
FIRST STEPS IN THE GEOMETRY OF CURVES

PETE L. CLARK

We would now like to begin studying algebraic curves. However, to do this from
the desired modern perspective we still need some further tools. Perhaps though
by trying to study curves anyway the need for these specific tools will become clear.

Let C/k be a geometrically integral curve. We have already seen that there ex-
ists a unique curve C̃/k which is birational to C and is projective and nonsingular
(and that this cannot be improved to smooth if k is not perfect). Thus the bira-
tional geometry of curves works out in the nicest possible way. One often takes
advantage of this by defining a curve using a model which is incomplete, singular
or both (but always geometrically integral!), with the understanding that what we
are really interested in is the unique projective nonsingular model.

Perhaps the first thing we wish to define on algebraic curve is its genus, g ∈ N.
Classically the genus was viewed as a topological invariant. Namely, if C/C is a nice
curve, then C(C) in the analytic topology is a compact complex manifold of dimen-
sion 1, so in particular a compact orientable real surface, and thus diffeomorphic
to a sphere with g handles for some unique non-negative integer g. (Alternately,
2g = dimQ H1(C(C), Q).)

For a nice curve over an arbitrary field k we could, in fact, make this topolog-
ical definition work, but only with more sophistication and work than would be
necessary to give a purely algebraic definition.

Perhaps the cleanest algebraic definition of the genus is dimk H1(C,OC), i.e., the
dimension of the first sheaf cohomology group of the structure sheaf. This points
out the need for sheaf cohomology, which we have not yet discussed.

Another useful algebraic definition – dual to the first – is dimk H0(C,ΩC). This
is easier than the previous definition in that we are not really using cohomology:
it is just the dimension of the space of global sections of a certain sheaf ΩC , the
canonical sheaf. However, to define this sheaf requires the notion of differentials.

The next issue is how to embed a curve into projective space. For this we need the
theory of divisors, line bundles and linear systems, and the Riemann-Roch theorem.
Let us come at this from a very naive perspective.

Let X be a variety which is geometrically integral and nonsingular in codimen-
sion 1 (e.g., normal). For 0 ≤ i ≤ d = dim(X), we will define an abelian group
Zi(X). By a prime cycle, we mean a reduced irreducible closed subvariety of X.
Like every irreducible variety, a prime cycle has a well-defined dimension, and we
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put Zi(X) to be the free abelian group generated by the prime cycles of dimension
i. An element of the group Zd−1(X), of cycles of codimension one, is called a Weil
divisor.

Since X is integral, it has a function field k(X). To every function f ∈ k(X), we can
associate a Weil divisor div(f), as follows. The assumption that X is nonsingular
in codimension one ensures precisely that the local ring of X at any irreducible
Weil divisor Z is Noetherian, local and nonsingular, thus a DVR. So there exists a
well-defined positive integer ordZ(f), the order of vanishing of f along Z. (So, for
instance, the order of vanishing is non-negative iff f is regular at every point of Z
and is 0 iff f is regular and invertible at every point of Z.) We then define

div(f) =
∑
Z

ordZ(f)[Z].

Here the sum extends over all prime divisors, and the finiteness of nonzero orders
comes down to a basic finiteness result in commutative algebra that I don’t wish
to linger over here.

0.1. Meromorphic differentials on curves.

Assume now that X is a curve, and let ω be a meromorphic differential on X,
that is, a section of ΩX over the generic point of X. Locally near any point p
of X it can be written as fdt, where t is a uniformizing parameter at p, and we
define K := div(ω) =

∑
p ordp(f)p. One has to check that this makes sense inde-

pendently of the local representation of ω (but it does). Then in fact the degree
of div(ω) is 2g − 2. Because the module of meromorphic differentials of X over
k is one-dimensional over k(X), if ω1 and ω2 are any two meromorphic differen-
tials, there exists a meromorphic function f ∈ k(X) such that ω2 = fω1, and thus
div(ω2) − div(ω1) = div(f). This shows in particular that the degree of a mero-
morphic differential is well-defined.

Moreover, in the general case (of a projective variety X which is nonsingular in
codimension 1) we define an equivalence relation on Weil divisors: we say D1 is
linearly equivalent to D2 if D1 − D2 = div(f) is the divisor of some function.
The quotient of Z1(X) = Zd−1(X) modulo linear equivalence is called the divisor
class group, Cl(X). (When X is nonsingular, this will turn out to be isomorphic
to the Picard group Pic(X), which we have not yet defined but with which the
reader may be more familiar.) This group is a very important invariant of X.

0.2. The index of a nice variety.

Let X/k be a (nonempty!) nice variety. There is a map from the group of zero-cycles
Z0(X) to Z, called the degree:

deg(
∑
P

nP [P ] =
∑
P

[k(P ) : k]nP ;

here k(P ), is, as usual, the residue field at the closed point P . We define the index
of X to be the cardinality of the cokernel of the degree map; in other words, the
index of V is the least positive degree of a divisor on X.
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This is an example par excellence of an arithmetic-geometric invariant of varieties
which is only interesting over a non-algebraically closed ground field. Indeed, since
any k-variety has a k-valued point, the index of a variety over an algebraically
closed field is equal to 1. (In fact, since V is assumed to be geometrically integral,
it is enough for k to be separably closed.)

Exercise: The index of a variety is equal to the gcd of all degrees of closed points
on V .

Exercise: a) If k is not perfect, we can also define the separable index is to
be the gcd of all degrees of closed points with separable residue field extensions.
What is an equivalent definition in terms of divisors? (Hint: you want to define a
subgroup of Z0(X) generated by “separable” divisors.)
b) Show that i(V ) | is(V ) for all V .
c**) Find a nice variety V over some (imperfect) field k such that iS(V ) > i(V ).1

It is natural to ask what possible values the index can assume. In fact, it is more
interesting to ask this question among varieties with other discrete invariants fixed.
For example, let k be a field, and let g ∈ N. For which values of i does there exist
a nice curve C/k with genus g and index i?

The first observation is that there is really only one class of divisors which are
given to us for free on any curve of genus g: namely, the canonical class. Since the
degree of any canonical divisor is 2g − 2, we get that the index of a genus g curve
(over any field k) must divide 2g − 2.

When g = 0, this says the index is 1 or 2. We will see that these two cases cor-
respond, over any field, to the case of plane conics with and without rational points.

When g = 2, this again says the index is 1 or 2, although here it is possible
for the index to equal 1 and there still not to be rational points, as can be done
with curves over a finite field for instance. In general, for higher genus, this says
that there are only finitely many possible values for the index.

However, when g = 1, this says that the index divides 0: this is no restriction
at all! It has been known for a long time that there exist fields k such that for
every positive integer i there is a genus one curve of index i. An especially simple
case is k = C((t)), in which the result is due, independently, to Ogg and Shafarevich
(as a corollary of more general results). The case of Qp is due to Lang and Tate.
On November 2, 2004, I was able to show that for any number field K and any
i ∈ Z+, there exists a genus one curve C/K of index i.

For higher genus, over a locally compact non-Archimedean field the fact that for
any g ∈ N and i | 2g − 2 there exists a curve C with genus g and index i is due to
Shahed Sharif (in his PhD thesis, when the characteristic is not 2) and myself (a
couple of weeks later, but before I saw his thesis). These methods show that for
any g, there exists a number field K (depending upon g) and a curve C/K of genus

1So far as I know this is an open question.
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g with index 2g − 2. There are still some open cases.

Exercise **: Suppose that instead of a number field, K is a global function field,
i.e., the function field of a nice curve over a finite field. Can one show that there
exist genus one curves C of every index over K?2

0.3. Linear systems.

Linear system: Let D0 be a Weil divisor on X. We define the complete linear
system L(D) of D, as follows: it is the set of effective divisors D which are linearly
equivalent to D0. Note that L(D) is empty if deg(D0) < 0, and also if deg(D0) = 0
unless D0 is linearly equivalent to the zero divisor.

There are many useful equivalent ways of viewing this linear system. One way is as
follows: every D ∈ L(D0) is of the form D0 +div(f), so we may identify D with the
function f , in which case the effectivitiy of D becomes the condition div(f) ≥ −D0.
Thus L(D0) can be viewed as the set of all functions {f | div(f) ≥ −D0}. This
is nice, because if we adjoin the 0 function to L(D0), then it is easily seen to be a
k-vector space, under the operations of multiplication of functions and multiplica-
tion of a function by a scalar. For reasons that we will explain later, it turns out
that this vector space is finite-dimensional; we denote its dimension by l(D). Once
we notice that div(f) = div(α · f) for any α ∈ k×, it becomes more natural yet to
consider the corresponding projective space P(D) ∼= Pl(D)−1.

And now a miracle occurs: we define the base locus of D to be the set of all
closed points x ∈ X such that f(x) = 0 for all f ∈ P(D). The base locus is a
proper closed subset of X and may well be empty. On the complement of the base
locus, we can define a morphism from X to P(D) given by x 7→ (f(x)). To be
more precise about this, if we choose a basis f0, . . . , fl(D)−1 for L(D), then the
corresponding map gets coordinatized as

x 7→ [f0(x) : . . . : fl(D)−1(x)].

To interpret this property in projective space, at any given point x we are free to
rescale the functions by any common value: our goal is to make all of the coor-
dinates finite and not all of the coordinates equal to 0. But in fact if all of the
coordinates are 0 there is nothing we can do: that means that x is an element of
the base locus, and the map cannot be defined at x. But otherwise, it is easy to
see that by dividing all the elements by the function fi(x), where i is chosen such
that the valuation of fi at x is minimal, we will get an expression in which all
coordinates are finite and not all are zero.3

Moreover, different choices of basis correspond to linear automorphisms of L(D)
modulo scalars, i.e., PGL(L(D)), and this is precisely the automorphism group of

2I was so excited about the result that I got on election day that it never occurred to me to
look at the function field analogue.

3Note that this is more correct than what I said the first time I tried to define linear systems

and simpler than the correction that I made a few lectures later. In my defense, this simple
explanation is hard to find in the literature!
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the projective space. Also the degree of the map is equal to the degree of D.

Thus an effective Weil divisor on X gives a rational map into a projective space.

Example: P1.

Example: An elliptic curve.

Theorem 1. (Riemann-Roch for nice curves) Let X be a nice curve over a field
k, and let D be a Weil divisor on X. Let K be the divisor of a meromorphic
differential on X. Then

l(D)− l(K −D) = deg(D)− g(X) + 1.

0.4. Ample and very ample divisors.

Let D be a divisor on a nice variety V . We say that D is very ample if the
induced rational map ϕD : V → PN is a morphism which is a closed immersion
(i.e., an embedding!). We say that a divisor D is ample if some positive integer
multiple is very ample.

Remark: This is of course a slightly weird definition: among other things, one
would expect very ample to be defined in terms of ample rather than the other way
around. There are also other equivalent formulations. But this simple one is useful
(and, one gets used to it).

We quote without proof some simple and useful criteria for divisors on curves to be
ample or very ample.

Proposition 2. Let D be a divisor on a nice curve C/k.
a) A divisor is ample iff it has positive degree. a) The complete linear system |D|
has no base points iff: for all closed points P of C, dim |D − P | = dim |D| − 1.
b) D is very ample iff for any two closed points (P,Q) of C (the case P = Q is not
excluded), then dim |D − P −Q| = dim |D| − 2.
c) So if deg D ≥ 2g, |D| has no base points.
d) If deg D ≥ 2g + 1, then D is very ample. e) D is ample iff deg D > 0.

Some general terminology: a variety is said to be Fano if its anticanonical bundle
– i.e., −K, where K is the canonical bundle – is very ample. A variety is said to
be of general type if some positive multiple of the canonical bundle induces an
embedding on a dense open subset. Roughly speaking, a variety is Calabi-Yau if
its canonical class is linearly equivalent to 0.

Then:

(i) A nice curve is Fano iff it has genus 0.
(ii) A nice curve is Calabi-Yau iff it has genus 1.
(iii) A nice curve is of general type iff it has genus at least 2.

Let us now return to the case of genus 0 curves. The anticanonical class is rep-
resented by any divisor of degree 2; according to Proposition X.Xd) this makes it
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very ample. By Riemann-Roch, dim | −K| = 3, so

ϕ−D : C → P2

is a degree 2 embedding. Thus its image must be a conic curve in P2, which is
uniquely determined up to projective automorphisms (and of course, rescaling).
We have proven:

Theorem 3. A nice genus 0 curve over an arbitrary field k is “anticanonically
isomorphic” to a plane conic, i.e., a curve of the form

a1X
2 + a2Y

2 + a3Z
2 + a4XY + a5XZ + a6Y Z = 0.

If the characteristic of k is different from 2, then any quadratic form can be diago-
nalized, and thus we can get an equation of the form

aX2 + bY 2 = Z

for a, b ∈ k×.

The next thing to observe is that if our genus zero curve has a k-rational point, it
is isomorphic to the projective line. Indeed, choose one such point O, and consider
the set of all lines in P2 passing through O. Every line except for the tangent line
intersects the conic in a unique point P 6= O; whereas the tangent line intersects O
with multiplicity 2. From this one gets a geometrically defined explicit isomorphism
P1 → C (this is one of the oldest arguments in algebraic geometry).

Obviously the converse is also true: P1
/k has k-rational points. (It even has “many”

k-rational points in that P1(k) is Zariski-dense in P1(k).)

Correspondence between genus 0 curves and quaternion algebras...

We also want to show that a conic without rational points has index 2, i.e., has
no rational points over any odd extension. There are many ways of doing this: for
instance, one can prove it using quaternion algebras, or using the algebraic theory
of quadratic forms (Springer’s Theorem). Or one can use Riemann-Roch: indeed,
Riemann-Roch implies that any divisor on a genus 0 curve of positive degree is
linearly equivalent to an effective divisor. So if C had a divisor of degree 1 it would
have a k-point! Note that this argument also works verbatim for elliptic curves, but
not for curves of any higher genus (and indeed the result is not true in any higher
genus!).

0.5. Curves of genus one.

Exercise: Let p be a prime number. Consider the plane curve Cp/Q given by
the equation

Cp : X3 + pY 3 + p2Z3 = 0.

a) Show that Cp is a smooth curve of genus one.
b) Show that the index of Cp is 3. In particular, Cp is not hyperelliptic.
c)* Suppose that p ≡ 1 (mod 3). Show that Cp has no rational points over any
abelian number field.
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0.6. Curves of genus two.

Genus 2: the canonical divisor has degree 2g−2 = 2. By Riemann-Roch it gives
a degree 2 map

C → P1.

Note that, ignoring the theory of base points of linear systems, we know we can
extend this rational map to a morphism because C is a smooth curve! In other
words C is canonically a double cover of P1.

Definition: A curve C of any genus which admits a separable degree 2 morphism
to P1 is hyperelliptic.

We remark that this definition is nonstandard. For instance:

Exercise X.X: Show that any nice curve of genus 0 is hyperelliptic.

By the Riemann-Hurwitz theorem, a hyperelliptic curve has 2g + 2 branch points,
so we get a a model of the form

y2 = P2g+2(x).

Exercise: Show that if k = k we can find also give a defining equation of the form
y2 = P2g+1. (Hint: use an automorphism of P1 to map one of the branch points to
infinity.)

The preimage of infinity consists of two k-rational points if the leading coefficent a
of P is a square in k, and otherwise consists of a single closed point whose reisdue
field is k(

√
a). If g > 0, then both of the closed points are singular, and increasingly

so as the genus increases. Therefore this is not the smooth projective model of C.
However, in practice this is no problem: it is easier to work with a hyperelliptic
model than almost any other smooth projective model.

Applications:

1) Let us plug in D = K. By the above remarks, l(K − K) = l(0) = 1, so we
get

l(K) = deg(K)− g + 2 = g.

When g = 0, the canonical divisor has degree −2 so is not effective. But we can
take the anticanonical divisor −K, which has degree 2. According to Riemann
Roch then we get

l(−K) = l(2k) + deg(−K) + 1 = 3,

so the corresponding rational map is from X to P2. It is easy to check that there
are no base points and in fact that this map is an embedding. Since deg(−K) = 2,
the image of X in P2 is a quadric hypersurface, that is, a conic curve. Thus any
nice curve of genus 0 has an (anti!)canonical representation as a plane conic.
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1. Hyperelliptic curves

Definition: A nice curve C/k is hyperelliptic if it admits a finite separable mor-
phism C → P1 of degree 2.

Remark: This definition coincides with Liu’s definition, except in the (completely
innocuous) point that we place no genus restrictions on curves whatsoever, whereas
Liu requires g(X) ≥ 1. Indeed:

Exercise X.X: Show that every curve of genus 0 is hyperelliptic.

Exercise: a) Let ϕ : X → Y be a finite morphism of nice curves over k, of de-
gree d. Letting, as before, i(C) denote the index of a curve, show

i(Y ) ≤ i(X) ≤ di(Y ).

b) Deduce that the index of a hyperelliptic curve is 1 or 2. (In fact, show that the
least degree of a rational point on a hyperelliptic curve is at most 2. Why is this a
stronger statement?)

Exercise X.X: a) Show that any elliptic curve is hyperelliptic.
b) Exhibit a genus one curve without rational points which is hyperelliptic.
c) Show that there is a genus one curve (over some field) which is not hyperelliptic.

This definition of hyperelliptic curves differs from the one which is standard in
algebraic geometry in two ways: first it allows some curves of genus one (and also
all curves of genus zero, but that’s of no consequence) to be hyperelliptic. As you
can see from the above exercise, any genus 1 curve with a rational point is hyper-
elliptic, so when k = k we would simply be calling all elliptic curves hyperelliptic,
and there is nothing gained by doing this. However, in the arithmetic case the term
“hyperelliptic curve of genus one” is by no means redundant.

Another definition is that we require the morphism C → P1 to be rational over
the ground field and that the target curve be k-isomorphic to P1 (equivalently,
to have k-rational points). Let us call a curve biconic if there exists a degree 2
separable morphism f : C → V , where V is a smooth genus zero curve (i.e., a
plane conic). Note that any biconic curve is geometrically hyperelliptic, and indeed
becomes hyperelliptic over some quadratic extension field.

Construction of hyperelliptic curves: for simplicity, we assume now that the char-
acteristic of k is different from 2. Let C → P1 be a hyperelliptic curve. Then the
function field k(C) of C is a quadratic extension of k(P1) = k(x), and there-
fore is given by taking the square root of a rational function f = P

Q . Since

k(x)(
√

P
Q ) = k(x)(

√
PQ), we may assume without loss of generality that f = P (x)

is a polynomial of degree d > 0 and that P has no repeated roots over f . Therefore
k(C) is the fraction field of k[x, y]/(y2 − P (x)).

Apply Riemann-Hurwitz: get C has degree g if d = 2g + 1 or d = 2g + 2. Ex-
plain that the point at infinity is singular in the projective model, and that there
exist two points at infinity iff the leading coefficient of P is a square in k. C can
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be defined by a polynomial of degree 2g + 1 iff it admits a k-rational Weierstrass
point.

Proposition 4. A nice curve C of genus g ≥ 1 is hyperelliptic iff it admits a
divisor D with deg(D) = l(D) = 2.

Proof: Liu Lemma 7.4.8, p. 287.

Corollary 5. Every curve of genus 2 is hyperelliptic.

Proof: By Riemann-Roch, a canonical divisor K on a genus two curve has deg(K) =
l(K) = 2.

Definition: We say that a curve C is canonical if the canonical divisor is very
ample.

Clearly a canonical curve must have genus at least 2, and by the previous corollay,
at least 3. (One might say that a curve of genus 0 is anti-canonical.)

Proposition 6. Let C be a nice curve of genus at least 2. Then exactly one of the
following holds:
(i) C is rationally hyperelliptic.
(ii) C is not rationally hyperelliptic but is biconic.
(iii) C is a canonical curve.

Proof: . . .

Corollary 7. Let g ≥ 2 be an even integer, and let C/k be a non-canonical curve,
i.e., the canonical map is 2 : 1 onto a conic curve V . Then (since g is even) this
conic has a rational point, and thus C is hyperelliptic.

Proof: The conic V is a degree g − 1 curve in Pg−1. Since g is even, g − 1 is odd,
therefore the intersection with any hyperplane gives a divisor of odd degree g−1 on
V . This implies that its index is odd, and therefore its index is one, and therefore
(by a previous application of R-R) it has a k-rational point.

Exercise ∗.∗: Prove or disprove: let k be a field for which there exists a conic
curve V/k without a rational point. (N.B.: equivalently, Br(k)[2] 6= 0. This holds
e.g. for all locally compact fields except C, and also for all global fields and all
infinite, finitely generated fields.) Show that for any odd g there exists a genus g
curve C/k with a 2 : 1 map C → V such that C is not hyperelliptic.

2. Canonical curves

I hope you have noticed that we have not, as yet, seen a single canonical curve of
genus g > 1. As we saw, in genus g = 0 or g = 2, all curves are hyperelliptic.
However, we showed that the isomorphism classes of hyperelliptic curves of genus
g form a variety of dimension 2g − 1, whereas we have earlier stated (to be sure,
without any kind of justification!) that there is a moduli space of all curves of genus
g of dimension 3g − 3. If so, this indicates that for all g ≥ 3, a general curve of
genus g is not hyperelliptic.

So, let’s try to see that this is the case, starting with g = 3. A canonical curve of
genus 3 is embedded in P3−1 = P2 as a degree 4 hypersurface: i.e., it is a smooth
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plane quartic.

We know that any nonbiconic curve of genus 3 is a smooth plane quartic. The
smooth plane quartics form an open subset of the complete linear system of all de-
gree 4 divisors on P2. More concretely, the space of all plane quartics (including the
singular, reduced, and/or reducible ones) is naturally isomorphic to P(Sym4(V )),
where V is a three dimensional k-vector space. Since dim Symr(V ) =

(
dim(V )+r−1

r

)
,

this space of all quartics is P14. Of course many of these quartics will be isomorphic
to each other. We have at least the group PGL3 = Aut(P2) acting as linear changes
of variables. Thus a sampling space for all canonical curves of genus 3 is birational
to P14/PGL3, so has dimension 14− (9− 1) = 6 = 3 · 3− 3.

The upshot of this “back of the envelope” style computation is that if we believe
that there really is a 6-dimensional family of moduli of curves of genus 3, then it
must be that a general plane quartic is a a canonical curve of genus 3. In fact it
is the case that any smooth plane quartic curve is a curve of genus 3 such that
the given planar embedding C ↪→ P2 is the canonical embedding: equivalently,
intersecting C with a hyperplane gives a canonical divisor. Indeed there is a much
more general result about the canonical class on a complete intersection in projec-
tive space. These matters are treated well in Hartshorne: we just summarize the
results:

Let Y = F1 ∩ . . . Fr a complete intersection of r hypersurfaces in PN . Say that
Fi has degree di.4 We have

ωY
∼= OY (Σdi −N − 1).

In plainer langugage: the complete linear system of divisors on Y that we get
by intersecting various hyperplanes H with Y is in fact the complete linear sys-
tem |nK| for some integer multiple n of the canonical divisor K: precisely, n =∑r

i=1 di − (N + 1).

This is an exceedingly useful result. For instance, the case at hand is r = 1,
d = 4, N = 2. It tells us that the divisor H ∩ C on a plane quartic curve is
4− (2 + 1) times the canonical divisor: in other words, it is the canonical divisor,
so this is the canonical embedding, as we wanted.

More generally, let Cd ⊂ P2 be a smooth plane curve of degree d. We get K ∼
(d − 3)(H ∩ C). But we know that the degree of H ∩ C is the degree of C: d, so
this tells us that

2g(Cd)− 2 = deg(K) = d(d− 3),
and thus

g(Cd) =
(d− 1)(d− 2)

2
.

In other words, the genus of any smooth plane curve of degree d is (d−1)(d−2)
2 .

4It follows from the Bertini theorem, valid over any infinite field k, that for any set of positive

integersdi there exist hypersurfaces of those degrees such that their intersection is smooth of
codimension r.
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Remark: This is also a special case of the important adjunction formula for
a curve on an algebraic surface. (More on this later...)

In particular, curves of degree 1 and 2 have genus zero, curves of degree 3 have
genus one, and curves of degree at least 4 have higher genus. We also get that for
d > 3, the canonical divisor is a positive multiple of a very ample divisor, so is itself
very ample: thus such curves are not biconic.

This gives us many examples of canonical curves, since it is no trouble to write
down a smooth plane curve of any given degree. For instance, over k = Q (or any
field whose characteristic does not divide d), the curve

Fd : Xd + Y d + Zd = 0

is a smooth plane curve of degree d, hence a nonhyperelliptic curve of genus
(d−1)(d−2)

2 .

Example (two ways to view a genus one curve as a complete intersection): In
the more general case of r hypersurfaces of degrees d1, . . . , dr intersecting in Pr+1

we will get a genus one curve precisely when d1 + . . . + dr = r + 2. Notice that
it adds nothing new to consider any di = 1 – it simply means that the complete
intersection can be viewed as taking place in a smaller projective space. There are
not very many ways to add up r integers each greater than 1 and attain r + 2;
indeed we have only 3 = 1 + 2 and 2 + 2 = 2 + 2, corresponding to a plane cubic
and to the intersection of two quadric surfaces in P3.

Unfortunately this also shows that the curves which can be embedded in P2 are
extremely limited. On the one hand, there are no such hyperelliptic curves (quite
generally, the above formula shows that the canonical class of a complete intersec-
tion is ample iff it is very ample). On the other hand, even on the level of genera
we are getting only a very sparse set: e.g. there are no plane curves of genus 2, 4 or 5.

One way to generalize the above is to consider complete intersections of N − 1
hypersurfaces in PN rather than just one hypersurface in P2. This indeed helps a
bit. For instance:

Proposition 8. Let C/k be a nonhyperelliptic curve of genus 4. Then its canonical
embedding is the complete intersection of an irreducible quadric and an irreducible
cubic. Conversely, any such nonsingular curve in P3 is a canonical curve of genus
4.

We omit the proof: see e.g. Hartshorne.

However, even complete intersections are a very limited class of curves:

Exercise: Find the smallest integer g such that no smooth curve of genus g can
be a complete intersection in projective space.

So we need to do something else to construct even a single canonical curve of
each given genus g ≥ 3 (let alone to find a 3g−3-dimensional family of such curves).
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From the perspective of the function field, there is little difficulty in constructing
curves of higher genus which are not evidently hyperelliptic. By separable Noether
normalization, any nice curve C/k admits a finite separable map to the projective
line. Turning this around, this means that any function field is a finite separable
map of the rational function field k(t). If we choose a finite separable extension
L/k(t) then, with suitable technique, we can use the Riemann-Hurwitz formula to
compute the genus of the corresponding curve C (i.e., with k(C) ∼= L). By defini-
tion, hyperelliptic curves arise this way from quadratic field extensions L/k(t); by
taking any higher degree d for [L : k(t)], we get a curve which is not necessarily
hyperelliptic.

To take a simple example, let p be a prime number – which we shall assume is
not the characteristic of k – and let us consider field extensions L which are ob-
tained by simply adjoining a pth root of a nonconstant function f ∈ k(t). Note
that L/k(t) is Galois iff k contains the pth roots of unity, in which case the Galois
group is cyclic. In any case, the geometric extension L = kL of k(t) is cyclic, so
the curve that we get has the cyclic group Cp = 〈ϕ〉 as a group of automorphisms,
with C/ϕ ∼= P1. Such curves are called superelliptic.

Any superelliptic curve has the plane equation

yp = P1(x)a1 · · ·Pr(x)ar ,

where each Pi(x) is a separable irreducible polynomial over k, and 0 < ai < p for
all i. To fix ideas, suppose we take

yp =
2n∏
i=1

(x− ai),

where a1, . . . , a2n are distinct elements of k. As in the hyperelliptic case, taking the
number of branch points to be even means that the point at infinity on P1 is not a
branch point. So we have 2n different fixed points. Moreover, since the extension
L/k(t) is Galois, the ramification indices over the preimages must all be equal. This
means that they must all be equal to p, i.e., we have full ramification at each point.
The Riemann-Hurwitz formula then gives

2g(C)− 2 = p(2g(P1)− 2) +
n∑

i=1

(p− 1) = 2n(p− 1)− 2p,

so
g(C) = 1 + n(p− 1)− p = n(p− 1)− (p− 1) = (n− 1)(p− 1).

Note that if p > 2 the genus is always even, and conversely every curve of even
genus can be obtained for p = 3.

We now wish to show that most of these curves are canonical, i.e., not geomet-
rically hyperelliptic. This is a special case of a very interesting problem: given a
curve C/k, find all degrees of maps C → P1. Let us call this the degree sequence
D(C). As we have seen, it makes a difference here whether the ground field is
algebraically closed: e.g. there exist curves which are geometrically hyperelliptic
but not hyperelliptic. So let us also define D(C) := D(Ck), the geometric degree
sequence.
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Remark on terminology: if d ∈ D(C), then C is said to be d-gonal. When d = 3,
one says “trigonal”. We warn that in practice it is often the case that the termi-
nology “d-gonal” is used when “geometrically d-gonal” is meant.

The least element of D(C) (resp. D(C)) is called the gonality (resp. the geo-
metric gonality) of C. This is an important numerical invariant of a curve both
geometrically and arithmetically. As for the latter:

Exercise: Suppose C/k is a nice curve.
a) Show that the index of C divides the gonality of C.
b) Show that the gonality of C divides 2g(C)− 2.

Coming back to our goal of constructing many canonical curves, here now is the in-
tuition: a curve of large genus will not admit two “independent” maps x, y : C → P1

of small degrees d1 and d2. Here independent can be made precise as follows:
k(x, y) = k(C). Thus k(C) is the fraction field of a ring k[x, y]/P (x, y), where
P (x, y) is a polynomial relation between x and y. Here the degree of P (x, y) in
x (resp. in y) is d1 (resp. d2), so the total degree of P is at most d = d1 + d2.
But the genus of the normal model of a plane curve of degree d is at most (d−1)(d−2)

2 .

One easy way to ensure that the maps x, y are “independent” is to require that
their degrees d1 and d2 be coprime: then [k(C) : k(x, y)] divides [k(C) : k(x)] = d1

and [k(C) : k(y)] = d2, so [k(C) : k(x, y)] = 1. In particular, for any odd prime p,
if C is a curve of genus

g >
(p + 1)p

2
with a morphism x : C → P1 of degree p, then C cannot also have a degree 2
morphism to P1: that is, C is not hyperelliptic. Taking p = 3, we have proved:

Theorem 9. Let k be a field of characteristic different from 3. Then for any
integer n > 3, there exists a nice curve C/k of genus 2n which is trigonal but not
geometrically hyperelliptic.

This was just a first effort: the argument can be refined and extended in many
ways. For instance:

Theorem 10. (Accola, Namba) Let C/k be a nice curve admitting finite morphisms
x, y : C → P1 of degrees d1 and d2 respectively. Assume the morphisms are inde-
pendent in the sense that k(C) = k(x, y). Then

g(C) ≤ (d1 − 1)(d2 − 1).

This shows that the superelliptic trigonal curves constructed above of genus 4 and
6 are also canonical.

Exercise: Prove Theorem of Accola and Namba, according to the following out-
line:
(a) Note that it suffices to assume k = k.
(b) Adjust g by a linear automorphism so that the branch loci of x and y are
distinct. Consider the map φ : C → P2 by p 7→ [x(p) : y(p) : 1]. Show that the



14 PETE L. CLARK

independence of x and y implies that the map φ : C → φ(C) is birational. Equiva-
lently, the image C ′ = φ(C) is a plane curve and φ : C → C ′ is its normalization.
(c) Show that C has a singularity at [1 : 0 : 0] (resp. [0 : 1 : 0]) of multiplicity d1

(resp. d2). Using the formula for the genus of a singular plane curve, show that –
with d = d1 + d2 –

g(C) ≤ (d− 1)(d− 2)
2

− (d1 − 1)(d1 − 2)
2

− (d2 − 1)(d2 − 1)
2

.

Exercise: For which genera can you construct a superelliptic, nonhyperelliptic curve
of genus g?

Theorem 11. For any algebraically closed field k and any any prime number p,
there exists a curve C/k whose gonality is exactly p.

Exercise: Prove it.

3. Weierstrass points

Let C/k be a nice curve of genus g. A Weierstrass point on C is a geometric point
P such that l(|gP |) > 1. To understand this definition, note that Riemann-Roch
guarantees that l(n|P |) > 1 as long as n > g.

Exercise: Show that curves of genus 0 or 1 have no Weierstrass points.

Exercise: Show that the Weierstrass points on a hyperelliptic curve of genus g ≥ 2
are precisely the preimages of the hyperelliptic branch points. In particular there
are 2g + 2 Weierstrass points.

Weierstrass gap sequence:

Theorem 12. (Hurwitz) Let C be a nice curve of genus g over a field k of char-
acteristic 0. Then the degree of the Weierstrass divisor is

deg(W) = g3 − g.

Let N be a positive integer. There is an algebraic curve X0(N)/Q, which is the
coarse moduli space for the moduli problem of pairs (E,C) where E is an elliptic
curve and C ⊂ E is a cyclic order n subgroup scheme. Well, almost. The moduli
space of elliptic curves is the affine line A1 (via the j-invariant), and there are no
elliptic curves with j = ∞. Thus P1 is the natural compactification of the smooth
affine curve which is the coarse moduli space of elliptic curves. Similarly, the true
coarse moduli space of the above moduli problem is denoted Y0(N), and its com-
pactification is denoted X0(N). The compactification is obtained by adding the
preimages of the point ∞ on the projective line; this is a finite set of points called
cusps.

Since the Weierstrass points and the cusps are both “special points” on X0(N),
it is reasonable to ask whether any of the cusps are Weierstrass points. This was
first investigated by Atkin and Lehner in the 1960’s; they found that if N is divisi-
ble by a sufficiently large power of a prime then indeed at least one of the cusps is
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a Weierstrass point. However, the case of squarefree N is different. For instance,
William Stein has computed that for all squarefree N < 3000, none of the cusps
are Weiertrass points. There is also a beautiful theoretical result due to Ogg:

Theorem 13. (Ogg) Let N be a positive integer such that X0(N) has genus 0 (a
finite list of N), and let p be a prime which is prime to N . Then none of the
Weierstrass points on X0(pN) are cusps.

The proof uses exactly the sort of methods we wish to discuss towards the end of
the course: the theory of models of curves.

4. The automorphism group

Let C be a nice curve over a field k. By the automorphism group Aut(C) we
mean the group of self-isomorphisms of the geometric curve C/k. When k is perfect,
there is a natural action of the Galois group Gal(k/k) on Aut(C) such that for any
algebraic extension l, the Gal(k/l)-fixed points are precisely the automorphisms
which are defined over l. One might then write Aut(C)(l) for the set of l-rational
automorphisms.

Exercise X.X: If k is not perfect, is every automorphism of C defined over a sepa-
rable extension of k?

The following is a simple but extremely useful observation about automorphisms
and linear systems.

Proposition 14. Let C/k be a curve and ϕ ∈ Aut(C)(k) be a k-rational auto-
morphism. Let D ∈ Div(C) be an effective divisor such that ϕ∗(D) ∼ D (linearly
equivalent). Then ϕ extends to a linear automorphism of P(`(D) − 1) making the
following diagram commute:

C → P`(D)−1

C → P`(D)−1.

Proposition 15. Let C be a curve of genus g and {P1, . . . , P2g+3} be a set of
distinct geometric points. Suppose that ϕ(Pi) = Pi for all i. Then ϕ is the identity.

Proof: Suppose by way of contradiction that ϕ is not the identity. Then there ex-
ists a geometric point P which is not fixed by ϕ (recall that any variety of positive
dimension over an algebraically closed field has infinitely many closed points); say
Q = ϕ∗(P ). By Riemann-Roch, for some d with 1 ≤ d ≤ g + 1 there exists a ratio-
nal function f on C whose polar divisor is (f)∞ = d[P ]. Then the polar divisor of
g := f −ϕ∗(f) is d[P ]+d[P ′], hence of degree 2d ≤ 2g +2. Therefore the divisor of
zeros of g also has degree 2d ≤ 2g+2, but on the other hand every fixed point of f is
also a zero of g, and we assumed that f has at least 2g+3 fixed points: contradiction!

Remark: Of course the bound is sharp, since the hyperelliptic involution on a
hyperelliptic curve of genus g has precisely 2g + 2 distinct geometric fixed points.

If g = 0, then Aut(C) ∼= PGL2(k). Moreover, when C ∼= P1, then Aut(C)(k) ∼=
PGL2(k). To see this, we reduce to the case in which C ∼=k P1. There exists a
unique class D of divisors of degree 1, so if ϕ : C → C is any automorphism we
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certainly must have ϕ∗(D) ∼ D. Thus the automorphism extends to the ambient
projective space P1, which is just ϕD(C). This shows that every abstract automor-
phism of P1 is a linear automorphism, so Aut(P1) = PGL2.5

Remark: Suppose C has genus zero but C(k) = ∅. We mentioned briefly that
C corresponds to a division quaternion algebra B/k. This quaternion algebra has
inside it a copy of k, so its unit group B× has in it a copy of k×. By definition
put PGL(B) := B×/k×. One can show that Aut(C)(k) = PGL(B). Note that
if l/k is a field extension such that C(l) 6= ∅, then B ⊗k l ∼= M2(l), and indeed
PGL(B/l) = PGL(M2(l)) = PGL2(l).

In summary, the automorphism group of a genus zero curve is infinite, and moreover
has the natural structure of a connected linear algebraic group over k, of dimension
3.

Now let C/k be a curve of genus 1. Choosing a point O ∈ C(k), we get a group
law on C/k, so that a subgroup of Aut(C) is given by the translations by geometric
points: namely C(k). Another subgroup Aut(C,O) of Aut(C) is given by the auto-
morphisms which fix the point O. This subgroup is nothing else than the unit group
of the endomorphism ring End(E). In (relatively) elementary elliptic curve theory
all possibilities for End(E) are computed: when char(k) = 0, End(E) is either Z, or
is an order in an imaginary quadratic field. In any case Aut(C,O) is cyclic of order
2, 4 or 6. Indeed, up to isomorphism over k there is exactly one elliptic curve whose
automorphism group has order 4 (resp. order 6): namely the one with j = 1728
(resp. j = 0). In positive characteristic all of the above endomorphism rings are
possible (for a suitable choice of k) and also the endomorphism ring could be a
rational quaternion algebra B which is ramified at ∞ and p. The ramification at
∞ means that B ⊗Q R is still a division algebra over R. This implies that the unit
group is both discrete and compact and therefore finite. In fact it is isomorphic to
one of the following groups: . . ..

The two subgroups C(k) and Aut(C,O) clearly intersect in identity. A bit of
thought shows that

Aut(C) ∼= C(k) o Aut(C,O).

Thus the geometric automorphism group of a genus one curve is an extension of a
connected projective algebraic group by a nontrivial finite group.

Remark: It can be shown that, in general, if V/k is a projective variety, then
Aut(V/k) has the structure of a locally finite algebraic group scheme, namely
the extension of a connected group variety by a component group which is at most
countable. Note that if the component group is inifnite, then the automorphism
group is not an algebraic variety.

Now we assume that g ≥ 2. Our goal is to show that Aut(C) is finite.

Assume first that k has characteristic 0, so that the set S of distinct Weierstrass

5The same argument in fact works for PN for any N .
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points is nonempty and finite. Because of the intrinsic nature of Weiertrass points
we have a natural action of Aut(C) on S. Note that by the above, if the set of
distinct Weierstrass points has cardinality at least 2g +3, then this action is neces-
sarily effective: i.e., any automorphism that fixes all the Weierstrass points is the
identity, i.e.,

Aut(C) ↪→ Sym(S),
which shows that Aut(C) is finite. Notice however, that if C is hyperelliptic there
are precisely 2g +2 Weierstrass points, and as above there is a nontrivial automor-
phism which fixes all the Weierstrass points, namely the hyperelliptic involution.

In fact this proof can be made to go through: first assume that C is not hy-
perelliptic. Then an analysis of the weights on the Weierstrass divisor shows that
the set of distinct Weierstrass points has cardinality at least 2g + 3.

Consider now the hyperelliptic case.

Proposition 16. Let C be a hyperelliptic curve of genus g ≥ 2. Then the hyperel-
liptic involution ι lies in the center of Aut(C).

Proof: Let σ ∈ Aut(C). Put ι′ := σισ−1. Then ι′ is also an involution; on the
quotient C/ι′ we identify Q with σισ−1Q for all Q. But this is the same equivalence
relation as identifying P with ιP , so the quotient is again isomorphic to P1. Hence
ι′ is again a hyperelliptic involution. But the hyperelliptic involution is unique, so
ι′ = ι.

So let σ be an automorphism of C which fixes all 2g + 2 hyperelliptic fixed points.
Then σ commutes with ι so σ induces an automorphism on the quotient C/ι ∼= P1.
On the quotient, σ fixes all of the hyperelliptic fixed points, of which there are
2g + 2 ≥ 6 > 3, so σ is the identity automorphism on P1. This means that for all
points P , we have either σ(P ) = P or σ(P ) = ι(P ). Taking P to be any single
non-hyperelliptic point, if σ(P ) = P then σ fixes 2g + 3 points so is the identity; if
σ(P ) = ι(P ) then ι ◦ σ fixes 2g + 3 fixed points, so is the identity, i.e., σ = ι.

In fact this case of the argument works in arbitrary characteristic, since instead
of saying “Weierstrass point” we can say “hyperelliptic branch point” which is
again a canonical set of points.

4.1. Curves without automorphisms: a theorem of Poonen.

It has long been a sort of “folklore” that for any g ≥ 3, a “sufficiently general”
complex algebraic curve of genus g has trivial automorphism group. The modern
interpretation of this is that there is a nonempty Zariski open subset of (Mg)/C

consisting of curves with this property. In fact, with some goodwill about the ex-
istence of Mg, it is relatively easy to see that this locus of curves is Zariski-open:
indeed, for any fixed finite group G, the locus of curves having a subgroup of auto-
morphisms isomorphic to G is Zariski-closed (a nice way to see this is to consider
the tricanonical representation of Aut(C); we do not enter into the details here!).
Since we have now proven that there are only finitely many possibilities for the
automorphism group in any fixed genus, the complement of these sets is open. In
other words, the only thing to worry about is that there is a fixed nontrivial group
G such that every curve of genus g has automorphisms by this group. (Since this
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is exactly what happens in genus 2 with G = C2, obviously this worry needs to
be taken seriously!) Thus to believe that the generic curve is automorphismless it
suffices to exhibit a single one.

Already in the work of Hurwitz one finds the claim that the general complex curve
of genus g ≥ 3 has no automorphisms, but the first person to rigorously prove this
was W. Baily in 1961. A proof valid for any algebraically closed field k was given
in the 1962 PhD thesis of Paul Monsky (at U. of Chicago, under W. Baily). This
leaves open two points: first, what about curves over an arbitrary field k? Second,
can the curves be written down explicitly?

Through a relatively explicit procedure, Accola in 1970 constructs autless trigo-
nal complex curves of every genus g ≥ 5. Note that none of the trigonal curves we
constructed were autless: the reason is that we chose our cubic extensions to be
(geometrically) Galois: a more general cubic extension of the form k(C) = k(t)(f),
where f is a root of

y3 + a2(t)y2 + a1(t)y + a0(t) = 0
will indeed give more leeway.

Only about ten years ago did Bjorn Poonen solve the general problem, constructing
for any field k – of characteristic p ≥ 0 – and any g ≥ 3 an autless curve C/k of
genus g. Indeed his curves are all trigonal. The equations are as follows: Case 1:
p = 3, g ≡ 0 or 1 (mod 3):

y3 + y2 = xg+1 − x3 + 1.

Case 2: p = 3, g ≡ 2 (mod 3):

y3 + y2 = x2(x− 1)2(xg−1 − x3 + 1).

Case 3: p 6= 3, g 6 ≡2 (mod 3), g 6 ≡0,−1 (mod p):

y3 − 3y = gxg+1 − (g + 1)xg + 1.

...

5. An embedding theorem and an immersion theorem

We wish here to present two theorems on curves, each of which tells us that all
nice curves can be represented in a certain relatively concrete way. Of course, we
wish to pursue these theorems over an arbitrary ground field k, which turns out
not quite to be possible.

Theorem 17. Let k be an infinite field. Then any nice curve C/k can be embedded
in P3

/k.

This result is not true for all curves over a finite field. Indeed, one has the following:

Proposition 18. Let q be any prime power and N a positive integer. Then there
exists a nice curve C/Fq

such that #C(Fq) > N .

Exercise X.X: Prove it! (Suggestion: take C to be a hyperelliptic curve defined by
a monic polynomial of large degree with many rational roots.)

This has the following consequence:
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Corollary 19. For any finite field Fq and any positive integer N , there exists a
nice curve C/Fq

which cannot be embedded into PN .

Proof: Indeed, if C ↪→ PN is an embedding over Fq, then #C(Fq) ≤ #PN (Fq) =
qN+1−1

q−1 . But according to the proposition, we can find curves with arbitrarily many
Fq-rational points.

Theorem 20. Let k be any infinite field and C/k a nice curve. Then there exists a
plane curve Y/k whose only singularities (if any) are ordinary double points, such
that k(Y ) ∼= k(C) – i.e., Y is birational to C.

Exercise: Show that this theorem also cannot hold for a curve C over a finite field k
with sufficiently many k-rational points. Hint: C is isomorphic to the normalization
Ỹ of Y . Consider the composition with the normalization map:

C ∼= Ỹ → Y ↪→ P2.

By using a bound on the cardinality of the fibers of Ỹ → Y , get a contradiction.

Proof of Theorem 1: Let C be a nice curve which is already embedded in pro-
jective space PN for some N ≥ 4. We want to show that C can also be embedded
in P3. The idea is quite geometric: if H is a hyperplane in PN and x is any k-valued
point of PN not contained in H ∪ C, then there is a natural projection map from
Pn \ x → H. Namely, for any point x′ 6= x, we consider the unique line ` through
x and x′. Since x is not in H, certainly ` does not lie in H and therefore ` ∩ H
consists of a single point π(x′). (If x′ is l-rational for some extension field l/k, then
so is π(x′).

The idea here is that if N ≥ 4 and we choose a sufficiently general point x
of PN , then the induced map π : C → π(C) will be an isomorphism, hence embed-
ding C in a hyperplane of one smaller dimension. To be clear, this doesn’t make
complete sense yet – two obvious questions are (i) what does “sufficiently general”
mean, and (ii) why does this construction work when N ≥ 4 and not otherwise?

Let us examine what would cause the projection map not to be an embedding.
If y and z are in C(k), then π(y) = π(z) iff the lines `xy and `xz coincide, i.e.,
iff x, y and z are collinear. Another way of stating this is to consider the secant
variety to C, which is the union of all secant lines `yz between distinct points on
C. However, reecall that being an embedding in the geometric sense means being
a “closed immersion”, which means that we want the induced map on Zariski tan-
gent spaces to be injective. This means that we also don’t x to line on any of the
tangent lines to any of the points y on C. Since a tangent line is just a limit of se-
cant lines, this second condition just lies in the closure of the first, so is very natural.

To be precise, let us define the closed secant variety of C in PN to be the clo-
sure of the subvariety of all secant lines to C. The secant variety itself is easily
seen to be a locally closed subset of PN , hence itself a quasi-projective variety with
a well-defined dimension d, which must also be the dimension of the closed secant
variety.

Clearly the secant variety is determined by giving a line in PN for each pair of
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points on C, so it is three-dimensional. Therefore, if N ≥ 4, the closed secant va-
riety is a proper Zariski-closed subset of PN , and we need only apply the following
easy result:

Proposition 21. Let k be any infinite field, and let V ⊂ PN be a Zariski-closed
subset, with dim(V ) < N . Then PN (k)\V (k) is Zariski-dense in PN : in particular
the set is infinite.

Exercise: Prove it!

Exercise: To what extent does the projection map PN \ x → H depend on the
choice of the hyerplane H?

Exercise: Show that if Fq is a finite field, then for any curve C/Fq
there exists

a finite extension field Fqa such that C/Fqa embeds in P3. Can a be chosen to be
independent of C?

Exercise: Rephrase the above argument employing the language of incomplete lin-
ear systems. (Hint: For instance, Hartshorne uses this language.)

The proof of Theorem X.X is in fact a continuation of the proof of Theorem X.X.
Namely, we have our nice curve C over an infinite field k embedded in P3, and
once again we want to drop the dimension by 1 by projecting from a suitable point
onto a fixed hyperplane. Since in this case the closed secant variety will be all of
P3, we cannot expect the map to be an injection on points. However, since the
dimension of the closed tangent variety is only 2, we still have a chance of finding
an “immersion” of C in P3 in the more usual geometric sense: i.e., a map which is
only an embedding locally. Let us consider the situation more carefully:

A multisecant of C ⊂ P3 is a line in P3 which meets X in at least three dif-
ferent (geometric) points. A secant with coplanar tangent lines is just what
it sounds like: a secant joining distinct points y and z on C such that the tangent
lines `y and `z lie in the same plane: equivalently, `y and `z intersect. (Recall that
linear geometry in PN is best understood by considering linear subspaces of one
dimension higher in the associated affine space kN+1.)

Proposition 22. Let C ⊂ P3 be a curve, x a point not on C, and ϕ : C → P2

the associated projection map. Then ϕ is birational onto its image with at most
ordinary double point singularities if:
(i) x lies on only finitely many secants of X.
(ii) x does not lie on any tangent line of X.
(iii) x does not lie on any multisecant of X.
(iv) x does not lie on any secant with coplanar tangent line.

This is a good exercise in honest geometric thinking and is left to the reader.

It remains to check that a sufficiently general point x satisfies all these condi-
tions; it is enough to check that each of the conditions holds on the complement
of a proper, Zariski-closed subset. This takes some honest work, and we refer the
reader to Hartshorne, pp. 311-314.
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Exercise: Read through Hartshorne’s proof, and convince yourself that it remains
valid verbatim for any infinite field k.


