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As we have seen, if
P (x1, . . . , xn) = d

is an inhomogeneous polynomial equation (i.e., d ̸= 0), then the determination of
whether it has an integer solution is considerably more subtle than whether it has
a rational solution. Perhaps the best single example of this is the proven nonexis-
tence of an algorithm to determine whether a polynomial equation has an integral
solution. In contrast, the question of whether a homogeneous polynomial equation
must have a nontrivial solution is equivalent to the issue of whether polynomial
equations must have rational solutions, and this is a wide open problem (although
some experts think that it too will turn out to be algorithmically undecidable).

We have just surveyed the complete theory of homogeneous quadratic equations
in any number of variables. One of the great miracles of the quadratic case is that,
over Q, the inhomogeneous problem reduces to the homogeneous problem, so that
given a quadratic form q(x1, . . . , xn), we now know how to determine the set of all
integers (or even rational numbers) d such that

q(x1, . . . , xn) = d

has a rational solution. Two of the more striking consequences we derived from
this Hasse-Minkowski theory were the following:

Fact 1: A quaternary quadratic form q = ax2
1 + bx2

2 + cx2
3 + dx2

4 rationally rep-
resents all integers allowed by sign considerations:
(i) if a, b, c, d are all positive, q represents all d ∈ Q>0;
(ii) if a, b, c, d are all negative, q represents all d ∈ Q<0;
(iii) otherwise q represents all d ∈ Q×.

Fact 2: The three squares form x2 + y2 + z2 rationally represents an integer d
iff d > 0 and d ̸= 4a(8k + 7).

These are strongly reminiscent of two results we stated but not did prove for inte-
gral quadratic forms, namely that x2

1+x2
2+x2

3+x2
4 integrally represents all positive

integers and x2
1 + x2

2 + x2
3 + x2

4 integrally represents all positive integers except pre-
cisely those of the form 4a(8k + 7).

It seems clear that we cannot hope to recover general integral representability re-
sults from the Hasse-Minkowski theory. For instance, Fact 1 does not distinguish
between the Four Squares form and a form in which a, b, c, d are all at least 2: such
a form clearly cannot represent 1 integrally! Morally speaking, “local conditions”

c⃝ Pete L. Clark, 2010.
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of congruence and sign do not take into account the size of the coefficients of the
quadratic form, whereas one clearly wants some or all of the coefficients to be small
in order for a positive definite quadratic form to have a fighting chance at repre-
senting small positive integers.

So what to do?

Let us describe some of the ways that various mathematicians have reacted to
this question over the years.

1. The Davenport-Cassels Lemma

Here is a beautiful observation which allows us to solve the representation problem
for x2 + y2 + z2:

Lemma 1. (Davenport-Cassels) Let q(x) = f(x1, . . . , xn) =
∑n

i,j=1 aijxixj be a

quadratic form with aij = aji ∈ Z. We suppose condition (DC): that for any
y = (y1, . . . , yn) ∈ Qn \ Zn, there exists x = (x1, . . . , xn) ∈ Zn such that

0 < |q(x− y)| < 1.

Then, for any integer d, q represents d rationally iff q represents d integrally.

Proof. For x, y ∈ Qn, put x · y := 1
2 (q(x+ y)− q(x)− q(x)). Then (x, y) 7→ x · y is

bilinear and x · x = q(x). Note that for x, y ∈ Zn, we need not have x · y ∈ Z, but
certainly we have 2(x · y) ∈ Z. Our computations below are parenthesized so as to
emphasize this integrality property.
Let d ∈ Z, and suppose that there exists x ∈ Qn such that q(x) = d. Equivalently,
there exists t ∈ Z and x′ ∈ Zn such that t2d = x′ ·x′. We choose x′ and t such that
|t| is minimal, and it is enough to show that |t| = 1.

Applying the hypothesis (DC) x = x′

d , there exists a y ∈ Zn such that if z = x−y
we have

0 < |q(z)| < 1.

Now put

a = y · y − d,

b = 2(dt− x′ · y),
T = at+ b,

X = ax′ + by.

Then a, b, T ∈ Z, and X ∈ Zn.
Claim: X ·X = T 2d.
Indeed,

X ·X = a2(x′ · x′) + ab(2x′ · y) = b2(y · y) = a2t2d+ ab(2dt− b) + b2(d+ a)

= d(a2t2 + 2abt+ b2) = T 2d.

Claim: T = t(z · z).
Indeed,

tT = at2 + bt = t2(y · y)− dt2 + 2dt2 − t(2x′ · y)
= t2(y · y)− t(2x′ · y) + x′ · x′ = (ty − x′) · (ty − x′) = (−tz) · (−tz) = t2(z · z).

Since 0 < |z · z| < 1, we have 0 < |T | < |t|, contradicting the minimality of |t|. �
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Remark 1: Suppose that the quadratic form q is anisotropic. Then condition (DC)
is equivalent to the following more easily verified one: for all x ∈ Qn, there exists
y ∈ Zn such that |q(x− y)| < 1. Indeed, since x ̸∈ Zn and y ∈ Zn, x− y ̸∈ Zn. In
particular x− y ̸= (0, . . . , 0), so since q is anistropic, necessarily |q(x− y)| > 0.

Remark 2: Lemma 1 has a curious history. So far as I know there is no paper
of Davenport and Cassels (two eminent 20th century number theorists) which con-
tains it: it is more folkloric. The attribution of this result seems to be due to J.-P.
Serre in his influential 1970 text A Course in Arithmetic. More recently, André
Weil pointed out that in a special case – indeed the case of f(x) = x2

1 + x2
2 + x2

3,
the one of most interest to us here – the result goes back to a 1912 paper of the
amateur mathematician L. Aubry.

There is also more than the usual amount of variation in the hypotheses of this
result. Serre’s text makes the additional hypothesis that f is positive definite –
i.e., x ̸= 0 =⇒ f(x) > 0. Many of the authors of more recent number theory
texts that include this result follow Serre and include the hypothesis of positive
definiteness. Indeed, when I first wrote these notes in 2006, I did so myself (and in-
cluded a place-holder remark that I belived that this hypothesis was superfluous).1

To get from Serre’s proof to ours requires only (i) inserting absolute values where
appropriate, and (ii) noting that whenever we need x · y to be integral, we have
an extra factor of 2 in the expression to make it so. The result is also stated and
proved (in a mildly different way) in Weil’s text.

Remark 3: In the isotropic case, the stronger hypothesis 0 < |q(x − y)| < 1 is
truly necessary. Consider for instance q(x, y) = x2 − y2: we ask the reader to show
that 2 is represented rationally but not integrally.

One might call a quadratic form Euclidean if it satisfies (DC). For example, the
quadratic form q(x, y) = x2 − dy2 is Euclidean iff given rational numbers rx, ry, we
can find integers nx, ny such that

(1) |(rx − nx)
2 − d(ry − ny)

2| < 1

Since we know that we can find an integer within 1
2 of any rational number (and that

this estimate is best possible!), the quantity in question is at most (12 )
2 + |d|( 12 ) if

d < 0 and at most d
4 when d > 0. So the values of d for which (1) holds are precisely

d = −1,−2, 2, 3. This should be a familiar list: these are precisely the values of d
for which you proved that Z[

√
d] is a PID. Whenever Z[

√
d] is a PID, one can use

Euclid’s Lemma to solve the problem of which primes (and in fact which integers,
with more care) are integrally represented by x2 − dy2. The Davenport-Cassels
Lemma allows for a slightly different approach: for these values of d, x2 − dy2 = N
has an integral solution iff it has a rational solution iff x2 − dy2 − Nz2 = 0 is
isotropic, which we can answer using Legendre’s Theorem.

Also x2 + y2 + z2 satisfies the hypotheses of the Davenport-Cassels lemma: given

1A notable exception is Lam’s 2005 text on quadratic forms, which states the result for
anisotropic forms, simplified as in Remark 1.
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rational numbers x, y, z, find integers n1, n2, n3 at most 1
2 a unit away, and then

(x− n1)
2 + (x− n2)

2 + (x− n3)
2 ≤ 1

4
+

1

4
+

1

4
< 1.

Therefore the Hasse-Minkowski theory gives the three square theorem!

Note however that the Davenport-Cassels Lemma applies only to an extremely
limited number of quadratic forms: e.g., it does not even apply to x2

1+x2
2+x2

3+x2
4:

take x1 = x2 = x3 = x4 = 1
2 . (This is not in itself so tragic, because, recall, one

can easily deduce the Four Squares Theorem from the Three Squares Theorem.)
We leave it as an exercise for the reader to find other quadratic forms to which the
lemma applies.

2. The Three Squares Theorem

Our goal in this section is to prove the following celebrated result.

Theorem 2. (Legendre-Gauss) For n ∈ Z+, the following are equivalent:
(i) n is not of the form 4a(8k + 7) for any a ∈ N and k ∈ Z.
(ii) n is a sum of three integer squares: there are x, y, z ∈ Z with x2 + y2 + z2 = n.

2.1. Proof of the Three Squares Theorem.

The strategy of proof is as follows: the quadratic form q(x, y, z) = x2+ y2+ z2 sat-
isfies the hypotheses of the Davenport-Cassels Lemma (Lemma 1) of the previous
section. Therefore, to show that an integer n is a sum of three integer squares it
suffices to show the a priori much weaker assertion that it is a sum of three rational
squares. It is traditional to establish the latter assertion using the Hasse-Minkowski
theory of quadratic forms over Q in terms of quadratic forms over the p-adic num-
bers. But since in these notes we have not even officially introduced the p-adic
numbers, we need to do something more elementary. Instead we follow the second
half of a short and clever argument of J. Wójcik, which succeeds in replacing the
Hasse-Minkowski Theory with an appeal to (i) Fermat’s Two Squares Theorem, (ii)
Legendre’s Theorem on homogeneous ternary quadratic equations and (iii) Dirich-
let’s Theorem on Primes in Arithmetic Progressions.2

The following result takes care of the implication (i) =⇒ (ii) of Theorem 2 (the
easy direction!).

Lemma 3. Let n be an integer of the form 4a(8k + 7) for some a ∈ N, k ∈ Z.
Then n is not the sum of three rational squares.

Proof. Step 0: Suppose on the contrary that 4a(8k + 7) is a sum of three rational
squares. We may take our rational numbers to have a common deminator d > 0
and thus (x

d

)2

+
(y
d

)2

+
(z
d

)2

= 4a(8k + 7).

Clearing denominators, we get

x2 + y2 + z2 = d24a(8k + 7).

2That we have indeed given complete proofs of all of these theorems previously is something of

a happy coincidence: I did not learn about W ojcik’s argument until 2011, more than four years
after these notes were first written.
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Write d = 2bd′ with d′ odd. Since 12, 32, 52, 72 ≡ 1 (mod 8), we find that d′2 ≡ 1
(mod 8) and thus

d24a(8k + 7) = (2b)2(d′2)4a(8k + 7) = 4a+b(8k′ + 7).

In other words, to show that no integer of the form 4a(8k+7) is a sum of 3 rational
squares, it suffices to show that no integer of the form 4a(8k+ 7) is a sum of three
integral squares. So let us now show this.
Step 1: We observe that x2 + y2 + z2 ≡ 7 (mod 8) has no solutions. Indeed, since
the squares mod 8 are 0, 1, 4, this is a quick mental calculation. (In particular this
disposes of the a = 0 case.)
Step 2: we observe that if n ≡ 0, 4 (mod 8) then the congruence

x2 + y2 + z2 ≡ n (mod 8)

has no primitive solutions, i.e., no solutions in which at least one of x, y, z is odd.
Indeed, since the squares mod 8 are 0, 1, 4, so in particular the only odd square is 1.
Since 4 and 0 are both even, if x, y, z are not all even, then exactly one two of them
must be odd, say x and y, so x2 ≡ y2 ≡ 1 (mod 8) and thus z2 ≡ 4− 2 (mod 8) or
z2 ≡ 8− 2 (mod 8), and neither 2 nor 6 is a square modulo 8.
Step 3: Now suppose that there are integers x, y, z such that x2+y2+z2 = 4a(8k+7).
If a = 0 then by Step 1 reducing modulo 8 gives a contradiction. If a = 1, then
4a(8k + 7) ≡ 4 (mod 8), so by Step 2 any representation x2 + y2 + z2 = 4(8k + 7)
must have x, y, z all even, and then dividing by 4 gives (x2 )

2+(y2 )
2+( z2 )

2 = (8k+7),
a contradiction. If a ≥ 2, then 4a(8k + 7) ≡ 0 (mod 8), and again by Step 2 in
any representation x2 + y2 + z2 = 4a(8k + 7) we must have x, y, z all even. Thus
writing x = 2X, y = 2Y , z = 2Z we get an integer representation X2 + Y 2 +Z2 =
4a−1(8k+7). We may continue in this way until we get a representation of 4(8k+7)
as a sum of three integral squares, which we have just seen is impossible. �

Lemma 4. Suppose that every squarefree positive integer n ̸≡ 7 (mod 8) is a sum
of three integral squares. Then every positive integer n ̸= 4a(8k + 7) is a sum of
three integral squares.

Proof. Let n be a positive integer which is not of the form 4a(8k + 7). As for any
positive integer, we may write n as n = 2an2

1n2, where a ≥ 0, n1 is odd and n2 is
odd and squarefree.
Case 1: 0 ≤ a ≤ 1, n2 ̸≡ 7 (mod 8). Then 2an2 is squarefree and not 7 (mod 8),
so by assumption there exist x, y, z ∈ Z such that x2 + y2 + z2 = 2an2, and thus
(n1x)

2 + (n1y)
2 + (n1z)

2 = 2an2
1n2 = n.

Case 2: n2 ̸≡ 7 (mod 8). In such a case n is of the form (2b)2 times an integer n of
the type considered in Case 1. Since such an integer n is a sum of three integreal
squares, so is any square times n.
Case 3: n2 ≡ 7 (mod 8). For n not to be of the form 4a(8k + 7), the power of a
must be odd; in other words, we may write n as a square times 2n2 where n2 is
squarefree and of the form 8k+7. Thus 2n2 is squarefree and not of the form 8k+7,
so by assumption 2n2 is a sum of three squares, hence so is n. �

Lemma 5. Let m ∈ Z+, n ≡ 3 (mod 8), and write m = p1 · · · pr. Then the number
of i such that pi ≡ 3, 5 (mod 8) is even.

Exercise: Prove Lemma 5. (Suggestion: one way to do it would be by using the
evaluation of the Jacobi symbol

(−2
m

)
. But a completely elementary proof is also
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possible.)

Since x2 + y2 + z2 rationally represents an integer n iff it integrally represents
an integer n, the following result completes the proof of Theorem 2.

Proposition 6. Let n be a squarefree integer, n ̸≡ 7 (mod 8). Then n is a sum of
three rational squares.

Proof. To fix ideas we will first give the argument under certain additional congru-
ence conditions and then explain how to modify it to deal with the other cases.
Filling in the details for these latters cases would be a good exercise for the inter-
ested reader.
Case 1: Let us suppose that m = p1 · · · pr is squarefree and m ≡ 1 (mod 4). Thus
each pi is odd and the number of pi ≡ 3 (mod 4) is even. By Dirichlet’s Theorem
on Primes in Arithmetic Progressions, there is a prime number q such that

•
(

q
pi

)
=

(
−1
pi

)
for all 1 ≤ i ≤ pi and

• q ≡ 1 (mod 4).
(Indeed, each of the first conditions restricts q to a nonempty set of congruence
classes modulo the distinct odd primes pi, whereas the last condition is a condition
modulo a power of 2. By the Chinese Remainder Theorem this amounts to a set of
congruence conditions modulo 4p1 · · · pr and all of the resulting congruence classes
are relatively prime to 4p1 · · · pr, so Dirichlet’s Theorem applies.)
It follows that for all 1 ≤ i ≤ r,(

−q

pi

)
=

(
−1

pi

)(
q

pi

)
= 1,

and (
m

q

)
=

(
p1
q

)
· · ·

(
pr
q

)
=

(
q

p1

)
· · ·

(
q

pr

)
=

(
−1

p1

)
· · ·

(
−1

pr

)
= 1.

The last equality holds because the number of factors of −1 is the number of primes
pi ≡ 3 (mod 4), which as observed above is an even number.
since −q is a square modulo each of the distinct primes pi, by the Chinese Remain-
der Theorem it is also a square modulo m = p1 · · · pr. Therefore by the Chinese
Remainder Theorem there is an integer x such that

x2 ≡ −q (mod m)

x2 ≡ m (mod q).

But according to Legendre’s Theorem, these are precisely the congruence conditions
necessary and sufficient for the homogeneous equation

qu2 + z2 −mt2 = 0

to have a solution in integers (u, z, t), not all zero. Indeed, we must have t ̸= 0,
for otherwise qu2 + z2 = 0 =⇒ u = z = 0. Moreover, since q ≡ 1 (mod 4),
by Fermat’s Two Squares Theorem there are x, y ∈ Z such that qu2 = x2 + y2.
Therefore

mt2 − z2 = qu2 = x2 + y2,

so

m =
(x
t

)2

+
(y
t

)2

+
(z
t

)2
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and m is a sum of three rational squares, completing the proof in this case.
Case 2: Suppose m = 2m1 = 2p1 · · · pr with m1 = p1 · · · pr squarefree and odd. In
this case we may proceed exactly as above, except that we require q ≡ 1 (mod 8).
Case 3: Suppose m = p1 · · · pr is squarefree and m ≡ 3 (mod 8). By Lemma 5,
the number of prime divisors pi of m which are either 5 or 7 modulo 8 is even. By
Dirichlet’s Theorem there exists a prime q such that

•
(

q
pi

)
=

(
−2
pi

)
for all 1 ≤ i ≤ pi and

• q ≡ 5 (mod 8).
It follows that for all 1 ≤ i ≤ r,(

−2q

pi

)
=

(
−2

pi

)(
q

pi

)
= 1,

and (
m

q

)
=

(
p1
q

)
· · ·

(
pr
q

)
=

(
q

p1

)
· · ·

(
q

pr

)
=

(
−2

p1

)
· · ·

(
−2

pr

)
= 1.

The last equality holds because the number of factors of −1 is the number of primes
pi ≡ 5, 7 (mod 8), which as observed above is an even number.
Therefore there is an integer x such that

x2 ≡ −2q (mod m)

x2 ≡ m (mod q),

so by Legendre’s Theorem the equation

2qu2 + z2 −mt2 = 0

has a solution in integers (u, z, t) with t ̸= 0. Since q ≡ 1 (mod 4), there are
x, y ∈ Z such that 2qu2 = x2 + y2, so

mt2 − z2 = 2qu2 = x2 + y2,

and thus once again

m =
(x
t

)2

+
(y
t

)2

+
(z
t

)2

.

�

2.2. Some applications of the Three Squares Theorem.

Knowing exactly which integers are represented by x2 + y2 + z2 turns out to be
a powerful weapon for analyzing representation of integers by certain quaternary
quadratic forms.

Proposition 7. The three squares theorem implies the four squares theorem.

Proof. In order to show the Four Squares Theorem it suffices to show that every
squarefree positive integer m is a sum of four integer squares. By the Three Squares
Theorem, m is even a sum of three integer squares unless m = 8k + 7. But if
m = 8k+7, then m−1 = 8k+6. Now ord2(8k+6) = 1, so 8k+6 is not of the form
4a(8k + 7), hence 8k + 6 = x2 + y2 + z2 and m = 8k + 7 = x2 + y2 + z2 + 12. �

More generally:

Theorem 8. For any 1 ≤ d ≤ 7, the quadratic form q = x2 + y2 + z2 + dw2

integrally represents all positive integers.
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Proof. As above it is enough to show that q represents all squarefree positive inte-
gers. Moreover, if m ̸= 8k+7 is a squarefree positive integer then m is represented
already by x2 + y2 + z2 so certainly by q. It remains to dispose of m = 8k + 7.
Case 1: Suppose d = 1, 2, 4, 6. Then m− d · 12 = m− d is:
• m− 1 = 8k + 6, if d = 1. This is a sum of 3 squares.
• m− 2 = 8k + 5, if d = 2. This is a sum of 3 squares.
• m− 4 = 8k + 3, if d = 3. This is a sum of 3 squares.
• m− 5 = 8k + 2, if d = 5. This is a sum of 3 squares.
• m− 6 = 8k + 1, if d = 6. This is a sum of 3 squares.
Case 2: If d = 3, then

m− d · 22 = m− 12 = 8k − 5 = 8(k − 1) + 3.

Thus, so long as m− 12 is positive, it is a sum of three squares. We need to check
separately that positive integers less than 12 are still represented by q, but this is
easy: the only one which is not already a sum of 3 squares is 7 = 22+02+02+3 ·12.
Case 3: If d = 7, then

m− d · 22 = m− 28 = 8(k − 3) + 5.

Thus, so long as m − 28 is positive, it is a sum of three squares. Again we must
separately check that positive integers less than 28 are represented by q, and again
this comes down to checking 7: 7 = 02 + 02 + 02 + 7 · 12. �

If we are looking for quaternary quadratic forms q = x2 + y2 + z2 + dw2 which
represent all positive integers, then we have just found all of them: if d > 7, then
such a q cannot integrally represent 7. Nevertheless we can still use the Gauss-
Legendre Theorem to analyze these forms. For instance.

Proposition 9. For a positive integer n, TFAE:
(i) There are integers x, y, z, w such that n = x2 + y2 + z2 + 8w2.
(ii) n ̸≡ 7 (mod 8).

Proof. (i) =⇒ (ii): For any integers x, y, z, w, reducing n = x2 + y2 + z2 + 8w2

modulo 8 gives n ≡ x2 + y2 + z2 (mod 8), and we already know that this has no
solutions when n ≡ 7 (mod 8).
(ii) =⇒ (i): Write n = 2am with m odd. If m is not of the form 8k + 7 then
both m and 2m are sums of three integer squares, and since n is an even power
of 2 times either m or 2m, n must be a sum of three intege squares. So we are
reduced to the case n = 2a(8k + 7) with a ≥ 1. If a = 1 then ord2(n) = 1 and
again n is a sum of three integer squares. Suppose a = 2, so n = 32k + 28 and
thus n − 8 · 12 = 32k + 20 = 4(8k + 5) is of the form x2 + y2 + z2 and thus
n = x2 + y2 + z2 + 8w2. If a ≥ 3 is odd, then n is a sum of three squares. If a ≥ 4

is even, then n = (2
a−2
2 )2(4 · (8k + 7)) is a square times an integer represented by

q, so n is also represented by q. �

Exercise: Prove or disprove the following claims:
a) If d is a positive integer which is not divisible by 8, then the quadratic form
x2 + y2 + z2 + dw2 integrally represents all sufficiently large positive integers.
v) If d = 8d′ is a positive integer, then the quadratic form x2 + y2 + z2 + dw2

integrally represents all sufficiently large positive integers which are not 7 (mod 8).
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3. Approximate local-global principle

From now on we restrict to the case of positive-definite integral quadratic forms
q(x1, . . . , xn). For such a form, the equation

q(x1, . . . , xn) = N

can have at most finitely many integral solutions. Indeed, if we define rq(N) to be
the number of solutions, then the summatory function

Rq(N) =

N∑
i=1

rq(i)

is counting lattice points lying on or inside the ellipsoid q(x1, . . . , xn) = N in n-
dimensional Euclidean space. Recalling our previous study of this sort of problem,
we know that there exists a constant V such that

Rq(N) ∼ V ·Nn/2,

so that the average value of rq(N) is asymptotically N
n
2 −1.

To say that q(x1, . . . , xn) = N has an integral solution is to say that rq(N) > 0.
It turns out to be a good strategy to exchange our problem for a seemingly harder
problem: what can one say about the order of magnitude of rq(N)?

One has the following theorem, thanks to the combined work of many leading
mathematicians over a period of about 50 years:

Theorem 10. (Hecke, Eichler, Tartakowsky, Kloosterman, Deligne, . . .) Suppose
q(x1, . . . , xn) is positive definite and n ≥ 4. There exists a decomposition

rq(N) = rE(N) + rC(N)

with the following properties:
a) rE(N) > 0 iff the equation q(x1, . . . , xn) = N has solutions everywhere locally.
b) There exist effectively computable positive constants C1, C2 (depending on q)
such that:

rE(N) > 0 =⇒ rE(N) ≥ C1N
n/2−1.

|rC(N)| ≤ C2d(N)N
n
4 − 1

2 .

Here d(N) is the divisor function, which recall, grows slower than any positive
power of N . One can interpret this result as saying that a local-global principle for
rq(N) holds asymptotically, with almost square root error!

The proof of this theorem requires lots of techniques from 20th century number
theory, and in particular the introduction of objects which are a lot less elementary
and quaint than quadratic polynomials with integer coefficients. Notably the proof
first associates to a quadratic form a modular form – a certain especially nice
kind of function of a complex variable – and the result follows from a bound on
the coefficients of a power series expansion of this function. In particular, one uses
results on the number of solutions to much more general systems of equations over
finite fields established by fundamental work of Pierre Deligne in the 1970’s (work
that justly landed him the Fields Medal).
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Corollary 11. Let q be a positive-definite quadratic form in n ≥ 4 variables. Then
there exists N0 such that if N ≥ N0, q(x1, . . . , xn) = N satisfies the local-global
principle (has integral solutions iff it has congruential solutions).

Again, the theory of congruential solutions is sufficiently well-developed so as to
enable one to determine (with some work, to be sure) precise conditions on N such
that solutions exist everywhere locally. Therefore the corollary gives a method
for solving the representation problem for integral quadratic forms in at least four
variables: (i) explicitly compute the value of N0 in the Corollary; (ii) explicitly
compute the local conditions for solvability; (iii) check each of the finitely many
values of N , 1 ≤ N ≤ N0 to see whether q(x1, . . . , xn) = N has a solution.

Thus the representation problem is reduced to a finite calculation. Of course not
all finite problems can be solved in a reasonable (or even unreasonable) amount of
time in practice, so quite a lot of technique and ingenuity is necessary to apply this
method. Here is a success story:

Theorem 12. (Hanke, 2004) The quadratic form x3 + 3y2 + 5z2 + 7w2 integrally
represents all positive integers except 2 and 22.

This result was conjectured by M. Kneser in 1961.

Note that in Theorem 10 the number of variables has to be at least 4. When
n = 2 or 3, the above corollary is false: we already mentioned this in the case of 2
variables, which is in some sense the hardest but also the best understood in terms
of pure algebraic number theory. The case of ternary quadratic forms brings several
new features and remains fascinatingly open. If you want to hear more, you will
have to wait until 2008 and ask Prof. Hanke about it.

4. The 15 and 290 theorems

The constants in Theorem 10 most definitely depend on the quadratic form q in
question. A greater challenge is to prove results about integral representability
that are in some sense independent of the particular quadratic form. For instance,
a positive-definite quadratic form is said to be universal if it integrally represents
every positive integer. (So the four squares form is universal.) The preceding sec-
tion asserts the existence of a complicated procedure that can determine whether a
given form is universal. Is there some easy way to determine whether a quadratic
form is universal?

Indeed. In the 1990’s Conway and Schneeburger proved the following:

Theorem 13. (Fifteen theorem) A positive definite quadratic form with integral
defining matrix integrally represents every positive integer iff it integrally represents
the integers 1 through 15.

Example: We will determine all positive integers d for which the form

x2 + y2 + z2 + dw2

is universal. We know that by taking w = 0 we can get every positive integer except
those of the form 4a(8k+7); but since we need only go up to 15 it suffices to check
whether we can represent 7. Let’s check:
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d = 1: 12 + 12 + 12 + 1 · 22 = 7.
d = 2: 22 + 12 + 02 + 2 · 12 = 7.
d = 3: 22 + 12 + 12 + 3 · 12 = 7.
d = 4: 12 + 12 + 12 + 4 · 12 = 7.
d = 5: 12 + 12 + 02 + 5 · 12 = 7.
d = 6: 12 + 02 + 02 + 6 · 12 = 7.
d = 7: 02 + 02 + 02 + 7 · 12 = 7.

We cannot represent 7 if d ≥ 8: taking w ̸= 0 would make the form too large.

In fact, let us consider the problem of which quadratic forms

q(x1, x2, x3, x4) = ax2
1 + bx2

2 + cx2
3 + dx2

4

with a ≤ b ≤ c ≤ d represent all positive integers. A case-by-case analysis shows
that in order for the integers 1, 2, 3 and 5 to all be represented, we need (a, b, c)
to be one of: (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 2, 3), (1, 2, 4), (1, 2, 5). As it
happens, no ternary quadratic form can represent all positive integers. In the cases
at hand, the smallest exceptions are (as you can readily check):

x2 + y2 + z2 does not represent 7.
x2 + y2 + 2z2 does not represent 14.
x2 + y2 + 3z2 does not represent 6.
x2 + 2y2 + 2z2 does not represent 7.
x2 + 2y2 + 3z2 does not represent 10.
x2 + 2y2 + 4z2 does not represent 14.
x2 + 2y2 + 5z2 does not represent 10.

Now one can go through a similar analysis for the other 6 cases as we did for the
first case, and determine a complete list of diagonal positive definite quaternary
universal quadratic forms: there are precisely 54 of them.3 In fact this investi-
gation was originally done by S. Ramanujan in 1917, except that not having the
15 theorem he was forced to come up with “empirical” (i.e., conjectural) rules for
which integers are represented by the above ternary quadratic forms, so that he did
not supply proofs for his results.

Remark 4: Given the stories that have been told about Ramanujan and his un-
earthly intuition, it is interesting to remark that his paper lists a 55th universal
quadratic form: x2 + 2y2 + 5z2 + 5w2. Ironically, this form does not represent 15,
as Dickson observed ten years later.

The 15 theorem was discovered in a graduate seminar that Conway was teach-
ing at Princeton, in which Schneeburger was an attending student. The original
proof was quite computationally onerous, and it was never written down. Indeed,
by the time Manjul Bhargava became a graduate student at Princeton and heard

3It can now be told that I put this as an extra credit problem on the final exam. Moreover, I

hinted that I might do so, and in fact there was a student who practiced this type of calculation
and was able to give the complete solution!
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about the theorem, some of the details of the proof had been forgotten.

Manjul was doubly stunned by this: that such a wonderful theorem could have
been discovered, and also that it had met such a disappointing fate. He found a
new proof of the 15 theorem which is, truly, one of the most beautiful mathemat-
ical arguments I have ever seen. It quite cleverly manages to avoid any serious
computations. In fact he proved the following generalization:

Theorem 14. (Bhargava’s Master Theorem) Let S ⊂ Z+. There exists a finite
subset S0 of S such that a positive definite integer-matrix quadratic form represents
all integers in S iff it represents all integers in S0.

Example: Taking S to be the prime numbers, Bhargava showed that one may take
S0 to be the primes less than or equal to 73.

The proof gives an algorithm for determining S0, but whether or not it is prac-
tical seems to depend very much on the choice of S: it gets much harder if S does
not contain several very small integers.

Indeed, let us now recall that we have been saying “integer matrix” quadratic
forms for the last few results, but a quadratic form is represented by a polynomial
with integer coefficients iff its defining matrix satisfies the slightly weaker condition
that its diagonal entries are integers and its off-diagonal entries are half-integers
(e.g. q(x, y) = xy). However, if q is any integral quadratic form, then the matrix
entries of 2q are certainly integers, and q represents an integer N iff 2q represents
2N . Thus, applying Manjul’s Master Theorem to the subset of positive even in-
tegers, one deduces the existence of an integer N0 such that if a positive-definite
integral matrix represents every N ∈ {1, . . . , N0} then it represents every positive
integer.

Already in Conway’s course it was suggested that N0 could be taken to be 290.
However, the calculations necessary to establish this result were Herculean: Man-
jul’s method requires one to show that each of a set of about 6, 000 quadratic forms
is universal. Some of these forms can be proven universal in relatively slick and
easy ways, but about 1, 000 of them are seriously hard. So Manjul enlisted the help
of Jonathan Hanke, and after several years of intense work (including extremely
intensive and carefully checked computer calculations), they were able to show the
following result.

Theorem 15. (Bhargava-Hanke 290 Theorem) If a positive-definite integral qua-
dratic form represents each of:

1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, 290,

then it represents all positive integers.


