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2.1. Introduction and Reorientation.

In this chapter we will study more explicitly the topology on a field induced by
a norm. Especially interesting from this perspective are the (nontrivially) normed
fields which are locally compact with respect to the norm topology.

But we have been studying normed fields for a little while now. Where are we
going? What problems are we trying to solve?

Problem 1: Local/Global Compatibility. Arguably the most interesting re-
sults in Chapter 1 were the complete classification of all norms on a global field
K, i.e., a finite extension of either Q (a number field) or Fq(t) for some prime power
q (a function field).

We interrupt for two remarks:

Remark 1: Often when dealing with function fields, we will say “Let K/Fq(t) be

Thanks to John Doyle and David Krumm for pointing out typos. Section 2.9 on Big Ostrowski
was written following lecture notes of David Krumm.
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a finite separable field extension”. It is not true that every finite field extension

of Fq(t) is separable: e.g. Fq(t
1
q )/Fq(t) is an inseparable field extension. However,

the following is true: if ι : Fq(t) ↪→ K is a finite degree field homomorphism –
don’t forget that this wordier description is the true state of affairs which is being
elided when we speak of “a field extension K/F” – then there is always another
finite degree field homomorphism ι′ : Fq(t) ↪→ K which makes K/ι′(Fq(t)) into a
separable field extension: e.g. [Eis, Cor. 16.18].

Remark 2: In the above passage we could of course have replaced Fq(t) by Fp(t).
But the idea here is that for an arbitrary prime power q, the rational function field
Fq(t) is still highly analogous to Q rather than to a more general number field. For
instance, if K is any number field, then at least one prime ramifies in the extension
of Dedekind domains ZK/Z. However, the extension Fq[t]/Fp[t] is everywhere un-
ramified. Moreover, Fq[t] is always a PID.1

For a global field K, we saw that there is always a Dedekind ring R with K as
its fraction field with “sufficiently large spectrum” in the sense that all but finitely
many valuations onK are just the p-adic valuations associated to the nonzero prime
ideals of R. This suggests – correctly!– that much of the arithmetic of K and R
can be expressed in terms of the valuations on K.

A homomorphism of normed fields ι : (K, | |) → (L, | |) is a field homo-
morphism ι such that for all x ∈ K, |x| = |ι(x)|. We say that the norm on L
extends the norm on K. When the normed is non-Archimedean, this has an en-
tirely equivalent expression in the language of valuations: a homomorphism of
valued fields ι : (K, v) → (L,w) is a field homomorphism ι : K ↪→ L such that for
all x ∈ K, v(x) = w(ι(x)). We say that w extends v or that w|K = v. (Later we
will abbreviate this further to w | v.)

Problem 2: The Extension Problem. Let (K, | |) be a normed field, and
let L/K be a field extension. In how many ways does v extend to a norm on L?

Theorem 1. Let (K, | |) be a normed field and L/K an extension field. If either
of the following holds, then there is a norm on L extending the given norm on K:
(i) L/K is algebraic.
(ii) (K, | |) is non-Archimedean.

Example: Let K = Q, | | = | |2 and L = R. Then there exists a norm on R which
extends the 2-adic norm on Q. This may seem like a bizarre and artifical example,
but it isn’t: this is the technical heart of the proof of a beautiful theorem of Paul
Monsky [Mon]: it is not possible to dissect a square into an odd number of triangles
such that all triangles have the same area. In fact, after 40 years of further work
on this and similar problems, to the best of my knowledge no proof of Monsky’s
theorem is known which does not use this valuation-theoretic fact.

Exercise 2.1: Let (K, | |) be an Archimedean norm.
a) Suppose that L/K is algebraic. Show that | | extends to a norm on L.

1Somewhat embarrassingly, the question of whether there exist infinitely many number fields
of class number one remains open!
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b) Give an example where L/K is transcendental and the norm on K does extend
to a norm on L.
c) Give an example where L/K is transcendental and the norm on K does not
extend to a norm on L.
Hint for all three parts: use the Big Ostrowski Theorem.

In view of Exercise 2.1, we could restrict our attention to non-Archimedean norms
and thus to valuations. Nevertheless it is interesting and useful to see that the
coming results hold equally well in the Archimedean and non-Archimedean cases.

Theorem 1 addresses the existence of an extended norm but not the number of
extensions. We have already seen examples to show that if L/K is transcendental,
the number of extensions of a norm on K to L may well be infinite. The same can
happen for algebraic extensions of infinite degree: e.g., as we will see later, for any
prime p, there are uncountably many extensions of the p-adic norm to Q.

Exercise 2.2T2: Let K be a field and {Ki}i∈I be a family of subfields of K such that:
(i) for all i, j ∈ I there exists k ∈ I such that Ki ∪Kj ⊂ Kk and (ii)

∪
i Ki = K.

(Thus the family of subfields is a directed set under set inclusion, whose direct limit
is simply K.) Suppose that for each i we have a norm | |i on Ki, compatibly in the
following sense: whenever Ki ⊂ Kj , | |j extends | |i. Show that there is a unique
norm | | on K extending each norm | | on Ki.

Exercise 2.3: Let (k, | |) be a non-Archimedean normed field. Let R = k[t] and
K = k(t). For P (t) = ant

n + . . . + a1t + a0 ∈ R, define the Gauss norm
|P | = maxi |ai|. Show that this is indeed a norm on k[t] and thus induces a norm
on the fraction field K = k(t) extending the given norm on k. Otherwise put, this
shows that every valuation on a field k extends to a valuation on k(t).

Exercise 2.4: Let (K, v) be a valued field, and let L/K be a purely transcendental
extension, i.e., the fraction field of a polynomial ring over K (in any number of in-
determinates, possibly infinite or uncountable). Use the previous Exercise to show
that v extends to a valuation on L. (Suggestion: this is a case where a transfinite
induction argument is very clean.)

Exercise 2.4 and basic field theory reduces Theorem 1 to the case of an algebraic
extension L/K. As we will see, this can be further reduced to the case of finite ex-
tensions. Moreover, when (K, v) is a valued field and L/K is a finite extension, we
wish not only to show that an extension w of v to L exists but to classify (in partic-
ular, to count!) all such extensions. We saw in Chapter 1 that this recovers one of
the core problems of algebraic number theory. Somewhat more generally, if v is dis-
crete, then the valuation ring R is a DVR – in particular a Dedekind domain – and
then its integral closure S in L is again a Dedekind domain, and we are asking how
the unique nonzero prime ideal p of R splits in S: i.e., pS = Pe1

1 · · · Per
r . With suit-

able separability hypotheses, we get the fundamental relation
∑r

i=1 eifi = [L : K].

2The letter T will be used to denote an exercise that is – despite appearances, perhaps – trivial

to prove, but useful to apply later. I do not guarantee that an exericse not so marked will be
nontrivial.
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The key idea that makes this bookkeeping automatic – and has many other virtues
besides – is that of the completion K̂ of a normed field (K, | |). This is indeed a
special case of the completion of a metric space – a concept which we will review –
but bears further scrutiny in this case because we wish K̂ to itself have the structure
of a normed field. Here are some fundamental results:

Theorem 2. Let (K, | |) be a normed field.

a) There is a complete normed field (K̂, | |) and a homomorphism of normed fields

ι : (K, | |) → (K̂, | |) such that ι(K) is dense in K̂.
b) The homomorphism ι is universal for norm-preserving homomorphisms of K
into complete normed fields.
c) In particular, K̂ is unique up to canonical isomorphism.
d) It follows that any homomorphism of normed fields extends uniquely to a homo-
morphism on the completions.

Remark: In categorical language, these results amount to the following: completion
is a functor from the category of normed fields to the category of complete normed
fields which is left adjoint to the forgetful functor from the category of complete
normed fields to the category of normed fields. We stress that, for our purposes
here, it is absolutely not necessary to understand what the previous sentence means.

Theorem 3. Let (K, | |) be a complete normed field and let L/K be algebraic.
a) There exists a unique norm | |L on L such that (K, | |) → (L, | |L) is a homo-
morphism of normed fields.
b) If L/K is finite, then (L, | |L) is again complete.

Corollary 4. If (K, | |) is a normed field and L/K is an algebraic extension, then
there is at least one norm on L extending the given norm on K.

Proof. We may as well assume that L = K. The key step is to choose a field

embedding Φ : K ↪→ K̂. This is always possible by basic field theory: any homo-
morphism from a field K into an algebraically closed field F can be extended to
any algebraic extension L/K. Since this really is the point, we recall the proof.
Consider the set of all embeddings ιi : Li ↪→ F , where Li is a subextension of
L/K. This set is partially ordered by inclusion. Moreover the union of any chain of
elements in this poset is another element in the poset, so by Zorn’s Lemma we are
entitled to a maximal embedding ιi : Li ↪→ F . If Li = L, we’re done. If not, there
exists an element α ∈ L \ Li, but then we could extend ιi to Li[α] by sending α to
any root of its ιi(Li)-minimal polynomial in F . By Theorem 3, there is a unique

norm on K̂ extending the given norm on K. Therefore we may define a norm on L
by x 7→ |Φ(x)|. �
Exercise 2.5: Use Corollary 4 and some previous exercises to prove Theorem 1.

Theorem 5. Let (K, | |) be a normed field and L/K a finite extension. Then there
is a bijective correspondence between norms on L extending the given norm on K
and prime ideals in the K̂-algebra L⊗K K̂.

There is a beautiful succinctness to the expression of the answer in terms of tensor
products, but let us be sure that we understand what it means in more down-to-
earth terms. Suppose that there exists a primitive element α ∈ L i.e., such that
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L = K(α). Recall that this is always the case when L/K is separable or [L : K]
is prime. In fact, the existence of primitive elements is often of mostly psycholog-
ical usefulness: in the general case we can of course write L = K(α1, . . . , αn) and
decompose L/K into a finite tower of extensions, each of which has a primitive
element.

Now let P (t) ∈ K[t] be the minimal polynomial of α over K, so P (t) is irre-
ducible and L ∼= K[t]/(P (t)). In this case, for any field extension F/K, we have
isomorphisms

L⊗K F ∼= K[t]/(P (t))⊗K F ∼= F [t]/(P (t)).

Thus, L ⊗K F is an F -algebra of dimension d = degP = [L : K]. It need not be
a field, but its structure is easy to analyze using the Chinese Remainder Theorem
in the Dedekind ring F [t]. Namely, we factor P (t) into irreducibles: say P (t) =
P e1
1 · · ·P er

r . Then CRT gives an isomorphism

L⊗K F ∼= F [t]/(P (t)) ∼=
r⊕

i=1

F [t]/(P ei
i ).

Let us put Ai = F [t]/(P ei
i ). This is a local Artinian F -algebra with unique prime

ideal Pi/P
ei
i . Thus the number of prime ideals in L ⊗K F is r, the number of

distinct irreducible factors of F . Moreover, suppose that L/K is separable. Then
P (t) splits into distinct linear factors in the algebraic closure of K, which implies
that when factored over the extension field F (algebraic or otherwise), it will have
no multiple factors. In particular, if L/K is separable (which it most often will be
for us, in fact, but there seems to be no harm in briefly entertaining the general
case), then all the ei’s are equal to 1 and Ai = F [t]/(Pi) is a finite, separable field
extension of F .

Example: We apply this in the case (K, | |) is the rational numbers equipped
with the standard Archimedean norm. Then the number of extensions of | | to
L ∼= K[t]/(P (t)) is equal to the number of (necessarily distinct) irreducible factors

of P (t) in R = Q̂. How does a polynomial factor over the real numbers? Every
irreducible factor has degree either 1 – corresponding to a real root – or 2 – corre-
sponding to a conjugate pair of complex roots. Thus L⊗Q R ∼= Rr1 ⊕ Cr2 and the
number of extensions is r1 + r2, as advertised – but not proved! – in the Remark
following Theorem 1.16.

It remains to prove Theorems 2, 3 and 5. Before proving Theorem 1, we give
several short sections of “review” on topics which are probably somewhat familiar
from previous courses but are important enough to revisit from a slightly more
sophisticated perspective. In §2.7 we give the proof of Theorem 2.

2.2. Reminders on metric spaces.

Let X be a set. A function ρ : X × X → R≥0 is a metric on X if it satisfies
all of the following:

(M1) (positive definiteness) ∀x, y ∈ X, ρ(x, y) = 0 ⇐⇒ x = y.
(M2) (symmetry) ∀x, y ∈ X, ρ(x, y) = ρ(y, x).
(M3) (triangle inequality) ∀x, y, z ∈ X, ρ(x, z) ≤ ρ(x, y) + ρ(y, z).
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A metric space is a pair (X, d) where d is a metric on X.

For x an element of a metric space X and r ∈ R>0, we define the open ball

B(x, r) = {y ∈ X | ρ(y, x) < r}.

The open balls form the base for a topology onX, themetric topology. With your
indulgence, let’s check this. What we must show is that if z ∈ B(x, r1) ∩ B(y, r2),
then there exists r3 > 0 such that B(z, r2) ⊂ B(x, r1) ∩ B(y, r2). Let r3 =
min(r1−ρ(x, z), r2−ρ(y, z)), and let w ∈ B(z, r3). Then by the triangle inequality
ρ(x,w) ≤ ρ(x, z)+ρ(z, w) < ρ(x, z)+(r1−ρ(x, z)) = r1, and similarly ρ(y, w) < r2.

Given a finite collection of metric spaces {(Xi, ρi)}1≤i≤n, we define the product
metric on X =

∏n
i=1 Xi to be ρ(x, y) = maxi ρi(xi, yi).

3

Remark: As is typical, instead of referring to “the metric space (X, ρ)”, we will
often say instead “the metric space X”, i.e., we allow X to stand both for the set
and for the pair (X, ρ).

Exercise 2.6 (pseudometric spaces): Let X be a set. A function ρ : X ×X → R≥0

satisfying (M2) and (M3) is called a pseudometric, and a set X endowed with a
pseudometric is called a pseudometric space.
a) Show that all of the above holds for pseudometric spaces – in particular, the
open balls form the base for a topology on X, the pseudometric topology.
b) Show that for a pseudometric space (X, ρ), the following are equivalent:
(i) ρ is a metric.
(ii) The topological space X is Hausdorff.
(iii) The topological space X is separated (i.e., T1: points are closed).
(iv) The topological space X is Kolmogorov (i.e., T0: no two distinct points have
exactly the same open neighborhoods).
c) Define an equivalence relation ∼ on X by x ∼ y ⇐⇒ ρ(x, y) = 0. Let
X = X/ ∼ be the set of equivalence classes. Show that ρ factors through a func-
tion ρ : X ×X → R≥0 and that ρ is a metric on X. Show that the map q : X → X
is the Kolmogorov completion of the topological space X, i.e., it is the universal
continuous map from X into a T0-space.

A Cauchy sequence in a metric space (X, ρ) is a sequence {xn} in X such that
for all ϵ > 0, there exists N ∈ Z+ such that m,n ≥ N =⇒ ρ(xm, xn) < ϵ. Every
convergent sequence is convergent. Conversely, we say that a metric space X is
complete if every Cauchy sequence converges.

Let X and Y be metric spaces. A function f : X → Y is uniformly contin-
uous if for all ϵ > 0, there exists δ > 0 such that ∀x, y ∈ X, ρX(x, y) < δ =⇒
ρY (f(x), f(y)) < ϵ.

3This is just one of many possible choices of a product metric. The non-canonicity in the

choice of the product is a clue that our setup is not optimal. But the remedy for this, namely
uniform spaces, is not worth our time to develop.
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Exercise 2.7: Let (X, ρ) be a metric space. Show that ρ : X × X → R is a
uniformly continuous function: here R is endowed with the standard Euclidean
metric ρ(x, y) = |x− y|.

Exercise 2.8: Let X and Y be metric spaces, and let f : X → Y be a continu-
ous function.
a) If f is uniformly continuous and {xn} is a Cauchy sequence in X, show that
{f(xn)} is a Cauchy sequence in Y .
b) Give an example to show that a merely continuous function need not map Cauchy
sequences to Cauchy sequences.

A Hausdorff topological space is compact if every open covering has a finite sub-
covering.4 A Hausdorff topological space is locally compact if every point admits
a compact neighborhood. This is equivalent (thanks to the Hausdorff condition!)
to the apparently stronger condition that every point has a local base of compact
neighborhoods.

A metric space (X, ρ) is ball compact5 if every closed bounded ball is compact.

Exercise 2.9: Consider the following properties of a metric space (X, ρ):
(i) X is compact.
(ii) X is ball compact.
(iii) X is locally compact.
(iv) X is complete.
Show that (i) =⇒ (ii) =⇒ (iii) and (ii) =⇒ (iv), but none of the other
implications hold.

2.3. Ultrametric spaces.

An ultrametric space is a metric space (X, ρ) in which the following stronger
version of the triangle inequality holds:

∀x, y, z ∈ X, ρ(x, z) ≤ max(ρ(x, y), ρ(y, z)).

Exercise 2.10: a) Suppose that x, y, z are points in an ultrametric space such that
ρ(x, y) ̸= ρ(y, z). Show that ρ(x, z) = max(ρ(x, y), ρ(y, z)).
b) In particular, every triangle in an ultrametric space is isosceles.

c) LetB = B(x, r) be an open ball in an ultrametric space (X, ρ) and let y ∈ B(x, r).
Show that y is also a center for B: B = B(y, r). Does the same hold for closed balls?

Exercise 2.11: Let B1, B2 be two balls (each may be either open or closed) in
an ultrametric space (X, ρ). Show that B1 and B2 are either disjoint or concen-
tric: i.e., there exists x ∈ X and r1, r2 ∈ (0,∞) such that Bi = B(x, ri) or Bc(x, ri).

Exercise 2.12: Let (X, ρ) be an ultrametric space.

4Note that I am sidestepping the issue of whether a non-Hausdorff space should be called
“compact” or just “quasi-compact” as is standard e.g. in algebraic geometry. The point is that

all our spaces will be metrizable, hence Hausdorff, so no worries.
5I made up the term.
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a) Let r ∈ (0,∞). Show that the set of open (resp. closed) balls with radius r
forms a partition of X.
b) Deduce from part a) that every open ball is also a closed subset of X and that
every closed ball of positive radius is also an open subset of X.
c) A topological space is zero-dimensional if there exists a base for the topology
consisting of clopen (= closed and open) sets. Thus part b) shows that an ultra-
metric space is zero-dimensional. Show that a zero-dimensional Hausdorff space is
totally disconnected. In particular, an ultrametric space is totally disconnected.

Exercise 2.13: Prove or disprove: it is possible for the same topological space (X, τ)
to have two compatible metrics ρ1 and ρ2 (i.e., each inducing the given topology τ
on X) such that ρ1 is an ultrametric and ρ2 is not.

Exercise 2.14: Let Ω be a nonempty set, and let S =
∏∞

i=1 Ω, i.e., the space of
infinite sequences of elements in Ω, endowed with the metric ρ(x, y) = 2−N if
xn = yn for all n < N and xN ̸= yN . (If xn = yn for all n, then we take N = ∞.)
a) Show that (S, ρ) is an ultrametric space, and that the induced topology coincides
with the product topology on S, each copy of Ω being given the discrete topology.
b) Show that S is a complete6 metric space without isolated points.
c) Without using Tychonoff’s theorem, show that S is compact iff Ω is finite. (Hint:
since S is metrizable, compact is equivalent to sequentially compact. Show this via
a diagonalization argument.)
d) Suppose Ω1 and Ω2 are two finite sets, each containing more than one element.
Show that the spaces S(Ω1) and S(Ω2) are homeomorphic.

2.4. Normed abelian groups.

Let G be an abelian group, written additively. By a norm on G we mean a
map | | : G → R≥0 such that:

(NAG1) |g| = 0 ⇐⇒ g = 0.
(NAG2) ∀g ∈ G, | − g| = |g|.
(NAG3) ∀g, h ∈ G, |g + h| ≤ |g|+ |h|.

For example, an absolute value on a field k is (in particular) a norm on (k,+).
By analogy to the case of fields, we will say that a norm is non-Archimedean if
∀g, h ∈ G, |g + h| ≤ |g|+ |h|.

For a normed abelian group (G, | |), define ρ : G2 → R≥0 by ρ(x, y) = |x− y|.

Exercise 2.15: Show that ρ defines a metric on G. Show that the norm is non-
Archimedean iff ρ is an ultrametric.

Exercise 2.16: Show that the norm | | : X → R is uniformly continuous.

The metric topology on X is Hausdorff and first countable, so convergence can
be described in terms of sequences: a sequence {xn} in X converges to x ∈ X

6Completeness is formally defined in the next section.
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if for all ϵ > 0, there exists N = N(ϵ) such that for all n ≥ N , ρ(xn, x) < ϵ. A
sequence is said to be convergent if it converges to some x. Since X is Hausdorff,
a sequence converges to at most one point.

Exercise (semi-normed group): A semi-norm on an abelian group is a map | | :
G → R≥0 which satisfies (NAG2) and (NAG3). Show that a semi-norm induces a
pseudometric on G.

Exercise 2.17: Suppose G is an arbitrary (i.e., not necessarily abelian) group –
with identity element e and group law written multiplicatively – endowed with a
function | | : G → R≥0 satisfying:
(NG1) |g| = 0 ⇐⇒ g = e.
(NAG2) ∀g ∈ G, |g−1| = |g|.
(NAG3) ∀g, h ∈ G, |gh| ≤ |g|+ |h|.
a) Show that d : G×G → R, (g, h) 7→ |gh−1| defines a metric on G.
b) If | | is a norm on G and C ∈ R>0, show that C| | is again a norm on G. Let us
write | |1 ≈ | |2 for two norms which differ by a constant in this way.
c) Define on any group G a trivial norm; show that it induces the discrete metric.

In any topological abelian group, it makes sense to discuss the convergence of infi-
nite series

∑∞
n=1 an in G: as usual, we say

∑∞
n=1 an = S if the sequence {

∑n
k=1 ak}

of partial sums converges to S.

A series
∑∞

n=1 an is unconditionally convergent if there exists S ∈ G such
that for every permutation σ of the positive integers, the series

∑∞
n=1 aσ(n) con-

verges to S.

In a normed abelian group G we may speak of absolute convergence: we say
that

∑∞
n=1 an is absolutely convergent if the real series

∑∞
n=1 |an| converges.

Exercise 2.18: For a normed group G, show that TFAE:
(i) Every absolutely convergent series is unconditionally convergent.
(ii) G is complete.

Whether unconditional convergence implies absolute convergence is more delicate.
If G = Rn with the standard Euclidean norm, then it follows from the Riemann
Rearrangement Theorem that unconditional convergence implies absolute con-
vergence. On the other hand, it is a famous theorem of Dvoretsky-Rogers that
in any infinite dimensional real Banach space (i.e., a complete, normed R-vector
space) there exists a series which is unconditionally convergent but not absolutely
convergent.

The theory of convergence in complete non-Archimedean normed groups is in fact
much simpler:

Proposition 6. Let G be a complete, non-Archimedean normed group, and let
{an}∞n=1 be a sequence in G. TFAE:
(i) The series

∑∞
n=1 an is unconditionally convergent.
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(ii) The series
∑∞

n=1 an is convergent.
(iii) limn→∞ an = 0.

Exercise 2.19: Prove Proposition 6.

Exercise 2.20: Use Proposition 6 to give an explicit example of a series in Qp

which is unconditionally convergent but not absolutely convergent.

Exercise 2.21: Let (G, | |) be a normed abelian group. Suppose that G is locally
compact in the norm topology.
a) Show that G is complete.
b) Must G be ball compact?

2.5. The topology on a normed field.

Let k be a field and | | an Artin absolute value on k. We claim that there is
a unique metrizable topology on k such that a sequence {xn} in k converges to
x ∈ k iff |xn − x| → 0. To see this, first note that the condition |xn − x| → 0
depends only on the equivalence class of the Artin absolute value, since certainly
|xn − x| → 0 ⇐⇒ |xn − x|α → 0 for any positive real number α. So without
changing the convergence of any sequence, we may adjust | | in its equivalence class
to get an absolute value (i.e., with Artin constant C ≤ 2) and then we define the
topology to be the metric topology with respect to ρ(x, y) = |x − y| as above. Of
course this recovers the given notion of convergence of sequences. Finally, we recall
that a metrizable topological space is first countable and that there exists at most
one first countable topology on a set with a given set of convergent sequences. We
call this topology the valuation topology.

Exercise 2.22: Show that the trivial valuation induces the discrete topology.

Exercise 2.23: Let (k, | |) be a valued field, and let {xn} be a sequence in k. Show
that xn → 0 iff |xn| → 0.

Proposition 7. Let | |1 and | |2 be norms on a field k. TFAE:
(i) | |1 ∼ | |2 in the sense of Theorem 1.4.
(ii) The topologies induced by | |1 and | |2 coincide.

Proof. The direction (i) =⇒ (ii) follows from the discussion given above. Assume
(ii). Let x ∈ k. Then |x|1 < 1 ⇐⇒ xn → 0 in the | |1-topology iff xn → 0 in the
| |2-metric topology ⇐⇒ |x|2 < 1 ⇐⇒ | |1 ∼ | |2. �
An equivalent topological statement of Artin-Whaples approximation is:

Theorem 8. (Artin-Whaples Restated) Let k be a field and, for 1 ≤ i ≤ n, let
| |i be inequivalent nontrivial norms on k. Let (k, τi) denote k endowed with the
| |i-norm topology, and let kn =

∏n
i=1(k, τi). Then the diagonal map ∆ : k ↪→

kn, x 7→ (x, . . . , x) has dense image.

Exercise 2.24: Convince yourself that this is equivalent to Theorem 1.5.

Exercise 2.25: Show that any two closed balls of finite radius in a normed field
are homeomorphic. Deduce that a locally compact normed field is ball compact.
(In particular, it is complete, although we knew that already by Exercise X.X.)
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2.6. Completion of a metric space.

Lemma 9. Let (X, ρX) be a metric space, (Y, ρY ) be a complete metric space,
Z ⊂ X a dense subset and f : Z → Y a continuous function.
a) There exists at most one extension of f to a continuous function F : X → Y .
(N.B.: This holds for for any topological space X and any Hausdorff space Y .)
b) f is uniformly continuous =⇒ f extends to a uniformly continuous F : X → Y .
c) If f is an isometric embedding, then its extension F is an isometric embedding.

Exercise 2.26: Prove Lemma 9.

Let us say that a map f : X → Y of topological spaces is dense if f(X) is dense
in Y . An isometric embedding is a map f : (X, ρX) → (Y, ρY ) such that for all
x1, x2 ∈ X, ρY (f(x1), f(x2)) = ρX(x1, x2). An isometry is a surjective isometric
embedding.

Exercise 2.27: Let f be an isometric embedding of metric spaces.
a) Show that f is uniformly continuous with δ = ϵ.
b) Show that f is injective. Therefore an isometry is bijective. Show that if f is an
isometry, then f−1 is also an isometry.

Theorem 10. let (X, ρ) be a metric space.

a) There is a complete metric space X̂ and a dense isometric embedding ι : X → X̂.
b) The completion ι satisfies the following universal mapping property: if (Y, ρ) is
a complete metric space and f : X → Y is a uniformly continuous map, then there
exists a unique uniformly continuous map F : X̂ → Y such that f = F ◦ ι.
c) If ι′ : X ↪→ X̂ ′ is another isometric embedding into a complete metric space with

dense image, then there exists a unique isometry Φ : X̂ → X̂ ′ such that ι′ = Φ ◦ ι.

Proof. a) Let X∞ =
∏∞

i=1 X be the set of all sequences in X. Inside X, we define X
to be the set of all Cauchy sequences. We introduce an equivalence relation on X by
x• ∼ y• if ρ(xn, yn) → 0. Put X̂ = X/ ∼. For any x ∈ X, define ι(x) = (x, x, . . .),
the constant sequence based on x. This of course converges to x, so is Cauchy and

hence lies in X . The composite map X
ι→ X ∼→ X̂ (which we continue to denote by

ι) is injective, since ρ(xn, yn) = ρ(x, y) does not approach zero. We define a map
ρ̂ : X × X → R by

ρ̂(x•, y•) = lim
n→∞

ρ(xn, yn).

To see that this limit exists, we may reason (for instance) as follows: the sequence
x•×y• is Cauchy inX×X, hence its image under the uniformly continuous function
ρ is Cauchy in the complete metric space R, so it is convergent. It is easy to see
that ρ̂ factors through to a map ρ̂ : X̂ → X̂ → R. The verification that ρ̂ is a
metric on X̂ and that ι : X → X̂ is an isometric embedding is straightforward and
left to the reader. Moreover, if x• = {xn} is a Cauchy sequence in X, then the

sequence of constant sequences {ι(xn)} is easily seen to converge to x• in X̂.
b) Let x• ∈ X be a Cauchy sequence inX. As above, since f is uniformly continuous
and Y is complete, f(x•) is convergent in Y to a unique point, say y, and we put

y = F (x•). Since X is dense in X̂ this is the only possible choice, and by Lemma
9 it does indeed give a well-defined uniformly continuous function F : X → Y .
c) Isometric embeddings are uniformly continuous, so we may apply the universal

mapping property of part b) to the map ι′ : X ↪→ X̂ ′ to get a map Φ : X̂ → X̂ ′.
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Similarly, we get a map Φ′ : X̂ ′ → X̂. The compositions Φ′ ◦ Φ and Φ′ ◦ Φ are
uniformly continuous maps which restrict to the identity on the dense subspace X,
so they must each by the identity map, i.e., Φ and Φ′ are mutually inverse bijections.
By Lemma 9c), Φ is an isometric embedding, and therefore it is an isometry. �

We refer to X̂ as the completion of X.7

Corollary 11. (Functoriality of completion) a) Let f : X → Y be a uniformly

continuous map between metric spaces. Then there exists a unique map F : X̂ → Ŷ
making the following diagram commute:

X
f→ Y

X̂
F→ Ŷ .

b) If f is an isometric embedding, so is F .
c) If f is an isometry, so is F .

Proof. a) The map f ′ : X → Y ↪→ Ŷ , being a composition of uniformly continuous
maps, is uniformly continuous (check this if you haven’t seen it before!). Applying

the universal property of completion to f ′ gives a unique extension X̂ → Ŷ .
Part b) follows immediate from Lemma 9b). As for part c), if f is an isometry, so

is its inverse f−1. The extension of f−1 to a mapping from Ŷ to X̂ is easily seen
to be the inverse function of F . �
Exercise 2.28: For a metric space (X, ρ), define the distance set D(X) = ρ(X×X),
i.e., the set real numbers which arise distances between points in X.
a) Prove or disprove: if D is a discrete subset of R, then ρ is ultrametric.
b) Prove or disprove: if ρ is an ultrametric, then D is discrete.

c) Let X̃ be the completion of X. Show that D(X̃) = D(X) (closure in R).
d)(U) Determine which subsets of R≥0 arise as distance sets of some metric space.

Exercise 2.29: The notion of a metric space and a completion seems to presup-
pose knowledge of R, the set of real numbers. In particular, it is a priori logically
unacceptable to define R to be the completion of Q with respect to the Archimedean
norm | |∞. (Apparently for such reasons, Bourbaki’s influential text General Topol-
ogy avoids mention of the real numbers until page 329, long after a general discussion
of uniform spaces and topological groups.) Show that this is in fact not necessary
and that the completion of a metric space can be used to construct the real numbers.
(Hint: first define a Q-valued metric and its completion.)

2.7. Completions of normed abelian groups and normed fields.

When G is a normed abelian group (or a field with an absolute value) we wish

to show that the completion G̃ is, in a natural way, again a normed abelian group
(or a field with an absolute value). This follows readily from the results in the
previous section, but we take the opportunity to point out a simplification in the
construction of Ĝ in this case.

As above, we put G∞ =
∏∞

i=1 and G the subset of Cauchy sequences. But this time

7This is a standard abuse of terminology: really we should refer to the map ι : X ↪→ X̂ as the
completion, but one rarely does so.



ABSOLUTE VALUES II: TOPOLOGIES, COMPLETIONS AND THE EXTENSION PROBLEM13

G∞ is an abelian group and G is a subgroup of G∞ (easy exercise). Furthermore,
we may define g to be the set of sequences converging to 0, and then g is a subgroup
of G. Thus in this case we may define Ĝ simply to be the quotient group G/g, so
by its provenance it has the structure of an abelian group. Moreover, if x• is a
Cauchy sequence in G, then by Exercise X.X |x•| is a Cauchy sequence in R, hence
convergent, and we may define

|x•| = lim
n→∞

|xn|.

We leave it to the reader to carry through the verifications that this factors to give
a norm on Ĝ whose associated metric is the same one that we constructed in the
proof of Theorem XX.

Now suppose that (k, | |) is a normed field. Then the additive group (k,+) is

a normed abelian group, so the completion k̂ exists at least as a normed abelian
group. Again though we want more, namely we want to define a multiplication on

k̂ in such a way that it becomes a field and that the norm satisfies |xy| = |x||y|.
Again the porduct map on k is uniformly continuous, so that it extends to k̂, but

to see that k̂ is a field the algebraic construction is more useful. Indeed, it is not
hard to show that k∞ is a ring, the Cauchy sequences K form a subring. But more
is true:

Lemma 12. The set k of sequences converging to 0 is a maximal ideal of the ring

K of Cauchy sequences. Therefore the quotient K/k = k̂ is a field.

Proof. Since a Cauchy sequence is bounded, and a sequence which converges to 0
multiplied by a bounded sequence again converges to 0, it follows that k is an ideal
of K. To show that the quotient is a field, let x• be a Cauchy sequence which does
not converge to 0. Then we need to show that x• differs by a sequence converging
to 0 from a unit in K. But since x• is Cauchy and not convergent to 0, then (e.g.

since it converges to a nonzero element in the abelian group k̂) we have xn ̸= 0
for all sufficiently large n. Since changing any finite number of coordinates of x•
amounts to adding a sequence which is ultimately zero hence convergent to 0, this
is permissible as above, so after adding an element of k we may assume that for all
n ∈ Z+, xn ̸= 0, and then the inverse of x• in K is simply { 1

xn
}. �

Exercise 2.30*: Find all maximal ideals in the ring K.

Exercise 2.30.5: Let (k, | |) be a nontrivially normed field.
a) Show that #{x ∈ k| 0 < |x| < 1} = #k.
b) Show that the cardinality of the set of all convergent sequences in k is (#k)ℵ0 .
Deduce that the same holds for the set of all Cauchy seqeunces of k.
c) Show that the cardinality of the completion of k is (#k)ℵ0 . (Hint: consider
separately the cases in which #k = (#k)ℵ0 and #k < (#k)ℵ0 .

Thus for a field k to be complete with respect to a nontrivial norm, it must satisfy a
rather delicate cardinality requirement: (#k)ℵ0 = #k. This certainly implies #k ≥
2ℵ0 = #R, i.e., k has at least continuum cardinality. Conversely, there are certainly
complete fields of continuum cardinality, and indeed have (2ℵ0)ℵ0 = 2ℵ0×ℵ0 = 2ℵ0 .
However, there are sets S with 2ℵ0 < #S < (#S)ℵ0 .
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Let (k, | |) be a normed field, and let σ : k → k be a field automorphism. We
say that σ is an automorphism of the normed field (k, | |) if σ∗| | = | |.

Exercise 2.31: Let (k, | |) be a normed field and σ an automorphism of k. Show
that σ is an automorphism of (k, | |) iff it is continuous in the norm topology on k.

Exercise 2.32: Let (k, | |) be a complete normed field, and let σ be an automorphism
of k. Put | |′ = σ∗| |. Show that k is also complete with respect to | |′.

Exercise 2.33: Let k be either R or Qp for some prime p. We will show that k
is rigid, i.e., has no automorphisms other than the identity.
Let σ : k → k be a field automorphism.
a) Suppose that σ is continuous. Show that σ = 1k.
b) Show that any automorphism σ of k is continuous with respect to the norm
topology. (Hint: Ostrowski’s Theorem.)

Exercise 2.34: Let k be a field complete with respect to a discrete, nontrivial
valuation. Let R be its valuation ring.
a) Show that k is homeomorphic to the infinite disjoint union

⨿∞
i=1 R.

b) Let k1, k2 be two fields complete with respect to discrete, nontrivial valuations,
with valuation rings R1, R2. Suppose that R1 and R2 are compact. Show that k1
and k2 are homeomorphic, locally compact topological spaces.

We now give an alternate, more algebraic construction of the completion in the
special case of a discretely valued, non-Archimedean norm on k. Namely, the norm
is equivalent to a Z-valued valuation v, with valuation ring

R = {x ∈ k | v(x) ≥ 0}
and maximal ideal

m = {x ∈ k | v(x) > 0} = {x ∈ k | v(x) ≥ 1}.

Lemma 13. With notation above, suppose that k is moreover complete. Then the
ring R is m-adically complete. Explicitly, this means that the natural map

R → lim
n

R/mn

is an isomorphism of rings.

Proof. This is straightforward once we unpack the definitions.
Injectivity: this amounts to the claim that

∩
n∈Z+ mn = 0. In fact this holds for

any nontrivial ideal in a Noetherian domain (Krull Intersection Theorem), but it is
obvious here, because mn = (πn) = {x ∈ R | v(x) ≥ n, and the only element of R
which has valuation at least n for all positive integers n is 0.
Surjectivity: Take any element x of the inverse limit, and lift each coordinate
arbitarily to an element xn ∈ R. It is easy to see that {xn} is a Cauchy sequence,
hence convergent in R – since k is assumed to be complete and R is closed in k, R
is complete). Let x be the limit of the sequence xn. Then x 7→ x . �

Exercise 2.35: Suppose now that v is a discrete valuation on a field k. Let R̂ =
limn R/mn.

a) Show that R̂ is again a discrete valuation ring – say with valuation v̂ – whose
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maximal ideal m̂ is generated by any uniformizer π of R.

b) Let K be the fraction field of R̂. Show that K is canonically isomorphic to k̂,
the completion of k in the above topological sense.
c) Let n ∈ Z+. Explain why the natural topology on the quotient R/mn is the
discrete topology.
d) Show that the following topologies on R̂ all coincide: (i) the topology induced

from the valuation v̂; (ii) the topology R̂ gets as a subset of
∏

n R/mn (the product

of discrete topological spaces); (iii) the topology it inherits as a subset of k̂ under
the isomorphism of part b).

2.8. Non-Archimedean Functional Analysis: page 1.

K-Banach spaces: Let (K, | |) be a complete normed field. In this context we
can define the notion of a normed linear space in a way which directly generalizes
the more familiar cases K = R, K = C. Namely:

A normed K-linear space is is a K-vector space V and a map | | : V → R≥0

such that:

(NLS1) ∀x ∈ V , x = 0 ⇐⇒ |x| = 0.
(NLS2) ∀α ∈ K, x ∈ V , |αx| = |α||x|.
(NLS3) ∀x, y ∈ V , |x+ y| ≤ |x|+ |y|.

If K is non-Archimedean, we require the stronger inequality |x+ y| ≤ max(|x|, |y|)
in (NLS3).

Remark: Weakening (NLS1) to =⇒ , we get the notion of a seminormed space.

Note that a normed linear space is a normed abelian group under addition. In
particular it has a metric. A K-Banach space is a complete normed linear space
over K.

The study of K-Banach spaces (and more general topological vector spaces) for
a non-Archimedean field K is called non-Archimedean functional analysis.
This exists as a mathematical field which has real applications, e.g., to modern
number theory (via spaces of p-adic modular forms). The theory is similar but
not identical to that of functional analysis over R or C. (Explain that the weak
Hahn-Banach theorem only holds for spherically complete fields...)

Recall that two norms | |1, | |2 on a K-vector space V are equivalent if there
exists α ∈ R>0 such that for all v ∈ V ,

1

α
|v|1 ≤ |v|2 ≤ α|v|1.

Equivalent norms induce the same topology.

Theorem 14. Let (K, | |) be a complete normed field, and let V be a finite dimen-
sional K-vector space.
a) Choose a basis v1, . . . , vn of V , and define a map | |∞ : V → R≥0 by |α1v1 +
. . . + αnvn|∞ = maxi |αi|. Then | |∞ is a norm on V . The metric topology on V
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is the one induced by pulling back the product topology on Kn via the isomorphism
V ∼= Kn.
b) Any two norms on V are equivalent.
c) It follows that for any norm | | on V , | | is complete and the induced topology
coincides with the topology obtained by pulling back the product topology on Kn via
any isomorphism V ∼= Kn.

Proof. a) It is easy to see that | |∞ is a norm on V . For instance, for all α1, . . . , αn, β1, . . . , βn ∈
K we have

||(α1v1 + . . .+ αnvn) + (β1v1 + . . .+ βnvn)||∞
= ||(α1 + β1)v1 + . . .+ (αn + βn)vn||∞

= max
i

|αi+βi| ≤ max
i

|αi|+max
i

|βi| = ||α1v1+. . .+αnvn||∞+||β1v1+. . .+βnvn||∞.

Any finite product of metric spaces (Xi, di) can be endowed with this “∞-metric”
– i.e., d(x, y) = maxi d(xi, yi) – and the induced topology is indeed just the product
topology. Moreover a finite product of complete metric spaces is complete. This
completes the proof of part a).
If n = 1, the remaining statements of the theorem are obvious. We now proceed
by induction on n. Let || || be any norm on the n-dimensional vector space V . We
claim that there are positive constants A and B such that for all v ∈ V ,

A||v||∞ ≤ ||v|| ≤ B||v||∞.

Indeed, we may takeB =
∑n

i=1 ||vi||. Now consider the subspace U1 = ⟨v2, . . . , vn⟩K .
By induction, (U, || ||) is complete, hence closed in V . Translation by any vector
gives a homeomorphism, so v1+U is also closed in V . It follows that there exists a
neighborhood N1 of 0 which contains no vector whose first coordinate with respect
to the basis (v1, . . . , vn) is 1. Applying the same argument to the subspace Ui gen-
erated by all basis vectors but vi, we get a neighborhood Ni, and let A > 0 be such
that the open disk B0(A) is contained inN1∩. . .∩Nn. Now let v = α1v1+. . .+αnvn
be nonzero, say ||v||∞ = |αi|. Then the ith coordinate of = 1

αi
vi is equal to 1, i.e.,

|| 1
αi
v|| ≥ A, ||v|| ≥ A|αi| = A||v||∞. Thus we have shown that an arbitrary norm

|| || on V is equivalent to the infinity norm. The rest follows immediately. �

Theorem 15. Let (K, | |) be a complete normed field and (V, || ||) a normed K-
linear space. Let W be a finite-dimensional K-subspace of V . Then W is closed.

Exercise 2.36: Use Theorem 14 to prove Theorem 15.

When one thinks of “Archimedean functional analysis”, Theorems 14 and 15 are
probably not the first two which come to mind, perhaps because they are not very
interesting! On the other hand, for our purpose these results are remarkably useful:
they are just what we need to prove the uniqueness in Theorem 3, a topic to which
we now turn.

2.9. Big Ostrowski Revisited.

The goal of this section is to prove the Big Ostrowski Theorem (Theorem 1.10).
Our proof follows an approach taken by David Krumm (a student in the 2010
course) who was in turn following Neukirch’s Algebraic Number Theory, but with
some modifications. In fact we will prove the following result.
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Theorem 16. Let (K, | |) be a complete Archimedean field with Artin constant 2
(equivalently, |2| = 2). Then (K, | |) is isomorphic either to R with its standard
absolute value or C with its standard absolute value.

Let us first establish that Theorem 16 is equivalent to the Big Ostrowski Theorem.
Indeed, first assume Theorem 1.10, and let (K, | |1) be an Archimedean normed
field with Artin constant 2. Then we have an embeddding ι : K ↪→ C such that for
all x ∈ K, |x|1 = |ι(x)|. There is an induced map ι̂ : (K̂, | |1) → (Ĉ, | |) = (C, | |),
since the standard norm on C is complete. Thus ι(K̂) is an isometrically embedded

complete subfield of C. Since ι(K̂) contains Q, it contains the closure of Q in C,
namely R. Thus R ⊂ ι(K̂) ⊂ C. Since [C : R] = 2, we have little choice: either

(K̂, | |) ∼= (ι(K̂), | |∞) = (R, | |∞)

or
(K̂, | |) ∼= (ι(K̂), | |∞) = (C, | |∞).

Conversely, assume Theorem 16, and let (K, | |) be an Archimedean normed

field with Artin constant 2. Then (K, | |) is a normed subfield of its completion K̂,
which is isomorphic to either (R, | |)∞) or (C, | |∞). Of course, (R, | |∞) is a normed
subfield of (C, | |∞), so either way (K, | |) can be isometrically embedded in (C, | |∞).

Now we turn to the proof of Theorem 16. First, since (K, | |) is a complete
Archimedean normed field, it has characteristic zero (Corollary 1.9) and thus con-
tains Q. By Ostrowski’s Lemma (Lemma 1.10) and the computation of the Artin
constant (Theorem 1.11), the restriction of | | toQmust be the standard Archimedean
absolute value | |∞. So (Q, | |)∞ ↪→ (K, | |) is an isometric embedding of normed
fields. Taking completions, we get an isometric embedding (R, | |∞) ↪→ (K, | |).
The crux of the matter is the following claim.

Claim: The field extension K/R is algebraic.

Let us first argue for the sufficiency of the claim (which is easy) and then come
back to prove the claim (which is somewhat tricky). Of course if K/R is algebraic
then either K = R – so we are done in this case – or [K : R] = 2 and K is iso-
morphic as an R-algebra to the complex field. In this case there is something more
to be shown, namely that the normed field (K, | |) is isomorphic, as an extension
of the normed field (R, | |∞), to (C, | |). Happily, the tools for this were developed
in the previous section. Indeed, (K, | |) is a finite dimensional normed R-space
(and (R, | |∞ is complete!), so that the metric topology induced by the norm is the
product topology on R2. We may use the R-isomorphism of K with C to transport
the norm | | to C. On C we also have the standard Archimedean norm | |∞. By the
above remark, these two norms induce the same topology on C so are equivalent.
Moreover, they both have Artin constant 2, so in fact they are equal. In other
words, our isomorphism of R-algebras K ∼→ C is indeed an isomorphism of normed
fields (K, | |) ∼→ (C, | |∞).

Now we move on to prove the claim. Of course it is equivalent to show that every
element of K is the root of a quadratic polynomial with R-coefficients, and this is
indeed how we will proceed.
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A preliminary remark: the coming proof will use both the abstract norm | | on
K and the standard Archimidean norm | |∞ on C. This is potentially confusing.
In an attempt to lessen the confusion, we write complex numbers as (possibly sub-
scripted) z’s and w’s and elements of K as Greek letters.

Let α ∈ K \ R. For z ∈ C, put

Pz(t) = t2 − (z + z)t+ zz.

Thus Pz(t) ∈ R is a quadratic polynomial whose roots in C are z and z (a double
root, if z ∈ R). Moreover, define a map f : C → R≥0 by

f(z) = |Pz(α)|.

To say that α is quadratic over R is to say that there exists some z ∈ C such that
f(z) = 0. We will prove this by a somewhat sneaky argument mixing algebra and
topology. First, it is easy to see that f is continuous and that f(z) tends to +∞
with the modulus of z. Indeed, for |z|∞ sufficiently large, the constant term of
Pz(α) dominates. Therefore f attains a minimum value m ∈ R≥0.

Seeking a contradiction, we assume that m > 0. Since f is continuous, the level
set Z = f−1(m) is closed; since f tends to infinity Z is also bounded, i.e., compact.
So there exists some z1 ∈ C such that f(z1) = m and that |z1|∞ is maximal among
all z ∈ Z. If we can produce an element w1 ∈ C such that |w1|∞ > |z1|∞ but
f(w1) ≤ m, then we will have attained our contradiction.

To do so, choose ϵ ∈ R with 0 < ϵ < m, and let w1 ∈ C be a root of the
“perturbed polynomial” Pz1(t)+ϵ. The discriminant of Pz1(t)+ϵ is strictly smaller
than the discriminant of Pz1(t) (a quadratic polynomial which does not have distinct
real roots) hence is negative; that is, w ∈ C \ R. Hence

Pz1(t) + ϵ = (t− z1)(t− z1) + ϵ = (t− w1)(t− w1) = t2 − (w1 + w1)t+ w1w1.

Comparing constant coefficients in these two expressions gives

|z1|2∞ = |w1|2∞ − ϵ < |w1|2∞,

so |z1|∞ < |w1|∞. Thus by our above setup we must have f(w1) > m. But we
claim that we also have f(w1) ≤ m. This is established as follows: let n be an odd
positive integer, and define

g(t) = Pz1(t)
n + ϵn.

Factor g(t) over C as

g(t) =
2n∏
i=1

(t− wi).

Note that since n is odd, Pz1(t)+ϵ divides g(t) so that indeed w1 is one of the roots
of g: our notation is consistent. Also g(t) ∈ R[t] so we must also have

g(t) =

2n∏
i=1

(t− wi).

Thus

g(t)2 =
2n∏
i=1

(t− wi)(t− wi) =
2n∏
i=1

(t2 − (wi + wi)t+ wiwi).
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It folows that

|g(α)|2 =
2n∏
i=1

|α2 − (wi + wi)α+ wiwi| =
2n∏
i=1

f(wi) ≥ f(w1)m
2n−1.

On the other hand,

|g(α)| ≤ |Pz1(α)|n + ϵn = f(z1)
n + ϵn = mn + ϵn.

Therefore

f(w1) ≤
|g(α)|2

m2n−1
≤ (mn + ϵn)2

m2n−1
= m

(
1 + (

ϵ

m
)n
)2

.

Since 0 < ϵ < m, sending n to infinity gives f(w1) ≤ m, contradiction! This
completes the proof of Theorem 16.

2.10. Theorems of Mazur, Gelfand and Tornheim.

In this section we will sketch a different approach to proving the Big Ostrowski
Theorem – or rather, the equivalent Theorem 16. Let (K, | |) be a field which is
complete with respect to a norm with Artin constant 2. We want to show that
(K, |∥) is isomorphic to (R, | |∞) or to (C, | |∞). As in the previous section, apply-
ing the Little Ostrowski Theorem we easily see that (K, | |) has a normed subfield
isomorphic to (R, | |). The new idea here is that this implies that (K, | |) is a
real Banach algebra: i.e., an R-vector space A complete with respect to a norm | |
with |1| = 1 and which is (at least) sub-multiplicative: for all x, y ∈ A, |xy| ≤ |x||y|.

We will prove the following result, which is a generalization of Theorem 16.

Theorem 17. (Gelfand-Tornheim) Let (K, || ||) be a real Banach space which is
also a field, and such that ||1|| = 1 and for all x, y ∈ K, ||xy|| ≤ ||x||||y||. Then
(K, || ||) is isomorphic to (R, | |∞) or to (C, | |∞).

There is an evident corresponding notion of a complex Banach algebra, and in fact
the theory of complex Banach algebras is much better developed than the theory
of real Banach algebras, so our first step is to reduce to the complex case. This is
handled as follows: if K contains a square root of −1, then indeed it contains a sub-
field isomorphic to C (even as a normed field, by the uniqueness up to equivalence
of the norm on a finite extension of a complete field). So if K does not contain a
square root of −1, we would like to replace K by K(

√
−1).

The natural result to try to prove is the following.

Theorem 18. Let K be a field of characteristic different from 2 which is complete
with respect to a norm | |. Let L/K be a quadratic extension. Then x ∈ L 7→
|NL/K(x)| 12 is a norm on L extending the given norm on K.

Note that Theorem 18 is a very special case of Theorem 3. In particular, the
Archimedean case follows from the Big Ostrowski theorem and the non-Archimedean
case will be proved later by other methods. A direct proof of Theorem 18 is indeed
possible, but somewhat lengthy and unpleasant. The reader who wants to see it
may consult [BAII, §9.5].

However, in order to prove Theorem 17 we can get away with less than this:8 it

8This simpler path is taken from [Bou, §V I.6.4].
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is enough to endow K(
√
−1) with an R-algebra norm which is submultiplicative,

i.e., for all x, y ∈ K(
√
−1), ||xy|| ≤ ||x||||y||. But this is easy: for x, y ∈ K we put

||x+
√
−1y|| := ||x||+ ||y||. Certainly this endows K(

√
−1) with the structure of a

real Banach space. Moreover, for z = x+
√
−1y, z′ = x′ +

√
−1y′ in K(

√
−1), we

calculate

||zz′|| = ||xx′ − yy′||+ ||xy′ + x′y|| ≤ ||xx′||+ ||yy′||+ ||xy′||+ ||x′y||

≤ ||x||||x′||+ ||y|||y′||+ ||x||||y′||+ ||x′||||y||
= (||x||+ ||y||)(||x′||+ ||y′||) = ||z||||z′||.

Putting L = K(
√
−1), we have endowed L with the structure of a complex Banach

algebra. To complete the proof of Theorem 17, it is enough to show that the only
field which is a complex Banach algebra is C itself. Again we shall prove rather
more than this. First a few preliminaries.

Lemma 19. (Neumann) Let (A, || ||) be a complex Banach algebra, and let x ∈ A
be such that ||x|| < 1. Then 1− x ∈ A×; explicitly,

1

1− x
=

∞∑
n=0

xn.

Proof. Since ||x|| < 1, we have
∑∞

n=0 ||an|| ≤
∑∞

n=0 ||a||n < ∞. That is, the series∑∞
n=0 x

n is absolutely convergent and thus, by completeness, convergent; denote
the sum by b. It is then easily seen that (1− a)b = b(1− a) = 1. �

Let (A, || ||) be a complex Banach algebra and let x ∈ A. We make a key definition:
the spectrum σ(x) of x is the set of all complex numbers z such that z−x ∈ A\A×,
i.e., such that z−x is not invertible. The complement C\σ(x) is called the resolvent
set of x. From Lemma 19 it follows that A× contains an open neighborhood of 1
and thus is open. It follows easily that the resolvent set of x is open and thus the
spectrum σ(x) is closed. Moreover, if z ∈ C is such that |z| > ||x|, then ||z−1x|| < 1
and so 1− z−1x ∈ A×; since also z ∈ A×, we find z − x ∈ A×. Thus the spectrum
is also bounded, so the resolvent set is in particular nonempty.

Lemma 20. Let (A, || ||) be a complex Banach algebra, and let x ∈ A. Let U(x)
be the resolvent set of x. Let φ : A → C be any bounded (equivalently, continuous)
linear functional. The map f : U → C by z 7→ φ( 1

z−x ) is holomorphic.

Proof. Fix z ∈ U(x). Then

lim
h→0

1

h
(φ(

1

z + h− x
)− φ(

1

z − x
) = lim

h→0

1

h
φ(

1

z + h− x
− 1

z − x
)

= lim
h→0

1

h
φ(

h

(z + h− x)(z − x)
) = lim

h→0
φ(

1

(z + h− x)(z − x)

= φ( lim
h→0

1

(z + h− x)(z − x)
).

Lemma 19 implies that x 7→ 1
z−x is continuous on U(x), so this last limit exists. �

Now we can prove the following celebrated result, a complete classification of all
complex Banach division algebras, commutative or otherwise.
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Theorem 21. (Gelfand-Mazur) Let (A, || ||) be a complex Banach algebra such
that A \ {0} = A×. Then A ∼= C.

Proof. We claim that for all x ∈ A, the spectrum σ(x) is non-empty.
Indeed, this immediately implies the Gelfand-Mazur theorem: let A be a complex

Banach algebra such that every nonzero element is invertible. If A ̸= C then there
exists x ∈ A \ C. But then for every z ∈ C, z − x is not in C, so certainly it is not
zero, so it is invertible: σ(x) = ∅.

Now we prove the nonemptiness of σ(x): suppose for a contradiction that σ(x)
is empty, so the resolvent set U(x) = C. Let φ : A → C be a bounded linear
functional such that φ(− 1

x ) ̸= 0. (To see that such a thing exists, choose a C-basis
for A in which −1

x is the first element, and define φ by φ(−1
x ) = 1 and for every

other basis element ei, φ(ei) = 0. Note also that this is a special case of the Hahn-
Banach Theorem.) Let f : C → C be the function z 7→ φ( 1

z−x ). By Lemma 20, f

is holomorphic on all of C, i.e., entire. Let C = ||φ||, i.e., the least number such
that for all a ∈ A, |φ(a)| ≤ C||a||. For |z| > 2||x||, we have

|f(z)| = |φ( 1

z − x
)| = 1

|z|
|φ( 1

1− z−1x
)|

=
1

|z|
|φ

( ∞∑
n=0

(z−1x)n

)
| ≤ 1

|z|

∞∑
n=0

|φ((z−1x)n)|

≤ C

|z|

∞∑
n=0

||z−1x||n <
C

|z|

∞∑
n=0

(
1

2
)n =

2C

|z|
.

Thus the entire function f is bounded, hence constant. Moreover, lim|z|→∞ f(z) =

0, so f must be identically zero. But f(0) = φ(−1
x ) = 1: contradiction! �

Finally, we remark that the only other division Banach algebra over R is H, the
quaternions. For a proof of this, see e.g. [Bou, §V I.6.4].

2.11. Proof of Theorem 3 Part I: Uniqueness.

Theorem 22. Let (K, | |) be a complete normed field, let L/K be a field extension
of finite degree d, and let | | be a norm on L extending the given norm on K. Then
we must have that for all x ∈ L,

(1) |x| = |NL/K(x)| 1d

Proof. Step 1: We may assume without loss of generality that L/K is normal. This
reduction is left as an exercise.
Step 2: Suppose first that L/K is separable, so WLOG L/K is Galois andNL/K(x) =∏

σ∈Aut(L/K) σ(x). Then by the preceding theorem we have

|NL/K(x)| = |
∏

σ∈Aut(L/K)

σ(x)| =
∏

σ∈Aut(L/K)

|x| = |x|d.

Step 3: In the general case, let ds be the number of distinct K-embeddings of L
into an algebraic closure K of K (the “separable degree”) and let di = d

ds
(the

“inseparable degree”). As a piece of basic field theory, we have that – under the
assumption that L/K is normal – NL/K(x) = (

∏
σ∈Aut(L/K) σ(x))

di . The proof

now proceeds as in Step 2 above. �
Exercise 2.37: Work out the details of Step 1 of the proof of Theorem 3.
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Corollary 23. Let (K, | |) be a complete normed field, and let L/K an algebraic
extension.
a) There exists at most one norm on L extending | | on K.
b) Suppose that for every finite subextension M of L/K, the mapping x ∈ M 7→
|NM/K(x)|

1
[M:K] of (1) is indeed a norm on M . Then the map

(2) x ∈ L 7→ |NK[x]/K(x)|
1

[K[x]:K]

is a norm on L.

Exercise 2.38: Prove Corollary 23. (Hint: use Exercise 2.2.)

Exercise 2.39: Suppose that (K, | |) is Archimedean and L/K is an algebraic field
extension of K. Use Theorem 3 to show that (2) is the unique norm on L extending
| | on K (i.e., reprove uniqueness and verify existence!).

2.12. Proof of Theorem 5.

We come now to the most technically complicated of the basic extension theorems,
Theorem 5. The reader will surely have noticed that we have taken some time
to build up suitable tools and basic facts. Now our hard work comes to fruition:
given what we already know, the proof of Theorem 5 (modulo the existence part of
Theorem 3 in the non-Archimedean case, which we will treat last) is rather straight-
forward and elegant.

Let us begin by recalling the setup and what we already know. Let (K, | |) be
a normed field (note that we are certainly interested in the Archimedean case, and
even the case of the standard Archimedean norm on K = Q!). Let L/K be a degree

n extension. Let K̂ be the algebraic closure of the completion of (K, | |). We know:

• There is a unique norm on K̂ extending the given norm on K.

• Every norm on L extending | | comes from an embedding ι : L ↪→ K̂.

Since L/K is algebraic and K̂ is an algebraically closed field containing K, cer-

tainly there exists at least one K-algebra embedding ι : L ↪→ K̂, thus at least one
extended norm on L. Since [L : K] = n < ∞, the number of such embeddings ι is
at most n, in particular it is finite. Therefore, let g be the number of norms on L
extending K. We have:

1 ≤ g ≤ n = [L : K]

and the problem is to compute g exactly in terms of L, K and | |.

For 1 ≤ i ≤ g, let | |i be the norms on L extending | | on K. Then (L, | |i) is

a normed field and we may take the completion, say L̂i.

Now I claim that there is a canonical ring homomorphism

Φ : L⊗K K̂ →
g∏

i=1

L̂i.
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Indeed, to define it, we will use the universal properties of the direct product and the
tensor product to reduce to a situation where we can easily guess what the definition
should be. First, just by writing out Φ in coordinates we have Φ = (Φi)

g
i=1 where

Φi : L ⊗K K̂ → L̂i. In other words, to define Φ, it is necessary and sufficient
to define each Φi. Moreover, by the universal property of the tensor product, to
define Φi what we need is precisely a K-bilinear map φi : L × K̂ → L̂i. What is
the “obvious” map here? Well, observe that ιi(L) and K̂ are both subfields of L̂i,

so given an element x ∈ L and y ∈ K̂, we may use ιi to map L into L̂i and then
multiply them in L̂i. Explicitly,

φi(x, y) := ιi(x) · y,

and thus Φ is defined (on “simple tensors” x ⊗ y, and then uniquely extended by
linearity) as Φ(x⊗ y) = (ιi(x)y)

g
i=1.

Let us stop and note that Φ is a map between two objects each with a lot of
structure. Both the source and target of Φ are finite dimensional K̂-algebras, and
Φ is a K̂-linear map. Indeed, another perspective on the definition of Φ is to define
the diagonal map ∆ : L ↪→

∏g
i=1 L̂i, x 7→ (ιi(x)), note that ∆ is K-linear and that∏g

i=1 L̂i is also a K̂-algebra, so that Φ is the unique map corresponding to ∆ under
the canonical “adjunction” isomorphism

HomK(L,
∏
i

L̂i) = HomK̂(L⊗K K̂,
∏
i

L̂i).

Moreover, like any two finite-dimensional K̂-vector spaces, L ⊗K K̂ and
∏g

i=1 L̂i

each come with a canonical topology, such that any K̂-linear map between them
(for instance, Φ!) is necessarily continuous.

The precise result we want to prove is the following:

Theorem 24. Let Φ : L⊗K K̂ →
∏g

i=1 L̂i be the homomorphism defined above.
a) Φ is surjective.

b) The kernel of (Φ) is the Jacobson radical of the Artinian ring L⊗K K̂, i.e., the
intersection of all the maximal ideals. More precisely, there are precisely g maximal
ideals in L ⊗K K̂; suitably labelled as m1, . . . ,mg, the map Φ can be identified as
the Chinese Remainder Theorem homomorphism

L⊗K K̂ →
g∏

i=1

(L⊗K K̂)/mi.

d) It follows that if L/K is separable, Φ is an isomorphism.

Proof. For brevity, we put A = L⊗K K̂.
a) Let W = Φ(A). We wish to show that W =

∏g
i=1 L̂i. Since Φ is K̂-linear,

W is a K̂-subspace of the finite-dimensional K̂-subspace
∏g

i=1 L̂i. By Theorem
15, W is closed. On the other hand, by Artin-Whaples, the image of of L iunder
∆ : L ↪→

∏g
i=1 Li is dense, and by definition of completion (and an easy verification

involving the topology on a finite product of metric spaces)
∏g

i=1 Li is dense in∏g
i=1 L̂i. Certainly “is dense in” is a transitive relation among subspaces of a

topological space, so Φ(L) = Φ(L⊗ 1) is dense in
∏g

i=1 L̂i. Thus Φ is surjective.
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b) Since A is a finite-dimensional K̂-algebra, it is an Artinian ring and therefore
has finitely many maximal (= prime, here) ideals, say m1, . . . ,mN . So the Jacobson

(= nil, here) radical J =
∩N

i=1 mi. We have a finite set of pairwise comaximal ideals
in a commutative ring, so the Chinese Remainder Theorem gives an isomorphism

Ψ : A/J
∼→

N∏
j=1

A/mj .

For each i, A/mi is a finitely generated K̂-module and also (since we modded out

by a maximal ideal) a field, hence is a finite degree field extension of K̂, say L(mj).
Now our map Φ factors through Ψ and we get

A → A/J
∼→

N∏
j=1

L(mj)
q→

g∏
i=1

L̂i.

Thus by part a) we have one finite product of finite field extensions of K̂ surjecting

onto another finite product of finite field extensions of K̂. A little thought shows
that the surjectivity means that we must have N ≥ g and can relabel the j’s such
that for all 1 ≤ j ≤ g, mj = Ker(Φj) and thus

q :

g∏
j=1

L̂j ⊕
∏
j>g

L(mj) →
g∏

j=1

L̂j

is projection onto the first factor. In other words, what we wish to show is that we
have put enough factors on the right hand side: g = N .

So let’s try. What we have put on the right hand side is, precisely, one factor
for each inequivalent norm on L extending | | of K. Each L(mj) is a finite degree

extension of the complete field K̂ so has a unique norm, say ||j , which restricts to
a norm on L. So if N > g there exists j1 ≤ g and j2 > g such that | |j1 = | |j2 as
norms on L. Now consider the projection of Ψ onto just these two factors, i.e.,

Ψj1,j2 : L⊗K K̂ → ̂(L, | |j1)× ̂(L, | |j2).

We claim that Ψj1,j2 is not in fact surjective, thus we have a contradiction. But

this map9 is not so mysterious: it is determined by the images of L and of K̂.
In particular, consider Ψj1,j2 restricted to L: this is just the diagonal map; since
the norms are equivalent, the topologies are the same, and thus the image of L is
closed in (L, | |j1)× (L, | |j2). Moreover, tensoring this diagonal map with K̂ has
the effect of completing these normed spaces (to see this, all we have to check is

that after tensoring with K̂ we have complete spaces and that the image is dense
in the tensorization with K̂). We have the same topology on both factors, so the
closure of the diagonal is the diagonal of the closure, and thus the image of A
under Ψj1,j2 has K̂-dimension dimL(mj1) = dimL(mj2) and hence not equal to
dimL(mj1)× L(mj2) = 2 dimL(mj1), contradiction.

c) If L/K is a separable field extension, then A = L⊗K K̂ is a separable K-algebra,
i.e., a product of finite separable field extensions. To see this, write L = K[t]/(P (t))
with P (t) an irreducible separable polynomial (this is possible by the primitive ele-
ment theorem). Being a separable polynomial is unaffected by extending the field:

9Despite its complication notation!
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if M is any extension of K, however large, then P ∈ M [t] factors into distinct irre-
ducible polynomials. (To see this, use e.g. the derivative criterion for separability:

P is separable iff gcd(P, P ′) = 1.) Applying this remark with M = K̂, we get

P = P1 · · ·Pg ∈ K̂[t] with the Pi’s distinct irreducible polynomials; thus the set of
ideals (Pi) are pairwise comaximal, and the CRT isomorphism is

A = K̂[t]/(P ) = K̂[t]/(P1 · · ·Pg) ∼=
g∏

i=1

K̂[t]/(Pi) ∼=
g∏

i=1

L̂i.

�

2.13. Proof of Theorem 3 Part II: Existence Modulo Hensel-Kürschák.

We return to the situation of a complete normed field (K, | |) and a degree n < ∞
field extension L/K. We have seen that if there exists an extension of | | to a norm
on L, it must be the map

x ∈ L 7→ |NL/K(x)|
1

[L:K] .

In the Archimedean case, the Ostrowski theorem reduces us to checking that this
is indeed the correct recipe for the standard norm on C as a quadratic extension of
R. Thus we are left to deal with the non-Archimedean case. As mentioned above,
we really need to check the ultrametric triangle inequality.

From our study of Artin valuations in §1, we know that we do not change whether
a mapping is a non-Archimedean norm by raising it to any power, so we might
we well look at the mapping x 7→ |NL/K(x)| instead. Moreover, we also know
that the non-Archimedean triangle inequality is equivalent to: for all x ∈ L,
|x| ≤ 1 =⇒ |x+ 1| ≤ 1.

This is what we will check. In fact, as came out in the lecture, it is convenient
to make a further reduction: since NL/K(x) = (NK[x]/K(x))[L:K[x]], we may as well
assume that L = K[x].

Lemma 25. (Hensel-Kürschák) Let (K, | |) be a complete, non-Archimedean
normed field. Suppose that P (t) = tn + an−1t

n−1 + . . . + a1t + a0 ∈ K[t] is ir-
reducible and such that |a0| ≤ 1. Then |ai| ≤ 1 for all 0 < i < n.

Let us postpone the proof of Lemma 25 and see why it is useful for us. For α ∈ L, let
P (t) be the minimal polynomial of α over K, so P (t) is a monic irreducible polyno-
mial of degree m = [K[α] : K] and has constant coefficient a0 = (−1)mNK[α]:K(x).
By assumption,

1 ≥ |NL/K(α)| = |NK[α]/K(α)n/m| = |a0|n/m,

so |a0| ≤ 1. Now the minimal polynomial for α + 1 is P (t − 1) (note that K[α] =
K[α+ 1]). Plugging in t = 0, we get

(−1)mNK[α]/K(α+ 1) = P (−1) = (−1)m + am−1(−1)m−1 + . . .+ (−1)a1 + a0.

By Lemma 25 we have |ai| ≤ 1 for all i, and by the non-Archimedean triangle
inequality in K we conclude that

|NL/K(α+ 1) = |NK[α]/K(α+ 1)|n/m ≤ 1n/m ≤ 1.
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Now we should discuss the proof of the Hensel-Kürshák Lemma. And we will –
but in the next chapter of the notes, along with other equivalent forms of the all-
important Hensel’s Lemma. In the next (optional) section, we discuss a Hensel-
less proof of the existence of the extended valuation, which employs the somewhat
more general concept of a Krull valuation that we have been trying to keep out
of our main exposition.

2.14. Proof of Theorem 3 Part III: Krull Valuations.

In this optional section we give a proof of the existence statement in Theorem
3 using the concept of a Krull valuation and an important (but not terribly diffi-
cult) result from commutative algebra.

Recall that a valuation ring is an integral domain R such that for every nonzero x in
the fraction field K, at least one of x, x−1 lies in R. A valuation ring is necessarily
local, say with maximal ideal m. Moreover:

Lemma 26. A valuation ring is integrally closed.

Proof. Let R be a valuation ring with maximal ideal m and fraction field K. Let
a0, . . . , an−1 ∈ R and let x ∈ K such that xn + an−1x

n−1 + . . .+ a1x+ a0 = 0. By
definition of a valuation ring, if x ̸∈ R, then x−1 ∈ m, so 1 = −(an−1x

−1 + . . . +
a0x

−n)) ∈ m, contradiction. �

Remark: An integral domain R is called a Bézout domain if every finitely gen-
erated ideal is principal. In a valuation domain, every finitely generated ideal is
generated by any element of minimal valuation, so valuation domains are Bézout.
For a non-Noetherian domain, Bézout domains are very nice: see e.g. [Cla-CA,
§12.4]. (In particular, all Bézout domains are integrally closed.)

Valuation rings have naturally arisen in our study of normed fields: If (K, | |) is a
normed field, then the set R = {x ∈ K | |x| ≤ 1} is a valuation ring. Equivalently,
if v = − log | | : K× → R is an associated valuation, then R = {x ∈ K | v(x) ≥ 0}.
However, not every valuation ring comes from a normed field, or a valuation
v : K× → R, in this way. We can however get a bijective correspondence by
generalizing our concept of valuation to a map v : K× → Γ, where Γ is an ordered
abelian group.

This may sound abstruse, but is easily motivated, as follows: let R be a domain
with fraction field K. Consider the relation ≤ on K× of R-divisibility: that is
x ≤ y ⇐⇒ y

x ∈ R. The relation of R-divisibility is immediately seen to be reflex-
ive and transitive. Even when R = Z, it is not anti-symmetric: an integer and its
additive inverse divide each other. However, any relation ≤ on a set X which is
reflexive and transitive induces a partial ordering ≤ on the quotient X/ ∼, where
we decree x ∼ y iff x ≤ y and y ≤ x. In the case of R = Z, this amounts essentially
to restricting to positive integers. For R-divisibility in general, it means that we are
identifying associate elements, so the quotient is precisely the group Γ = K×/R×

of principal fractional R-ideals of K.

Proposition 27. For an integral domain R with fraction field K and Γ = K×/R×,
TFAE:
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(i) The induced partial ordering ≤ on Γ is a total ordering.
(ii) R is a valuation ring.

Proof. If ≤ is a total ordering, then for any x ∈ K×, take y = 1: then either
y
x = x−1 or x

y = x lies in R, so that R is a valuation ring. Conversely, if R is a

valuation ring, let x, y ∈ K×. Then either x
y ∈ R – i.e., y ≤ x – or y

x ∈ R – i.e.,

x ≤ y. �

This motivates the following definition.

Let (Γ,≤) be an ordered abelian group. Then a Γ-valued valuation on a field
K is a map v : K× → Γ such that for all x, y ∈ K, v(xy) = v(x) + v(y) and
v(x+ y) ≥ min v(x), v(y). As usual, we may formally extend v to 0 by v(0) = +∞.
A Krull valuation on K is a Γ-valued valuation for some ordered abelian group
Γ.

Proposition 28. Let (Γ,≤) be an ordered abelian group and v : K → Γ a Krull
valuation. Then Rv = {x ∈ K | v(x) ≥ 0} is a valuation ring.

Thus to a valuation ring R we can associated the Krull valuation v : K× → K×/R×

and conversely to a Krull valuation we can associate a valuation ring. These are
essentially inverse constructions. To be more precise, let (K, v : K → Γ1) and
(L,w : L → Γ2) be two fields endowed with Krull valuations.

Lemma 29. Let (Γ1,≤) and (Γ2,≤) be ordered abelian groups, and let g : Γ1 → Γ2

be a homomorphism of abelian groups.
a) The following conditions on γ are equivalent:
(i) x1 < x2 =⇒ g(x1) < g(x2).
(ii) x1 ≤ x2 ⇐⇒ g(x1) ≤ g(x2).
b) If the equivalent conditions of part a) hold, then g is injective.
A homomorphism satisfying the equivalent conditions of part a) is said to be a
homomorphism of ordered abelian groups.

Proof. a) Suppose g satisfies (i). Certainly x1 = x2 =⇒ g(x1) = g(x2), so we
have x1 ≤ x2 =⇒ g(x1) ≤ g(x2). Now suppose that g(x1) ≤ g(x2) and that we do
not have x1 ≤ x2. Since the ordering is total, we then have x1 > x2, and then our
assumption gives g(x1) > g(x2), contradiction. Now suppose g satisfies (ii), and let
x1 < x2. If g(x1) = g(x2), then g(x1) ≤ g(x2) and g(x2) ≤ g(x1), so (ii) implies
that x1 = x2, contradiction. Similarly, we cannot have g(x1) ≥ g(x2), so we must
have g(x1) < g(x2).
b) Assume (i) and let x ∈ Γ1 be such that g(x) = 0. If 0 < x, then 0 = g(0) < g(x) =
0, contradiction. Similarly, if x < 0, then 0 = g(x) < g(0) = 0, contradiction. So
x = 0 and thus g is injective. �

A homomorphism of Krull-valued fields is a pair (ι, g), where ι : K ↪→ L is a ho-
momorphism of fields and g : Γ1 ↪→ Γ2 is an injective homomorphism of ordered
abelian groups such that for all x ∈ K, w(ι(x)) = g(v(x)). Then the correspon-
dences described above take isomorphic valuation rings to isomorphic Krull-valued
fields and isomorphic Krull-valued fields to isomorphic valuation rings.

The value group of a Krull valuation is the image v(K×). A Krull valuation
is said to be trivial if its value group is the trivial abelian group (which has a
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unique ordering).

In this more general context, a nontrivial Krull valuation v : K → Γ is said to
be rank one if there exists a homomorphism of ordered abelian groups g : Γ → R.10

Exercise 2.40: Show that any ordered abelian group Γ can serve as the value group
of a Krull-valued field.
Suggestion: let k be any field, and let R be the group ring k[Γ], i.e., the set of
formal sums x =

∑
γ∈Γ xγ [γ] where xγ ∈ k for all γ and for a fixed x, all but

finitely many xγ ’s are zero. Define v : R \ {0} → Γ by letting v(x) be the least γ
such that xγ ̸= 0. Show that R is an integral domain, that v extends uniquely to
its fraction field K and defines a valuation on K with value group Γ.

Exercise 2.41: Let Γ be a nontrivial ordered abelian group. TFAE:
(i) There exists a homomorphism of ordered abelian groups g : Γ → R (Γ has rank
one).
(ii) For all positive elements x, y ∈ Γ, there exists n ∈ Z+ such that nx > y (Γ is
Archimedean).

Combining the previous two exercises one gets many examples of Krull valuations
which are not of rank one, e.g. Γ = Z× Z ordered lexicographically.

Lemma 30. Let Γ be an ordered abelian group and H ⊂ Γ be a finite index divisible
subgroup. Then H = Γ.

Proof. Suppose not, i.e., [Γ : H] = n < ∞. Let x ∈ Γ. Then nx = h ∈ H.
By definition of divisibility, there exists y ∈ H such that ny = h. Therefore
0 = h − h = n(x − y), i.e., x − y ∈ Γ[n]. But an ordered abelian group must be
torsionfree, so x = y ∈ H. �

Lemma 31. Let L be a field, v : L× → Γ a Krull valuation on L, and let K be a
subfield of L with [L : K] = n < ∞. Then Γ is order isomorphic to a subgroup of
ΓK = v(K×).

Proof. ([BAII, p. 582]) For any nonzero x ∈ L, we have a relation of the form∑k
i=1 αix

ni , where αi ∈ K and the ni are integers such that [L : K] = n ≥ n1 >
n2 > . . . > nk ≥ 0. If there existed any index j such that for all i ̸= j we had

v(αix
ni) > v(αjx

nj ), then ∞ = v(
∑k

i=1 αix
ni) = v(αjx

xj ) and thus αjx
nj = 0, a

contradiction. Thus there exist i > j such that v(αix
ni) = v(αjx

nj ), so

v(x)ni−nj = v(αjα
−1
i ) ∈ ΓK .

Thus, for any x ∈ L×, (n!)v(x) ∈ ΓK . But since Γ is torsionfree, the endomorphism
[n!] : Γ → Γ (i.e., multiplication by n!) is injective, and therefore [n!] : Γ ↪→ [n!]Γ ⊂
ΓK , qed. �

Corollary 32. Let (K, v) be a rank one valued field, let L/K be a finite degree
field extension, and let w be any Krull valuation on L such that there exists a
homomorphsim of Krull-valued fields (ι, g) : (K, v) → (L,w). Then w also has rank
one.

10There is a definition of the rank of an ordered abelian group, but we will not need it here.
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Proof. This follows immediately from Lemma 31 and the definition of a rank one
valuation as one whose value group is order isomorphic to a subgroup of (R,+). �
But why would one want to use Krull valuations? One might equally well ask what
is the use of general valuation rings, and the latter has a very satisfying answer:

Theorem 33. Let R be an integral domain which is not a field, and let L be a field
such that R ⊂ L. Let S be the integral closure of R in L. Then S is equal to the
intersection of all nontrivial valuation rings of L containing R.

Now let (K, | |) be a nontrivial non-Archimedean valued field and L/K a finite
field extension. We know that there is at most one norm on L which extends | |
on K. We will now give a proof of the existence of this extended norm which
is independent of the as yet unproved Lemma 25. Namely, let v be any rank one
valuation corresponding to | |, and let R be the valuation ring of K. Let S be the
integral closure of R in K. It suffices to show that S is itself a valuation ring and
the corresponding valuation has rank one.

Let S = {Rw} be the set of all nontrivial valuation rings of L which contain
R. By Theorem 33, we have S =

∩
Rw∈S Rw. For any valuation ring Rw ∈ S, let

w : L → Γ be the corresponding Krull valuation. By Corollary X.X, w is a rank one
valuation, hence corresponds to an non-Archimedean norm on L which (certainly
after rescaling in its equivalence class) restricts to | | on K. By the uniqueness of
extended norms, it follows that #S = 1, so that S = Rw is a rank one valuation
ring.
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