
CHAPTER 9: APPLICATIONS OF LOCAL FIELDS

PETE L. CLARK

The topological groups GLn(R) and GLn(C) have an inexhaustibly rich structure
and importance in all parts of modern mathematics: analysis, geometry, topology,
representation theory, number theory....The serious study of these groups was al-
ready begun in the 19th century by Lie and his contemporaries.

Somewhat more recently (say, about 1950) it has been realized that for a non-
Archimedean locally compact field K, the groups GLn(K) also have a rich and
useful structure.

We will give some of this structure theory here: namely, we will classify the maxi-
mal compact subgroups of GLn(K) for K a nondiscrete locally compact field. This
has immediate applications to the structure of finite subgroups of GLn(Q), which
are of intrinsic interest and are quite useful in areas like representation theory and
modular and automorphic forms. Moreover, this material (actually, a small piece of
it suffices) can be combined with a beautiful embedding theorem of J.W.S. Cassels
to deduce a celebrated 1960 theorem of A. Selberg: for any field K of characteristic
0, a finitely generated subgroup of GLn(K) is virtually torsionfree: i.e., has a finite
index subgroup without any nontrivial elements of finite order.

1. General linear groups over locally compact fields

1.1. GLn(K) is a locally compact group. Let K be a nondiscrete locally com-
pact field, and let n be a positive integer. We consider the group GLn(K) of
invertible n × n matrices with coefficients in K. We wish to endow GLn(K) with
a natural locally compact topology. There are in fact two natural ways to do this,
which, happily, lead to the same result.

For any n ∈ Z+, we endow the Cartesian product Kn with the product topology,
which of course makes it a locally compact topological group. We will sometimes
refer to this topology on Kn and other topologies induced from it as the analytic
topology, to distinguish it from the Zariski topology. (However, the reader need
not know what the Zariski topology is in order to read these notes.)

Let Mn(K) be the ring of n× n matrices with entries in K. As a K-vector space,
Mn(K) ∼= Kn2

, and we give it the topology pulled back from the analytic topology
on Kn2

via the isomorphism. (Easy exercise: the topology we get on Mn(K) is
independent of the chosen basis.)

Now GLn(K) is a subset of Mn(K). We claim that in the induced (subspace)
topology it is locally compact, and indeed this is foisted off on the reader in the
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form of the following straightforward exercises.

Exercise 9.1: Let P (t1, . . . , tn) ∈ K[t1, . . . , tn] be a polynomial, thought of as an
algebraic object. Then P induces a function P : Kn → K in the usual way:
(x1, . . . , xn) 7→ P (x1, . . . , xn). Show that P is continuous for the analytic topolo-
gies on Kn and K.

Exercise 9.2: Deduce that GLn(K) is an open subset of Mn(K).

Exercise 9.3: A subset A of a topological space X is locally closed if it can
be written in the form U ∩ V , where U is open and V is closed.
a) Show that A is locally closed iff A is open in its closure A.
b) Suppose that X is a locally compact Hausdorff space and A is a locally closed
subset of X. Show that A is locally compact in the subspace topology.
c) Does the converse of part b) hold?

So GLn(K), being an open subset of a locally compact space, is locally compact.

Now we give a second definition of the topology which is closely related to the “mul-
tiplicative” topology on the unit group of a topological ring. (Indeed, GLn(K) is
the group of units of the noncommutative topological ring Mn(K), but never mind.)
This definition realizes GLn(K) as a closed subset of a K-vector space of one higher
dimension. Namely, consider the subset of Kn2+1 given as the zero locus of the
single polynomial D(t1, . . . , tn2)tn2+1 − 1 = 0, where D is the degree n polynomial
giving the discriminant of an n× n matrix. There is a bijection between this locus
and GLn(K) as follows: write the entries of a matrix M ∈ GLn(K) in linear order,
say, m1, . . . ,mn2 ; then to M we associate the point (m1, . . . ,mn2 , 1

det M ) ∈ Kn2+1.
Then we may endow GLn(K) with the subspace topology; being a closed subspace
of the locally compact space Kn2+1, it is locally compact.

Remark: This description shows that GLn(K) is an affine algebraic variety rather
than merely a quasi-affine algebraic variety.

Exercise 9.4: Show that the two topologies defined on GLn(K) coincide.

1.2. The orthogonal group of a quadratic form.

We suppose that the characteristic of K is not 2 and q(x) = a1x
2
1 + . . . + anx2

n

is a nonsingular quadratic form. There is an associated bilinear form 〈x, y〉 =
1
2 (q(x + y)− q(x)− q(y)) and thus an associated orthogonal group

O(q) = {M ∈ GLn(K) | ∀x, y ∈ Kn, 〈Mx,My〉 = 〈x, y〉}.

Equivalently, in terms of the natural action of GLn(K) on symmetric matrices by
conjugation – i.e., P 7→ GT PG – the orthogonal group of q is precisely the stabilizer
of the Gram matrix of q. Either way, O(q) is clearly defined by the satisfaction of
a finite system of polynomial equations, so is a linear algebraic group. Note that
when q = x2

1 + . . . + x2
n we recover the “standard orthogonal group”

O(n) = {M ∈ GLn(K) | MMT = 1}.
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The structure of O(q) is quite different depending upon whether the quadratic
form q is isotropic or anisotropic. Indeed, there is the following general result.

Theorem 1. Let K be a nondiscrete locally compact field, and q a nonsingular
quadratic form. TFAE:
(i) The orthogonal group O(q) is compact.
(ii) The quadratic form q is anisotropic.

This result will be established in the Archimedean case in a sequence of exercises
later in this section. We do not prove it in the non-Archimedean case here – nor
will we use it – but the statement is sufficiently striking that we have presented it
for the reader’s edification.

1.3. Maximal compact subgroups of GLn(R): orthogonal groups. In the
case of K = R, a bilinear form 〈, 〉 on Rn is said to be an inner product if it
is positive-definite: for all x ∈ Rn, 〈x, x〉 ≥ 0, with equality iff x = 0. Note that
any two quadratic forms giving inner products are equivalent under the action of
GLn(K) (also called “isometric”, but the formulation in terms of group actions will
be convenient for us here), i.e., all inner products are conjugate to the standard
inner product 〈(x1, . . . , xn), (y1, . . . , yn)〉 = x1y1 + . . . + xnyn coming from the sum
of squares form q(x1, . . . , xn) = x2

1 + . . . + x2
n.

Exercise 9.5:
a) Let G be a group acting on a set X. For x ∈ X, let Gx = {g ∈ G | gx = x} be
the stabilizer of x. Show that for any g ∈ G, Ggx = gGxg−1.
b) Deduce from part a) that in a transitive group action, all point stabilizers are
conjugate subgroups of G.

Exercise 9.6:
a) Let O(n) be the standard real orthogonal group, i.e., the orthogonal group asso-
ciated to the standard inner product. Show that it is a compact subgroup GLn(R).
b) Deduce from Exercise 9.5 that any orthogonal group associated to a positive
definite quadratic form on R is conjugate to the standard orthogonal group O(n).

Exercise 9.7:
a) If q is a quadratic form and α ∈ K×, let αq be the quadratic form with coeffi-
cients scaled by α.1 Show that O(αq) = O(q).
b) Conclude that the orthogonal group of any negative definite real quadratic form
is also conjugate to O(n), hence also compact.

Exercise 9.8: For a, b ∈ N with a + b = n, let qa,b be the diagonal quadratic
form with a coefficients of +1 and b coefficients of −1. Let O(a, b) be the orthogo-
nal group of qa,b.
a) Show that the orthogonal group of any nonsingular real quadratic form is con-
jugate to a unique O(a, b) with a ≥ b.
b) Show that if a ≥ b > 0, O(a, b) is not compact.

1Note: this not the same as acting on q by the scalar matrix αIn: the latter gives α2q, which
is equivalent to q, whereas αq need not be.
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Proposition 2. A compact subgroup of GLn(R) admits an invariant inner product.

Proof. (Weyl) Start with any inner product 〈, 〉, say the standard one. It need not
be G-invariant, but we can make it G-invariant by “averaging” over the action of
G. Namely, define a new inner product 〈, 〉G by

〈x, y〉G :=
∫

G

〈gx, gy〉dµ(g),

where µ(g) is the unit Haar measure on the compact group G. We leave it to the
reader to check that this gives a G-invariant inner product. �

Remark: Some readers may remember this argument from courses in representation
theory and/or functional analysis. It applies equally well to infinite-dimensional
representations V of G and shows that they are all orthogonalizable. (More com-
mon is to consider complex representations and then the term unitarizable is more
familiar. More on this coming up.) It follows from this that any G-invariant
subspace W of V has a G-invariant complement, namely W⊥ and thus any repre-
sentation of a compact group is completely reducible. Note that in the case of a
finite group this is known as Maschke’s Theorem, and in this case the integral is
just the usual sum over all values divided by #G.

Theorem 3. (Maximal compact subgroups of GLn(R)) Every compact subgroup
is contained in the orthogonal group of a definite quadratic form. It follows that
the maximal compact subgroups of GLn(R) are precisely these definite orthogonal
groups, that all maximal compact subgroups are conjugate, and that every compact
subgroup is contained in a maximal compact subgroup.

Proof. The first sentence is a restatement of Proposition 2. By Exercise 9.6, all
definite orthogonal groups are conjugate. The rest follows immediately. �

1.4. Maximal compact subgroups of GLn(C): unitary groups.

Consider now the case of GLn(C). If n ≥ 2, then a quadratic form q in n variables
over C is necessarily isotropic, so by Theorem X.X O(q) is not compact. Indeed,
over C any nonsingular q is equivalent to x2

1 + . . . + x2
n, so we may again restrict

to matrices M satisfying MMT = 1. But the locus q(x) = x2
1 + . . . + x2

n = 1 is
unbounded over C, since indeed we may choose the first n− 1 coordinates arbitrar-
ily, and if x is any such vector, then it is easy to see that x can serve as the first
column of an orthogonal matrix.2

However, from linear algebra we learn that the appropriate analogue of a bilinear
form over C is a Hermitian form, i.e., an R-bilinear form on Cn which is C-linear
in the first variables and conjugate linear in the second variable. The standard
sesqulinear form is

〈x, y〉 = x1y1 + . . . + xnyn,

and this is positive definite in the sense that 〈x, x〉 ≥ 0 for all x ∈ Cn and is zero
only if x = 0. To a Hermitian form H we associate its unitary group

U(H) = {g ∈ GLn(C) | ∀x, y ∈ CnH(gx, gy) = H(x, y)}.

2More generally, if V/C is any affine variety of positive dimension, then V (C) is not compact.
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The unitary group associated to the standard Hermitian form is denoted U(n).

Exercise 9.9: The unitary group of a Hermitian form is compact iff the form is
positive definite.

The analogy to the real case should now be clear. We leave to the reader the
proofs of the following results.

Proposition 4. Any compact subgroup G of GLn(C) admits a G-invariant positive
definite Hermitian form.

Theorem 5. (Maximal compact subgroups of GLn(C)) Every compact subgroup is
contained in the unitary group of a definite Hermitian form. It follows that the
maximal compact subgroups of GLn(C) are precisely these definite unitary groups,
that all maximal compact subgroups are conjugate, and that every compact subgroup
is contained in a maximal compact subgroup.

1.5. Maximal compact subgroups of GLn over a non-Archimedean field:
lattice stabilizers.

We now turn to the case of a non-Archimedean locally compact field K. In this
case the maximal compact subgroups of GLn(K) look quite different from the
Archimedean case. This can be seen already in the case n = 1, i.e., K×.

• The maximal compact subgroup of R× is {±1} = O(1).
• The maximal compact subgroup of C× is S1 = U(1).

In each of these cases, the maximal compact subgroup is closed (of course!) but
not open, and thus of smaller dimension than GLn(K) itself. However, K× admits
open compact subgroups, namely R×. Although we have not developed a theory of
non-Archimedean analytic manifolds and their dimensions, in some intuitive sense
it is clear that both K× and R× have dimension one. (And indeed, this can be for-
malized.) In general, in the non-Archimedean case we have the following procedure
for producing compact subgroups:

Theorem 6. Let K be a NA locally compact field with valuation ring R. For any
closed subgroup G of GLn(K), define G(R) := G∩GLn(R). Then G(R) is compact
and open in G.

Proof. Since G is closed in GLn(K), G(R) = G ∩ GLn(R) is closed in GLn(R).
Thus it is enough to show that GLn(R) is compact and open. Recall that we may
view GLn(K) as the closed subset of Kn2+1 of all pairs (M,α) ∈ Mn(K) × K
satisfying det(M)α = 1. Under this interpretation, clearly GLn(R) is the closed
subset of Rn2+1 of all pairs in Mn(R)×R satisfying the same relation. Since Rn2+1

is compact, so is GLn(R). �

Now we momentarily work in a slightly more general setting: let R be a PID with
fraction field K. We are interested in finding sufficient condition for a subgroup
G of GLn(K) to be conjugate to a subgroup of GLn(R). The next few results are
taken from [Ser].
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Lemma 7. Let n ∈ Z+, and let M be an R-submodule of Kn. TFAE:
(i) M is a finitely generated R-module and M generates Kn as a K-module.
(ii) M ∼= Rn.

Proof. (i) =⇒ (ii). Since M is an R-submodule of Kn, it is torsion free. A
finitely generated module over a PID is free, say M ∼= Rm. There is a natural map
M ⊗R K → Kn, which is surjective since M generates Kn as a K-module: thus
m ≥ n. On the other hand, a basis for M is an R-linearly independent set, hence
also K-linearly independent (clear denominators), so by linear algebra m ≤ n. (ii)
=⇒ (i): if M ∼= Rn, then evidently M is finitely generated. If M did not generate
Kn as a K-module, then the elements e1, . . . , en of a basis for R form a K-linearly
independent subset of Kn which does not span, contradicting linear algebra. �

An R-module M satisfying the equivalent conditions of Lemma 7 will be called a
lattice in Kn. (Note that this usage is roughly analogous but not identical to that
of a Z-lattice in Rn.)

Lemma 8. For lattices M1, . . . ,Mk in Kn, M = 〈M1, . . . ,Mk〉R is also a lattice.

Proof. M is a finitely generated R-module whose K-span is Kn, so this follows
immediately from Lemma 7. �

Fix n ∈ Z+, and let L denote the set of all R-lattices in Kn. Any element Λ ∈ L can
be represented as 〈v1, . . . , vn〉R, where (v1, . . . , vn) is a K-basis for Kn. The natural
(simply transitive) action of GLn(K) on ordered bases of Kn induces a transitive
action on L. We claim that the stabilizer of the standard lattice Rn ⊂ Kn is pre-
cisely the subgroup GLn(R). Indeed, it is immediate that each element of GLn(R)
preserves Rn, and conversely, if M ∈ GLn(K) preserves Rn then for all 1 ≤ i ≤ n,
Me1 ∈ Rn, so M ∈ Mn(R). The same holds for M−1, so M ∈ GLn(R).

Therefore:

Proposition 9.
a) We have an isomorphism of GLn(K)-sets GLn(K)/ GLn(R) ∼= L.
b) For every Λ ∈ L, the stabilizer GΛ of Λ in GLn(K) is of the form g GLn(R)g−1

for some g ∈ GLn(K).

Exercise 9.10: Prove Proposition 9.9.

Proposition 10. Let G be a subgroup of GLn(K) with the following property:
(LF) There exists a lattice Λ1 ∈ L such that the orbit G.Λ1 is finite.
Then G is conjugate to a subgroup of GLn(R).

Proof. By hypothesis, G.Λ1 is a finite set, say {Λ1, . . . ,Λm}. Put Λ = 〈Λ1, . . . ,Λm〉R.
By Lemma 8, Λ is again a lattice. By construction, for any g ∈ G and x ∈ Λ, gx ∈ Λ,
i.e., gΛ ⊂ Λ. Applying this with g−1 as well gives gΛ = Λ, Thus G stabilizes Λ, so
G ⊂ GΛ, which is conjugate to GLn(R). �

Certainly hypothesis (LF) is satisfied if G is finite, and we conclude:

Corollary 11. Let R be a PID with fraction field K. Then any finite subgroup of
GLn(K) is conjugate to a subgroup of GLn(R).
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Already the case R = Z is interesting and useful, as we shall see shortly.

Finally, we return to the case in which K is a non-Archimedean locally compact
field and R is its valuation ring. In this case, the group GLn(R) is compact and
open in GLn(K). By Proposition 9, the same holds for the stabilizer GΛ of every
lattice in Kn.

Theorem 12. Let H be a compact subgroup of GLn(K). Then there exists Λ ∈ L
such that gΛ = Λ for all g ∈ H. Equivalently, H ⊂ GΛ.

Proof. By Proposition 10 it will suffice to show that a compact subgroup has prop-
erty (LF). Begin with any lattice Λ1. Then HΛ1 := H ∩GΛ1 is the subgroup of H
consisting of elements preserving Λ1. Since GΛ1 is open in GLn(K), HΛ1 is open
in H. Since the cosets of HΛ1 in H give an open covering of the compact group H,
we must have [H : HΛ1 ] < ∞. It follows that the orbit H.Λ1 is finite, qed. �

2. Cassels Embedding Theorem

2.1. Statement of the Theorem.

Theorem 13. (Cassels [Cas]) Let K be a finitely generated field of characteristic
0, and let x1, . . . , xn ∈ K×. Then there exist infinitely many prime numbers p
such that there is a field embedding ιp : K ↪→ Qp such that for all 1 ≤ i ≤ n,
|ιp(xi)|p = 1.

2.2. Three Lemmas.

Lemma 14. Let R be an infinite integral domain, and let f1, . . . , fm ∈ R[t1, . . . , tn]
be nonzero polynomials. Then there exist (a1, . . . , an) ∈ Zn such that for all 1 ≤
i ≤ m, fi(a1, . . . , an) 6= 0.

Proof. We go by induction on n. The case of n = 1 is trivial, since a nonzero
univariate polynomial over a domain has only finitely many roots, so we may select
any element a of R in the complement of a finite set. Assume the result holds for
all polynomials in n− 1 variables. Put S = R[t1] – an infinite integral domain – so
that R[t1, . . . , tn] = S[t2, . . . , tn]. By induction, there exist a2(t1), . . . , am(t1) ∈ S
such that for all i, fi(t1, a2(t1), . . . , an(t1)) 6= 0. Now we apply the n = 1 case. �

Lemma 15. Let f(t) ∈ Z[t] be a nonconstant polynomial. Then there exist infin-
itely many prime numbers p such that the reduction mod p of f has a Z/pZ-rational
root.

Proof. We give two proofs. First, we may plainly assume that f is irreducible over
Q[t]. Put K = Q[t]/(f) and let L be its normal closure. Then, by the Cebotarev
Density Theorem, the set of prime numbers p which split completely in L has
positive density, and for such primes the mod p reduction of f splits completely.

However, it is possible to give a completely elementary argument. Namely, write
f(t) = antn + . . . + a1t + a0. Clearly we may assume that a0 6= 0, otherwise 0 is
a root of every mod p reduction. Suppose for the sake of contradiction that there
exists a finite set S of prime numbers such that if p is a prime not lying in S, then
the mod p reduction of f has no Fp-rational root. Let c ∈ Z be an integer divisible
by all primes in S. Then

f(ca0) = a0r(c) = a0(anan−1
0 cn + an−1a

n−2
0 cn−1 + . . . + 1).
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Since f is nonconstant, we may choose c such that r(c) 6= ±1; do so, and let ` be
prime dividing r(c). Since r(c) ≡ 1 (mod p) for all p ∈ S, ` is a prime outside of S
such that f has a rational root modulo `. �

Lemma 16. For any prime p, the transcendence degree of Qp over Q is uncount-
able.

Proof. Indeed, since Qp has continuum cardinality, this is clear. (But since we are
following Cassels’ proof so closely, we did not want to meddle with his auspicious
number of preliminary lemmas.) �

2.3. The proof of the Cassels Embedding Theorem.

Let K be a finitely generated field of characteristic zero, and let S be a finite
set of nonzero elements of K. At the cost of replacing S with a larger finite set, we
may assume that C is closed under inversion, i.e., s ∈ S =⇒ s−1 ∈ S, and then
it suffices to find, for infinitely many primes p, embeddings ιp : K ↪→ Qp such that
for all s ∈ S, ιp(s) ∈ Zp.

The case in which K is algebraic over Q is easy: then K ∼= Q[t]/(f(t)) is a number
field, and applying Lemma 15 to f(t), we get infinitely many primes p such that
there exists a degree one prime ideal p of K lying over p, and thus K ↪→ Kp

∼= Qp.
Moreover, any element of K is a p-adic integer except at finitely many prime ideals
of ZK , so we need only exclude this finite set of primes.

Therefore we may assume that the transcendence degree of K over Q is posi-
tive, say n, and let x1, . . . , xn be a transcendence basis for K/Q, i.e., such that
K/Q(x1, . . . , xn) is finite. Since we are in characteristic 0, the primitive element
theorem applies, and there exists y ∈ K such that K = Q(x1, . . . , xn, y). Therefore
each element c of C may be written in the form

c =
Uc(y, x1, . . . , xn)
Vc(y, x1, . . . , xn)

for nonzero polynomials Uc, Vc ∈ Z[t, x1, . . . , xn]. Moreover, a simple denominator-
clearing argument shows there is a polynomial

H(t) = H(t, x1, . . . , xn) ∈ Z[t, x1, . . . , xn]

which is irreducible over Q(x1, . . . , xn) and such that g(y) = 0. We write

H(t) = hs(x1, . . . , xn)ts + . . .+h1(x1, . . . , xn)t+h0(x1, . . . , xn), hi ∈ Z[x1, . . . , xn],

with hs 6= 0. Let ∆ = ∆(x1, . . . , xn) be the discriminant of H(t), which is a nonzero
element of Z[x1, . . . , xn].
Now we begin! By Lemma 14, we may choose integers a1, . . . , an such that

∆(a1, . . . , an) 6= 0

hs(a1, . . . , an) 6= 0
and

∀c ∈ C, Vc(a1, . . . , an) 6= 0.
Apply Lemma 15 to the polynomial H(t, a1, . . . , an) ∈ Z[t]: there exist infinitely
many primes p and integers bp such that

(1) H(bp, a1, . . . , an) ≡ 0 (mod p).
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By excluding finitely many primes, we may also assume that none of ∆(a1, . . . , an)
and Vc(a1, . . . , an) are congruent to 0 mod p. For each such prime number p, we
will construct the desired embedding ιp.

Now by Lemma 16, let θ1, . . . , θn be elements of Qp which are algebraically in-
dependent over Q. By replacing each θi by pmθi if necessary (this certainly does
not disturb the algebraic independence), we may assume that 0 < |θi|p < 1 for all
i. For all i, put

ξi = θi + ai.

Thus the ξi’s are algebraically independent over Q such that for all i,

(2) |ξi − ai|p < 1.

By (1) and (2) we have
|H(bp, ξ1, . . . , ξn)|p < 1.

Since the discriminant of H is a p-adic unit, it has distinct roots modulo p, and
Hensel’s Lemma applies to show that there exists η ∈ Zp such that

H(η, ξ1, . . . , ξn) = 0.

It follows that for all c ∈ C,

Uc(η, ξ1, . . . , ξn), Vc(η, ξ1, . . . , ξn) ∈ Zp

and
|Vc(η, ξ1, . . . , ξn)|p = 1.

So we may define an embedding ιp : K ↪→ Qp by:

∀i, ιp : xi 7→ ξi,

and
ιp : y 7→ η.

Moreover, for all c ∈ C,

|ιp(c)|p = |Uc(η, ξ1, . . . , ξn)/Vc(η, ξ1, . . . , ξn))|p = |Uc(η, ξ1, . . . , ξn)|p ≤ 1,

QED.

Exercise 9.11: Try to to prove the following positive characteristic analogue of
Cassels’ Theorem.

Theorem? 17. Let K be a finitely generated field of characteristic p > 0, with
constant subfield Fq. (I.e., let Fq be the algebraic closure of Fp in K.) Let C be a
finite set of nonzero elements of K. Then there exists a field embedding ι : K ↪→
Fq((t)) such that for all c ∈ C, ι(c) ∈ Fq[[t]]×.

3. Applications to subgroups of matrix groups

A group G is said to be torsionfree if the only element of finite order is the iden-
tity. A group is virtually torsionfree if it has a finite index torsionfree subgroup.
Some elementary properties are established in the following exercise.

Exercise 9.12:
a) Show that every subgroup of a torsion free group is torsion free.
b) Show that every finite group is virtually torsion free.
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c) Give an example of a group which is not virtually torsion free.
d) Let G be a finitely generated virtually torsionfree group. Show that G has a
finite index normal subgroup which is torsion free. (Hint: a finitely generated
groups has only finitely many subgroups of any given index.)

One reason to be interested to be interested in whether a group is virtually torsion-
free is the following simple result.

Proposition 18. Suppose that a group G has a torsionfree subgroup of finite index
n. Then the order of any finite subgroup of G divides n.

Exercise 9.13: Prove Proposition 18.

Exercise 9.14: Suppose that a group G has a torsionfree subgroup of index di-
viding n < ∞. Show that the same holds for each subgroup of G.

An important class of examples of virtually torsionfree groups are the groups
GLn(Zp). In view of Proposition 18, it is useful to have an explicit upper bound
on the index of a torsionfree subgroup, and the following result achieves this.

Theorem 19. Let p be a prime number.
a) For p > 2, GLn(Zp) has a torsionfree normal subgroup of index

∏n
i=1(p

n−pi−1).
b) GLn(Z2) has a torsionfree normal subgroup of index 2n2 ∏n

i=1(2
n − 2i−1).

Proof. a) Suppose p is odd, and consider the subgroup U1 of GLn(Zp) consisting
of matrices of the form 1 + pMn(Zp); equivalently, the kernel of the reduction map
r : GLn(Zp) → GLn(Z/pZ).3 Evidently U1 is normal and of finite index. We claim
that U1 has no elements of finite order. Indeed, assuming to the contrary it would
have some element of prime order ` (` = p is allowed). But for B ∈ Mn(Zp) \ 0, we
have

(1 + pB)` = 1 + `pB + . . . + p`B`.

But now we apply the principle of domination: the entry of `pB of minimal p-adic
norm has strictly smaller p-adic norm then the entries of all the other nonzero terms(
`
i

)
piBi: note that when ` = p we are using that p |

(
`
2

)
, which is valid since p > 2.

Therefore the sum `pB + . . . + p`B` has at least one entry of nonzero p-adic norm,
so is not the zero matrix, contradicting the statement that 1 + pB has order `.
b) When p = 2, the above argument does not go through. To remedy it, we need
to use U2 instead, the kernel of the reduction map r : GLn(Z2) → GLn(Z/22Z).
We leave it to the reader to check that U2 has no nontrivial elements of finite
order by modifying the above argument. Moreover, we have [GLn(Z2) : U2] =
# GLn(Z/4Z). To compute the latter quantity, we use the short exact sequence

1 → 1 + (2)Mn(Z/4Z) → GLn(Z/4Z) → GLn(Z/2Z) → 1,

noting that #(1 + (2)Mn(Z/4Z) = 2n2
. �

Theorem 20. (Selberg [Sel]) Let K be a field of characteristic zero, n ∈ Z+, and
let G be a finitely generated subgroup of GLn(K). Then G is virtually torsionfree.

3Note that when n = 1, this is indeed the first higher unit group considered in Chapter 5.
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Proof. Let S be a finite, symmetric set of generators of G, i.e., if x ∈ S, then
x−1 ∈ S. The subfield K ′ obtained by adjoining to Q all the matrix entries of the
elements of S is finitely generated, and since S is a generating set for G, we have
G ⊂ GLn(K ′). By Theorem 13, there exists a prime number p and an embedding
ι : K ′ → Qp such that every entry of each matrix in S gets mapped into Zp. Thus
ι induces an embedding ι : Mn(K ′) ↪→ Mn(Qp) such thatι(G) ⊂ Mn(Zp), and
since ι(G) is a group we must have ι(G) ⊂ GLn(Zp). By Theorem 19, GLn(Zp) is
virtually torsionfree, hence by Exercise 9.14 so is G ∼= ι(G). �

Let n ∈ Z+, and let G be a finite subgroup of GLn(Q). By Corollary 11, G is
conjugate to a subgroup of GLn(Z) hence a fortiori to a finite subgroup of GLn(Zp)
for all primes p. Combining Proposition 18, Exercise 9.14 and Theorem 19, we get:

#G | gcd((2n2
n∏

i=1

(2n − 2i−1), {
n∏

i=1

(pn − pi−1)}p>2).

In practice, this gcd is attained by looking only at very small odd primes. For
example, when n = 2, it is easy to see that the gcd is equal to 48, which is also
# GL2(Z/3Z): all the other orders are proper multiplies of 48, eg. # GL2(Z/4Z) =
96, # GL2(Z/5Z) = 480.

Is this upper bound sharp, i.e., is 48 indeed the least common multiple of all orders
of finite subgroups of GL2(Q) (or equivalently, GL2(Z))? Close, but not quite.
There are well-known matrices of order 4 and 6 in SL2(Z), namely

A =
[

0 −1
1 0

]
, B =

[
0 −1
1 1

]
.

Moreover, put

S =
[

0 1
1 0

]
,

so that S has determinant −1 and order 2. Then we have

SAS−1 = A−1, SBS−1 = B−1,

so that as subgroups of GL2(Z) we have

〈A,S〉 ∼= D4, 〈B,S〉 ∼= D6,

of orders 8 and 12 respectively. Thus the lcm of all orders of finite subgroups of
GL2(Z) is a multiple of 24.

To show that 24 is sharp, we will use information coming from the Archimedean
place of Q! Namely, we can also embed GL2(Q) ↪→ GL2(R), so that by Theorem
3 every finite (hence compact) subgroup of GL2(Q) is conjugate to a subgroup of
the standard orthogonal group O(2). But O(2) has a very agreeable structure: the
determinant map induces a short exact sequence

1 → SO(2) → O(2) det→ {±1} → 1,

where the special orthogonal group SO(2) of all orthogonal matrices of determinant
one is just the circle group:

SO(2) = S1 = {
[

cos θ − sin θ
sin θ cos θ

]
| θ ∈ R}.



12 PETE L. CLARK

At first sight this seems unhelpful, because of course SO(2) contains finite sub-
groups of all orders, namely the nth roots of unity. Conversely, it is easy to see
that any finite subgroup of SO(2) is generated by any element of minimal argu-
ment θ, so that the cyclic groups Cn generated by the nth roots of unity are the
only finite subgroups of SO(2). However, very few of the groups Cn have rational
entries: indeed, Cn contains the matrix[

cos( 2π
n ) − sin( 2π

n )
sin( 2π

n ) cos( 2π
n )

]
of trace 2 cos( 2π

n ) = ζn + ζ−1
n , which generates the real subfield of the nth cyclo-

tomic field so for all n > 2 has degree ϕ(n)
2 . Thus this is rational iff ϕ(n) = 2 iff

n = 3, 4, 6. Thus, up to conjugacy, the only matrices in GL2(R) with finite order
and rational trace are ±1, A and B. This shows that the least common multiple of
all orders of finite subgroups of SL2(Q) is 12 and thus that of SL2(Q) is 24.

If we put M(n) to be the least common multiple of all orders of finite subgroups of
GLn(Q), the above work gives an explicit upper bound on M(n) for a given n. In
fact, the exact value of M(n) for all n was computed by Minkowski.

Theorem 21. (Minkowksi, 1887) For all n ∈ Z+,

M(n) =
∏

`

`
b n

`−1 c+b
n

`(`−1) c+b
n

`2(`−1)
c+...

,

where the product extends over all prime numbers `.

Rather remarkably, the efficacy of the argument of looking at the completion at an
Archimedean place and restricting to matrices with rational trace also holds for all
n ≥ 2, as the following theorem shows:

Theorem 22. (Schur, 1905) Let G ⊂ GLn(C) be a finite subgroup of matrices such
that tr(g) ∈ Q for all g ∈ G. Then #G | M(n).

For modern (and novel) proofs of Theorems 20 and 21, we heartily recommend the
recent paper of Guralnick and Lorenz [GL].

For fixed n, it is also interesting to ask for the maximum order of a finite subgroup
of GLn(Q), say m(n). Evidently m(n) | M(n). E.g. we found that m(2) = 12.
This is achieved by the following remarkable theorem of Walter Feit.

Theorem 23. (Feit, 1998) Let n be a positive integer, n 6= 2, 4, 6, 7, 8, 9, 10.
a) Then m(n) = 2nn!.
b) Let G ⊂ GLn(Q) be a subgroup of order 2nn!. Then G is conjugate to the
subgroup of signed permutation matrices, i.e., the subgroup generated by all permu-
tation matrices and all diagonal matrices with diagonal entries ±1.

Exercise 9.15: Show that for all n ≥ 1, the group of signed permutation matrices
is On(Z) := On(R) ∩GLn(Z).

Feit’s theorem relies upon a 1984 manuscript of B. Weisfeiler [Wei]. Weisfeiler’s
manusript is remarkable in that it uses the classification of finite simple groups,
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one of the first to do so in an essential way to derive a significant theorem. How-
ever, there is an even more remarkable, and sad, story concerning Weisfeiler himself.

Boris Weisfeiler has been “missing” in Chile since January 4, 1985. In March of
1985 the local Chilean court ruled that Weisfeiler had died by accidental drown-
ing. However, it has long been suspected that Weisfeiler was a desaparecido, i.e.,
that his death was one of the secret murders committed by the Pinochet regime.
As of 2010, the matter is still not entirely settled, but has recently been heard by
the Comisión Asesora para la calificación de Detenidos Desaparecidos, Ejecutados
Polticos y Vctimas de Prisin Poltica y Tortura. A ruling is expected by early 2011
and it is expected that Weisfeiler’s disappearance will be officially recognized as a
human rights violation. For more information on Weisfeiler’s life and his mathe-
matics, see

http://boris.weisfeiler.com/
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