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4. Structure Theory of CDVFs

We now specialize to the following situation: let (K, | |) be a complete, non-
Archimedean field whose valuation ring R is a DVR and whose residue field k
is perfect. Under these hypotheses we can give a much more penetrating analysis
of the structure of the absolute Galois group gK = Gal(Ksep/K) and also of the
multiplicative group K×.

Recall that a finite extension L/K is unramified if e(L/K) = 1; equivalently,
f(L/K) = [L : K]. (Note that we are using our assumption of the perfection of k
here, for otherwise we would need to add the condition that the residual extension
l/k is unramified.) An algebraic extension L/K is unramified if all of its finite
subextensions are unramified.

A finite extension L/K is totally ramified if e(L/K) = [L : K]; equivalently,
l = k. An algebraic extension L/K is totally ramified if each finite subextension if
totally ramified; equivalently, l = k.

Let p be the characteristic exponent of the residue field k. (In other words, when
k has positive characteristic, we take p to be the characteristic; when k has char-
acteristic 0, we take p = 1.)

Here is a new definition: a finite extension L/K is tamely ramified if e(L/K) is
prime to p. An algebraic extension is tamely ramified if every finite subextension is
tamely ramified. Note that in particular every unramified extension is tamely ram-
ified, so perhaps more accurate terminology would be “at worst tamely ramified”,
but the terminology we have given is standard. Note also that if char(k) = 0 then
every algebraic extension of K is tamely ramified.
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An extension L/K is totally tamely ramified, or TTR, if it is both totally
ramified and tamely ramified.

Both unramified and tamely ramified extensions are distinguished classes of field
extensions in the sense of Lang, as we now explain. A class of field extensions
C = {L/K} is said to be distinguished if it satisfies the following two conditions:

(DE1) (Tower condition): if K/F and L/K are both in C, then L/F is in C.
(DE2) (Base change condition): suppose E,F,K are subfields of a common field,
and F ⊂ K, F ⊂ E and K/F ∈ C. Then EK/E ∈ C.

Exercise 4.1: Show that from (DE1) and (DE2) we have the following formal con-
sequence:

(DE3) Suppose K, L1, L2 are subfields of a common field, with K contained in
both L1 and L2 and that L1/K, L2/K ∈ C. Then L1L2/K ∈ C.

Examples: finite extensions; separable extensions; purely inseparable extensions;
finitely generated extensions; purely transcendental extensions.

Important non-examples: normal extensions, Galois extensions: they satisfy (DE2)
but not (DE1).

Now we state some of the main results we will prove later in this chapter.

Theorem 1. Let K be a CDVF with perfect residue field k. Inside the class of all
algebraic extensions of K, we have
a) The class of unramified extensions is a distinguished class.
b) The class of tamely ramified extensions is a distinguished class.

Note that the tower property of unramified and tamely ramified extensions follows
directly from the definition, since ramification indices multiply in towers. The base
change property is less obvious, and for this we will need more explicit information
about the structure of unramified and tamely ramified extensions, coming up soon!

Example: Totally ramified and totally tamely ramified extensions need not form
a distinguished class. For instance, let K = Q((x)), let n ≥ 3, and consider the
Eisenstein polynomial f(t) = tn − x. The extension L = K[t]/(f) is totally tamely
ramified. It is (of course) separable, but it is not normal: rather, the normal closure
is M = K(x

1
n , ζn), which contains the nontrivial unramified extension K(ζn)/K.

Because the unramified extensions form a distinguished class, there is a unique
maximal unramified extension – namely, the compositum of all finite degree to-
tally unramified extensions, Kunr. The residue field of Kunr is k. The extension
Ksep/Kunr is (necessarily) Galois and totally ramified. The extension Kunr/K is
also Galois. Moreover, we have a short exact sequence of Galois groups

1 → gKunr → gK
ρ→ Gal(k/k) → 1.
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The map ρ is defined as follows: since every element σ ∈ gK is continuous, it pre-
serves the valuation ring R and also the maximal ideal m and therefore induces
an automorphism ρ(σ) of R/m. This short exact sequence follows from passage to
the limit of the special case of the inertia group / decomposition group / residual
extension short exact sequence that we get from a finite Galois extension S/R of
Dedekind domains and primes P|p. See e.g. XXXX for details.

Similarly, because the tamely ramified extensions form a distinguished class, there
is a unique maximal tamely ramified extension, Ktame of K, which is Galois over
K. This gives rise to a short exact sequence of Galois groups

1 → Gal(Ktame/Kunr) → Gal(Ktame/K) → Gal(Kunr/K) = gK → 1.

In fact, the group Gal(Ktame/Kunr) is the easiest to understand.

Theorem 2. We have Gal(Ktame/Kunr) ∼=
∏

` 6=p Z`.

This will also follow from the structure theory of tamely ramified extensions.

An extension is called wildly ramified if it is not tamely ramified. The remaining
piece of the Galois group Gal(Ksep/Ktame) describes the “purely wildly ramified”
extensions. In general, this is the most complicated and scariest part of the absolute
Galois group of a CDVF, but there is one important fact which comes for free:

4.1. Serre’s Kummer-Dedekind Criterion.

Let R be a DVR with maximal ideal m and residue field k. Let n ∈ Z+ and
f ∈ R[t] a monic degree n polynomial. Let Sf = R[t]/(f). (We shall try to re-
serve t for an indeterminate and write t for the image of t in Sf .) Then Sf is a
one-dimensional semi-local ring, and the determination of its maximal ideals is a
variant on the Kummer-Dedekind criterion from classical number theory.

Proposition 3. (Serre) Let Sf = Sf/mSf = R[t]/(m, f) = k[t]/(f). Factor f over
k[t] as f =

∏g
i=1 f

ei

i . Lift each fi to a monic polynomial fi ∈ R[t]. Put mi = 〈m, fi〉.
Then the mi’s are the distinct maximal ideals of Sf , and Sf/mi

∼= k[t]/(gi).

Proof. Serre, Local Fields, p. 18. (To be added to these notes shortly. �

4.2. Unramified extensions.

Let us come at things from a slightly different perspective. Suppose L/K is any
finite extension. We know it induces a residue extension l/k. Since we are assuming
k is perfect, l/k is finite separable, and may therefore be written as l = k[t]/f for
a monic irreducible f . Now lift f to a monic polynomial f ∈ R[t]. f is certainly
irreducible in R[t]; by Gauss’s Lemma it is also irreducible in K[t]. Therefore we
may form an extension L′ = K[t]/(f). It follows from Hensel’s Lemma that L′ is
a subextension of L/K. What we would like to show is that the residual extension
l′/k is simply l/k: it follows that L′ is unramified and is the maximal unramified
subextension of L/K. The following consequence of Serre’s Lemma gives this and
a bit more.

Proposition 4. With the same hypotheses as in Serre’s Lemma, assume f is ir-
reducible, and put L = K[t]/(f), so L is a field extension. Then Sf is the integral
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closure S of R in L. It has maximal ideal mS and residual extension k[t]/(f). In
particular, L/K is unramified.

Proof. By Serre’s Lemma, Sf is local with maximal ideal mSf and residue field
k[t]/f . Moreover, let π be a generator for m. Then the image of π in Sf generates
mSf and is not nilpotent. It follows that Sf is a DVR. In particular, Sf is an
integrally closed integral extension of R with fraction field L, hence it is the integral
closure S of R in L. The rest follows from Serre’s Lemma. �

Conversely, to every finite extension l = k[t]/(f) of k, we may lift to a monic
f ∈ R[t] and then the previous proposition shows that L = K[t]/(f)/K is unram-
ified with residual extension l/k. Thus we get a bijective correspondence between
unramified extensions of K and algebraic extensions of k.

Note though that we established a little more than this: we get that if L/K is
unramified, then S is monogenic as an R-module. In fact we did not use the com-
pleteness here, because the existence of a unique prime of S lying over m follows
from [l : k] = [L : K], so this holds for any unramified extension of a DVF.

Corollary 5. The unramified extensions of a CDVF form a distinguished class.

Proof. As mentioned above, it is immediate that if M/L and L/K are unramified,
so is M/K. Conversely, suppose K is a CDVF field, L/K is unramified and E/K
is any algebraic extension. Then we must show that LE/E is unramified. By the
classificaiton of unramified extensions, an algebraic extension is unramified iff it is
generated by the lifts to the valuation ring of roots of separable polynomials over k.
Certainly this property is preserved by base change, so the proof is complete. �

4.3. Totally ramified extensions and Eisenstein’s Criterion.

Proposition 6. Let R be a DVR with maximal ideal m and residue field k. f =
tn +an−1 + . . .+a1t+a0 ∈ R[t], ai ∈ m, a0 6∈ m2. Then Sf is a DVR with maximal
ideal generated by the image of t and with residue field k. Thus, if L is the fraction
field of Sf , then L/K is totally ramified.

Proof. Upon reducing modulo m, we have f = tn. By Serre’s Lemma, Sf is a
local ring with maximal ideal 〈m, t rangle. Moreover, the hypotheses give us that
a0 is a uniformizer of R. Let us write t for the image of t in the quotient ring
Sf = R[t]/(f). Then we have

−a0 = t
n + an−1t

n−1 + . . . + a1t,

so a0 ∈ (t). Therefore 〈m, t〉 = 〈a0, t〉 = 〈t〉. That is, Sf is a local ring with a
principal maximal ideal. Since a0 is not nilpotent, neither is t, so Sf is a DVR. The
rest follows immediately. �

As above in the unramified case, we deduce:

Corollary 7. An Eisenstein polynomial f(t) is irreducible in K[t], and if L :=
K[t]/(f), Sf = S, the integral closure of R in L.

Conversely:
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Theorem 8. Let R be a DVR with fraction field K, L/K a degree n field extension,
S the integral closure of R in L. Suppose S is a DVR and n = e(L/K) = [L : K].
Let π be a uniformizer of S, and let f(t) be the characteristic polynomial of π over
K (also the minimal polynomial, since f is necessarily irreducible). Then f is an
Eisenstein polynoimal and the homomorphism R[t] → S mapping t 7→ π induces an
isomorphism Sf

∼→ S.

Proof. Simple integrality considerations show that f ∈ R[t]. Let us write

f = antn + an−1t
n−1 + . . . + a1t + a0, ai, an = 1 ∈ R.

(The reason for writing out an when it is equal to 1 will become clear shortly.)
Evaluating at π, we get

anπn + . . . + a0 = 0.

Let w be the normalized discrete valuation assocated to S, i.e., such that w(π) = 1.
Then because of total ramification, we have w(a) ≡ 0 (mod n) for all a ∈ R.

Put r = inf0≤i≤n w(aiπ
n−i). By the Domination Principle, we must have a tie:

i.e., there necessarily exist i < j such that

r = w(aiπ
n−i) = w(ai) + n− i = w(ajπ

n−j) = w(aj) + n− j,

so that j − i ≡ 0 (mod n). But this forces i = 0, j = n, r = n, w(a0) = n and
w(ai) = n− i for all i ≥ 1, so indeed f is Eisenstein. �

4.4. Tamely ramified extensions.

Theorem 9. Let L/K be totally tamely ramified, with [L : K] = e(L/K) = e. Then
there exists a uniformizer π of K and a uniformizer Π of L such that Πe = π. In
particular, L = K[t]/(te − π).

Proof. Lang, Algebraic Number Theory, pp. 52-53. To be added to these notes
shortly. �

Corollary 10. The tamely ramified extensions of a CDVF form a distinguished
class.

Proof. Since both unramified extensions and totally tamely ramified extensions
have the tower property, so do tamely ramified extensions. It remains to see that
the base change of a tamely ramified extension is tamely ramified. Again, by
splitting a tamely ramified extension into an unramified extension followed by a
totally tamely ramified extension, it suffices to show that the base change of a
totally tamely ramified extension is tamely ramified. In view of Theorem 1, we
must show that if E/K is any algebraic extension and π is any uniformizer of
K, then for any e prime to the residue characteristic p (which we may assume to
be positive, otherwise there is nothing to show), the extension E(π

1
e )/E is tamely

ramified. Here we need to be a bit careful: by π
1
e we mean any root of the separable

polynomial te−π in K. In fact it is easier (and sufficient!) to see that the extension
E(π

1
e , ζe)/E is tamely ramified, for this is a Galois extension, namely the splitting

field of te−π. As we have seen, adjoining the eth roots of unity gives an unramified
extension, and then once we have the eth roots of unity in the ground field, Kummer
theory applies to show that [E(π

1
e , ζe) : E(ζe)] is the order of π in E×/E×e, hence

divisible by e and therefore prime to p. �
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Theorem 11. Suppose that K is a Henselian DVF with algebraically closed
residue field k of characteristic exponent p. Then there exists, for each positive
integer e prime to p, a unique degree e tamely ramified extension Le/K, obtained
by taking the eth root of any uniformizing element of K. Moreover, Ktame =

⋃
e Le

and Gal(Ktame/K) ∼=
∏

` 6=p Z`.

Proof. Our assumption k = k implies that K contains all roots of unity of order
prime to p and also that all extensions are totally ramified, so any tamely ramified
extension is totally tamely ramified. Thus Theorem XX applies to show that every
degree e tamely ramified extension L/K is of the form K[π

1
e ] for some uniformizer

π of K. Conversely, for any uniformizer π we certainly do get a degree e (hence
tamely ramified) extension in this way. So what we wish to show is that for any
two uniformizers π and π′ we have K[π

1
e ] = K[π′

1
e ]. By basic Kummer theory,

this occurs iff π ∼= π′( mod K×e). However, since k is algebraically closed, every
element of k× is an eth power. The usual Hensel’s Lemma argument now shows
that every unit in the valuation ring of K is an eth power, in particular π/π′ is an
eth power. Now let Le = K[π

1
e ] be the unique degree e extension of K. Again by

basic Kummer theory, we have Gal(Le/K) ∼= Z/eZ. If e | e′ then we have natural
surjections Gal(Le′/K) → Gal(Le/K), and one easily checks that the following
diagram commutes,

Gal(Le′/K) ∼→ Z/e′Z
Gal(Le/K) ∼→ Z/eZ,

where the second vertical map is the usual quotient. It follows that Gal(Ktame/K) ∼=
lim
←−

Z/eZ =
∏

` 6=p Z`. �

Corollary 12. Supose that K is a Henselian DVF with perfect residue field k
of characteristic exponent p. Then there exists, for each positive integer e prime
to p, a unique degree e tamely ramified extension Le/Kunr, obtained by taking
the eth root of any uniformizing element of Kunr. Moreover,Ktame =

⋃
e Le and

Gal(Ktame/Kunr) ∼=
∏

` 6=p Z`.

Exercise X.X: Prove Corollary X.X. (This is just a check on your understanding of
unramified extensions.)

4.5. Wildly ramified extensions.

Theorem 13. The wild ramification group Gal(Ksep/Ktame) is a pro-p-group.

Indeed, every finite quotient is purely wildly ramified, therefore has p-power order.

4.6. More on the PGM Filtration.

To summarize, let K be a Henselian, discretely valued field. Then we have split up
the Galois extension Ksep/K into three pieces by introducing Kunr/K, the max-
imal unramified extension and Ktame/Kunr, the maximal totally tamely ramified
extension. Corresponding to the tower Ksep/Ktame/Kunr/K we get a filtration
by normal subgroups

1 ⊂ Gal(Ksep/Ktame) ⊂ Gal(Ksep/Kunr) →⊂ Gal(Ksep/K).

There are useful things to say about each of the successive quotients of this filtration.
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The bottom piece of the filtration is Gal(Kunr/K). As we showed in §X.X, re-
duction modulo the maximal ideal gives a canonical isomorphism from this group
to the absolute Galois group gk = Gal(ksep/k) of the residue field k. In par-
ticular, if k is finite, then via the Frobenius automorphism we have canonically
Gal(Kunr/K) = Ẑ, a very well understood group.

The middle piece of the filtration is Gal(Ktame/Kunr), which is the maximal tamely
ramified extension of Kunr. As we discussed, we have a noncanonical isomorphism
Gal(Ktame/Kunr) ∼=

∏
` 6=p Z`.

The top piece Gal(Ksep/Ktame) is trivial if char(k) = 0 and is an infinite pro-
p-group if p > 0: indeed for any uniformizer π of K and all n ∈ Z+, the polynomial
tp

n − π is Eisenstein and hence the corresponding extension has ramification index
pn, so the polynomial remains irreducible over Ktame.

We list some immediate consequences of this analysis of the filtration.

Theorem 14. The absolute Galois group gK is pro-solvable iff the absolute Galois
group gk of the residue field is pro-solvable. In particular, this occurs when the
residue field k is finite.

Theorem 15. Let K = C((t)). Then the algebraic closure of K is the Puiseux
series field

⋃
n∈Z+ K(t

1
n ) and gK

∼= Ẑ.

Proof. Indeed, since the residue field is algebraically closed, Kunr = K. Moreover,
since the residue characteristic is zero, there are no wildly ramified extensions:
Ksep = K = Ktame. Therefore Gal(K/K) = Gal(Ktame/Kunr) =

∏
` Z` = Ẑ. �

Now let us go a little deeper and determine the action of gk on
∏

` 6=p Z`. First we
recall the general procedure for obtaining such an action: let A be a commutative
normal subgroup of a group G, with quotient Q:

1 → A → G
q→ H → 1.

Then we can define a homomorphism ρ : H → Aut(A) as follows: take h ∈ H, lift
to any h̃ in G, and define ρ(h)(a) = h̃ah̃−1. First note that the given element maps
under the quotient map q to hq(a)h−1 = h · 1 · h−1 = 1, so indeed ρ(h)(a) ∈ A.
Second note that it is well-defined indepedent of the choice of lift h̃: indeed, any
other lift would differ by an element of A, and since A is abelian, conjugation by
an element of A is trivial.

Now we identify the gk action on
∏

` 6=p Z`. First we recall that for any n prime
to p, the reduction map identifies the nth roots of unity in Kunr with the nth
roots of unity in ksep, of which there will be precisely n (since n is prime to p). In
other words, the abelian groups µn(Kunr) and µn(ksep) are isomorphic as Galois
modules. For any ` 6= p, let Z`(1) = limn→∞ µ`n(Kunr). As an abelian group, this
is isomorphic to Z`, but it has a generally nontrivial Gal(Kunr/K) = gk-module
structure. We may also form the Galois module

∏
` 6=p Z` which is the inverse limit

over all finite prime to p roots of unity.

We pause for some important terminology. For any field K of characteristic differ-
ent from p, the Galois action on the inverse limit of `-power roots of unity gives a
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homomorphism
gK → Aut(Z`) ∼= Z×` .

This homomorphism is called the (`-adic) cyclotomic character and often de-
noted χ`. It is the first nontrivial example of a Galois representation. When K has
characteristic 0, it is traditional to compile all the `-adic characters together to get
one representation

χ : gK → Aut(
∏

`

Z`) = Aut(Ẑ) = Ẑ×,

again called the cyclotomic character. A more down to earth description of this
character is as follows: for any n ∈ Z+, its image in (Z/nZ)× may be calculated by
choosing a primitive nth root of unity ζn and writing

σ(ζn) = ζχ(σ)
n .

Theorem 16. In the extension

1 → Gal(Ktame/Kunr) → Gal(Ktame/K) → gk → 1,

the action of gk on Gal(Ktame/Kunr) ∼=
∏

` 6=p Z` is precisely as the prime to p

cyclotomic character. We indicate this by writing Gal(Ktame/Ksep) =
∏

` 6=p Z`(1).
Moreover, this extension splits (noncanonically) as a semidirect product:

Ktame =
∏
` 6=p

Z`(1) oχ gk.

Exercise: Prove Theorem X.X. (Hint for the splitting:1 choose a uniformizer π and
a compatible system of eth roots of π.)

Here is a not quite standard application of these ideas.

Theorem 17. Let K = C((t1))((t2)). Then gK
∼= Ẑ× Ẑ.

Proof. Since the residue characteristic is 0, we have Ksep = Ktame hence a short
exact sequence

1 →
∏

`

Z`(1) → gK → Ẑ → 1.

By Corollary X.X, the sequence splits and gK = ẐnẐ. But moreover the semidirect
product is given by a homomorphism ρ : Ẑ → Aut(Ẑ) which is nothing else than
the cyclotomic character on the Galois group of the residue field C((t1)). But the
residue field contains C and hence all roots of unity, and therefore the cyclotomic
character is trivial, ρ is trivial, and the product is direct. �

Remark: An easy induction argument gives that the absolute Galois group of an
iterated Laurent series field in n variables over C (or any algebraically closed field
of characteristic 0) is isomorphic to Ẑn.

Corollary 18. When K = Qp, the Galois group Gal(Ktame/K is isomorphic to
the profinite completion of the discrete group

T = 〈σ, τ | ϕ, τ | ϕτϕ−1 = τp〉.

Exercise: Prove Corollary X.X. (Suggestion: c.f. my notes on Local Fields.)

1Thanks to Brian Conrad.
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Corollary 19. Suppose that gK
∼= Ẑ. Then the extension

1 → gKunr → gK → gk → 1

splits (noncanonically) as a semidirect product. Equivalently, there exists a (nonunique!)
extension L/K such that (i) L/K is totally ramified and (ii) Ksep/L is unramified.

Proof. This is the profinite analogue of the fact that a short exact sequence 1 →
A → G → Z → 1 splits, because to get a splitting we need a section ι : Z → G, and
since Z is a free group, there are no relations to satisfy: a section ι is determined
simply by choosing any lift of 1 ∈ Z to G. In the profinite case, we lift any
topological generator of Ẑ to get a map ι : Z → Gal(Ksep/K) and then ι extends
uniquely to a continuous homomorphism on Ẑ. We leave to the reader the task
of checking this carefully and also verifying that the splitting of the sequence is
equivalent to the existence of a totally ramified extension L/K such that Ksep/L
is unramified. �

Remark: More generally, a profinite group H for which any short exact sequence

1 → N → G → H → 1

of profinite groups splits as a semidirect product is called projective. A profinite
group is projective iff each of its Sylow p-subgroups are free pro-p-groups. In
particular, most profinite groups are not projective. So far as I know, in general
the short exact sequence

1 → gKunr → gK → gk → 1

need not split. It would be nice to know a specific example!

Exercise X.X (Requires more background): Suppose that K is a Henselian discrete
valuation field with residue field k, and assume that the short exact sequence

1 → gKunr → gK → gk → 1

splits, i.e., that there exists a totally ramified field extension L/K such that Ksep/L
is unramified.
a) (Serre-Tate) Let A/K be an abelian variety with potentially good reduction.
Show that there exists a totally ramified extension L/K such that A/L has good
reduction.
b) (Clark-Xarles) Deduce that there exists an injection A(K)[tors′] ↪→ A(k)[tors′],
where for an abelian group G, G[tors′] means the subgroup of elements of order
prime to the residue characteristic.


