
SOME IRRATIONAL NUMBERS

PETE L. CLARK

Proposition 1. The square root of 2 is irrational.

Proof. Suppose not: then there exist integers a and b 6= 0 such that
√

2 = a
b ,

meaning that 2 = a2

b2 . We may assume that a and b have no common divisor – if
they do, divide it out – and in particular that a and b are not both even.

Now clear denominators:
a2 = 2b2.

So 2 | a2. It follows that 2 | a. Notice that this is a direct consequence of Euclid’s
Lemma – if p | a2, p | a or p | a. On the other hand, we can simply prove the
contrapositive: if a is odd, then a2 is odd. By the Division Theorem, a number
is odd iff we can represent it as a = 2k + 1, and then we just check: (2k + 1)2 =
4k2 + 4k + 1 = 2(2k2 + 2k) + 1 is indeed again odd. So a = 2A, say. Plugging this
into the equation we get

(2A)2 = 4A2 = 2b2, b2 = 2A2,

so 2 | b2 and, as above, 2 | b. Thus 2 divides both a and b: contradiction. �

Comment: This is a truly “classical” proof. In G.H. Hardy’s A Mathematician’s
Apology, an extended rumination on the nature and beauty of pure mathematics,
he gives just two examples of theorems: this theorem, and Euclid’s proof of the
infinitude of primes. As he says, this is inevitably a proof by contradiction (unlike
Euclid’s proof, which constructs new primes in a perfectly explicit way). The orig-
inal statement is logically more complicated than what we actually prove in that
it takes for granted that there is some real number

√
2 – characterized by being

positive and having square equal to 2 – and then shows a “property” of this real
number, namely it not being a fraction. But the essence of the matter is that a
certain mathematical object does not exist – namely a rational number a

b such that
(a

b )2 = 2. This was the first “impossibility proof” in mathematics.
This is also one of the most historically important theorems in mathematics.

History tells us that the result was discovered by Pythagoras, or at least someone
in his school, and it was quite a shocking development (some sources say that the
unnamed discoverer was fêted, others that he was cast into the sea). It caused Greek
mathematicians to believe that geometric reasoning was more reliable than numer-
ical, or quantitative reasoning, so that geometry became extremely well-developed
in Greek mathematics at the expense of algebra.

Can we prove that
√

3 is irrational in the same way(s)? The Euclid’s Lemma
argument gives the irrationality of

√
p for any prime p: write

√
p = a

b in lowest
terms, square and simplify to get pb2 = a2; then p|a2 so p|a, so a = pA, and then

Thanks to Laura Nunley for pointing out a typo.
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substituting we get pb2 = p2A2, b2 = pA2, so p | b2 and finally p | b: contradiction.
It is interesting to notice that even without Euclid’s Lemma we can prove the

result “by hand” for any fixed prime p. For instance, with p = 3 we would like to
prove: 3 | a2 =⇒ 3 | a. The contrapositive is that if a is not divisible by 3, neither
is a2. Since any number which is not divisible by 3 is of the form 3k + 1 or 3k + 2,
we need only calculate:

(3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1,

(3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1,

so in neither case did we get, upon squaring, a multiple of three. For any prime
p, then, we can show p|a2 =⇒ p|a “by hand” by squaring each of the expressions
pk + i, 0 < i < p and checking that we never get a multiple of p.

One can also look at this key step as a property of the ring Zp of integers modulo p:
if 0 6= a ∈ Zp then 0 6= a2 ∈ Zp. But – aha! – this is just saying that we don’t want
any nonzero elements in our ring Zp which square to 0, so it will be true when Zp

is reduced (remember, this means that there are no nilpotent elements). When p is
prime Zp is an integral domain (even a field) so there are not even any zero divisors,
but referring back to the algebra handout we proved more than this: for any n, Zn

is reduced iff n is squarefree. Thus, although the full strength of p | ab =⇒ p | a
or p | b holds only for primes, the special case p | a2 =⇒ p | a is true not just for
primes but for any squarefree integer p. (Stop and think about this for a moment;
you can see it directly.) Thus the same argument in fact gives:

Proposition 2. For any squarefree integer n > 1,
√

n is irrational.

What about the case of general n? Well, of course
√

n2 is not only rational but is
an integer, namely n. Moreover, an arbitrary positive integer n can be factored to
get one of these two limiting cases: namely, any n can be uniquely decomposed as

n = sN2,

where s is squarefree. (Prove it!) Since
√

sN2 = N
√

s, we have that
√

n is rational
iff
√

s is rational; by the above result, this only occurs if s = 1. Thus:

Theorem 3. For n ∈ Z+,
√

n is rational iff n = N2 is a perfect square.

Another way of stating this result is that
√

n is either an integer or is irrational.

What about cube roots and so forth? We can prove that 3
√

2 is irrational using
a similar argument: suppose 3

√
2 = a

b , with gcd(a, b) = 1. Then we get

2b3 = a3,

so 2 | a3, thus 2 | a. Put a = 2A, so b3 = 22A3 and 2 | b3. Thus 2 | b: contradiction.

Any integer can be written as the product of a cube-free integer1 and a perfect
cube; with this one can prove that the 3

√
n is irrational unless n = N3. For the sake

of variety, we prove the general result in a different way.

Theorem 4. Let k > 2 be a positive integer. Then k
√

n is irrational unless n = Nk

is a perfect kth power.

1I.e., an integer n with ordp(n) ≤ 2 for all primes p.
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Proof. Suppose n is not a perfect kth power. Then there exists some prime p | n
such that ordp(n) is not divisible by k. Let us use this prime to get a contradiction:

ak

bk
= n, ak = nbk.

Take ordp of both sides:

k ordp(a) = ordp(ak) = ordp(nbk) = k ordp(b) + ordp(n),

so ordp(n) = k(ordp(a)− ordp(b)) and k | ordp(n): contradiction. �

From a more algebraic perspective, there is yet a further generalization to be made.
A complex number α is an algebraic number if there exists a polynomial

P (t) = antn + . . . + a1t + a0

with ai ∈ Z, an 6= 0, such that P (α) = 0. Similarly, α is an algebraic integer if
there exists such a polynomial P with an = 1 (a monic polynomial). We write
Q for the set of algebraic numbers and Z for the set of algebraic integers.

Example: α = 1
2 ∈ Q because α satisfies the polynomial 2t − 1; β = 5

√
2 ∈ Z

because β satisfies the polynomial t5 − 2.

Theorem 5. If α ∈ Q ∩ Z, then α ∈ Z.

Proof. Write α = a
b with gcd(a, b) = 1 and assume α satisfies a monic polynomial:

(
a

b
)n + cn−1(

a

b
)n−1 + . . . + c1(

a

b
) + c0 = 0.

We can clear denominators by multiplying through by bn to get

an + bcn−1 · an−1 + . . . + bn−1c1 · a + bnc0 = 0,

or

(1) an = b
(
−cn−1 · an−1 − . . .− bn−2c1 · a− bn−1c0

)
.

If b > 1, then some prime p divides b and then, since p divides the right hand side of
(1), it must divide the left hand side: p | an, so p | a. But, as usual, this contradicts
the fact that a and b were chosen to be relatively prime. �

Example: It’s not clear from the definition whether 1
2 ∈ Z: the polynomial 2t−1 is

not monic, but maybe 1
2 satisfies some other monic polynomial? Theorem 4 implies

that the answer is negative: otherwise would have 1
2 ∈ Z.

We can deduce Theorem 4 from Theorem 5 by noticing that for any k and n,
k
√

n is a root of the polynomial tk − n so lies in Z. On the other hand, evidently
k
√

n is an integer iff n is a perfect kth power, so when n is not a perfect kth power,
k
√

n ∈ Z \ Z, so by Theorem 5, k
√

n 6∈ Q.

In fact Theorem 5 is a special case of a familiar result from high school algebra.

Theorem 6. (Rational Roots Theorem) If

P (x) = anX + . . . + a1x + a0

is a polynomial with integral coefficients, then the only possible rational roots are
those of the form ± c

d , where c | a0, d | an.


