractional ideals of R. But this is just a formal
definition: what is a fractional ideal, other than a formal quotient of two ideals?

Definition: For an integral domain R with quotient field K, a fractional ideal
is a nonzero R-submodule I of K such that αI ⊂ R for some α ∈ R \ 0.

Lemma 8. Let R be a domain.
a) Every nonzero finitely generated R-submodule of K is a fractional ideal.
b) The converse holds iff R is Noetherian.

Proof: If I = Ra1
b1

+ . . . + Ran

bn
, then (b1 · · · bn)I ⊂ R. Conversely, for any α ∈ K×,

multiplication by α gives an R-module isomorphism from I to αI. So if αI is an
ideal in the Noetherian ring R, it is finitely generated as an R-module, hence so is I.

Remark: In the lecture, I defined a fractional ideal to be a nonzero finitely gener-
ated R-submodule of K and then noted somewhat sheepishly that every integral
ideal of R is a fractional ideal iff R is Noetherian. In the absence of the Noetherian
hypothesis, it is correct to require the weaker “scaling condition” ∃α | αI ⊂ R.
This distinction doesn’t matter in our application of the results – for sure the rings
R we care about will be Noetherian – but it indicates that in proofs one should be
able to work with the scaling condition, and in fact it is usually easier to do so than
to check that modules are finitely generated.

One can think of a fractional ideal informally as being of the form I ′ “divided
by” (α). In fact, for any nonzero α ∈ K, the set R(α−1) is a fractional ideal of R,
written (α−1). Evidently a fractional ideal can be written in such a form iff as an
R-module it has a single generator; such fractional ideals are said to be principal.
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Lemma 9. a) For two fractional ideals I, J of a domain R, the product

I · J =
∑

n

injn

is again a fractional ideal.
b) The fractional ideals of R form a commutative monoid under multiplication.

Proof: It is no problem to see that I · J is an R-submodule of K. Also, if αI ⊂ R
and βJ ⊂ R, then (αβ)IJ ⊂ R. Evidently R · I = I for any fractional ideal R.

Observe that any commutative ring is in particular a commutative monoid un-
der multiplication. The invertible elements in this monoid are precisely the units of
R, and they form a subgroup R×, the group of units. A moment’s thought shows
that this is a general fact about commutative monoids: if M is a commutative
monoid, then the set

MG = {m ∈ M | ∃m′, mm′ = e}
of invertible elements is a subgroup of M , in fact the largest possible subgroup. To
be explicit, a fractional ideal I of a domain R is invertible if there exists another
fractional ideal J such that IJ = R.

Lemma 10. Let R be a domain and I a fractional ideal of R.
Define I∗ = {a ∈ K | aI ⊂ R}.
a) I∗ is a fractional ideal of R.
b) In general we have II∗ ⊂ R. I is invertible iff II∗ = R.
c) If I is invertible, I∗ is the unique inverse so can (and shall) be denoted by I−1.

Proof: If a ∈ I∗ and x ∈ R, then xaI = a(xI) ⊂ aI ⊂ R, so xa ∈ I∗. Therefore I∗

is an R-submodule. To see that I∗ is a fractional ideal, suppose first that I = (α) is
principal. Then I∗ = (α−1) so is also a fractional ideal – and moreover in this case
it is clear that II∗ = R. In general we can write I = Rα1 + . . . + Rαn, and then
I∗ =

⋂n
i=1(α

−1
i ) ⊃ (α−1

1 · · ·α−1
n ), so I∗ 6= 0. If a ∈ I∗ then aα1 ∈ R, i.e., α1I

∗ ⊂ R,
so I∗ is a fractional ideal, proving part a). The relation II∗ ⊂ R is immediate
from the definition of I∗; more precisely, I∗ is the largest subset of R such that
this relation holds, and it is a fractional ideal. Thus if there is any fractional ideal
J such that IJ = R, then J ⊂ I∗ and hence II∗ = R. This proves b). Finally, if
IJ = R then J = I∗IJ = I∗R = I∗: of course this is just the usual argument that
inverses are unique whenever they exist.

Let us write J(R) for the subgroup Frac(R)G of invertible fractional ideals of a
domain R. Thus J(R) sits inside Frac(R) as the group of all invertible elements. It
is natural to ask about the difference between J(R) and Frac(R): is every fractional
ideal invertible?

Proposition 11. For a domain R, TFAE:
(i) J(R) = Frac(R), i.e., every fractional ideal is invertible.
(ii) The fractional ideals Frac(R) form a group under multiplication.
(iii) R is a Dedekind domain.

Proof: (i) and (ii) are obviously equivalent. According to Theorem 2, R is Dedekind
iff for all nonzero ideals I of R, there exists an ideal J such that IJ = (α). Suppose
this latter condition holds. Then for any fractional ideal I, there exists β such that
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βI = I ′ is integral, and applying the condition we get an integral ideal J such that
(α) = I ′J = βIJ , and then I(βα−1)J = R. The converse is similar.

Again, this is both good and bad news: this very nice property is satisfied for
Dedekind domains and only for Dedekind domains: in the general case we will need
to grapple with noninvertible fractional ideals. But let’s push that aside for now.
At last, for the rest of this section we shall assume that R is a Dedekind domain!

First let’s nail down the group structure of Frac(R). We know that integral ideals
factor uniquely into primes P ∈ P, and we know that for every prime ideal P there
exists an inverse fractional ideal P−1 = P ∗. Of course, like in any commutative
group, we have relations(IJ)−1 = I−1J−1, so if

I =
∏

P∈P
P vP (I),

it follows immediately that

I−1 =
∏

P∈P
P−vP (I).

In particular for any α ∈ R \ 0, we have

(α−1) =
∏

P∈P
P−vP (α)

hence an arbitrary fractional ideal I can be written as (α−1)I ′ for integral I and
α ∈ R \ 0, and then

I =
∏

P∈P
P vP (I′)−vP (α).

In particular the valuation vP on R extends to a discrete valuation vP : K× → Z
on the quotient field. So for instance we could define a P -adic absolute value on K
by ||α||P = e−vP (α), with the convention that ordP (0) = ∞ and ||0||P = 0. (Here I
really do mean e = 2.71828 . . . but it doesn’t matter: taking an exponential to any
base c > 1 would work as well. The choice of e rather than, say, 2, as the base is a
common convention – I think the idea is to choose a base which is manifestly of no
arithmetic significance! In certain special cases – especially, when the residue field
of the valuation ring is finite – it is desirable to take a more clever choice of base, but
not in this level of generality.) It is then often useful to complete K with respect
to P – e.g., in the simplest case K = Q, P = (p) for a prime number p, we would
get the field Qp of p-adic numbers. But we don’t need to complete anything just yet.

In particular every nonmaximal order in a number field is going to have some
“bad” – i.e., non-invertible – ideals. Let us push this aside for the moment: our
first order of business is to see what happens with Dedekind domains.

2. The ideal class group of a Dedekind domain

After bathing in the soothingly abstract theory of the previous section, let us recall
that the point of all this is to gain some insight into when a prime ideal P in a
Dedekind domain (or later, a slightly more general ring) is principal. As advertised,
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for a Dedekind domain R there is a (multiplicatively written) commutative group
Pic(R) and a monoid mapping

[ ] : I(R) → Pic(R)

which associates to every ideal I of R its ideal class [I] ∈ Pic(R), in such a way
that [IJ ] = [I][J ] – i.e., a monoid homomorphism – and such that [I] = 1 ∈ Pic(R)
iff I is principal. Note the situation: we have (or wish to have) a monoid homo-
morphism from a commutative monoid to a commutative group. By the general
nonsense of the preceding section, such a thing must factor uniquely through the
group completion of I(R), namely the group Frac(R) of all fractional ideals.

On the other hand, it is possible and (I hope) somewhat enlightening to see that
the ideal class homomorphism can be defined directly on the level of integral ideals.
Namely, what Pic(R) is supposed to be is some sort of quotient of I(R) which
regards two ideals as equal iff they differ, multiplicatively speaking, by a principal
ideal. Well, what are we waiting for? Define an equivalence relation ∼ on integral
ideals of R: I ∼ J iff there exist α, β ∈ R \ 0 such that αI = βJ . This is easily
seen to be an equivalence relation which is moreover compatible with the monoid
structure in a natural sense. Indeed:

Exercise 2.2.1:
Let M be a commutative monoid and ∼ an equivalence relation on M .
a) We say that ∼ is compatible (with the monoid structure) if x1 ∼ x2, y1 ∼ y2

implies x1y1 ∼ x2y2. Show that the equivalence relation ∼ on I(R) is compatible.
b) Given any monoid M and compatible equivalence relation ∼, the quotient
M ′ = M/ ∼ – i.e., the set of equivalence classes under ∼ – can be endowed with a
unique monoid structure making the quotient map M → M ′ into a monoid homo-
morphism.2

So we have a monoid structure on I(R)/ ∼ of equivalence classes of integral ideals.
In fact we can do this for any integral domain R. But the key point is as follows:

Proposition 12. a) For a domain R, TFAE:
(i) The monoid I(R)/ ∼ is a group.
(ii) R is a Dedekind domain.
b) If I is an ideal in a Dedekind domain, then [I] = 1 ⇐⇒ I is principal.

Exercise 2.2.2: Prove Proposition 12.

So for a Dedekind domain R the object I(R)/ ∼ is exactly what we want: let’s
give it a nice fancy name: Pic(R), the Picard group of R. We will see later that
the Picard group can be defined for an arbitrary integral domain, but not with the
definition just given: it won’t even be a group. Therefore in the case of a Dedekind
domain one also – and perhaps more often, depending upon one’s mathematical
cultural background – refers to this group as Cl(R), the ideal class group of R.

Now let us define it again in terms of fractional ideals and try to see why this

2This is just a fancy way of saying that the product on M is well-defined on equivalence classes,

which is indeed almost exactly the same thing as saying the equivalence relation is compatible.
At least we didn’t express the quotient in terms of a universal mapping property...
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second definition, although manifestly equivalent to the first, is somehow “better”.
(Roughly, it is always better to work with a group than a monoid, if possible.)
Namely, we know the monoid homomorphism factors through to give a group ho-
momorphism

Φ : Frac(R) → Cl(R),
just defined by writing a fractional ideal as the quotient IJ−1 of two integral ideals
and putting

Φ : IJ−1 = [I][J ]−1.

Since the original class map [ ] was surjective (as is any quotient map), so too is Φ.
Notice that the kernel of Φ is precisely the subgroup of principal fractional ideals,
which we will now give a name to: Prin(R).

Proposition 13. The group Prin(R) of principal fractional ideals of R is canoni-
cally isomorphic to F×/R×.

Exercise 2.2.3: Prove Proposition 13.

So for any Dedekind domain R, we have an exact sequence:

1 → R× → F× → Frac(R) Φ→ Cl(R) → 1.

Note how clean this looks: we get a presentation for the class group in terms of
easily defined maps between not very scary-looking abelian groups. Of course the
simplicity is entirely deceptive: understanding the structure of the class group and
the class homomorphism Φ for a Dedekind domain is one of the great problems in
algebra and number theory.

Speaking of number theory, one has the following fundamental result:

Theorem 14. Suppose that R is either the full ring of integrers of a number field
K or the coordinate ring k[C] of a smooth, geometrically integral affine curve over
a field k. Then Cl(R) is a finite commutative group.

It would take us too far out of our way to prove this result here: see [Dino, Ch. 5].
Moreover, when R is the ring of integers of an imaginary quadratic field, we will
later use quadratic forms to give a very concrete and useful description of Cl(R),
from which it will be clear not only that it is finite in all cases, but (better!) how
to compute it in any given case.

Wht can be said about the class homomorphism Φ in this level of generality?

First, it is determined by its restriction to P, the set of prime ideals of R. In
particular, Φ(P) generates Cl(R), and for our problem we are most interested in
where the primes go.

Here is one of the few general facts I know about Φ:

Theorem 15. (Claborn, Clark) Let R be a Dedekind domain and let P ′ ⊂ P be
the set of non-principal prime ideals. TFAE:
(i) P ′ is empty.
(ii) P ′ is finite.
(iii) R is a PID.
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Proof: The only nontrivial implication is (ii) =⇒ (iii). For this, enumerate the
nonprincipal primes P1, . . . , Pn, let I be an integral ideal, and suppose that

I = P a1
1 · · ·P an

n Qb1
1 · · ·Qbm

m .

(As usual, we allow zero exponents.) By the Chinese Remainder Theorem we may
choose an α ∈ R such that vPi

(α) = ai for all i – note that we want equality, not
just vPi

(α) ≥ ai, so you should definitely think about how to get this from CRT
if you’ve never seen such an argument before. Now consider the fractional ideal
(α−1)I; it factors as

(α−1)I = Qb1
1 · · ·Qbm

m Rc1
1 · · ·Rcl

l ,

where the Ri’s are some other prime ideals, but disjoint from the Pi’s: essentially
CRT says we can find a principal ideal that does exactly what we want it to at
any finite set of primes at the expense of total ignorance of what happens at the
other primes. But all of the (fractional) ideals in the factorization of (α−1)I are
principal, so (α−1)I = (β) for some β ∈ K× and then I = (αβ) is principal!

Remark: Note that, among other things, the proof illustrates the utility of working
with fractional ideals even if one is truly nterested in integral ideals (or even just
prime ideals). You may wish to try to recast the proof so that it avoids fractional
ideals. (Had I been able to do this myself, I would have presented it earlier on!)

It seems that Theorem 15 first appeared in a 1965 paper of L. Claborn [Cla65].
I discovered it independently while preparing this course, so I have jointly attrib-
uted it to myself, but this is rather tongue in cheek: surely the great algebraists of
the early 20th century knew it and just never bothered to write it down (or maybe
they did...) It is really a quite easy result. However, I will mention some related,
and very striking, results of Claborn later on.

Corollary 16. Let R be a Dedekind with quotient field K. Suppose that R has only
finitely many prime ideals. Then not only is R a PID, but the integral closure S of
R in any finite separable field extension L/K is a PID.

Proof: The statement for R follows immediately from Theorem 15. More generally,
each prime P of S lies over a unique prime P ∩R of R, and by Theorem 15 there
are only finitely many primes of S lying over any one prime p of R, so S has only
finitely many primes as well.

Corollary 17. (Washington) There are infinitely many prime numbers.

Proof: If there were only finitely many prime numbers, the Dedekind ring Z would
have finitely many prime ideals, and hence by Corollary 16 not only would Z be
a PID (no contradiction yet...) but so would be the ring of integers OK in every
number field K! We know that’s not true, having seen e.g. that for p ≡ 1 (mod 4),
Z[
√
−p] is the full ring of integers of Q(

√
−p) and is not a PID.

Remark: I mean of course, that this proof of Corollary 17 is due to Larry Wash-
ington. (I hope you know to whom the original proof is credited!) Washington’s
proof appears in P. Ribenboim’s The Book of Prime Number Records.

Exercise 2.2.4: What other Dedekind domains can you show have infinitely many
prime ideals using this method of proof? A good place to start would be Fp[t] –
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which to be sure, Euclid’s argument also works to show has infinitely many prime
ideals – and see if you can systematically build a quadratic extension in which the
integral closure is not a PID. Does Washington’s proof always work – i.e., suppose
R is a Dedekind domain whose integral closure in every finite separable field exten-
sion is a PID. Must R have finitely many prime ideals?3

Exercise 2.2.5: Let R be a Dedekind ring whose quotient field K is algebraically
closed. Prove/disprove: R = K.

Remark: The idea of using CRT to make approximations is an extremely important
one in number theory. In fact, FYI, let me tell you the following cognate result,
which has both weaker hypotheses and a slightly weaker conclusion.

Theorem 18. (Artin-Whaples Approximation Theorem) Let F be a field, and let
|| ||1,. . ., || ||n be a finite set of absolute values on F , each determining a metric
di(x, y) = ||x− y||i and hence a topology τi. Endow the space Fn with the product
topology (F, τ1)× . . .× (F, τn). Show that the following are equivalent:
(i) The diagonal image {(x, . . . , x) | x ∈ F} of F in Fn is dense.
(ii) For all i 6= j, the topologies τi and τj are distinct.

Exercise 2.2.6*: Prove Theorem 18. (Hint: look it up. I would.)

What does this have to do with CRT? Let F be the quotient field of a Dedekind
domain R, and let P1, . . . , Pn be a finite set of distinct primes. The corresponding
discrete valuations vP determine absolute values || ||P as above, and it is not hard
to see that they give rise to distinct topologies (e.g. one can argue from the fact
that the valuation rings are distinct). Applying the theorem in this gives: if you
have any n elements α1, . . . , αn ∈ F (not necessarily distinct) and any integers
a1, . . . , an, then there is a α ∈ F such that for all i, vPi

(α−αi) ≥ ai. In particular,
if you choose αi to itself have vPi(αi) > ai, then the non-Archimedean triangle
inequality gives vPi(α) = ai for all i. In other words, you can find a α such that
the fractional ideal (α) has whatever exponents you like at any finite set of primes
of your own choosing. This is slightly different from CRT in that when the ai’s
are all non-negative, CRT says we can take α ∈ R, whereas a Dedekind ring does
not even appear in the statement of the Artin-Whaples theorem. Notice though
that in the proof of Theorem 15 we did not need α ∈ R, so in this case the weaker
conclusion is fine. (It often is.) The principal advantage of the Artin-Whaples
theorem is that when applied to a number field we can also include Archimedean
absolute values. To get a flavor for this, apply the theorem to F = Q and a set
of finitely many p-adic absolute values together with the standard Archimedean
absolute value. The theorem then says that in any open interval I on the real
line and any n-tuple of integers (a1, . . . , an) you can find a rational number r ly-
ing in I and such that ordpi(r) = ai for each of an arbitrary, but finite, set of primes.

There is even more to say about this result, but I will withhold for now except
to say that this result is often referred to (in particular, by me) as The Weak
Approximation Theorem.4

3I have no idea what the answer to this is.
4Strong Approximation is a much more specific and technical statement involving adele

groups...
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Finally, Theorem 18 is a very basic example of a Moving Lemma in arithmetic
geometry. I urge you to ask [Dino] for more details if you are curious.

Ah, I had promised some results of Claborn on Dedekind domains and class groups:

Theorem 19. (Claborn, [Cla65], [Cla66])
a) There is a Dedekind domain R with no principal prime ideals.
b) Suppose R is a Dedekind domain whose class group Cl(R) is a torsion group.
Then for any proper subgroup H of Cl(R) there are infinitely many primes P such
that [P ] ∈ Cl(R) \H.
c) For any commutative group G, there is a Dedekind domain R with Cl(R) ∼= G.
d) There is a Dedekind ring which is not the integral closure of a PID.

Note part b) applies when Cl(R) is finite, giving a sort of equidistribution result.

I have not looked over the proofs in detail, but at a glance they strike me as
being rather accessible. Especially, his example for part (d) is more elementary
than some of the things discussed in this handout, but negatively resolved a 1958
conjecture of Zariski and Samuel. (In fact I had been wondering about it as well
until I saw his paper.) This might make a good topic for a presentation for someone
who is algebraically inclined. Both papers are posted on the main course page.

3. A Case Study: R = Z[
√
−3]

Let us now try to address the question of what the Picard group of a non-Dedekind
domain R should be. It seems best to begin with an example.

Example: In some sense, the ring R = Z[
√
−3] is the simplest integral domain

which is not a Dedekind domain. (E.g. every finite integral domain is a field;
this includes any domain of positive characteristic which is finitely generated as a
Z-module. The next simplest integral domain is Z, which is of course Dedekind.
Next come the quadratic orders, and the one with smallest (in absolute value) dis-
criminant which is not Dedekind is Z[

√
−3].) As we saw in our study of the form

x2 + 3y2, the unique prime ideal p2 of norm 2 is not principal, but every other
prime ideal is principal. As mentioned in class at the time, according to Theorem
15 this behavior is not possible for a Dedekind ring. As mentioned at the time,
it is a matter of opinion and perspective whether this phenomenon of exactly one
nonprincipal prime is “pathological”: it certainly made our study of primes of the
form x2 + 3y2 work out nicely.

But by Theorem 6, the ring Z[
√
−3] must have certain pathologies: there must

be at least one ideal which does not factor into primes as well as at least one non-
invertible ideal. It seems clear that somehow 2 should have a role to play here, so
let’s look at the principal prime ideal (2), of norm 4. Again, the only prime ideal
which contains 2 is p2. To be quite concrete, p2 = 〈1 +

√
−3, 1−

√
−3〉. (How did

I know this? We are looking for an ideal which has index 2 as a subgroup of the
rank two free commutative group Z1+Z

√
−3 ∼= Z2. The lattice Z2 has only finitely

many sublattices of any given index; for instance it is easy to see that it has exactly
p + 1 = # PP1(Fp) subgroups of prime index p, so 3 subgroups of index 2. If you
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write down the other two, you will see immediately that they are not ideals in the
ring.) For any “factored” ideal I we have

I = P a1
1 · · ·P an

n ⊂
⋂
i

P ai
i ⊂ Pi

so if the ideal (2) factors at all, it would be pa
2 for some positive integer a. Since (2)

has norm 4 and p2 has norm 2, one might reasonably expect that (2) is the square
of p2. However:

Exercise 2.3.1: Show that p2
2 = (2)p2.

But that implies that for any positive integer a we have

pa
2 = (2)a−1p2.

In particular, no power of the ideal p2 is principal, and hence no power is equal to
(2). So the ideal (2) cannot be factored into a product of primes at all, let alone
uniquely so factored. (In fact I seem to recall that any integral domain in which
all ideals can be factored into primes in at least one way is a Dedekind domain,
i.e., the uniqueness of factorization follows from the existence. This is in contrast
to factorization of elements into irreducible elements, of course, which is possible
in any Noetherian domain but generally not unique.) Also, you can check that the
norm of pa

2 is 2a, so for a > 1,

2a = N(pa
2) = N((2)a−1p2) 6= N((2)a−1p2) = 22a−1.

In other words, the map N : I(Z[
√
−3]) → Z+ is not multiplicative, which is a bit

distressing.

Exercise 2.3.2: Let R be an integral domain with finite quotients, i.e., such
that for each nonzero ideal I, R/I is finite, and define as usual N(I) = #R/I.
a) Show that if R is a Dedekind domain, then N(IJ) = N(I)N(J). (Hint: Use the
Chinese Remainder Theorem.)
b) Show that in any case, N((α)I) = N(α)N(I).
c) Use part b) to extend the norm map to a map N : Frac(R) → Q+.
d) Extend the norm map to fractional R-ideals (in the only reasonable way), and
show that it satisfies the above properties.

The purpose of the following exercise is to prove a weaker form of the Chinese
Remainder Theorem which holds, in particular, for a nonmaximal order in a num-
ber field.

Exercise 2.3.3: Recall that a primary ideal J in a commutative ring R is one
for which the only zero divisors in R/J are nilpotents. (Equivalently, the radical of
J is prime.) Suppose that R is a Noetherian domain with finite quotients.
a) Show that every primary ideal has prime power norm.
b) Suppose that N(K1) = pa, N(K2) = pb (i.e., powers of the same prime p). Show
that N(K1 ∩K2) = pc for some c ≥ max(a, b).
c) Suppose now that N(K1) = pa, N(K2) = qb for primes p 6= q. Show that K1

and K2 are coprime, i.e., K1 + K2 = R.
d) Let I be an ideal of R. Show that there are distinct prime numbers p1, . . . , pn,
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positive integers a1, . . . , an and ideals J1, . . . , Jn such that I = J1 · · · Jn, N(Ji) =
pai

i . (Hint: Thanks to work of Noether and Lasker, we are entitled to a primary
decomposition of I, i.e., a set of primary ideals Ki such that I = K1 ∩ · · · ∩Kn.
Collect together all ideals whose norms are powers of a common prime. Finally
apply part c) and Exercise 2.3.2.)

What can we say about the quotient monoid I(R)/ ∼ of ideals modulo equiva-
lence? We have the identity element 1 which corresponds to the image of every
principal ideal, and we just saw that we have a nontrivial class ε := [p2].

Exercise 2.3.4: Let I be an ideal of R = Z[
√
−3]. By Exercise 2.3.3, I factors

as J1 · J2, where N(J1) = 2a and N(J2) is odd.
a) Show that J2 is principal.
b) Show that if a is odd, there is exactly one ideal of norm 2a is pa

2 , whereas if a is
even, there are two: pa

2 and (2)
a
2 .

d) Deduce that Q(R) = I(R)/ ∼ = {1, [p2]}.

Thus the monoid Q(R) := I(R)/ ∼ has a strange structure: it has the identity
element 1 and then one further element e which is nontrivial and idempotent:
e2 = e. If f : Q(R) → H is any monoid map into a commutative group H, we
have f(1) = 1, f(e) = f(e2) = f(e)2, hence f(e) = 1 – i.e., f is the trivial map. It
follows that the group completion G(Q(R)) is the trivial group. Notice that this is
problematic for us: we wanted a group Pic(R) together with a monoid homomor-
phism I(R) → Pic(R) such that an ideal becomes trivial in Pic(R) iff it is principal.
But we’ve just carefully checked that that is impossible in the ring Z[

√
−3]: the

nonprincipal ideal p2 is an idempotent in the monoid, so will get “cancelled out”
upon being mapped into any group.

Well, what’s wrong with just looking at the class map Φ : p → I(R)/ ∼: doesn’t
this retain all the information we want? Indeed it does, but in some sense it gives
more information than we can handle.5 In particular, recall again that the class
map Φ is ridiculously far away from being equidistributed: there is one prime which
maps to the idempotent guy e, and every other prime maps to 1.

The point is that something similar is going to happen for any nonmaximal qua-
dratic order O. Namely, the ideal class monoid Q(O) will be a finite commutative
monoid which is not a group. Like any commutative monoid, it will have a largest
possible subgroup, the group of invertible elements, i.e., the classes of integral ideals
which are invertible as fractional ideals. This largest subgroup Q(O)G of Q(O) is
the group we want: it is what we shall call the Picard group Pic(O) of the ring O.

This is an important step for us: the commutative group Pic(O) of a quadratic
order will be the primary object of our affections for the remainder of the course.
So let us emphasize that what we have shown above is that Pic(Z[

√
−3]) is the triv-

ial group. Soon enough we will use quadratic forms to show that for any imaginary
quadratic order O, Pic(O) is finite. In fact this is true for any order in a number

5TC: I want the ideal class monoid. JN: YOU CAN’T HANDLE THE IDEAL CLASS
MONOID!
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field, and we will show this, or at least deduce the finiteness from the more stan-
dard finiteness of the Picard group of a maximal order, a result we alluded to before.

In particular, for any order in a number field we can consider its class num-
ber h(O), which is the cardinality of Pic(O). When O = OK is the maximal order
Pic(OK) is often denoted Cl(OK or even Cl(K), and similarly one often writes sim-
ply h(K) for # Pic(OK) and calls this quantity the class number of the number
field K.

After a lengthy motivation, let us repeat the definition more crisply in a more
general context: for any integral domain R, the Picard group Pic(R) is the quo-
tient by the group J(R) of invertible fractional ideals of R by the subgroup of
principal fractional ideals of R. Equivalently, it is the quotient of the monoid of
ideals I of R for which there exists an ideal J such that IJ = (α) by the submonoid
of principal ideals. The elements of Pic(R) are usually called ideal classes, with the
proviso that they are the equivalence classes not of all ideals in R but only of the
“good” (invertible) ideals of R.

This brings us to the key problem: our general definition of Pic(R) for an arbi-
trary domain is no more difficult than that of Pic(R) for a Dedekind domain –
in fact it’s easier, because for the latter we used the theorem that all ideals of a
Dedekind domain are invertible, whereas for an arbitrary ring our definition tells us
to just stick with the invertible ones, no matter what. However unless we can ac-
quire some clues as to which ideals – other than principal ones! – are “good” in our
domain R, we don’t seem to have much hope of understanding or computing Pic(R).

In complete generality, this does indeed seem to be a stumper (no doubt many
substantial papers in commutative algebra have been written on various cases), but
for the class of orders O in number fields – and in fact for the more general class
of “almost Dedekind rings” to be introduced sohrtly – we can do much better. In
particular, there is a beautiful formula which relates the Picard group of a nonmax-
imal order to the Picard group of its integral closure (i.e., the full ring of integers).

Exercise 2.3.5:6 a) Let QG be its group of units, and put QB = Q \ QG, the
set of nonunits. Show that QBQB ⊂ QB (i.e., QB is a sub-semigroup of M) and
QBQG ⊂ QB (once you go bad, there’s no turning back).
b) More generally, let M be a commutative monoid and q : M → Q be a monoid
homomorphism. Define Gq(M) – the q-good guys of M – to be q−1(QG) and Bq(M)
– the q-bad guys of M – to be q−1(QB). Show that again the good guys form a
submonoid, the bad guys form a subsemigroup, and Gq(M) ·Bq(M) ⊂ Bq(M).
c) Apply this with M = I(R) the monoid of all integral ideals of a domain R,
Q = Q(R) = I(R)/ ∼ the ideal class monoid, and q the natural quotient map,
to conclude: the invertible ideals of R form a submonoid, the noninvertible ideals
form a subsemigroup, and invertible times noninvertible is noninvertible.

In the case of R = Z[
√
−3], we have our one bad prime p2, and it looks to me

that the subsemigroup of “bad” (noninvertible) ideals is precisely the set pa
2 (i.e.,

6Note that, perhaps contrary to appearances, this Exercise is almost trivial.
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I have not stopped to give a formal proof...) Thus all the other ideals are “good.”
But in fact this is still not ideal (so to speak!), because the monoid of all the good
guys has a complicated structure: indeed we have the good ideal 2R which does
not factor uniquely into primes (recall this is because it has norm a power of 2,
and hence it could only factor into powers of the bad prime p, which would mean
it isn’t good). Every other prime ideal of R is principal, and as above this implies
that every ideal of odd norm is principal and factors uniquely into principal primes.

So we see that there is a second dichotomy that is complicating the picture: apart
from “good” (invertible) and “bad” (noninvertible) there is also factorizable into
primes versus non-factorizable. Let’s call an ideal which factors into primes lawful
and an ideal which doesn’t chaotic. Therefore the ideal 2R is chaotic good, which
is fine for it but we would in fact rather restrict our attention to the lawful good
ideals. In this case we see that every ideal which is prime to 2R is lawful good.
Noting that 2R is precisely the conductor of the order Z[

√
−3], this gives us a clue

as to what may be going on in general. Here are some basic facts that we shall be
able to establish for any order O in a number field:

(I) The ideals which are prime to the conductor f(O) are lawful good.

(II) Every good ideal is equivalent in Pic(O) to a lawful good ideal, i.e., if I is
an invertible O-ideal, there exists a principal O-ideal (α) such that (α)I is coprime
to the conductor f. (Thus so long as we are interested in the Picard group, we can
restrict our attention to lawful good ideals.)

(III) Every lawful good ideal factors uniquely into a product of (necesarily law-
ful!) good prime ideals.

(IV) A prime ideal is bad iff it is not coprime to f: in particular only finitely
many primes are bad.

In summary, if we just restrict our attention to ideals which are coprime to the
conductor, then for all practical purposes our nonmaximal order O is as good as
a Dedekind ring. (In some rough sense we are just throwing away the finite set of
primes which are not coprime to the conductor, but we are not literally restricting
to the corresponding Zariski open subset (i.e., the nonsingular locus): if we did that
then Pic(O) would be a certain localization of the ideal class group of the maximal
order – in particular, a smaller group. Wait and see what actually happens!)

But rather than stopping to prove these facts now, we will recast the situation
in an even more general context and give the theorems there.

Project: Let O be an order (possibly nonmaximal) in a number field K.
a) Show that the ideal class monoid Q(O) = I(O)/ ∼ is finite.
b) Compute the ideal class monoid explicitly for some non-maximal orders (qua-
dratic orders would, of course, be the natural place to start, and probably to finish,
unless you have some specific ambitions in the case of higher degree). Can you
say anything about which finite commutative monoids might arise as ideal class
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monoids?

Comments: I don’t know how this will turn out. In fact I do not have a proof
that the ideal class monoid of an order is always finite, so it is conceivable that it
isn’t. (That would be much more interesting....) In the case of a maximal order
the statement reduces to the assertion that the ideal class group of a number field
is finite, which is well-known to be both true and nontrivial. My guess is that the
proof of this will adapt to the case of nonmaximal orders, the key step being to show
that there exists an N depending only on O such that every ideal in O is equivalent
to an ideal of norm at most N . Therefore this project is a good opportunity for
someone who has not had a chance to go through the proof of this basic finiteness
result – one of the best ways to make sure you’re paying attention throughout the
proof of the result is to have the goal of adapting it to prove a different result.

4. The Picard group of an almost Dedekind ring

In this section I am unabashedly following [Neuk, §I.12]. Moreover, some proofs
are omitted for now (and were omitted in the lectures.)

Let R be a domain which is Noetherian, one-dimensional, but possibly not in-
tegrally closed. Let R̃ be the integral closure of R in its quotient field; by the
Krull-Akizuki theorem (Theorem 2), R̃ is a Dedekind domain. It therefore makes
some sense to call R a pre-Dedekind domain.

We will need to recall the notion of localization of a domain R at a multiplica-
tively closed subset S of R (i.e., a subset containing 1 and not containing 0 such
that S · S = S). This is a mild generalization of the quotient field construction:
we define RS to be the set of elements of the quotient field F of the form a

s with
s ∈ S. One immediately checks that we have inclusions R ⊂ RS ⊂ K. Note that
for an ideal I of R, the complement R \ I is multiplicatively closed iff I is a prime
ideal. So if p is prime, we define Rp to be the localization at the multiplicative
subset R \ p, i.e., we allow as denominators any element not in p. (The switch to
the complement looks confusing at first, but recall that 0 ∈ p, so we could not really
mean to localize at p.) Note that we recover the usual quotient field construction by
localizing at the prime ideal (0). If p is any nonzero prime ideal, then the localized
ring Rp has the nonzero ideal pRp as its unique maximal ideal, so is a so-called
local ring (and not a field).

If M is an R-module, then we can also localize R at an arbitrary subset S; one
can either give a similar direct construction or construe this as MS := RS ⊗R M .
When I is an ideal of R, IS can be viewed as the pushed forward ideal IRS of RS .

Theorem 20. (pre-Dedekind Chinese Remainder Theorem) Let I be an ideal in
the pre-Dedekind domain R. Then

R/I ∼=
⊕
p∈P

Rp/IRp ∼=
⊕
p⊃I

Rp/IRp.

Theorem 21. Let R be a Noetherian domain. A fractional ideal I is invertible iff
for all maximal ideals p, Ip = IRp is a principal fractional ideal of Rp.

Remark: In other words, a fractional ideal of R is invertible iff it is a rank one
locally free (= projective, since R is Noetherian) module.
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Proof: If I is invertible, there exists J such that IJ = αR, so that 1 =
∑r

i=1 aibi

with ai ∈ I, bi ∈ J . (Note IJ = R implies aibi ∈ R for all i.) Moreover not all
products aibi can lie in the proper ideal pRp. So after reordering we may assume
that a1b1 is a unit in the local ring Rp. We claim that Ip is the principal fractional
ideal a1Rp. Indeed, a1 ∈ I ⊂ Ip, and for x ∈ Ip, we have xb1 ∈ IpJ = Rp, so
x = xb1(b1a1)−1a1 ∈ a1Rp.

Conversely, assume that for all p the ideal Ip = IRp = apRp for some ap ∈ K×.
We must show that the fractional ideal I∗ = {x ∈ K | xI ⊂ R} is the inverse to
I. Our worry is that II∗ is too small, i.e., there exists a maximal ideal p such that
II∗ ⊂ p. Let a1, . . . , an be a set of generators for I. Since ai ∈ apRp, we may
write it as ai = ap

bi

si
with bi ∈ R, si ∈ R \ p. Let us, as usual, clear denominators:

put s = s1 · · · sn, so that sai ∈ apR for all i, so that sa−1
p I ⊂ R, and therefore

sa−1
p ∈ I∗. Therefore s = sa−1

p ap ∈ I∗I ⊂ p, contradiction.

Exercise 2.4.1*: a) Let I and J be invertible fractional ideals in the Noetherian
domain R. Show that the product fractional ideal IJ is isomorphic, as an R-
module, to I ⊗R J . (Hint: there is an obvious map; show that it becomes an
isomorphism after localizing at every maximal ideal, which is enough to show that
it is an isomorphism.)
b) Show that the inverse fractional ideal I∗ is isomorphic to the R-module HomR(I,R).
c) Conclude that Pic(R) = Pic(Spec R) in the sense of algebraic geometry.

Recall that for any domain R we are denoting the invertible fractional ideals by
J(R) and the principal fractional ideals by Prin(R), and the set of nonzero prime
ideals by P.

Proposition 22. Let R be a pre-Dedekind domain. Then the mapping I 7→
(IRp)p∈P induces an isomorpism of commutative groups

J(R) ∼→
⊕
p∈P

Prin(Rp).

Modding out by globally principal fractional ideals, we get an isomorphism

Pic(R) ∼→

⊕
p∈P

Prin(Rp)

 / Prin(R).

Comment: If R is actually a Dedekind domain, then each localization Rp is a
discrete valuation ring, in which the only fractional ideals are integral powers of
the principal ideal generated by a uniformizing element πp: I = (πp)n for n ∈ Z.
Therefore Prin(Rp) ∼= Z, and we are in fact recovering (or rather, “proving”) the
unique factorization of fractional ideals into primes. The idea is that if R is only
pre-Dedekind, then there will be some bad primes p such that the one-dimensional
Noetherian local ring Rp is not a DVR (equivalently: it is singular, it is not inte-
grally closed, it is not a PID), and then the situation is more delicate. The strategy
will be to compare Pic(R) with the Picard group Pic(R̃) of its normalization. This
will go smoothly (so to speak) if, and only if, we make the following additional
assumption:
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Definition: An almost Dedekind ring is a one-dimensional Noetherian domain
R such that its integral closure R̃ is finitely generated as an R-module.7

In our intended application to orders in a number field, R̃ is finitely generated
as a Z-module, so it is certainly finitely generated as an R-module. The other
important case where this holds is when R is the coordinate ring k[C] of an affine,
geometrically integral but possibly singular algebraic curve C over an arbitrary field
k. (The fact that finiteness of integral closure does not hold in general is one of the
great nightmares of abstract commutative algebra. It does not seem helpful to give
an example here, but see e.g. [Kap].

Henceforth we work with an arbitrary almost Dedekind ring R. The first thing
that this buys us is that if I is any proper ideal of R, then its pushforward Ĩ := IR̃
is a proper ideal of R̃. Indeed, WLOG we may assume that I = p is a maximal
ideal, and then if pR̃ = R̃, then the same holds after tensoring up to Rp:

R̃p

pR̃p
= 0,

so we are taking a finitely generated (aha!) module over a local ring, modding out
by the maximal ideal of that ring, and getting zero. By Nakayama’s Lemma, we
must have had R̃ ⊗ Rp = 0, which is absurd, since the last object is a subring of
the quotient field of R̃.

For any prime p of R, we may push it forward and then factor it in R̃:

pR̃ = P e1
1 · · ·P er

r .

This shows that there is at least one, and only finitely many, prime ideals of R̃ lying
over a given prime ideal of R.

Definition: f = {a ∈ R̃ | aR̃ ⊂ R}, the conductor of R. This is at the same
time an ideal of R̃ and an ideal of R, and indeed is characterized as the largest such
ideal.

Proposition 23. Since R̃ is finitely generated as an R-module, we have f 6= 0.

Exercise 2.4.2: Prove Proposition 23.

In particular, only finitely many prime ideals of R̃ contain f, hence the same is
true for prime ideals in R. These are our bad primes, in the following sense:

Proposition 24. A prime ideal p of R contains the conductor iff the localization
Rp is singular, i.e., is not a DVR. If p does not contain the conductor, then p̃ = pR̃

is a prime ideal of R̃.

Proof: . . .

In other words, the pullback map Spec R̃ → Spec(R) is a bijection outside the
finite set of primes which lie over the conductor.

7After writing these notes and lecturing on them, I discovered that algebraists already use the

term “almost Dedekind ring” for a rather more exotic (non-Noetherian) type of domain. I doubt
that confusion will result from this.
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Proposition 25. a) There is an exact sequence

1 → R̃×

R× →
⊕

p∈Spec R

R̃p×/R×
p → Pic R → Pic R̃ → 1.

b) We have ⊕
p∈Spec R

R̃×
p /R×

p
∼= (R̃/f)×)/(R/f)×.

Corollary 26. Let O be an order in the algebraic number field K, with maximal
order OK and conductor f. Then the groups O×K/O× and Pic(O) are finite, one
one has

# Pic(O) =
# Pic(OK)
[O×K : O×]

#(OK/f)×

#(O/f)×
.
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