
RATIONAL QUADRATIC FORMS AND THE LOCAL-GLOBAL
PRINCIPLE

PETE L. CLARK

A form of degree k is a polynomial P (x1, . . . , xn) which is homogeneous of degree
k: in each monomial term cxi1

1 · · ·xin
n , the total degree i1 + . . . + in is k. E.g.

Fn(x, y, z) = xn + yn − zn

is a form of degree n, such that the study of solutions to Fn(x, y, z) = 0 is equivalent
to Fermat’s Last Theorem.

For the most part we will concentrate here on quadratic forms (k = 2):∑
1≤i≤j≤n

aijx
ixj ,

where the coefficients aij are usually either integers or rational numbers (although
we shall also be interested in quadratic forms with coefficients in Z/nZ and R). For
instance, a binary quadratic form is any expression of the form

q(x, y) = ax2 + bxy + cy2.

As for most Diophantine equations, quadratic forms were first studied over the
integers, meaning that the coefficients aij are integers and only integer values of
x1, . . . , xn are allowed to be plugged in. At the end of the 19th century it was
realized that by allowing the variables x1, . . . , xn to take rational values, one gets
a much more satisfactory theory. (In fact one can study quadratic forms with co-
efficients and values in any field F . This point of view was developed by Witt in
the 1930’s, expanded in the middle years of this century by, among others, Pfister
and Milnor, and has in the last decade become especially closely linked to one of
the deepest and most abstract branches of contemporary mathematics: “homotopy
K-theory.”) However, a wide array of firepower has been constructed over the years
to deal with the complications presented by the integral case, culminating recently
in some spectacular results. In this handout we will concentrate on what can be
done over the rational numbers, and also on what statements about integral qua-
dratic forms can be directly deduced from the theory of rational quadratic forms.

Let us distinguish two types of problems concerning a quadratic form q(x1, . . . , xn),
which we will allow to have either integral or rational coefficients aij .

Homogeneous problem (or isotropy problem): Determine whether there exist
integers, x1, . . . , xn, not all zero, such that q(x1, . . . , xn) = 0. A quadratic form
such that q(x) = 0 has a nontrivial integral solution is said to be isotropic; if there
is no nontrivial solution it is said to be anisotropic.

Example 0: The sum of squares forms x2
1 + . . . + x2

n are all anisotropic. Indeed,
1
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for any real numbers x1, . . . , xn, not all zero, x2
1 + . . . + x2

n > 0: a form with this
property is said to be positive definite.

Example 1: The Z-quadratic form x2 − ny2 is isotropic iff n is a perfect square.

Inhomogeneous problem: For a given integer n, determine whether the equation
q(x1, . . . , xn) = n has an integer solution (if so, we say “q represents n”). More
generally, for fixed q, determine all integers n represented by q.

Example 2: We determined all integers n represented by a x2
1 + x2

2, and stated
without proof the results for the quadratic forms x2

1 +x2
2 +x2

3 and x2
1 +x2

2 +x2
3 +x2

4;
in the latter case, all positive integers are represented.

In general the inhomogeneous problem is substantially more difficult than the ho-
mogeneous problem. One reason why the homogeneous problem is easier is that,
even if we originally state it in terms of the integers, it can be solved using rational
numbers instead:

Proposition 1. (Principle of homogeneous equivalence) Let P (x1, . . . , xn) be a ho-
mogeneous polynomial with integral coefficients. Then P (x1, . . . , xn) has a nontriv-
ial solution with x1, . . . , xn ∈ Z iff it has a nontrivial solution with x1, . . . , xN ∈ Q.

Proof: Of course a nontrivial integral solution is in particular a nontrivial rational
solution. For the converse, assume there exist p1

q1
, . . . , pn

qn
, not all 0, such that

P (p1
q1

, . . . , pn

qn
) = 0. Suppose P is homogeneous of degree k. Then for any α ∈ R×,

we have
P (αx1, . . . , αxn) = αkP (x1, . . . , xn),

since we can factor out k α’s from every term. So let N = lcm(q1, . . . , qn). Then

P (N
p1

q1
, . . . , N

pn

qn
) = NkP (

p1

q1
, . . . ,

pn

qn
) = Nk · 0 = 0,

so that (N p1
q1

, . . . , N pn

qn
) is a nontrivial integral solution.

Thus the homogeneous problem for integral forms (of any degree) is really a prob-
lem about rational forms.

Remark: The inhomogeneous problem still makes sense for forms of higher de-
gree, but to solve it – even for rational forms – is generally extremely difficult. For
instance, Selmer conjectured in 1951 that a prime p ≡ 4, 7, 8 (mod 9) is of the
form x3 +y3 for two rational numbers x and y. A proof of this in the first two cases
was announced (but not published) by Noam Elkies in 1994; more recently, Das-
gupta and Voight have carefully written down a proof of a slightly weaker result.
The case of p ≡ 8 (mod 9) remains open. In this case (i.e., that of binary cubic
forms) the rich theory of rational points on elliptic curves can be fruitfully applied.
Even less is known about (say) binary forms of higher degree.

1. Rational quadratic forms

In this section, we work with quadratic forms q with coefficients aij lying in Q.
(In fact, everything we say works over an arbitrary field F whose characteristic is
different from 2.) This gives many advantages, which we state mostly without proof:
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Fact 1: Every rational quadratic form can be diagonalized.

In general, two quadratic forms q and q′ should be regarded as equivalent if there
is an invertible linear change of variables (x′1, . . . , x

′
n) = A(x1, . . . , xn) carrying one

to the other. In particular, equivalent quadratic forms represent the same values,
and equivalence preserve an/isotropy.

Any quadratic form q(x1, . . . , xn) can be represented by a symmetric matrix Q,
such that

q(x1, . . . , xn) = xQxT ,

where x = (x1, . . . , xn). However, there is a slight annoyance here which is seen by
calculating the quadratic form associated to the symmetric matrix[

a b
b d

]
; it is

q(x1, x2) = ax2
1 + 2bx1x2 + bx.

2

So to get the “general” binary quadratic form of XX, we need to use the matrix[
a b

2
b
2 d,

]
and in general, the symmetric matrix M corresponding to the quadratic form∑

i≤j aijX
iXj is

mij = aij , i = j,
mij = aij

2 , i 6= j,

so the representing matrix M of an integral quadratic form q will in general have
only half-integral entries.

Now the matrix interpretation of equivalence is as follows: the form with repre-
senting matrix M is equivalent to the quadratic form with representing matrix
AMAT for any invertible matrix A. If we are working with rational quadratic
forms, then M and A can have rational entries and the condition for invertibility is
that det(A) 6= 0. However, if we are working with integral quadratic forms, then A
must have integral entries and its inverse must have integral entries, which means
that det(A) = ±1.

Recall from linear algebra that every real symmetric matrix M is similar to a
diagonal matrix via a matrix A which is orthogonal: A−1 = AT . In fact, for every
symmetric matrix M with entries in a subfield F of C, there exists an invertible
matrix A such that AMAT is diagonal: this amounts to saying that we can “ratio-
nally diagonalize” a symmetric matrix by performing simultaneous row and column
operations. We omit the proof.

In particular, every rational quadratic form is equivalent to a quadratic form of
the shape

〈a1, . . . , an〉 = a1x
2
1 + . . . + anx2

n.
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Example: Consider the integral quadratic form q(x, y) = xy, with associated matrix

M =
[

0 1
2

1
2 0

]
. Note that we have det(M) = − 1

4 . If there exists an integrally

invertible matrix A with AMAT = D diagonal, then

det(D) = det(A) det(M) det(AT ) = det(M) det(A)2 = det(M) = −1
4
.

But the diagonal entries of the matrix defining an integral quadratic form must be
integers, so the determinant of any integrally diagonalizable quadratic form must
be an integer. So q(x, y) = xy is not integrally diagonalizable.

Fact 2: Every isotropic rational quadratic form is universal.

There is a special quadratic form

H = 〈1,−1〉 = x2
1 − x2

2,

called the hyperbolic plane. By diagonalizing the form q(x, y) = xy, one sees
that it is equivalent, over Q, to H. In particular the hyperbolic plane H is isotropic
– indeed take x1 = x2 – and moreover it represents every nonzero scalar x ∈ Q×:
take y = 1. One can show that if q is any isotropic rational quadratic form, then

q ∼= x2
1 − x2

2 + q′(x3, . . . , xn),

so that every isotropic form “contains” the hyperbolic plane. In particular, every
quadratic form which is isotropic rationally represents every rational number.

This is not true over Z: the isotropic quadratic form x2 − y2 does not represent
every integer. Indeed, x2 − y2 ≡ 2 (mod 4) has no solution, so x2 − y2 does not
represent any integer which is 2 (mod 4).

Fact 3: Over Q, the representation problem can be reduced to the isotropy problem.

More precisely, one has the following result:

Theorem 2. Let q(x1, . . . , xn) be a quadratic form over Q (or over any field F of
characteristic different from 2), and let a ∈ Q× (or a ∈ F×). The following are
equivalent:
a) The quadratic form q(x1, . . . , xn) + (−a)x2

n+1 is isotropic.
b) The quadratic form q rationally represents a.

Proof: If q represents a, then there exist x1, . . . , xn ∈ Q, not all 0, such that
q(x1, . . . , xn) = a, but then rewriting gives

q(x1, . . . , xn) + (−a)(1)2 = 0.

Conversely, suppose there are x1, . . . , xn, xn+1 in Q, not all 0, such that q(x1, . . . , xn)+
(−a)x2

n+1 = 0. If xn+1 6= 0, then we can move it to the other side and divide by it
(thank goodness we are over Q!) to get

q(
x1

xn+1
, . . . ,

xn

xn+1
) = a.

Otherwise, we have q(x1, . . . , xn) = 0, for x1, . . . , xn not all zero, which means that
q is isotropic, and we averred above that this implies that q “contains” the hyper-
bolic plane H and therefore represents every element of Q×, in particular a.
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Thus, if we had an algorithm for deciding whether a given rational quadratic form
is isotropic, then applying it to the form q + (−a)x2

n+1, we can equally well decide
whether it rationally represents any given number a.

Remark: There is, to the best of my knowledge, absolutely nothing like “Fact
3” for forms of higher degree.

2. Legendre’s Theorem

We can now give a complete solution to a problem we first considered early on in
the course: given a, b, c ∈ Z, how do we know whether the (quadratic) form

ax2 + by2 + cz2 = 0

has a nontrivial solution?

Note that, by the discussion of the last section, if we can solve this problem we can
completely solve the homogeneous problem for ternary integral quadratic forms
q(x, y, z) = 0. Indeed, by Proposition 1 it is enough to decide whether or not
q(x, y, z) = 0 has a nontrivial rational solution, and working rationally we can di-
agonalize q to get an equation of the above form.

The answer is given by the following beautiful theorem of Legendre. To state
it, we will employ some ad hoc notation: for nonzero integers a and b, we will write
a� b to mean that a is a square (possibly zero) modulo |b|. Note that, if b is odd,
a� b implies that the Jacobi symbol

(
a
b

)
= 1, but not conversely. A small lemma:

Lemma 3. Let b, c ∈ Z\{0}, with gcd(b, c) = 1. Then a� bc ⇐⇒ a� b and a� c.

If there exists an integer x such that a ≡ x2 (mod bc), then certainly a ≡ x2

(mod b) and a ≡ x2 (mod c), giving the forward implication. Conversely, if a ≡ x2

(mod b) and a ≡ y2 (mod c), then since b and c are relatively prime, by CRT there
exists a z (mod bc) such that z ≡ x (mod b) and z ≡ y (mod c), hence a ≡ z2

(mod b) and a ≡ z2 (mod c), so a ≡ z2 (mod bc).

Theorem 4. (Legendre) Let a, b, c be nonzero integers, squarefree, relatively prime
in pairs, and neither all positive nor all negative. Then

ax2 + by2 + cz2 = 0

has a nontrivial integral solution iff all of the following hold:
(i) −ab� c.
(ii) −bc� a.
(iii) −ca� b.

Some remarks on the conditions: if a, b and c are all positive or all negative, the
quadratic form is definite over R and has no nontrivial real solutions. Because
integral isotropy is equivalent to rational isotropy, we may adjust a, b and c by any
rational square, and therefore we may assume that they are squarefree integers.
Moreover, if two of them are divisible by a prime p, then they are both exactly di-
visible by p, and by a simple ordp argument the equation certainly has no solutions
unless p divides c. But then we may divide through a, b and c by p.
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Let us prove the easy half of this theorem now, namely showing that these con-
ditions are necessary. In fact, let us show that they are precisely the conditions
obtained by postulating a primitive integral solution (x, y, z) and going modulo a,
b and c. Indeed, go modulo c: we get

ax2 ≡ −by2 (mod c);

multiplying by −b, which is coprime to c, we get the equivalent condition

−abx2 ≡ (by)2 (mod c).

Suppose first that there exists some prime p | c such that p | x. Then since
gcd(b, c) = 1, we get p | y, and that implies p2 | − ax2 − by2 = cz2. Since c
is squarefree, this implies p | z, contradicting primitivity. Therefore x is nonzero
modulo every prime p dividing c, so x is a unit modulo c, and we can divide, getting

−ab ≡ (byx−1)2 (mod c),

which is condition (i). By symmetry, reducing modulo a we get (ii) and reducing
modulo b we get (iii).

Following Ireland and Rosen, to prove the sufficiency we will state the theorem
in an equivalent form, as follows:

Theorem 5. (Legendre’s theorem restated) For a and b positive squarefree integers,
the equation

ax2 + by2 = z2

has a nontrivial integral solution iff all of the following hold:
(i) a� b.
(ii) b� a.
(iii) − ab

d2 � d, where d = gcd(a, b).

We leave it as a (not difficult, but somewhat tedious) exercise to the reader to check
that Theorem 5 is equivalent to Theorem 4.

Now we prove the sufficiency of the conditions of Theorem 5.

The result is obvious if a = 1.

Case 1: a = b. The theorem asserts that ax2 + ay2 = z2 has a solution iff −1
is a square modulo a. By the first supplement to QR, this is last condition is equiv-
alent to: no prime p ≡ 3 (mod 4) divides a. If this condition holds then by the two
squares theorem we have a = r2+s2, and then we can take x = r, y = s, z = r2+s2.
On the other hand, if there exists p | a, p ≡ 3 (mod 4), then taking ordp of both sides
of the equation z2 = a(x2 + y2) gives a contradiction, since ordp(z2) = 2 ordp(z) is
even, and ordp(a(x2 + y2)) = ordp(a) + ordp(x2 + y2) = 1 + ordp(x2 + y2) implies
ordp(x2 + y2) is odd, contradicting the Two Squares Theeorem.

If b > a, we can interchange a and b, so we may now assume that a > b.

We will now prove the theorem by a descent-type argument, as follows: assuming
the hypotheses of Theorem 5 we will construct a new form Ax2+by2 = z2 satisfying
the same hypotheses, with 0 < A < a, and such that if this latter equation has a
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nontrivial solution then so does ax2 + by2 = z2. We perform this reduction process
repeatedly, interchanging A and b if A < b. Since each step reduces max(A, b),
eventually we will be in the case A = 1 or A = b, in which we have just shown
the equation has a solution. Reversing our sequence of reductions shows that the
original equation has a solution.

Now, since b� a, there exist T and c such that

(1) c2 − b = aT,

for T ∈ Z. Applying the square/squarefree decomposition, we may write T = Am2

with A squarefree. Choosing c minimally, we may assume that |c| ≤ a
2 .

Claim: 0 < A < a.

Proof: Since 0 ≤ c2 = aAm2 + b < a(Am2 + 1) and a > 0, Am2 > −1; since
b is squarefree, T = am2 6= 0, hence Am2 ≥ 1 and thus A > 0. Also

aAm2 < c2 ≤ a2

4
,

so
A ≤ Am2 <

a

4
< a.

Claim: A� b.

Recalling d = gcd(a, b), write a = a1d, b = b1d, so that gcd(a1, b1) = 1; since
a and b are squarefree, this implies gcd(a1, d) = gcd(b1, d) = 1. Then (1) reads

c2 − b1d = a1dAm2 = aAm2.

So d | c2, and since d is squarefree, d | c. Put c = c1d and cancel:

(2) dc2
1 − b1 = Aa1m

2.

So Aa1m
2 ≡ −b1 (mod d); multiplying through by a1, we get

(3) Aa2
1m

2 ≡ −a1b1 (mod d).

Now, any common prime factor p of m and d would divide both b1 and d, a contra-
diction; so gcd(m, d) = 1. Since −ab

d2 = −a1b1 is a square modulo d by (iii) and a1

and m are units modulo d, (3) implies that A� d. Moreover, c2 ≡ aAm2 (mod b1).
Since a� b, a� b1. Also gcd(a, b1) = 1 – a common divisor would divide d, but
gcd(b1, d) = 1 – and similarly gcd(m, b1) = 1. So

A ≡ c2(am2)−1 (mod b1),

and hence A� b1. Since A� b1 and A� d, by Lemma 3 A� b.

Next, put r = gcd(A, b) and A = rA1, b = rb2, so that gcd(A1, b2) = gcd(r, b2) = 1.
We claim that −A1b2� r. Using (1) we have

(4) c2 − rb2 = c2 − rb = aAm2 = arA1m
2.

Since b is squarefree, so is r, hence r | c. So if a prime p divides both am and r,
then p2 | c2−aAm2 = rb2 =⇒ p2 | r, a contradiction. So gcd(am, r) = 1. Putting
c = rc1,

arA1m
2 ≡ −rb2 (mod r2),
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so
aA1m

2 ≡ −b2 (mod r).
Since a� b and r | b, a� r. Multiplying through by b2, we get

−aA1b2m
2 ≡ b2

2 (mod r),

and since gcd(am, r) = 1, we conclude −A1b2� r.

Now assume that AX2 + bY 2 = Z2 has a nontrivial solution. Then

(5) AX2 = Z2 − bY 2.

Multiplying (5) by (1), we have

a(AXm)2 = (Z2 − bY 2)(c2 − b) = (Zc + bY )2 − b(cY + Z)2.

Note that this unlikely-looking identity can be interpreted as

N(Z + Y
√

b)N(c +
√

b) = N(Zc + bY + (cY + Z)
√

b).

Putting x = AXm, y = cY +Z, z = Zc+bY , this gives a solution to ax2+by2 = z2,
which is nontrivial since x 6= 0. Thus we have completed our “descent” argument,
which proves that the equation has a solution.

3. Hilbert’s reciprocity law

As we mentioned, Legendre’s theorem has the following consequence: a ternary
quadratic form

qa,b : aX2 + bY 2 − Z2

has a nontrivial integral solution iff there is a real solution and for every prime p
and every positive integer a the congruence

(6) aX2 + bY 2 ≡ Z2 (mod pa)

has a nontrivial solution. As a increases, each of these congruences is stronger
than the last, so it makes some sense to bundle up the infinitely many questions
of whether any of these p-power congruences has a solution into a single question.
Let us introduce the following terminology:

An integral quadratic form q(x1, . . . , xn) is p-isotropic if for all a ∈ Z+, the con-
gruence q(x1, . . . , xn) ≡ 0 (mod pa) has a nontrivial solution. Otherwise we will say
that it is p-anisotropic. We will say that q is∞-isotropic if it has a real solution.1

Considering the case of qa,b, for each prime p and for ∞ we are asking a yes/no
question – “Is qa,b p-isotropic?” so it makes some vague sense to denote “yes” by
+1 and “no” by −1, so we define symbols 〈a, b〉p for all primes p and 〈a, b〉∞ in
this way: i.e., +1 if qa,b is p-isotropic and −1 if it is p-anisotropic (and the same
for ∞). So Legendre’s theorem can be rephrased by saying that qa,b is istropic iff
〈a, b〉p = 1 for all p ≤ ∞.

But now that we’ve defined the notation, a further question occurs to us: if qa,b is

1Don’t ask why we have introduced the symbol ∞ to describe the real solutions. It is just

traditional to do so. Moreover, we will eventually get tired of saying “(and ∞)” and start writing
p ≤ ∞. There is no need to read anything deep into this, at least not today.
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isotropic, the answers to our questions are always yes; but if it isn’t, at least some
of the answers are no. So which combinations of yes and no are possible?

Theorem 6. (Hilbert) a) For every pair of nonzero integers a, b, the symbol 〈a, b〉p
is equal to +1 except possibly for finitely many values of p ≤ ∞.
b) Two integral ternary quadratic forms qa,b and qc,d are rationally equivalent –
i.e., one can be obtained from the other by a 3× 3 invertible matrix A with rational
entries – iff 〈a, b〉p = 〈c, d〉p for all p ≤ ∞.
c) The finite set of p ≤ ∞ for which 〈a, b〉p = −1 has an even number of elements.
d) For every subset S of the primes union ∞ which is finite and of even order,
there exist a and b such that 〈a, b〉p = −1 iff p ∈ S.

We admit that this is a mouthful. In particular parts b) and d) solve yet a third
problem on rational quadratic forms: their classification up to equivalence. We
advise the reader to concentrate on the following consequence: for any qa,b, by
part a) we can consider the infinite product

∏
p≤∞〈a, b〉p (since it equals 1 except

possible finitely many times), and by part c) we get the following relation, the
Hilbert reciprocity law:

(7)
∏

p≤∞

〈a, b〉p = 1

This has the extremely useful upshot that instead of having to check congruences
modulo all powers of all primes and a sign condition, it suffices to omit any one
p ≤ ∞ from these checks. In particular, we could omit “p = ∞” from the checking
and get the following result which looks hard to believe based upon the proof we
gave: if ax2 + by2 = z2 has a solution modulo pa for all p and a, then it neces-
sarily has an integral solution: in particular the condition that a and b are not
both positive follows automatically from all the congruence conditions, although it
is certainly independent of any finite number of them!

In fact, with a bit of hindsight one can see that the condition of whether or not
there is going to be a solution modulo all powers of 2 is the most complicated one.
This is taken into account in the statement of Legendre’s theorem: the congruence
conditions on their own would not imply that 〈a, b〉2 = +1 without the sign con-
ditions (“conditions at ∞”), so somehow Legendre’s clean conditions exploit this
slight redundancy. To see this, consider the case of a = b = −1, which has solutions
modulo every power of an odd prime, but no nontrivial solutions modulo 4 (and
also no real solutions).

Hilbert also found explicit formulae for 〈a, b〉p in terms of Legendre symbols. For the
sake of concision we do not state it here. However, we cannot help but mentioning
that if one knows these formulae (which are not so hard to prove), then the relation
(7) is equivalent to knowing quadratic reciprocity together with its first and second
supplements! It turns out that all aspects of the theory rational quadratic forms
can be generalized to the case where the coefficients lie not in Q but in an arbitrary
algebraic number field K. In particular, a suitable version of Hilbert’s reciprocity
law holds over K, and this is a very clean way to phrase quadratic reciprocity over
number fields.
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4. The local-global principle

We are now in a position to state what is surely one of the most important and
influential results in all of number theory.

Theorem 7. (Hasse-Minkowski) Let q(x1, . . . , xn) be an integral quadratic form.
The following are equivalent:
a) q is isotropic (over Z ⇐⇒ over Q).
b) q is isotropic over R, and for all n ∈ Z+, there are nontrivial solutions to the
congruence q(x1, . . . , xn) ≡ 0 (mod n).

It is clear that a) =⇒ b). Indeed, in contrapositive form, this has been our fa-
vorite “easy” method for showing that an equation does not have a solution: any
integral solution also gives a real solution and a solution to every possible congru-
ence. The matter of it is in the converse, which asserts that if a quadratic form
q(x1, . . . , xn) = 0 does not have an integral solution, we can always detect it via
congruences and/or over the real numbers.

This turns out to be the master theorem in the area of rational quadratic forms. It
is not (yet) stated in a form as explicit as Legendre’s theorem for ternary quadratic
forms – which, recall, did not just assert that isotropy modulo n for all n implied
isotropy over Z (or equivalently, over Q) but actually said explicitly, in terms of
the coefficients, a finite list of congruence conditions to check. Indeed one knows
such explicit conditions in all cases, and we will return to mention them in the next
section, but for now let us take a broader approach.

First, even in its “qualitative form” the theorem gives an algorithm for determining
whether any quadratic form is isotropic. Namely, we just have to search in parallel
for one of the two things:

(i) Integers x1, . . . , xn, not all 0, such that q(x1, . . . , xn) = 0.
(ii) An integer N such that the congruence q(x1, . . . , xn) ≡ 0 (mod N) has only
the all-zero solution.

For any given N , (ii) is a finite problem: we have exactly Nn − 1 values to plug
in and see whether we get 0. Similarly, if we wanted to check all tuples of integers
(x1, . . . , xn) with maxi |xi| ≤ M , then that too is obviously a finite problem. Con-
ceivably we could search forever and never find either a value of M as in (i) or a
value of N as in (ii) – for sure we will never find both! – but the Hasse-Minkowksi
theorem asserts that if we search long enough we will find either one or the other.
This then is our algorithm!

In point of fact the situation is better for part (ii): it can be shown that for any
degree k form P (x1, . . . , xn) with integer coefficients, there is a recipe (algorithm!)
for computing a single value of N such that if P (x1, . . . , xn) ≡ 0 (mod N) has a
nontrivial solution, then for all N the congruence has a solution. Moreover, one
can determine whether or not there are any real solutions (using methods from
calculus). For this the two essential tools are:
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(i) The Weil bounds for points on curves over Z/pZ, which allows one to com-
pute a finite set of primes S such that for all p > S the congruence P ≡ 0 (mod p)
automatically has nontrivial solutions (in fact, a number of solutions which tends
to ∞ with p).

This is a serious piece of mathematics dating from around the 1940’s.

(ii) Hensel’s Lemma, which gives sufficient conditions for lifting a solution (x1, . . . , xn)
to P ≡ 0 (mod p) to solutions modulo all higher powers pa of p.

This turns out to be surprisingly similar to Newton’s method for finding roots
of equations, and the proof is relatively elementary.

Alas, we do not have time to say more about either one.

So in finite time we can determine whether or not there is any value of N for
which P (x1, . . . , xn) ≡ 0 has only the trivial solution, and we can also tell whether
there are real solutions. Of course, if P = 0 fails to have congruential solutions
and/or real solutions, then we know it cannot have nontrivial integral (equiva-
lently, rational) solutions. But suppose we find that our form P passes all these
tests? Can we then assert that it has a nontrivial integral solution?

As we have just seen (or heard), the answer is a resounding “yes” when P is a
quadratic form. In general, whenever the answer to this question is “yes”, one
says that the local-global principle, or Hasse principle, holds for P . Of course
the big question is: does the Hasse principle hold for all forms of higher degree?

One can also ask whether the Hasse principle holds for not-necessarily homoge-
neous polynomials, like x2 + y3 + z7 = 13. The following remarkable result shows
that it could not possibly hold for all polynomials in several variables over the
integers.

Theorem 8. (Davis-Matijasevic-Putnam-Robinson) There is no algorithm that will
accept as input a polynomial P (x1, . . . , xn) with integral coefficients and output 1
if P (x1, . . . , xn) = 0 has an integral solution, and 0 otherwise.

Since we just said that there is an algorithm which determines if a polynomial (not
necessarily homogeneous, in fact) has congruential solutions and real solutions,
there must therefore be some polynomials which pass these tests and yet still have
no solutions.

Remark: It is unknown whether there exists an algorithm to decide if a poly-
nomial with rational coefficients has a rational solution.

One might think that such counterexamples to the Hasse principle might be in
some sense nonconstructive, but this is not at all the case:

Theorem 9. The following equations have congruential solutions and real solu-
tions, but no nontrivial integral solutions:
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a) (Selmer) 3X3 + 4Y 3 + 5Z3 = 0;
b) (Bremner) 5w3 + 9x3 + 10y3 + 12z3 = 0.

These are just especially nice examples. It is known (if not “well-known”) that for
every k > 2 there is a form P (x, y, z) = 0 of degree k which violates the local-global
principle. In fact some of my own work has been devoted to constructing large (in
particular, infinite) sets of counterexamples to the local-global principle.

There are however some further positive results, the most famous and important
being the following:

Theorem 10. (Birch) Let k be a positive integer. Then there exists an n0(k) with
the following property:
a) If k is odd, then every degree k form P (x1, . . . , xn) = 0 in n ≥ n0 variables has
a nontrivial integral solution.
b) If k is odd and P (x1, . . . , xn) is a degree k form in n ≥ n0 variables with “low-
dimensional singularities”, then P has a nontrivial integral solution iff it has a
nontrivial real solution.

Remark: The condition of low-dimensional singularities is a bit technical. Let us
rather define what it means for an equation to have no singularities at all, which
is a special case. A nontrivial complex solution (x1, . . . , xn) to P (x1, . . . , xn) at
which all the partial derivatives ∂P

∂xi
vanish is called a singular point. (Perhaps

you remember from multivariable calculus these are the points at which a curve or
surface can be “not so nice”: i.e., have self-intersections, cusps, or other patholo-
gies.) P is said to be nonsingular if there are no singular points. In particular,
one immediately checks that a diagonal form P (x1, . . . , xn) = a1x

k
1 + . . . + akxk

n

is nonsingular, so Birch’s theorem applies to diagonal forms, and in particular to
quadratic forms. (As far as I know it is an open problem whether the theorem
holds for forms of even degree without any additional hypotheses.)

Thus morally, if only there are enough variables compared to the degree, then
all congruence conditions are automatically satisfied and moreover th. However, in
the proof n0 does indeed have to be very large compared to k, and it is quite an
active branch of analytic number theory to improve upon these bounds.

Another idea, which we shall be able to express only vaguely and see an exam-
ple of in the case of the inhomogeneous problem for integral quadratic forms, is
that if one asks as a yes/no question whether or not the existence of congruential
solutions and real solutions is enough to ensure the existence of integral solutions,
then one has to take rather drastic measures – e.g., enormously many variables
compared to the degree, as above – to ensure that the answer is “yes” rather than
“no” most of the time. However, if one can somehow quantify the failure of a
local-global phenomenon, then one can hope that in any given situation it fails
only to a finite extent.

5. Local Conditions for Isotropy of Quadratic Forms

(ii) Although the result is not phrased in explicit form, part of the point is that
one can easily determine whether the condition of part b) holds. For instance, there
will be real solutions unless, when the quadratic form is diagonalized (over Q), all
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of the diagonal entries have the same sign. It is less obvious but still true that
given any equation P (x1, . . . , xn), there is an algorithm to check in a finite amount
of time whether for all N , P (x1, . . . , xn) ≡ 0 (mod N) has nontrivial solutions.
Explicit conditions will be given in the case of ternary quadratic forms (n = 3),
coming up soon. Such conditions are known for all n (for n = 2, they are the
restrictions coming from quadratic reciprocity that we have already seen).

(iii) In fact as the number of variables increases it becomes much easier to satisfy
the congruence conditions, until we get to n = 5: every quadratic form q(x1, . . . , xn)
in 5 or more variables has nontrivial solutions modulo every integer N ! This has a
remarkable corollary:

Theorem 11.
a) Let q(x1, . . . , xn) be an integral quadratic form in at least 5 variables. Then
q(x) = 0 has a nontrivial integral solution iff it has a nontrivial real solution, i.e.,
unless q is positive or negative definite.
b) Let q be a quadratic form in at least 4 variables which is not negative (resp.
positive) definite – i.e., over R it takes on some positive (resp. negative) values.
Then q rationally represents all positive (resp. negative) rational numbers.

Proof: Part a) follows immediately from the Hasse-Minkowksi theorem and the
assertion that there are no “congruential” obstructions to a quadratic form in at
least 5 variables being isotropic. Part b) follows morally by applying Theorem 2,
although to see it one needs to know that there is a field Qp of characteristic 0 with
the property that q is isotropic over Qp iff q is isotropic modulo pa for all a.

So in particular we deduce that every positive rational number is a sum of four
rational squares. This is of course weaker than Lagrange’s Theorem, and it must
be, because the theorem also applies e.g. to 2x2

1 + 3x2
2 + 4x2

3 + 5x2
4, which visibly

does not represent 1 over Z.


