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3. Residual degree and ramification index

Let (K, v) be a valued field, with valuation ring R and maximal ideal m. As with
any maximal ideal, the quotient ring R/m is a field, called the residue field of K
and denoted k. (Note that we have switched from k to K for our normed/valued
field so as to allow the introduction of the residue field.) We have a canonical sur-
jective map R → k called the reduction map.

Example: Suppose K is any field and v is the trivial (i.e., identically zero) val-
uation. Then R = K, m = 0, so k = K and the reduction map is an isomorphism.
Conversely, if the reduction map is injective, the valuation is trivial.

Example: Let ordp be the p-adic norm on Q. Then the valuation ring is the
local ring R of all rational numbers of the form a

b with b not divisible by p.
This is of course the localization of Z at the maximal ideal (p). It follows that
R/m ∼= Z/(p) ∼= Fp.

Example: Let k be a field and R = k[[t]] and K = k((t)). Then the maximal
ideal consists of all formal power series with 0 constant term, and it is easily seen
that R/m ∼= k in such a way that the composite map k ↪→ R → R/m ∼= k is the
identity. Thus in this case the residue field is also realized as a subfield of K.

Example: let k be a field, R = k[t], K = k(t). Let ordt be the valuation cor-
responding to the prime element (t). Then again the residue field is isomorphic to
R/(t) ∼= k. More generally:
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2 PETE L. CLARK

Proposition 1. Let R be a Dedekind domain with fraction field K. Let p be a
nonzero prime ideal of R, and let v = ordp be the p-adic valuation. Then the
residue field is naturally isomorphic to R/p.

Exercise 3.1: Prove Proposition 1.

Now let (L,w)/(K, v) be an extension of valued fields. Recall that this means
that we have a field homomorphism ι : K ↪→ L such that w ◦ ι = v. In such a
situation, ι induces an embedding of valuation rings R ↪→ S and of maximal ideals
mR ↪→ mS . We may therefore pass to the quotient and get a homomorphism

ι : k = R/mR ↪→ S/mS = l,

called the residual extension. The degree [l : k] is called the residual degree
and is also denoted f(L/K).

Exercise 3.2: Suppose that L/K is algebraic. Show that l/k is algebraic.

Again let (K, v) ↪→ (L,w) be a homomorphism of valued fields. Then we have
v(K) ⊂ w(L). We define the ramification index e(L/K) to be [w(L) : v(K)]. In
terms of the associated norms, we have e(L/K) = |L×|

|K×| .

Exercise 3.3: Suppose L/K is algebraic. Show w(L)/v(K) is a torsion group.

Example: Consider L = Qp(p
1
n ) with the unique valuation w extending the p-adic

valuation v on Qp. Of course v(Qp) = Z with uniformizing element p: v(p) = 1.
Thus

1 = w(p) = w((p
1
n )n) = nw(p

1
n ),

so that w(p
1
n ) = 1

n . It follows that e(L/Qp) ≥ n. In fact we have e(L/Qp) = n, a
consequence of the following:

Theorem 2. (Degree Ineqality (Preliminary Version)) Let (K, | |) ↪→ (L, | |) be an
extension of non-Archimedean normed fields, with [L : K] = n. Then

e(L/K)f(L/K) ≤ n.

Proof. As usual, we let (R,mR) be the valuation ring of (K, | |) and (S, mS) the
valuation ring of (L, | |). Let u1, . . . , uf1 be elements of S whose reductions modulo
mS are linearly independent over k = R/mR. (In particular, we have ui ∈ S× for all
i.) Thus given elements a1, . . . , afi

∈ R such that
∑

i aiui ∈ mS , we have ai ∈ mS

for all i. Let b1, . . . , be1 be elements of L× whose images in |L×|/|K×| are distinct.
It suffices to show that the e1f1 elements uibj of L are linearly independent over
K. Scaling by elements of K× does not disturb this conclusion, so we may assume
WLOG that bj ∈ mS for all j.
Step 1: Suppose that ai ∈ K. Then |

∑
i aiui| ∈ |K|.

Proof: Indeed, if
∑

i aiui 6= 0, then some ai 6= 0; by reordering we may assume
that 0 = |a1| ≥ |ai for all i. Then

|
∑

i

aiui| = |a1||
∑

i

a−1
1 aiui|.

Moreover |
∑

i a−1
i aiui| ≤ 1. If we had |

∑
i a−1

i aiui| < 1, then
∑

i a−1
i aiui ∈ mS ,

and since |a−1
1 ai| ≤ 1, a−1

1 ai ∈ R for all i. The relation
∑

i a−1
1 aiui ∈ mS contradicts
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the definition of the ui. Hence |
∑

i a−1
1 aiui| = 1, so |

∑
i aiu1| = |a1| ∈ |K|.

Step 2: Now suppose that there exist aij ∈ K such that
∑

i,j aijuibj = 0. If
there exists j such that

∑
i aijui 6= 0, then

∑
i,j aijuibj = 0 implies the existence

of distinct j, say j = 1 and j = 2, such that |
∑

i ai1uib1| = |
∑

i ai2uib2| 6= 0. Then∑
i ai1ui 6= 0 and

∑
i ai2ui 6= 0, so |

∑
i ai1ui|, |

∑
i ai2ui| ∈ |K×|. Then |b1||K×| =

|b2||K×|, contrary to the choice of the bj ’s. Thus the relation
∑

aijuibj = 0 implies∑
i aijui = 0 for all j. Scaling by a suitable nonzero element of F , we get relations of

the form
∑

i a′ijui = 0 with a′ij ∈ R, and unless all aij ’s are 0, we may assume that
one of them does not lie in mS , contradicting the definition of the ui’s. Therefore
the e1f1 elements uibj are linearly independent over K, qed. �

Must we have equality in Theorem 2? Of course not! Consider the familiar case in
which R is a Dedekind domain, K is its fraction field, L/K is a finite separable field
extension of degree n, S is the integral closure of R in L, and v = ordp is the valua-
tion associated to a nonzero prime ideal p of R. Then if pS = Pe1

1 · · · Peg
r , we have∑g

i=1 eifi = n. On the other hand, for any 1 ≤ i ≤ g, if we take wi to be the P〉-adic
valuation (renormalized so as to extend ordp), then we have e(L/K)f(L/K) = eifi.
So we cannot have equality when there is more than one prime of S lying over p.

By now it should be clear what to do: pass to the completions! For one thing, the
invariants e(L/K) and f(L/K) are “local” in the sense that they are unchanged
upon passage to the completion:

Proposition 3. Let (K, v) ↪→ (L,w) be a finite degree extension of valued fields,
with [L : K] = n. By functoriality of completion, we get a homomorphism (K̂, v̂) ↪→
(L̂, ŵ). Then:
a) [L̂ : K̂] ≤ n.
b) v(K) = v̂(K̂) and w(L) = ŵ(L̂) (completion does not change the value group).
c) The homomorphism of residue extensions k ↪→ k̂ induced by K ↪→ K̂ is an
isomorphism.
d) We have f(L/K) = f(L̂/K̂) and e(L/K) = e(L̂/K̂).

Exercise 3.4: Prove Proposition 3.

Theorem 4. (Fundamental Degree In/Equality) Let (K, v) be a nontrivial valued
field and L/K a field extension of degree n. Let w1, . . . , wg be the valuations on L
extending v on K. For each such i, we define ei(L/K) = e((L, wi)/(K, v)). Then:
a) We have

(1)
g∑

i=1

e(Li/K)f(Li/K) ≤ [L : K].

b) We have equality in (1) under the following hypotheses: v is discrete and S, the
integral closure of R in L, is finitely generated as an R-module.
c) In particular, if v is discrete and L/K is finite and separable, then equality
holds in (1).

Proof. a) Let L̂i be the completion of L with respect to wi, and let ni = [L̂i : K̂]. By
Theorem 2 and Propostion 3 we have, for all 1 ≤ i ≤ g, that eifi ≤ ni. On the other
hand, by Theorem 2.19 we have

∑
i ni = dimK̂

∏g
i=1 L̂i ≤ dimK̂ L⊗K K̂ = [L : K].

Thus
∑g

i=1 e(Li/K)f(Li/K) =
∑g

i=1 e(L̂i/K̂)f(L̂i/K̂) ≤
∑g

i=1 ni ≤ [L : K].
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b) Suppose that S is a finitely generated R-module. Since R and S are both
domains, certainly S is a torsionfree R-module. Then, since R is a DVR and hence
a PID, it follows from the structure theory of finitely generated modules over a PID
that S ∼= Rm for some m ∈ N . Since Kn ∼= L = S ⊗R K ∼= Km, we must have
m = n = [L : K]. Moreover S is a Dedekind domain [Clark-CA, §17]. Therefore
we may take p, the unique nonzero prime ideal of R, and factor the pushforward
into prime powers:

pS =
g∏

i=1

Pei
i .

Applying the Chinese Remainder Theorem, we get (R/p)-module isomorphisms

(R/p)n ∼= Rn/pRn ∼= S/pS = S/(
g∏

i=1

Pei
i ) ∼=

g∏
i=1

S/Pei
i .

Since p is a maximal ideal of R, R/p is a vector space, and we may equate R/p-
dimensions of both sides. Clearly dim(R/p)n = n. On the other hand, since
each Pi is a principal ideal (if it weren’t, no problem: since localization commutes
with passage to the quotient, we could make it so by passing the localization),
multiplication by the kth power of a uniformizer of Pi gives an S/Pi-isomorphism
from S/Pi to Pk

i /Pk+1
i . Therefore

dimR/p S/Pei
i = ei dimR/p S/Pi = eifi dimS/Pi

S/Pi = eifi,

and we conclude n =
∑g

i=1 eifi.
c) This follows from the following important result of commutative algebra. �

Theorem 5. (First Normalization Theorem) Let R be an integrally closed domain
with fraction field K, let L/K be a finite separable field extension, and let S be the
integral closure of R in S. Then S is finitely generated as an R-module.

Proof. (Serre) Let T : L × L → K be the trace form, i.e., T : (a, b) ∈ L2 7→
TrL/K(ab). This is a symmetric K-bilinear form on L. It is a basic field-theoretic
fact the trace form is nondegenerate iff L/K is separable (e.g. [Clark-FT, §8]).
Step 1: We have Tr(B) ⊂ A. Indeed, let x ∈ B. Then TrL/K(x) is the sum of
conjugates of x – i.e., other roots of the minimal polynomial of x over K – hence
is a sum of integral elements and thus integral. Thus TrL/K(x) is integral over R
and lies in K; since R is integrally closed, the conclusion follows.
Step 2: Let e1, . . . , en be a K-basis for L. By clearing denominators, we may assume
that each ei lies in S. Let V = 〈e1, . . . , en〉R, a free, rank n R-module. Using the
trace form, we define for each R-submodule M of L a “dual” submodule M∗:

M∗ = {x ∈ L | ∀m ∈ M,TrL/K(xm) ∈ R}.
Then we have a chain of R-module inclusions

V ⊂ B ⊂ B∗ ⊂ V ∗.

Let (e1, . . . , en) be the dual basis to (e1, . . . , en) under trace form, i.e., such that
T (ei, e

j) = δi,j (Kronecker delta). By the nondegeneracy of T , (e1, . . . , en) exists
uniquely and is a K-basis of L. Let W = 〈e1, . . . , en〉R. We claim that W = V ∗.
First, for any 1 ≤ i ≤ n and m1, . . . ,mn ∈ R, we have T (ei(m1e1 + . . . + mnen)) =∑n

j=1 mjT (eiej) ⊂ R, so ei ∈ V ∗ and thus W ⊂ V ∗. Conversely, since (e1, . . . , en)
is a K-basis for L, an element of V ∗ may be written uniquely as v = a1e

1+. . .+anen
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with ai ∈ K. But then for all i, ai = TrL/K(vei) ∈ R, so v ∈ W . It follows that V ∗

is a finitely generated R-module. Since R is Noetherian, its submodule B is also
finitely generated. �

We will not need them, but here are two further sufficient conditions for equality
in Theorem 4:

Theorem 6. Maintain the same setup as in Theorem 3.4. Suppose that either
K is complete and discretely valued or the residue field of K has characteristic 0.
Then equality holds in (1).

Proof. See O. Endler’s Valuation Theory. �

3.1. Hensel’s Lemma. We have already seen two incarnations of Hensel’s Lemma
in our proof of the existence of the extended norm in a finite dimensional extension
of a complete non-Archimedean field. In fact, our first proof of this result remains
incomplete (so to speak!) until we establish this form of Hensel’s Lemma.

In fact there are many, many results which go by the name Hensel’s Lemma,
both in valuation theory and in commutative algebra. In commutative algebra
one has the concept of a Henselian local ring, which is especially important in
the field of étale cohomology. We have no need of this concept here, so we will stick
to valuation-theoretic formulations of Hensel’s Lemma. From a valuation theoretic
framework, the most natural and intrinsic version of Hensel’s Lemma is indeed that
for any finite dimensional field extension L/K, the valuation v extends uniquely
to a valuation on L. Recall that we call this condition Henselian and then the
existence result referred to above can be succinctly restated as: complete valued
fields are Henselian.

The following is a rather detailed and careful formulation of various valuation the-
oretic forms of Hensel’s Lemma. It will be sufficient for our purposes for the rest
of the course (and, I hope, beyond).

Theorem 7. (Omnibus Hensel’s Lemma) Let (K, v) be a valued field with valua-
tion ring R and maximal ideal m.
a) The following conditions are equivalent:
(i) (Henselian): For every finite extension L/K, v extends uniquely to L.
(ii) (Hensel-Kurschak): A monic irreducible polynomial P (t) ∈ K[t] with constant
coefficient lying in R ring has all its coefficients lying in R.
(iii) (Newton’s Method) Let f ∈ R[t] be a polynomial. Suppose that there exists
α ∈ R such that v(f(α)) > 2v(f ′(α)). Then there exists β ∈ R such that f(β) = 0
and v(α− β) > v(f ′(α)).
(iv) (Lifting of factorizations) Suppose f ∈ R[t] is a primitive polynomial such that
f ≡ gh (mod )m with gcd(g, h) = 1. Then g and h lift to polynomials g, h ∈ R[t]
such that f = gh and deg(g) = deg(g).
(v) (Lifting of smooth points on varieties) Let k ≤ n be positive integers, and
let f1, . . . , fk ∈ R[t] = R[t1, . . . , tn] be polynomials. Suppose there exists x =
(x1, . . . , xn) ∈ R/m such that f1(x) = . . . = fk(x) = 0 and the derivative ma-
trix ( ∂fi

∂xj
) evluated at x has rank k. Then x lifts to a point x ∈ Rn such that

f1(x) = . . . = fk(x) = 0.
b) Each of the equivalent conditions of part a) holds when (K, v) is complete.
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Proof. . . . �

3.2. Squares in local fields.

Proposition 8. Let (K, v) be a discretely valued field. Then a choice of uniformiz-
ing element π ∈ K gives rise to an isomorphism of groups (K×, ·) ∼= (R×, ·)×(Z,+).

Proof. We have the short exact sequence

1 → R× → K× v→ Z → 0.

Because Z is a free – hence projective! – Z-module, the sequence splits. To choose
a splitting it is necessary and sufficient to lift the generator 1 ∈ Z to an element in
K×. This is precisely the choice of a uniformizing element. �

Thus for instance the group-theoretic study of K× is reduced to that of R×. In
these kind of considerations, it is traditional to change notation and terminology:
put U := R× and call U the unit group of K. (This is, strictly speaking, an
abuse of terminology, since the unit group of K should just be K×. However, it is
traditional and not very confusing. Anyway, by the previous result, the two groups
are very closely related!)

Proposition 9. Let p be an odd prime number, and let u ∈ Z be a quadratic
nonresidue modulo p. Then [Q×

p : Q×2
p ] = 4, and a set of coset representatives is

1, p, u, pu.

Exercise 3.5: Prove Proposition 9.

Proposition 10. We have [Q×
2 : Q×2

2 ] = 8. A set of coset representatives is
±1,±2,±5,±10.

Exercise 3.6: Prove Proposition 10.

Proposition 11. Let q be an odd prime power and let K = Fq((t)). Then [K× :
K×2] = 4. A set of coset representatives is 1, u, t, ut, where u ∈ F×q \ F×q .

Exercise 3.7: Prove Proposition 11.

Note that for for any field K, K×/K×2 is an elementary abelian 2-group, called
the group of square classes of K. In particular, it is a Z/2Z-vector space. Thus,
instead of listing all of its elements, it would be equivalent but more efficient to
give a basis. In the case of Qp with p odd, a basis is given by p, u. In the case of
Q2, a basis is given by −1, 2, 5.

Exercise 3.8: a) Let K be a Henselian discrete valuation field with residue field k
of characteristic different from 2. Show that dimF2 K×/K×2 = dimF2 k×/k×2 + 1.
b) Suppose further that K = k((t)). Let {bi}i∈I be an F2-basis for k×/k×2. Show
that an F2-basis for k((t))×/k((t))×2 is {bi} ∪ {t}.

Exercise 3.9: What can you say about the set of square classes in F2((t))?

3.3. Quadratic forms over local fields.

We begin with a very brief review of the notion of a quadratic form over a field
and some associated invariants. For more information, the reader may consult
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[Clark-QF] or the classic texts of Cassels [Cas] or Lam [Lam].

Let K be a field of characteristic different from 2 but otherwise arbitrary.1 A
quadratic form q over K is a polynomial q(x1, . . . , xn) =

∑
1≤i≤j≤n aijxixj , i.e.,

homogeneous of degree 2. (We say that n is the dimension of q.) We define the
Gram matrix Mq whose (i, i) entry is ai,i and whose (i, j) entry, for i 6= j, is aij

2

(note that we are using 2 ∈ K× here!). Then if we let x denote the column vector
(x1, . . . , xn), we have the identity

q(x1, . . . , xn) = xT Mqx.

We wish to regard two quadratic forms over K as “equivalent” if one can be obtained
from the other by an invertible linear change of variables. More explicitly, for any
P ∈
operatornameGLn(K), we define (P • q)(x) = q(Px). Here is one slightly tricky
point for beginners: for any vector x ∈ Kn, we have

(P · q)(x) = xT MP ·qx = (Px)T MqPx = xT PT MqPx,

and it follows that the matrix representative of P • q is PT MqP . In other words,
the induced relation on symmetric matrices is not similarity but the above relation,
classically called congruence of matrices.

Recall that any symmetric matrix M over the real numbers can be not only diago-
nalized but orthogonally diagonalized, i.e., there exists a matrix P with PPT = 1n

such that P−1MP is diagonal. By orthogonality of P , we have P−1MP = PT MP ,
so the result implies that any quadratic form over the real numbers can be diago-
nalized, i.e., after a linear change of variables is given in the diagonal form

〈a1, . . . , an〉 = a1x
2
1 + . . . + anx2

n.

One of the classical theorems of the subject is a generalization of this: over any
field K of characteristic different from 2 is diagonalizable.

Exercise 3.9.5: A very special and important quadratic form is qH(x1, x2) = x1x2,
the so-called hyperbolic plane.
a) Let K be any field of characteristic different from 2. Give an explicit change of
variables that diagonalizes qH.
b) Show by brute force that qH cannot be diagonalized over F2.
c) Show that qH cannot be diagonalized over any field of characteristic 2.

A quadratic form is said to be nondegenerate if any of its defining symmetric
matrices are invertible, and otherwise degenerate. It can be shown that any nonde-
generate quadratic form in n variables is GLn(K)-equivalent to a quadratic form in
fewer variables. Applying this observation repeatedly, we may view any degenerate
quadratic form simply as a strangely presented nondegenerate quadratic form in
fewer (possibly 0) variables, so it is harmless to restrict attention to nondegenerate
forms.

A quadratic form q is anisotropic if for all a = (a1, . . . , an) ∈ Kn, q(a) = 0

1The case of characteristic 2 comes up in at least one exercise, but only as an example of what
can go wrong!
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implies a = (0, . . . , 0). In other words, the quadratic hypersurface q(x) = 0 has
no K-rational points. A nondegenerate quadratic form which is not anisotropic is
called isotropic.

Let n ∈ Z+. A field K is said to have u-invariant n – written u(K) = n – if
every quadratic form over K in more than n variables is isotropic and there exists
at least one n-dimensional anisotropic quadratic form over K. If no such positive
integer exists, we say that u(K) = ∞.

Example: Over any field K, the quadratic form q(x) = x2 is anisotropic. Over
the complex numbers, any quadratic form in at least 2-variables is isotropic, so
u(C) = 1. Indeed this holds for any algebraically closed field. Moreover, we say
a field is quadratically closed if it admits no nontrivial quadratic extension –
equivalently, K× = K×2. Then:

Exercise 3.10: Let L/K be a degree n field extension. Let b1, . . . , bn be a K-
basis for L. Define a polynomial N(x) by NL/K(x1b1 + . . . + xnbn) (i.e., the norm
from L down to K).
a) Show that for all 0 6= x ∈ Kn, N(x) 6= 0.
b) Suppose n = 2. Show that the equivalence class of the quadratic form N(x) is
well-defined independent of the chosen basis of L/K.

Exercise 3.11: Let K be any field of characteristic different from 2. Show that
u(K) = 1 iff K is quadratically closed.

Example: For any n ∈ Z+, the quadratic form q(x) = x2
1 + . . . + x2

n is anisotropic
over R, since it is always strictly positive when evaluated at any nonzero vector.
Thus u(R) = ∞. The same holds for any formally real field. (However the con-
verse is not true, e.g. a rational function field in infinitely many indeterminates
over C has u-invariant ∞.)

Proposition 12. The u-invariant of any finite field is 2.

Proof. Since every finite field admits a quadratic extension, it follows from Exercise
3.10 that the u-invariant is at least 2. The fact that any quadratic form in at least
3-variables over a finite field has a nontrivial zero is a special case of the Chevalley-
Warning theorem. �

Lemma 13. Let K be a Henselian, discretely valued field with valuation ring R,
uniformizer π, and residue field k of characteristic different from 2. Let n ∈ Z+

and a1, . . . , an ∈ R×, and let 0 ≤ r ≤ n. Consider the quadratic forms

q1(x1, . . . , xr) = a1x
2
1 + . . . + arx

2
r

q2(xr+1, . . . , xn) = ar+1x
2
r+1 + . . . + anx2

n

q(x) = q1(x1, . . . , xr) + πq2(xr+1, . . . , xn).
Then q is isotropic over K iff at least one of q1, q2 is isotropic over K.

Proof. Clearly q2 is isotropic iff πq2 is isotropic (“isotropy is a similarity invariant”).
Just as clearly, if a subform of a quadratic form is isotropic, then so is the quadratic
form. Thus certainly the isotropy of either q1 or q2 implies the isotropy of q, so it
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suffices to show the converse: assume q is isotropic. Then by the usual rescaling
arguments there exists a primitive vector x such that q(x) = 0: that is, each
coordinate of x lies in R and at least one coordinate of x is not divisible by π.
Case 1: Suppose first that there exists 1 ≤ i ≤ r with xi 6= 0. Then reducing mod
p gives q1 ≡ 0 (mod p) and ∂q0

∂xi
= 2aixi 6= 0 (mod p), so by Hensel’s Lemma q1 is

isotropic.
Case 2: Then we have that p | xi for 1 ≤ i ≤ r, so q1(x1, . . . , xr) ≡ 0 (mod p)2.
Therefore reducing modulo p2 and dividing by p, we see that q1(xr+1, . . . , xn) ≡ 0
(mod p). Applying Hensel’s Lemma as in Case 1, we see q2 is isotropic over Qp. �

Theorem 14. Let K be a Henselian discretely valued field with residue field k. We
suppose that the characteristic of k is different from 2. Then

u(K) = 2u(k).

In particular, for an odd prime p, u(Qp) = 4.

Proof. Let q = q(x1, . . . , xn) be a nonsingular quadratic form over K with n >
2u(k). Then q is equivalent (after a linear change of variables) to a form q = q1+πq2

as in the statement of Lemma 13. By our hypothesis on n, at least one of q1, q2 has
more than u(k) variables, so the reduction modulo (π) is isotropic by assumption
and then the form itself is isotropic by Hensel’s Lemma. Thus u(K) ≤ 2u(k).

Conversely, if u(k) = r, let q(x1, . . . , xr) be an anisotropic form over k. We
may lift each coefficient of q to an element of R× and thus get a quadratic form
q(x1, . . . , xr). Now q itself is anisotropic over K: indeed, if not, there would exist
a primitive vector x such that q(x) = 0 and then reduction modulo (π) would
show that q is isotropic. It then follows from Lemma 13 that the quadratic form
q(x1, . . . , xn) + πq(xn+1, . . . , x2n) is isotropic over K. �

Example: Suppose that p ≡ 3 (mod 4). Then (−1
p ) = −1, so x2 + y2 is anisotropic

mod p. The above proof shows that x2
1 + x2

2 + px2
3 + px2

4 is anisotropic over Qp.

Exercise 3.12: Show that for every a ∈ N , there exists a field K with u(K) = 2a.
Exercise 3.13:
a) Show that the quadratic form q(x, y, z) = x2 + y2 + z2 is anistropic over Q2.
b)* For each odd prime p, find a, b, c ∈ Z such that q = ax2+by2+cz2 is anisotropic
over Qp.

Exercise 3.13.5: Show that u(Q2) = 4. (See e.g. [Lam] for one approach: this
is somewhat involved.)

3.4. Roots of unity in local fields.

For any field F , we denote by µ(F ) the torsion subgroup of F× – or, more col-
loquially, the roots of unity in F .

We are interested in the roots of unity of a valued field (K, v). Note that we
certainly have µ(K) ⊂ R×: all roots of unity have valuation 0. As usual, we can
say something in this level of generality, but to get definitive results we will restrict
to p-adic fields and/or Laurent series fields.

We define µ′(K) as follows: if the residue field k has characteristic 0, then µ′(K) =
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µ(K). However, if the residue field k has characteristic p > 0, then µ′(K) is, by
definition, the group of all roots of unity of K of order coprime to p. Note also that
µ′(k) = µ(k), since a field of characteristic p has no nontrivial p-power roots of unity.

This somewhat curious definition is justified by the following result.

Proposition 15. Let (K, v) be a Henselian valued field. Then the restriction of
the mod m reduction map to µ′(K) is an isomorphism of groups r′ : µ′(K) ∼→ µ(k).

Proof. As observed above, every root of unity of K lies in the valuation ring. More-
over, certainly the image of an element of finite order under a group homomorphism
has finite order, so there is no doubt that there is a homomorphism r : µ(K) → µ(k).
Note though that because – when char(k) = p > 0 – k has no p-power roots of unity,
the reduction map restricted to µ[p∞](K) is trivial, so we may as well restrict our
attention to the complementary subgroup µ′(K).
Let x ∈ µ(k) = µ′(k) have order n. Put P (t) = tn − 1; then P ′(x) = nxn−1 6= 0.
By Hensel’s Lemma, there exists x̃ ∈ K reducing to x and such that xn = 1. Since
x̃n = 1, the order of x̃ divides n; since q(x̃) = x, n divides the order of x̃, thus x̃
has exact order n. The surjectivity of r′ follows. But moreover, suppose that the
kernel of ρ′ is nontrivial. Then, being a nontrivial torsion group with no elements
of order p, the kernel contains an element of prime order ` 6= p, i.e., there exists a
primitive `th root of unity x̃ such that r(x̃) = 1 and therefore r(x̃k) = 1 for all k.
But by virtue of being a primitive `th root of unity, we have x̃`−1 + . . . + x̃ + 1 = 0
and reducing this equation modulo the maximal ideal gives ` = 0, a contradiction.
Therefore r′ is an isomorphism. �

In particular, this shows that the group of roots of unity in Qp of order prime to p is
isomorphic to (Z/pZ)×, hence cyclic of order p− 1. Next we wonder whether there
are any p-power roots of unity in Qp. If there are any such, there are primitive pth
roots of unity, so that the pth cyclotomic polynomial Φp(t) would have a root over
Qp. It is well-known from basic algebraic number theory that Φp(t) is irreducible
over Q, a textbook application of Eisenstein’s criterion. As we now explain, the
standard application of Eisenstein’s criterion in fact gives the irreducibility over Qp

as well. Recall:

Corollary 16. (Corollary to Gauss’s Lemma) Let R be a GCD-domain with frac-
tion field K, and let f ∈ R[t] be a polynomial.
a) The following are equivalent:
(i) f is irreducible in R[t].
(ii) f is primitive and irreducible in K[t].
b) The following are equivalent:
(i) f is reducible in K[t].
(ii) There exist g, h ∈ R[t] such that deg(g),deg(h) < deg(f) and f = gh.

Proof. See e.g. §11 of my notes on Commutative Algebra:
http://math.uga.edu/∼pete/integral.pdf. �

Theorem 17. (Schönemann-Eisenstein Criterion) Let R be a domain with fraction
field K, and let f(t) = adt

d + . . . + a1t + a0 ∈ R[t]. Suppose that there exists a
prime ideal p of R such that ad 6∈ p, ai ∈ p for all 0 ≤ i < d and a0 6∈ p2.
a) If f is primitive, then f is irreducible over R[t].
b) If R is a GCD-domain, then f is irreducible over K[t].
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Proof. a) Suppose to the contrary that f is primitive and reducible over R[t]: i.e.,
there exists a factorization f = gh with g(t) = bmtm + . . . + b1t + b0, h(t) =
cntm+. . .+c1t+c0, deg(g),deg(h) < deg(f) and bmcn 6= 0. Since a0 = b0c0 ∈ p\p2,
it follows that exactly one of b0, c0 lies in p: say it is c0 and not b0. Moreover, since
ad = bmcn 6∈ p, cn 6∈ p. Let k be the least index such that ck 6∈ p, so 0 < k ≤ n.
Then b0ck = ak − (b1ck−1 + . . .+ bkc0) ∈ p. Since p is prime, it follows that at least
one of b0, ck lies in p, a contradiction.
b) If R is a GCD-domain, and suppose for a contradiction that f is reducible
over K[t], then by Corollary 16b), we may write f = gh with g, h ∈ R[t] and
deg(g),deg(h) < deg(f). Then the proof of part a) goes through to give a contra-
diction. �

Remark: For our purposes we wish to apply this to the valuation ring R attached
to a (as always rank one, unless otherwise specified) valuation v on the fraction
field K, with p the unique maximal ideal of R. Notice that in this case we may
pass to the completion K̂ and its valuation ring R̂ without disturbing any of the
hypotheses, so we get an automatic strengthening of Eisenstein’s Criterion: f is
irreducible not merely over K[t] but also over K̂[t].

Remark: In particular, if (R, v) is a DVR with uniformizing element π, then Eisen-
stein’s criterion applied to Pn(t) = tn − π gives rise to a totally ramified extension
of degree n for all n > 1, as we have seen before.

Exercise 3.14: Let (K, v) be a nontrivial valued field, with valuation ring R and
maximal ideal m. Show that the following are equivalent:
(i) m2 ( m.
(ii)

⋂∞
i=1 mi = {0}.

(iii) R is Noetherian.
(iv) Γ is discrete.

In particular, for a (rank one) valuation ring, Eisenstein’s criterion can only be
successfully applied if the valuation is discrete.

Exercise 3.15*: Give an example of a non-Noetherian valuation ring R (neces-
sarily of higher rank) to which Eisenstein’s Criterion can be nontrivially applied.

Coming back down to earth, we apply the Eisenstein Criterion to Qp and f(t) =
Φp(t + 1). We have

f(t) =
(t + 1)p − 1
t + 1− 1

= tp−1 +
(

p

1

)
tp−2 + . . . +

(
p

p− 2

)
t + p.

Applying the Eisenstein criterion to Zp and p = (p), we conclude that f(t) is
irreducible in Qp[t] hence also Φp(t) = f(t − 1) is irreducible in Qp. Therefore Qp

does not contain a primitive pth root of unity. In conclusion:

Theorem 18. For any prime p, µ(Qp) ∼= (Z/pZ)×.

This raises a question: how did we know that Eisenstein’s Criterion would apply
here, after a change of variables? We will see later on that in the case of (K, v) a
discretely valued field, Eisenstein’s criterion can be applied (possibly to a different
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polynomial which generates the same field extension) iff L/K is totally ramified at v.

Exercise 3.16: Let p be any prime number and r any positive integer. Let Φpr (t) ∈
Q[t] be the degree pr cyclotomic polynomial. Show that Φpr (t) is irreducible over
Qp.

3.5. Krasner’s Lemma and Applications.

Theorem 19. (Krasner’s Lemma) Let (K, | |) be a Henselian non-Archimedean
normed field with (uniquely normed) algebraic closure K. Let α, β ∈ K. Write out
the distinct K-conjugates of α as α = α1, . . . , αn. Suppose that for all i > 1 we
have

|α− β| < |α− αi|.
a) Then K(α, β)/K(β) is purely inseparable.
b) It follows that if α is separable over K, K(α) ⊂ K(β).

Proof. Part b) immediately follows from part a). As for part a), it suffices to show
the following: for every K(β)-algebra embedding τ of K(α, β) into an algebraic
closure K, τ(α) = α. As we have seen before, the uniqueness of extended norms
implies that we have, for all i > 1,

|τ(α)− β| = |τ(α)− τ(β)| = |α− β| < |α− αi|
and hence

|τ(α)− α| ≤ max |τ(α)− β|, |β − α| < |α− αi|.
Since this holds for all i > 1 and τ(α) is certainly a conjugate of α, we must have
τ(α) = α, qed. �

Exercise 3.17: Let (K, ||) be an algebraically closed normed field. a) Let n ∈ Z+.
Let D(n) be the set of all degree n polynomials with coefficients in K which have
n distinct roots, viewed as a subset of Kn+1 in the evident way. Show that D(n)
is open in (the product topology on) Kn+1.
a’) Suppose that K is any algebraically closed field. Show that D(n) is open in
Kn+1 in the Zariski topology.
b) Show that the roots are continuous functions of the coefficients in the following
sense: for all ε > 0, there exists δ > 0 such that: for any two polynomials f(t) =∑

n antn and g(t) =
∑

n bntn with |ai − bi| < delta for all i, there exist orderings
of the roots α1, ..., αn of f and β1, ..., βn of g such that |αi − βi| < ε for all i.
c) Suppose that you restrict to degree n polynomials in D(n). State and prove a
version of part b) which does not involve permuting the roots. (Suggestion: consider
disjoint open disks about each of the roots and argue that under sufficiently small
changes of the coefficients, the roots stay inside the disjoint disks.)

Corollary 20. (Krasner’s Corollary) Let f(t) = antn + . . . + a1t + a0 be an ir-
reducible separable degree n polynomial, and let α be one of its roots in a fixed
algebraic closure K. Then there exists δ > 0 such that: for all b0, . . . , bn ∈ K with
|ai − bi| < δ for all 0 ≤ i ≤ n, the polynomial g(t) := bntn + . . . + b1t + b0 is
irreducible, separable, and has a root β such that K(α) = K(β).

Proof. We apply Exercise 3.17 on continuity of roots of a polynomial with coef-
ficients in a normed field in terms of the coefficients: for any ε > 0, by taking δ
sufficiently small we can ensure that the polynomial g is also separable and that
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its roots β1, . . . , βn, in some ordering, each lie within ε of the corresponding roots
α1, . . . , αn of f . Taking ε = mini>1 |α1 − αi| and applying part b) of Krasner’s
Lemma to β1, we get that K(α1) ⊂ K(β1). However, since β1 satisfies g, a polyno-
mial of degree n, we have

n ≥ [K(β1) : K] ≥ [K(α1) : K] = n.

Thus [K(β1) : K] = [K(α1) : K] = n, so g(t) is irreducible and K(α1) = K(β1). �

Corollary 21. Let (K, | |) be a non-Archimedean normed field with completion K̂,
and let L/K̂ be a finite separable field extension of degree d. Then there exists a
degree d separable field extension L/K such that L = LK̂.

Proof. By the Primitive Element Corollary, L ∼= K̂[t]/f(t), where f(t) ∈ K̂[t] is
monic, separable of degree d. Since K is dense in K̂, there exists a degree d polyno-
mial g(t) ∈ K[t] whose coefficients are all δ-close to the corresponding coefficients
of f(t), for any preassigned δ > 0. By Krasner’s Corollary, for sufficiently small δ,
g(t) is irreducible separable of degree d and there exist roots α1 of f , β1 of g such
that K̂(α1) = K̂(β1). It follows that L = LK̂. �

Corollary 22. Suppose that (K, | |) is a separably closed normed field. Then its
completion (K̂, | |) remains separably closed. In particular, defining Cp to be the
completion of the algebraic closure of Qp, Cp is complete and algebraically closed.

Proof. This follows immediately from Corollary 21. �

Corollary 21 can be viewed as saying that any one inert local extension of a NA
normed field may be realized as the completion of a global extension. This result
can be generalized in several ways: we can take work with several (but finitely
many!) local extensions at once, each local extension need not be a field but only
a separable algebra, and finally Archimedean places can be admitted. We get the
following result, which has been of significant use to me in my own work (c.f. the
proof of Theorem 6 in [Clark09]).

Theorem 23. (Finite Local-Global Compatibility for Extensions) Let K be a field,
and let | |1, . . . , | |g be inequivalent norms on K. For each 1 ≤ i ≤ g, let K̂i be
the completion of K with respect to | |i. Fix a positive integer d, and for each
1 ≤ i ≤ d, let Ai be a degree d separable K̂i-algebra (i.e., a finite product of finite
degree separable field extensions of K, with dimK̂i

Ai = d. Then there exists a
separable extension L/K of degree d and, for all 1 ≤ i ≤ g, K̂i-algebra isomorphisms

Φi : L⊗K K̂i
∼→ Ai.

Exercise 3.18: Prove Theorem 23.

3.6. Multi-complete and multi-Henselian fields.

Define a field K to be multi-complete if it is complete with respect to (at least)
two inequivalent nontrivial norms. This seems like a strong property, and we seek
to classify multi-complete fields.

Example: the complex field C is multi-complete. On the one hand C is com-
plete with respect to the standard Archimedean norm. On the other hand, for any
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prime p, let Cp be the completion of the algebraic closure of Qp with the p-adic
norm. By Corollary 22, Cp is complete and algebraically closed. It is easy to see
that #Cp = #C. By pure field theory – e.g. [Clark-FT, Cor. 78] – it follows that
we have an isomorphism of abstract fields C ∼= Cp.

Exercise 3.19: What is the cardinality of the set of pairwise inequivalent norms
on C with respect to which C is complete?

Exercise 3.20: Suppose that K is a field which is complete with respect to an
Archimedean norm || ||1 and also an inequivalent norm || ||2. Show that K ∼= C.

Thus in our study of multi-complete fields we may, and shall, restrict to non-
Archimedean norms, or equivalently, to valuations.

Here is the main theorem for multi-complete fields.

Theorem 24. (F.K. Schmidt [Sch]) A multi-complete field is algebraically closed.

From this we can deduce a classification result for multi-complete fields.

Corollary 25. (Schmidt) For a field K, the following are equivalent:
(i) K is multi-complete.
(ii) K is algebraically closed and complete with respect to a nontrivial valuation.
(iii) K is algebraically closed and (#K) = (#K)ℵ0 .

Proof. By Theorem 24, (i) =⇒ (ii). Recall from Exercise 2.30.5 that a field which
is complete with respect to a nontrivial norm satisfies #K = (#K)ℵ0 , so (ii) =⇒
(iii). Conversely, if K is algebraically closed and satisfies the cardinality condition,
then Kv is complete, algebraically closed (c.f. Proposition 3.22 below) and of
uncountably cardinality equal to that of K, so Kv

∼= K. Thus (iii) ≡ (ii). Finally,
assume that K is algebraically closed and complete with respect to a nontrivial
valuation v. Let t ∈ K have negative valuation and which is transcendental over the
prime subfield of K. (If every transcendental element t had non-negative valuation,
then for any element of a of K, v(a) = v(t + a − t) ≥ min v(t + a,−t) ≥ 0, so
every element of K has non-negative valuation, and thus v is trivial.) By standard
field theory – c.f. e.g. the proof of [Clark-FT, Thm. 80], the automorphim group
of the algebraically closed field K acts transitively on the set of all transcendence
bases for K over its prime subfield. In particular, there exists an automorphism σ
such that σ(t) = 1

t , and such an automorphism is evidently discontinuous for the
valuation topology. Thus σ∗v : x 7→ v(σ(x)) is an inequivalent complete valuation,
i.e., K is multi-complete. �

It remains to prove Theorem 24. Rather than doing so now, we press on and
introduce a small variant which we claim is more natural and more penetrating.
Namely, we define a field K to be multi-Henselian if it is Henselian with respect
to (at least) two inequivalent nontrivial valuations. Here is the main theorem of
this section.

Theorem 26. (Kaplansky-Schilling [KS]) A multi-Henselian field is separably closed.

Proof. Let K be a field which is Henselian with respect to inequivalent, nontrivial
valuations v1 and v2. Let L/K be a finite separable field extension. By the primitive
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element theorem, we may write L = K[t]/(P1(t)), where P1 is an irreducible, monic,
separable polynomial, say of degree d. Our task is to show that d = 1.

We will make an approximation argument using weak approximation, Krasner’s
Lemma and (an especially simple case of) Hensel’s Lemma. Namely, by weak
approximation the diagonal image of K in Kv1 ×Kv2 is dense.

On the one hand, by Krasner’s Lemma, there exists ε > 0 such that any monic
polynomial Q ∈ Kv1 [t] each of whose coefficients is ε-close to the corresponding
coefficients of P is also irreducible of degree d.

On the other hand, let P2(t) = t(t+1)d−1. Then P2(t) is monic of degree d, and
its reduction modulo v2 is (of course) t(t + 1)d−1 ∈ kv2 [t]. We may therefore apply
Hensel’s Lemma to P2 to see that it has a root in K. Well, that’s silly – of course
it has a root: P2(0) = 0. But moreover, if Q(t) ∈ K[t] is any polynomial which is
sufficiently close to P2 such that the coefficients of P2−Q all have positive valuation,
then the reduction of Q modulo the maximal ideal is also equal to t(t + 1)d−1.
Therefore Hensel’s Lemma applies equally well to show that Q has a rational root.

The endgame is thus: by weak approximation, we may choose a monic degree d
polynomial Q which is, at the same time, sufficiently v1-adically close to P1 to be
irreducible and sufficiently v2-adically close to P2 so as to have a rational root. Of
course an irreducible polynomial with a rational root must have degree 1, qed. �

It is now a relatively easy matter to deduce Schimidt’s Theorem from the Kaplansky-
Schilling Theorem. What we need to show is that a field which is multi-complete
and separably closed is algebraically closed. But in fact we can prove a stronger
result, whose statement and proof are of independent interest.

Proposition 27. Let K be a field which is complete with respect to a nontrivial
extension and separably closed. Then K is algebraically closed.

Proof. It is enough to show that K is perfect, i.e., that for all a ∈ K, there exists
α ∈ K such that αp = a. So let a ∈ K×, and let α be the unique element of K
such that αp = a. Our task is to show that indeed α ∈ K.

For this, fix an element c ∈ K with v(c) > 0 and consider the sequence of
polynomials Pn(t) = tp − cnt − a. Evidently limn→∞ Pn(t) = tp − a and the only
root of tp − a in K is α. Therefore, by the continuity of the roots of a polynomial
as functions of the coefficients, if for each n we choose a root αn of Pn in K, then
necessarily αn → α. But each Pn is separable and K is separably closed, so each αn

lies in K. Moreover, since the sequence {αn}∞n=1 is convergent in K, it is Cauchy
in K, but K is assumed to be complete, so therefore limn→∞ αn = α lies in K. �

Exercise 3.21 (Kaplansky-Schilling [KS]) Deduce the following strengthening of
Schmidt’s theorem: Let v1 and v2 be inequivalent nontrivial valuations on a field
K. Suppose that K is complete with respect to v1 and Henselian with respect to
v2. Then K is algebraically closed of at least continuum cardinality.

Corollary 28. Let (K, || ||) be an algebraically closed normed field. Then the
completion of K is algebraically closed.

Exercise 3.22: Deduce Corollary 28 from Corollary 22 and Proposition 27.

Similarly, we may classify all multi-Henselian fields, and this is simpler in that
no conditions on the cardinality intervene.
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Proposition 29. Let K be a separably closed field, and let v be a valuation on K.
Then K is Henselian with respect to v.

Proof. By definition of Henselian, we must show that if L/K is a finite degree field
extension, then there is a unique valuation on L extending v. If L = Ln ⊃ Ln−1 ⊃
. . . ⊃ L0 = K is a tower of finite degree purely inseparable extensions, then if
every valuation vi on Li extends uniquely to a valuation on Li+1, then certainly
the valuation v = v0 on K extends uniquely to L. Therefore we may assume that
L/K is purely inseparable and primitive, i.e., generated by a single root of a purely
inseparable polynomial, i.e., L = K[t]/(P ), where P has only one distinct root in
an algebraic closure K of K.

Now recall Theorem 2.5: if (K, v) is a valued field and L/K is a finite field
extension, there is a bijective correspondence betweeen valuations on L extending
v and prime ideals in the Artinian Kv-algebra L ⊗K Kv. With our choice of L =
K[t]/(P (t), with P purely inseparable, we have L⊗K Kv

∼= Kv[t]/(P (t)). But since
P is purely inseparable, it has only one root in an algebraic closure, hence also in
any field extension. Therefore over Kv(t) we have a factorization P = Qe, where Q
is again irreducible, so L⊗K Kv

∼= Kv[t]/(Qe), which is a local algebra with unique
maximal ideal (Q). Therefore the extension of v to L is unique. �

Proposition 30. Let K be a separably closed field which is not the algebraic closure
of a finite field. Then K is multi-Henselian: indeed it is Henselian with respect to
infinitely many pairwise inequivalent distinct valuations.

Proof. By Proposition 27, K is Henselian with respect to all of its valuations. The
remainder is just a rehash of some already proved valuation theory: if K is an alge-
braic extension of a finite field, then it admits only the trivial valuation. Otherwise,
K admits at least one nontrivial valuation. Indeed, if K has characteristic 0 then
it contains Q and hence has p-adic valuations for all p, each of which extends, by
Theorem 2.1, to a valuation of K; this gives infinitely many inequivalent valuations.
Otherwise K has characteristic p > 0 and thus contains Fp(t), a field which has
infinitely many inequivalent valuations by Theorem 1.14. �

Remark: This is [KS, Theorem 2], except that the need to exclude the algebraic
closure of a finite field is overlooked there.

Exercise 3.23: Show that in fact any multi-Henselian field is Henselian for un-
countably many pairwise inequivalent valuations!

Exercise 3.24: Give an example of a field which is multi-Henselian but not multi-
complete.

Finally, we give an application of these results.

Theorem 31. (Continuity of Automorphisms) Let (K, v) be a field which is Henselian
for a nontrivial valuation v. Suppose that either
(i) K is not separably closed, or
(ii) K is complete with respect to v and is not algebraically closed.
Then every automorphism of K is continuous with respect to the valuation topology.

Proof. Let σ be an automorphism of K. By Exercise 2.31, σ is continuous with
respect to the valuation topology iff σ is an automorphism of the valued field (K, v),
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i.e., for all x ∈ K, we have σ∗v = v, where σ∗v is the valuation x 7→ v(σ(x)). It
is easy to see that since v is Henselian, so is σ∗v and that v is complete iff σ∗v is
complete (c.f. Exercise 2.32). Therefore if σ were not continuous with respect to
the valuation topology, then v and σ∗v would be inequivalent nontrivial valuations
on K, i.e., K is multi-Henselian. Thus by Kaplansky-Schilling, K is separably
closed. Similarly, if K is complete with respect to v, then it is multi-complete and
thus, by Schmidt’s theorem, algebraically closed, qed. �

This immediately implies the following result.

Corollary 32. Let K/Qp be a degree d field extension. Then # Aut(K) ≤ d. In
particular, Qp is rigid, i.e., has no nontrivial field automorphisms.

Note that a somewhat different proof of the rigidity of Qp was sketched in Exercise
2.33. In fact, from this special case Corollary 32 easily follows, but we wished to
bring this basic and important result more prominently to the reader’s attention.
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