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5. Locally compact fields

5.1. The classification of nondiscrete locally compact topological fields.

Some of the most important theorems in mathematics give complete classifications
of certain fundamental structures. Examples: the classification of (topological!)
surfaces, the classificaiton of simple Lie algebras, the classification of finite simple
groups. In this section we discuss a classification theorem which belongs somewhere
in the above pantheon.

Theorem 1. Let L be a locally compact, nondiscrete topological field.
a) Then L is a finite extension of one of the following fields:
(i) K = R.
(ii) K = Qp.
(iii) K = Fp((t)).
b) In case (i) L = R or L = C.
c) In case (ii) the ramification index e(L/Qp) and residual degree f(L/Qp) are
uniquely determined by the abstract field L, and for any given e, f ∈ Z+, the number
of finite extensions L/Qp of ramification index e and residual degree f is finite and
nonempty.
d) In case (iii) the residual degree f is determined by the abstract field L, but the
ramification index is not. Moreover, every totally ramified extension of Fq((t)) is
isomorphic to Fq((t)).

To prove this result in full requires some nontrivial tools from the theory of topolog-
ical groups: namely, the existence of Haar measure. We will give a rather superficial
discussion of this later on, not because it is necessary for what we wish to do later
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in our course, but because it is interesting and natural and deserves to be part of
our general mathematical culture.

So we begin by simplifying things. Let us restrict our attention to discretely valued,
non-Archimedean fields and classify all locally compact fields among them. First a
simple lemma of functional analysis type.

Lemma 2. Let (K, | |) be a locally compact normed field, and let (V, || ||) be a
normed K-space. Then V is locally compact iff dimK V is finite.

Proof. . . . �

Theorem 3. Let (K, v) be a discretely valued1 non-Archimedean field, with valua-
tion ring R and residue field k. TFAE:
(i) K is locally compact.
(ii) K is ball compact.
(iii) R is compact.
(iv) K is complete, and the residue field k is finite.
(v) K may be expressed as a finite extension of Qp or of Fp((t)), for a suitable
prime number p.

Proof. In a discretely valued field with uniformizer π, any two closed balls are
equivalent under a mapping of the form x 7→ πnx + x0. Thus K is ball compact iff
the closed unit ball R = B(0, 1) of K is compact, so (ii) ⇐⇒ (iii). Evidently (ii)
=⇒ (i). Conversely, if K is locally compact, then (by definition) for each x0 ∈ K
there exists a compact neighborhood U of K, hence any closed ball centered at x0

with sufficiently small radius is compact. By the first sentence of the proof, this
implies that K is ball compact, thus (i) ⇐⇒ (ii) ⇐⇒ (iii).
(ii) =⇒ (iv): If K is ball compact, then it is locally compact hence complete.
Morover, R is compact, so the quotient space k = R/m is a continuous image of a
compact space, hence compact. On the other hand, the topology on k is obtained
by modding out by the open subgroup m, so k is compact and discrete. Compact
and discrete implies finite!
(iv) =⇒ (iii): Let R̂ be the completion of the discrete valuation ring R with respect
to the maximal ideal m. By definition this is, as a topological ring, lim

←−n
R/mn. Here,

as above, each quotient R/mn has the discrete topology, and R̂ is given the natural
topology it inherits as a closed subspace of the direct product X =

∏∞
n=1 R/mn. As

we have seen before, the finiteness of k = R/m implies the finiteness of R/mk for all
k. Therefore X is a product of finite discrete spaces, so is compact (by Tychonoff’s
theorem, or alternately by Exercise 2.X.), and R̂ is a closed subspace of X so is also
compact. We have a natural map Φ : R → R̂ in which we send each x ∈ R to the
compatible sequence of cosets (x + mn). The fundamental result, from which our
claim follows immediately, is that Φ is an isomorphism of topological rings. Happily,
this is easy to check: ker(Φ) =

⋂
mn = 0, so Φ is injective. To see surjectivity,

let (xn + mn) be any element of the inverse limit, i.e., we require that xn+1 ≡ xn

(mod )mn. Let us choose a system of coset representatives S = r1, . . . , rq for R/m
in R. Then (by definition) there exists a unique a1 ∈ S such that x1 + m = a1 + m.
Moreover, there exists a unique a2 ∈ S such that x2 + m2 = a1 + a2π + m2.

1Recall that our definition of a discrete valuation includes the condition that it is not trivial.
Thus a discretely valued topological field is not discrete.
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Continuing in this way, we get a unique sequence of elements a1, . . . , an ∈ S such
that for all n, we have that xn+mn =

∑n−1
i=0 aiπ

n−1. But since anπn → 0, the series∑∞
i=1 aiπ

i−1 converges to a unique element, say x, of R, which has the property that
for all n ≥ 0, x + mn = xn + mn. Thus Φ(x) = (xn + mn) and Φ is surjective, thus
an isomorphism of rings. In each of these topological rings, a neighborhood basis of
0 is given by powers of the maximal ideal mn, so Φ is certainly a homeomorphism
as well. Thus Φ : R

∼→ R̂ (we say that R is an m-adically complete local ring).
(v) =⇒ (iv) is immediate: we know that any finite extension of Qp or of Fp((t))
is complete with finite residue field.
(i) =⇒ (v): Let (K, | |) be a discretely valued locally compact field. First suppose
that K has characteristic 0. Thus Q ↪→ K and the norm on K restricts to a non-
Archimedean norm on Q. But we have classified all such and know that they are
(up to equivalence, which is harmless here) all of the form | |p for a unique prime
number p. Therefore the closure of Q inside K is the completion of Q with respect
to | |p, i.e., is Qp, so we have embeddings of normed fields

Q ↪→ Qp ↪→ K.

Now we apply Lemma 2: since K is a locally compact, normed Qp-vector space,
it is finite dimensional over Qp, which is what we wanted to show. Now suppose
that K has characteristic p > 0, so that we have Fp ⊂ K. Recall that an algebraic
extension of a finite field carries only trivial norms, so in particular Fp is already
complete in K. So we need to introduce a little more: let t ∈ K be a uniformizing
element, i.e., v(t) = 1. Then, by the above remarks, t is not algebraic over Fp

for otherwise we would have v(t) = 0. Thus the least extension of K containing t
is Fp(t), the rational function field over Fp. Now we are homefree as before: the
restriction of v to Fp(t) is a discrete valuation such that v(t) = 1. There is a unique
such valuation, namely the valuation ordt coming from the irreducible element t in
the polynomial ring Fp[t], so that the closure in K of Fp(t) is nothing else than the
Laurent series field Fp((t)). Arguing as above, we get that K is finite-dimensional
over Fp((t)), done. �

Corollary 4. Every locally compact, nondiscrete, normed field is isomorphic to R,
C or to a finite extension of Qp or of Fp((t)). In particular, every locally compact
NA normed field is discretely valued.

Proof. The statement about Archimedean fields once again follows from the big
Ostrowksi theorem: details left to the reader. So suppose that (K, | |) is a field
which is locally compact in the topology generated by a nontrivial norm. It suffices
to see that the corresponding valuation is discrete. But this can be deduced by
the same argument as in the end of the proof of Theorem 3 above. Indeed, in the
characteristic 0 case we used only the nontriviality of the norm, so we end up with
the conclusion that K is finite dimensional over Qp and hence discretely valued.
In the positive characteristic case, if K is not discretely valued, it will not have
a uniformizing element, but that’s okay: we didn’t use that t was a uniformizing
element, only that v(t) > 0, and such an element certainly exists for any nontrivial
norm. �

Corollary 5. A locally compact normed field of positive characteristic is isomorphic
to Fq((t)) for some prime power q.
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Proof. Let K be a locally compact normed field of positive characteristic, so by
Corollary 4 K is discretely valued – say with normalized discrete valuation v – and
is a finite degree extension of Fp((t)), where t ∈ K is a uniformizing element, i.e.,
v(t) = 1. Let Kunr be the maximal unramified subextension of K/Fp((t)), so that
Kunr = Fq((t)), where q = #k, the residue field of K. But then the extension
K/Fq((t)) is totally ramified with ramification index 1, since the uniformizer t of
K is also an element (necessarily then a uniformizing element) of Fq((t)). Since the
residue field, Fq, is perfect, it follows that K = Fq((t)). �

Comment: Of course a field Fq((t)) has totally ramified extensions of every degree:
e.g. t

1
n . The point is that every totally ramified extension of Fq((t)) is, as an

abstract field, isomorphic to Fq((t)) again. This leads to the following discussion of
“absolute residue degrees” and “absolute ramification indices” for locally compact
NA fields.

Definition: Let (K, v) be a locally compact non-Archimedean field, with residue
field k = Fq = Fpf . Then its absolute residual degree is f , and its absolute
ramification index is v(p).

Despite the fact that these definitions are uniform across the two cases of p-adic
fields and Laurent series fields, their implications are quite different:
Let K be a locally compact field of characteristic 0 and residue characteristic p.
Then K is canonically an extension of Qp: indeed, this follows from the proof
above, because Qp is constructed inside K as the closure of Q. Moreover the degree
[K : Qp] is ef .

On the other hand, let K be a locally compact field of characteristic p. Then
its absolute ramification index is e = v(p) = v(0) = ∞. This may seem like a
strange definition, but it’s a suggestive one, since for any n, K admits a subfield F
such that e(K/F ) = n. In particular, there is no canonical copy of Fp((t)) inside
K, and certainly no minimal copy.

5.2. Roots of unity in locally compact fields.

In this section we study the group of units in a locally compact non-Archimedean
field. The main theorem is as follows.

Theorem 6. Let K be a locally compact non-Archimedean field. Then the group
µ(K) of roots of unity in K is finite.

Proof. Let Fq be the residue field of k, of characteristic p. As in §3.4 we let µ′(K) be
the group of roots of unity of order prime to p, so that by Proposition 3.14 reduction
modulo the maximal ideal induces an isomorphism µ′(K) ∼→ µ(k) ∼= Z/(q − 1)Z.
Thus it suffices to show that the group µp∞(K) of p-power roots of unity is finite.
Case 1: K is a p-adic field. For a ∈ Z+, let Φpa(t) = tpa

−1

tpa−1−1
be the monic

polynomial whose roots are the primitive path roots of unity. Note that for all a

we have Φpa(t) = Φp(tp
a−1

). Make the linear change of variables X = t+1 and put
g(X) = Φpa(X + 1). Then g(0) = Φpa(1) = Φp(1) = p. Moreover,(

(X + 1)pa−1
− 1

)
g(X) =

(
(X + 1)pa

− 1
)

,
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and reducing modulo p gives

Xpa−1
g(X) = Xpa

,

or
g(X) = Xpa−pa−1

.

Thus all the terms of g(X) except for the leading coefficient are divisible by p,
so g(X) is Eisenstein with respect to the prime ideal (p) in the UFD Zp. By
Proposition 4.6, the extension Ka := Qp[X]/(g(X)) = Qp[t]/(Φpa) = Qp(µpa) is
totally ramified of degree pa−pa−1. It follows that if K is any p-adic field containing
the path roots of unity, then K contains Ka and thus [Ka : Qp] ≥ e(Ka/Qp) ≥
pe − pe−1. So K contains only finitely many p-power roots of unity.
Case 2: K ∼= Fq((t)). In this case we have, as for every field of characteristic p > 0,
no nontrivial p-power roots of unity, so µ(K) = µ/(K) = F×q . �

The proof of Theorem 6 gives an explicit upper bound on the size of the group of
roots of unity in a p-adic field K.

Corollary 7. Let KQp be a p-adic field, with [K : Qp] = e(K/Qp)f(K/Qp).
a) The group of roots of unity of order relatively prime to p is cylic of order pf − 1.
b) If (p− 1) - e(K/Qp), then µp∞(K) = 1.
c) In general #µp∞(K) ≤ pordp(e)+1.

Exercise 5.0: Prove Corollary 7.

5.3. The higher unit groups.

Let K be a locally compact non-Archimedean field, with normalized discrete valua-
tion v. It is traditional to denote the unit group of the valuation ring – i.e., v−1(0)
– by UK or just U if K is understood.

Exercise 5.1: Show that U is a compact, totally disconnected abelian group.

The structure of the unit group is vitally important in the study of local fields.
Here we introduce only a little bit of the theory.

We introduce the higher unit groups. Namely, put U0 = U . For each n ∈ Z+,
we define Un = 1 + mn. In other words, x ∈ R lies in Un iff it reduces to 1 modulo
mn, i.e., it is the kernel of the map on unit groups induced by the quotient map
R → R/mn; in particular Un is a subgroup of (U0,×).

Exercise 5.2: Show that U0/U1
∼= k×.

Proposition 8. For each n ≥ 1, Un/Un+1 ∼= (k,+) (canonically).

Proof. Indeed, consider the map Φ : mn → Un/Un+1 given by x 7→ 1 + x + Un+1.
Since Un = 1 + mn, this map is visibly a surjection. On the other hand, there
is some multiplicative to additive funny business going on here, so that it is not
immediately clear that Φ is a homomorphism! Let’s check it:

Φ(x)Φ(y)Φ(x + y)−1 =
(1 + x)(1 + y)

1 + x + y
=

1 + x + y + xy

1 + x + y
= 1 +

xy

1 + x + y
.
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Since v(x + y) ≥ min v(x), v(y) ≥ n, v(1 + x + y) = 0, so v(xy/(1 + x + y)) ≥ 2n ≥
n+1, so 1+ xy

1+x+y ∈ Un+1. Thus Φ is a homomorphism. The kernel of Φ is mn+1,
so we get Un/Un+1 ∼= mn/mn+1 ∼= (k,+). �

Theorem 9. Let K/Qp be a finite extension with ramification index e. Then for
all sufficiently large positive integers n, there exists an isomorphism of topological
groups Φ : (Un, ·) ∼→ (mn,+).

The proof of Theorem 9 will be developed in the following exercise.

Exercise 5.3: Consider the following formal power series:

L(t) =
∞∑

n=1

(−1)n+1 (t− 1)n

n
∈ Cp[[t]],

E(t) =
∞∑

n=0

xn

n!
∈ Cp[[t]].

Note that L(t) and E(t) are precisely the usual Taylor series expansions of log(t)
at t = 1 and et at = 0 encountered in real/complex analysis.
a) Consider L(x) and E(x) as functions on, say, Cp. Show that the radius of con-
vergence of L(x) is 1 and the radius of convergence of E(x) is Rp := p

−1
p−1 .

b) Show that |x− 1| < Rp =⇒ E(L(x)) = x and L(E(x)− 1) = x− 1.
c) Show that for all x, y with |x|, |y| ≤ 1 we have L(xy) = L(x) + L(y) and that for
all x, y with |x|, |y| ≤ Rp we have E(x + y) = E(x)E(y).
d) Now let K be a p-adic field. Show that there exists a constant C = C([K : Qp], p)
such that for all n ≥ max(1, C), the map x 7→ L(x) induces an isomorphism of topo-
logical groups (Un, ·) → (mn,+). Show in particular that when K = Qp with p > 2,
the isomorphism holds for all n ≥ 1 and that for Q2 it holds for all n ≥ 2.

In positive characteristic, L(x) and E(x) are not even defined as formal power
series, as some of the terms have denominators divisble by p. And indeed the struc-
ture of the unit group is much different in this case:

Exercise 5.4: Let K = Fq((t)). Show that there is no nontrivial group homo-
morphism from (Fq[[t]],+) to U = Fq[[t]]×. (Hint: consider p-torsion.)

5.4. The number of nth power classes in a locally compact field.

To state the following result we need a little notation borrowed from the arith-
metic of elliptic curves. Let f : A → Z be a homomorphism of abelian groups. We
will denote the kernel of f by A[f ]. (In particular, if we consider the multiplication
by n homomorphism from A to itself, then A[n] is the n-torsion subgroup of A.)

Lemma 10. Let f : A → Z be a homomorphism of commutative groups. Let B be
a subgroup of A. Then

[A : B] = [f(A) : f(B)] · [A[f ] : B[f ]].

Proof. Let g be the composite homomorphism A → f(A) → f(A)/f(B). Then g is
surjective and has kernel B + A[f ], so

A/(B + A[f ]) ∼= f(A)/f(B).
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Moreover A ⊃ B + A[f ] ⊃ B and hence

(B + A[f ])/B ∼= A[f ]/(A[f ] ∩B) = A[f ]/B[f ].

Therefore

[A[f ] : B[f ]][f(A) : f(B)] = [A : B + A[f ]][B + A[f ] : B] = [A : B].

�

Lemma 11. Let (K, v) be a discretely valued field, with valuation ring R and
uniformizing element π. Let x ∈ R. Then for any m, r ∈ Z+ such that char(K) - m
and v(mπr+1) ≤ π2r, we have

(1) (1 + xπr)m ≡ 1 + mxπr (mod mπr+1).

Proof. Let p be the residue characteristic, and write m = m′pa with gcd(m′, p) = 1,
so m′ ∈ R×. Put e = v(p). Thus v(m) = ae, so our assumption is that

ae + r + 1 = v(mπr+1) ≤ π2r = 2r,

i.e., that
ae + 1 ≤ r.

Now the desired conclusion is a congruence modulo (mπr+1), i.e., modulo πae+r+1.
Thus, by our assumption, it is enough to show that the two sides of (1) are congruent
modulo π2r. And this is easy:

(1 + xπr)m = 1 +
(

m

1

)
xπr +

m∑
j=2

(
m

j

)
xjπrj .

Since j ≥ 2, each term in the sum is divisible by π2r, qed. �

Theorem 12. Let (K, | |) be a locally compact NA field with normalized discrete
valuation v and residue field Fq. Let m be a positive integer which is not divisible
by char(K). Let µm(K) denote the group of mth roots of unity in K. Then:

[U× : U×m] = qv(m) ·#µm(K).

Proof. Let π be a uniformizer of K. Choose r ∈ Z+ to be sufficiently large so that
v(mπr+1) ≤ v(π2r). By Lemma 11 we have, for all x ∈ R,

(1 + xπr)m ≡ 1 + mxπr (mod mπr+1).

Putting s = v(m), this gives
Um

r = Ur+s.

Now take r to be sufficiently large so that Ur contains no nontrivial mth roots of
unity. Apply Lemma 10 with A = U , B = Ur, f(x) = xm. Thus

[U : Ur] = [Um : Ur+s]#µm(K) =
[U : Ur+s]
[U : Um]

#µm(K)

so

[U : Um] =
[U : Ur+s]
[U : Ur]

#µm(K) = [Ur : Ur+s]#µm(K).

But by Proposition 8 we have

[Ur : Ur+s] = #mr/mr+s = (#k)s = qv(m),

so
[U : Um] = qv(m)#µm(K).
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�

Exercise 5.5: Insert your own exercise here.

Corollary 13.
Let (K, v, π, k = Fq) be a locally compact field of characteristic different from 2.
a) If char(k) > 2, there are exactly three quadratic extensions of K.
b) If char(k) = 2, there are exactly 2[K:Qp]+2 − 1 quadratic extensions of K.

Exercise 5.6: Prove Corollary 5.11.

5.5. The number of degree m extensions of a locally compact field.

Theorem 14. Let K be a locally compact field, and let m ∈ Z+ be such that
char(K) does not divide m. Then the set of degree m extensions of K inside a fixed
separable closure of K is finite.

Proof. We know that there is a unique unramified extension of each degree, so by
an easy dévissage argument we are reduced to proving the result for totally ramified
extensions. For this we use Theorem X.X: every totally ramified extension L/K
of degree m is (separable, by our hypothesis char(K) - m) of the form K[t]/(P (t))
for an Eisenstein polynomial P (t) ∈ R[t]: that is, P (t) = tm + am−1t

m−1 + . . . =
a1t + a0 ∈ R[t] such that ai ∈ m for all 0 ≤ i ≤ n − 1 and a0 /∈ m2. The mapping
P 7→ (a0, . . . , am−1) gives a bijection from the set of all degree m polynomials with
R coefficients to the compact space Rm. Define the Eisenstein locus Em ⊂ Rm

to be the set of all Eisenstein polynomials. Then Em is closed (and in fact open,
but that’s not the point!) in Rm and is thus compact. Moreover, every point of
Em corresponds to an irreducible, separable polynomial of degree n. By Krasner’s
corollary, to each point P ∈ Em there exists an open disk DP such that for any
two roots α and β of any two polynomials in DP , the field extensions K(α) and
K(β) are conjugate. (With more care, we could choose roots so that they are
the same, but since finiteness of the number of field extensions up to conjugacy
certainly implies finiteness of the number of field extensions, it seems simplest not
to worry about this.) Now, by compactness, Em can be covered by finitely many
such disks DP1 , . . . , DPN

, such that on each disk we get a field extension (up to
conjugacy) K(α1), . . . ,K(αN ). It follows that every Eisenstein polynomial of degree
m generates a field extension conjugate to K(αi) for some 1 ≤ i ≤ N , so that there
are only finitely many degree m totally ramified extensions of K up to conjugacy,
hence only finitely many overall. �

Again, things are truly different when K = Fpf ((t)) and p | m.

Exercise 5.7: Let K = Fpf ((t)).
a) Show that if p | m, then [K× : K×m] = ∞.
(Suggestion: reduce to the case m = p.)
b) Deduce that there are infinitely many degree p extensions of K.

The degree p extensions constructed in Exercise 5.7b) are of the form K(x
1
p ), i.e.,

they are purely inseparable. Rather more surprisingly, there are also infinitely many
separable degree p extensions of Fq((t)).

Indeed, let K be any field of characteristic p. Define the Artin-Schreier isogeny
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℘p : K → K, x 7→ xp − x. The point is that this is a homomorphism (K, +) →
(K, +) whose kernel is Fp. By Artin-Schreier theory, every sepaarable degree p
extension in characteristic p comes from adjoining the root of an Artin-Schreier
polynomial tp − t− a = 0. The irreducibility of the polynomial is equivalent to its
having a root, i.e., to a being in the image of the Artin-Schreier isogeny. Moreover,
there are infinitely many separable p-extensions iff the quotient K/℘p(K) is infinite.
But this is true for K = k((t)) and any field k of positive characteristic. Indeed,
for n ∈ Z+ and prime to p, the elements 1

tn give rise to distinct cosets of ℘p(K).
Explicitly, if n 6= n′, there does not exist f ∈ k((t)) such that 1

tn − 1
tn′ = fp − f :

exercise!

What about the number of totally ramified degree m extensions of a local field
K?

Exercise 5.8: Suppose that m ∈ Z+ is prime to the residue characteristic p of
a NA local field K. Show that there are precisely m totally ramified extensions of
degree m.

Theorem 15. (Serre, 1978) Let K be a NA locally compact field, with residual
cardinality q. Let m ∈ Z+ be the set of all totally ramified extensions of degree n
of K contained in a given separable closure. For L ∈ Σm, put

c(L) = d(L)−m + 1,

where d(L) is the valuation of the discriminant of L/K. Then∑
K∈Σm

1
qc(L)

= n.

Note that this sum is infinite when n = p = char(K) > 0!

5.6. Pontrjagin duality.

Let G be a locally compact abelian group. We define its character group G∨ =
Homc(G, S1), i.e., the group of all continuous homomorphisms from G to the unit
circle S1 (viewed as a subgroup of (C×, ·)). However, we wish G∨ to itself have
the structure of a topological group. Given topological spaces X and Y , there is
a ubiquituous reasonable topology to put on the space C(X, Y ) of all continuous
maps from X to Y . It is defined as follows: for K a compact subset of X and U
an open subset of Y , let [K, U) := {f ∈ C(X, Y ) | f(K) ⊂ U}.

5.7. Additive autoduality of locally compact fields.

Exercise 5.9: For x ∈ Qp, let n be the least non-negative integer such that pnx ∈ Zp.
Let r be such that r ≡ pnx (mod pn). Put Ψ(x) = e2πir/pn

. a) Show that
Ψ : (Qp,+) → (S1, ·) is a continuous homomorphism, i.e., Ψ ∈ Q∨p .
b) Show that ker(Ψ) = Zp. In particular, Ψ is nontrivial.

Exercise 5.10: Write x ∈ Fp((t)) as x =
∑∞

n=r antn. Define Ψ(x) = e(2πi)a−1/p.
a) Show that Ψ ∈ Fp((t))∨.
b) Compute the kernel of Ψ and thereby show that it is nontrivial.
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Exercise: Let L/K be a finite separable extension of non-Archimedean local fields.
Suppose that ΨK is a nontrivial character of K. Show that x ∈ L 7→ ΨK(TrL/K(x))
defines a nontrivial character of L, say ΨL.

Proposition 16. (Classification of characters) Let K be a nondiscrete locally com-
pact field, and let Ψ be any nontrivial element of K∨, i.e., Ψ is an additive to
multiplicative homomorphism Ψ : (K, +) → (S1, ·) such that Ψ(x) 6= 1 for at least
one x ∈ K.
a) For any a ∈ K, the map χa : K → S1 by x 7→ Ψ(ax) gives a character of K.
b) The character χa is trivial iff a = 0.
c) The mapping a 7→ χa defines a continuous injection Φ : K ↪→ K∨.
d) For all b ∈ K, χa(b) = 1 for all a ∈ K ⇐⇒ b = 0. It follows that Φ(K) is
dense.
e) Φ(K) is a complete, hence closed, subgroup of K.
f) It follows that Φ : K → K∨ is an isomorphism of topological groups.

Exercise 5.11: Prove Proposition 16.


