
FOUNDATIONS AND THE FUNDAMENTAL THEOREM

PETE L. CLARK

1. Foundations

What is number theory?

This is a difficult question to answer: number theory is an area, or collection
of areas, of pure mathematics that have been studied for well over two thousand
years. As such, it means different things to different mathematicians. Nevertheless
the question is not nearly as subjective as “What is truth?” or “What is beauty?”:
all of the things that various people call number theory are related, in fact deeply
and increasingly related over time.

If you think about it, it is hard to give a satisfactory definition of any area of
mathematics that would make much sense to someone who has not taken one or
several courses in it. One might say that analysis is the study of limiting processes,
especially summation, differentiation and integration; that algebra is the study of
algebraic structures like groups, rings and fields; and that topology is the study
of topological spaces and continuous maps between them. But these descriptions
function more by way of dramatis personae than actual explanations; less preten-
tiously, they indicate (some of) the objects studied in each of these fields, but they
do not really tell us which properties of these objects are of most interest and which
questions we are trying to answer about them. Such motivation is hard to provide
in the abstract – much easier, and more fruitful, is to give examples of the types of
problems that mathematicians in these areas are or were working on. For instance,
in algebra one can point to the classification of finite simple groups, and in topology
the Poincaré conjecture. Both of these are problems that had been open for long
periods of time and have been solved relatively recently, so one may reasonably
infer that these topics have been central to their respective subjects for some time.

What are the “objects” of number theory analogous to the above description? A
good one sentence answer is that number theory is the study of the integers, i.e.,
the positive and negative whole numbers.

Of course this is not really satisfactory: astrology, accounting and computer sci-
ence, for instance, could plausibly be described in the same way. What properties
of the integers are we interested in?

The most succinct response seems to be that we are interested in the integers as a
ring : namely, as endowed with the two fundamental operations of addition + and
multiplication · and – especially – the interactions between these two operations.
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Let us elaborate. Consider first the non-negative integers – which, as is tradi-
tional, we will denote by N – endowed with the operation +. This is a very simple
structure: we start with 0, the additive identity, and get every positive integer by
repeatedly adding 1.1 In some sense the natural numbers under addition are the
simplest nontrivial algebraic structure.

Note that subtraction is not in general defined on the natural numbers: we would
like to define a − b = c in case a = b + c, but of course there is not always such a
natural number c – consider e.g. 3− 5.

As you well know, there are two different responses to this: the first is to formally
extend the natural numbers so that additive inverses always exist. In other words,
for every positive integer n, we formally introduce a corresponding “number” −n
with the property that n+(−n) = 0. Although it is not a priori obvious that such
a construction works – rather, the details and meaning of this construction were a
point of confusion even among leading mathematicians for a few thousand years –
nowadays we understand that it works to give a consistent structure: the integers
Z, endowed with an associative addition operation +, which has an identity 0 and
for which each integer n has a unique additive inverse −n.

The second response is to record the relation between two natural numbers a
and b such that b − a exists as a natural number. Of course this relation is just
that a ≤ b. This is quite a simple relation on N: indeed, for any pair of integers,
we have either a ≤ b or b ≤ a, and we have both exactly when a = b.2

Now for comparison consider the positive integers

Z+ = 1, 2, 3, . . .

under the operation of multiplication. This is a richer structure: whereas addi-
tively, there is a single building block – 1 – the multiplicative building blocks are
the prime numbers 2, 3, 5, 7, . . .. Of course the primes are familiar objects, but
the precise analogy with the additive case may not be as familiar, so let us spell
it out carefully: just as subtraction is not in general defined on N, division is not
in general defined on Z+. On the one hand we can “formally complete” Z+ by
adjoining multiplicative inverses, getting this time the positive rational numbers
Q+. However, again one can view the fact that a/b is not always a positive integer
as being intriguing rather than problematic, and we again consider the relation be-
tween two positive integers a and b that b/a be a positive integer: in other words,
that there exist a positive integer c such that b = a × c. In such a circumstance
we say that a divides b, and write it as a|b.3 It is easy to see that the relation of
divisibility is more complicated than the relation ≤ since divisibility is not a total
ordering: e.g. 2 6 | 3 and also 3 6 | 2. What are we to make of this divisibility relation?

First, on a case-by-case basis, we do know how to determine whether a | b.

Proposition 1. (Division Theorem) For any positive integers n and d, there exist
unique non-negative integers q and r with 0 ≤ r < d and n = qd + r.

1Here I am alluding to the fact that in the natural numbers, addition can be defined in terms

of the “successor” operation s(n) = n+1, as was done by the 19th century mathematical logician

Giuseppe Peano. No worries if you have never heard of the Peano axioms – their importance lies
in the realm of mathematical logic rather than arithmetic itself.

2That is to say, the relation ≤ on N is a linear, or total, ordering.
3Careful: a|b ⇐⇒ b

a
is an integer.
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This is a very useful tool, but it does not tell us the structure of Z+ under the
divisibility relation. To address this, the primes inevitably come into play: there
is a unique minimal element of Z+ under divisibility, namely 1 (in other words, 1
divides every positive integer and is the only positive integer with this property): it
therefore plays the analogous role to 0 under ≤ on N. In N \ 0, the unique smallest
element is 1. In Z+ \ 1 the smallest elements are the primes p. Given that the
definition of a prime is precisely an integer greater than one divisible only by one
and itself, this is clear. The analogue to repeatedly adding 1 is taking repeated
powers of a single prime: e.g., 2, 22, 23, . . .. However, we certainly have more
than one prime – in fact, as you probably know and we will recall soon enough,
there are infinitely many primes – and this makes things more complicated. This
suggests that maybe we should consider the divisibility relation one prime at a time.

So, for any prime p, let us define a |p b to mean that b
a is a rational number which,

when written in lowest terms, has denominator not divisible by p. For instance,
3 |2 5, since 5

3 , while not an integer, doesn’t have a 2 in the denominator. For that
matter, 3 |p 5 for all primes p different from 3, and this suggests the following:

Proposition 2. For any a, b ∈ Z+, a|b ⇐⇒ a |p b for all primes p.

Proof: Certainly if a|b, then a |p b for all primes p. For the converse, write b
a in

lowest terms, say as B
A . Then a |p b iff A is not divisible by p. But the only positive

integer which is not divisible by any primes is 1.

In summary, we find that the multiplicative structure of Z+ is similar to the ad-
ditive structure of N, except that instead of there being one “generator”, namely
1, such that every element can be obtained as some power of that generator, we
have infinitely many generators – the primes – and every element can be obtained
(uniquely, as we shall see!) by taking each prime a non-negative integer number of
times (which must be zero for all but finitely many primes). This switch from one
generator to infinitely many does not in itself cause much trouble: given

a = pa1
1 · · · pan

n · · ·

and
b = pb1

1 · · · pbn
n · · ·

we find that a | b iff a |pb for all p iff ai ≤ bi for all i. Similarly, it is no problem to
multiply the two integers: we just have

ab = pa1+b1
1 · · · pan+bn

n · · · .

Thus we can treat positive integers under multiplication as vectors with infinitely
many components, which are not fundamentally more complicated than vectors
with a single component.

The “trouble” begins when we attempt to mix the additive and multiplicative struc-
tures. If we write integers in standard decimal notation, it is easy to add them,
and if we write integers in the above “vector” factored form, it is easy to multiply
them. But what is the prime factorization of 213 + 312? It’s not trivial to say: in
practice, the problem of given an integer n, finding its prime power factorization (1)
is extremely computationally difficult, to the extent that most present-day security
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rests on this difficulty.4

Itis remarkable how quickly we can find ourselves in very deep waters by ask-
ing apparently innocuous questions that mix additive and multiplicative structure.
For instance, although in the multiplicative structure, each of the primes just rests
“on its own axis” as a generator, in the additive structure we can ask where the
primes occur with respect to the relation ≤. We do not have anything approaching
a formula for pn, and the task of describing the distribution of the pn’s inside N is
a branch of number theory in and of itself (we will see a taste of it later on). For
instance, consider the quantity g(n) = pn+1 − pn, the “nth prime gap.” For n > 1,
the primes are all odd, so g(n) ≥ 2. Computationally one finds lots of instances
when g(n) is exactly 2, e.g. 5, 7, 11, 13, and so forth: an instance of g(n) = 2 –
equivalently, of a prime p such that p + 2 is also a prime – is called a twin prime
pair. The trouble is that knowing the factorization of p tells us nothing5 about the
factorization of p + 2. Whether or not there are infinitely many twin primes is a
big open problem in number theory.

It goes on like this: suppose we ask to represent numbers as a sum of two odd
primes. Then such a number must be even and at least 6, and experimenting, one
soon is led to guess that every even number at least 6 is a sum of two odd primes:
this is known as Goldbach’s Conjecture, and is about 400 years old. It remains
unsolved. There are many, many such easily stated unsolved problems which mix
primes and addition: for instance, how many primes p are of the form n2+1? Again,
it is a standard conjecture that there are infinitely many, and it is wide open. Note
that if we asked instead how many primes were of the form n2, we would have no
trouble answering – the innocent addition of 1 gives us terrible problems.

Lest you think we are just torturing ourselves by asking such questions, let me
mention three amazing positive results:

Theorem 3. (Fermat, 12/25/1640) A prime p > 2 is of the form x2 + y2 iff it is
of the form 4k + 1.

This is, to my mind, the first beautiful theorem of number theory. It says that
to check whether an odd prime satisfies the very complicated condition of being a
sum of two (integer, of course!) squares, all we need to do is divide it by four: if
its remainder is 1, then it is a sum of two squares; otherwise its remainder will be
3 and it will not be a sum of two squares.

Theorem 4. (Lagrange, 1770) Every positive integer is of the form x2+y2+z2+w2.

Theorem 5. (Dirichlet, 1837) Suppose a and b are coprime positive integers (i.e.,
they are not both divisible by any integer n > 1). Then there are infinitely many
primes of the form an + b.

Remark: In particular, taking a = 4, b = 1, see that there are infinitely many
primes of the form 4k + 1, so in particular there are infinitely many primes which
are a sum of two squares.

4A systematic study of the difficulty of factoring and its cryptographic implications is the topic

of our “sister” course 4450, so I will say almost nothing about it here.
5Well, nothing except that p + 2 is not divisible by 2 for all p > 2.
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We will see proofs of Theorems 3 and 4 in this course. To be more precise, we
will give two different proofs of Theorem 3. The first theorem uses the observation
that x2 + y2 can be factored in the ring Z[i] of Gaussian integers as (x+ iy)(x− iy)
and will be our jumping off point to the use of algebraic methods. There is an anal-
ogous proof of Theorem 4 using a noncommutative ring of “integral quaternions”.
This proof however has some technical complications which make it less appealing
for in-class presentation, so we do not discuss it in these notes.6 On the other
hand, we will give parallel proofs of Theorems 3 and 4 using geometric methods.
The proof of Theorem 5 is of a different degree of sophistication than any other
proofs in this course. We do present a complete proof at the end of these notes,
but I have not managed to persuade myself that our treatment is appropriate for a
one-semester undergraduate course in the subject.

Admission: In fact there is a branch of number theory which studies only the
addition operation on subsets of N: if A and B are two subsets of natural numbers,
then by A+B we mean the set of all numbers of the form a+b for a ∈ A and b ∈ B.
For a positive integer h, by hA we mean the set of all h-fold sums a1 + . . . + ah

of elements of A (repetitions allowed). There are plenty of interesting theorems
concerning these operations, and this is a branch of mathematics called additive
number theory. In truth, though, it is much more closely related to other branches
of mathematics like combinatorics, Fourier analysis and ergodic theory than to the
sort of number theory we will be exploring in this course.

2. The Fundamental Theorem (in Z)

2.1. Existence of prime factorizations.

We had better pay our debts by giving a proof of the uniqueness of the prime
power factorization. This is justly called the Fundamental Theorem of Arithmetic.

Let us first nail down the existence of a prime power factorization, although as
mentioned above this is almost obvious:

Proposition 6. Every positive integer n is a product of primes pa1
1 · · · par

r (when
n = 1 this is the empty product).

Proof: By induction on n, the case of n = 1 being trivial. Assume n > 1 and the
result holds for all m < n. Among all divisors d > 1 of n, the least is necessarily a
prime, say p. So n = pm and apply the result inductively to m.

Important Remark: Note that the result seemed obvious, and we proved it by
induction. Formally speaking, just about any statement about the integers contain
an appeal to induction at some point, since induction – or equivalently, the well-
ordering principle that any nonempty subset of integers has a smallest element – is
(along with a few much more straightforward axioms) their characteristic property.
But induction proofs can be straightforward, tedious, or both. Often I will let you
fill in such induction proofs; I will either just say “by induction” or, according to

6It was, in fact, the subject of a student project in the 2007 course.
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taste, present the argument in less formal noninductive terms. To be sure, some-
times an induction argument is nontrivial, and those will be given in detail.

A factorization n = pa1
1 · · · par

r is in standard form if p1 < . . . < pr. Any factor-
ization can be put in standard form by correctly ordering the prime divisors.

2.2. The fundamental theorem and Euclid’s Lemma.

Theorem 7. The standard form factorization of a positive integer is unique.

Note that this is just a mildly laundered version of the more common statement: the
factorization of a positive integer into primes is unique up to the order of the factors.

Theorem 7 was first stated and proved by Gauss in his Disquisitiones Arithmeticae.
However, it is generally agreed that the result is “essentially” due to the ancient
(circa 300 BC) Greek mathematician Euclid of Alexandria. Euclid proved:

Theorem 8. (Euclid’s Lemma) Suppose p is prime and p | ab. Then p | a or p | b.

The point is that, assuming the very easy Proposition 6, Theorems 7 and 8 are
equivalent. From a strictly logical point of view two assertions are equivalent if
they are both true or both false – or, if they range over a set of possible parameters
then they are true for exactly the same values of those parameters. Since a theorem
in mathematics is a true assertion, strictly speaking any two theorems are equiva-
lent. But in common use the statement “Theorem A is equivalent to Theorem B”
carries the connotation that it is much easier to deduce the truth of each theorem
from the other than to prove either theorem. This is the case here.

Theorem 7 =⇒ Theorem 8: Suppose for a contradiction that p | ab but p does
not divide either a or b. Writing out a =

∏
i pai

i and b =
∏

j q
bj

j , our assumptions
are equivalent to pi 6= p 6= qj for all i, j. But then ab =

∏
pai

i q
aj

j , and collecting
this into standard form we get that no positive power of the prime p appears in
the standard form factorization of ab. On the other hand, by assumption p | ab
so ab = p ·m, and then factoring m into primes we will get a standard form fac-
torization of ab in which p does apear to some positive power, contradicting the
uniqueness of the standard form prime factorization.

Theorem 8 =⇒ Theorem 7: Let us induct on the (minimal!) number r of factors
in a prime factorization of n. The case of r = 0 – i.e., n = 1 – is trivial. Suppose
the result holds for numbers with < r factors, and consider

n = pa1
1 · · · par

r = qb1
1 · · · qbs

s .

Now p1 | n, so by Theorem 8, p1 divides some q
bj

j , and this implies that p1 | qj .
Therefore we can cancel a common prime factor, reducing to the case where n has
a factorization with r−1 prime factors, and the induction hypothesis does the rest.

Therefore one way to prove Theorem 7 is to give Euclid’s proof of Theorem 8.
Euclid’s proof goes by way of giving an explicit – and efficient – algorithm for
finding the greatest common divisor of a pair of positive integers. This Euclidean
algorithm can be put to a variety of uses in elementary number theory, so Euclid’s
proof is generally the one given in introductory courses. By making use of algebraic
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ideas it is possible to streamline Euclid’s proof of Theorem 8 in a way which by-
passes the algorithm: the idea is to show that the ring of integers has the property
of being a Principal Ideal Domain, which is for a general ring a stronger result
than the uniqueness of factorization into primes. In fact there is a third strategy,
which directly proves Theorem 7. This proof, due to Hasse, Lindemann and Zer-
melo, is not sufficiently widely known. It is an archetypical instance of bypassing
seemingly “necessary” machinery by sheer cleverness.

2.3. The HLZ proof of the uniqueness of factorization.

We claim that the standard form factorization of a positive integer is unique. As-
sume not; then the set of positive integers which have at least two different standard
form factorizations is nonempty, so has a least elment, say n, where:

(1) n = p1 · · · pr = q1 · · · qs.

Here the pi’s and qj ’s are prime numbers, not necessarily distinct from each other.
However,we must have p1 6= qj for any j. Indeed, if we had such an equality, then
after relabelling the qj ’s we could assume p1 = q1 and then divide through by
p1 = q1 to get a smaller positive integer n

p1
. By the assumed minimality of n, the

prime factorization of n
p1

must be unique: i.e., r − 1 = s − 1 and pi = qi for all
2 ≤ i ≤ r. But then multiplying back by p1 = q1 we see that we didn’t have two
different factorizations after all. (In fact this shows that for all i, j, pi 6= qj .)

In particular p1 6= q1. Without loss of generality, assume p1 < q1. Then, if we
subtract p1q2 · · · qs from both sides of (1), we get

(2) m := n− p1q2 · · · qs = p1(p2 · · · pr − q2 · · · qs) = (q1 − p1)(q2 · · · qs).

Evidently 0 < m < n, so by minimality of n, the prime factorization of m must be
unique. However, (2) gives two different factorizations of m, and we can use these
to get a contradiction. Specifically, m = p1(p2 · · · pr − q2 · · · qs) shows that p1 | m.
Therefore, when we factor m = (q1 − p1)(q2 · · · qs) into primes, at least one of the
prime factors must be p1. But q2, . . . , qj are already primes which are different from
p1, so the only way we could get a p1 factor is if p1 | (q1 − p1). But this implies
p1 | q1, and since q1 is also prime this implies p1 = q1. Contradiction!

2.4. Proof using ideals.

Now we turn things around by giving a direct proof of Euclid’s Lemma. We (still!)
do not follow Euclid’s original proof, which employs the Euclidean algorithm,
but rather a modernized version using ideals.

An ideal of Z is a nonempty subset I of Z such that a, b ∈ I implies a + b ∈ I and
a ∈ I, c ∈ Z implies ca ∈ I.7

For any integer d, the set (d) = {nd | n ∈ Z} of all multiples of d is an ideal.

Proposition 9. Any nonzero ideal I of Z is of the form (d), where d is the least
positive element of I.

7We hope that the reader recognizes this as a special case of an ideal in a commutative ring.



8 PETE L. CLARK

Proof: Suppose not: then there exists an element n which is not a multiple of d.
Applying the Division Theorem (Proposition 1), we may write n = qd + r with
0 < r < d. Since d ∈ I, qd ∈ I and hence r = n − qd ∈ I. But r is positive and
smaller than d, a contradiction.

Existence of gcd’s: Let a and b be two nonzero integers. An integer d is said
to be a greatest common divisor of a and b if

(GCD1) d | a and d | b.
(GCD2) If e | a and e | b then e | d.

Note well that this is (at least apparently) different from the definition of greatest
common divisor one learns in school: in the set of all common divisors of a and b,
d is defined to be a divisor which is divisible by every other divisor, not a divisor
which is numerically largest. In particular, unlike the school definition, it is not
obvious that greatest common divisors exist! However:

Proposition 10. For a, b ∈ Z, not both zero, the set Ia,b = {xa + yb | x, y ∈ Z} is
a nonzero ideal. Its positive generator d has the following property:

(3) e|a & e|b ⇐⇒ e|d,

and is therefore a greatest common divisor of a and b.

Proof: It is easy to see that the set Ia,b is closed under addition and under multi-
plication by all integers, so it is an ideal. By the previous result, it is generated by
its smallest positive element, say d = Xa + Y b.

Now, suppose e|d. Then, since a ∈ (d), (a) ⊂ (d) and thus d|a (to contain is to
divide) and by transitivity e|a; similarly e|b. (In fact we made a bigger production
of this than was necessary: we could have said that d is a multiple of e, and a
and b are multiples of d, so of course a and b are multiples of e. This is the easy
direction.) Conversely, suppose that e|a and e|b (so e is a common divisor of a and
b). Then e | Xa + Y b = d. (Since d could be smaller than a and b – e.g. a = 17,
b = 1010, d = 1, this is the nontrivial implication.)

Corollary 11. If a and b are integers, not both zero, then for any integer m there
exist integers x and y such that

xa + yb = m gcd(a, b).

Proof: This follows immediately from the equality of ideals Ia,b = (gcd(a, b)): the
left hand side is an arbitrary element of Ia,b and the right hand side is an arbitrary
element of (gcd(a, b)).

An important special case is when gcd(a, b) = 1 – we say a and b are relatively
prime. The corollary then asserts that for any integer m, we can find integers x
and y such that xa + yb = m.

Indeed we can use this to prove Euclid’s Lemma (Theorem 8): if p | ab and p
does not divide a, then the greatest common divisor of p and a must be 1. Thus
there are integers x and y such that xa + yp = 1. Multiplying through by b we get
xab + ypb = b. Since p | xab and p | ypb, we conclude p | b. This completes the
proof of the Fundamental Theorem of Arithmetic.
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3. Some examples of failure of unique factorization

The train of thought involved in proving the fundamental theorem is quite subtle.
The first time one sees it, it is hard to believe that such complications are necessary:
is it not “obvious” that the factorization of integers into primes is unique?

It is not obvious, but rather familiar and true. The best way to perceive the
non-obviousness is to consider new and different contexts.

Example: let E denote the set of even integers.8 Because this is otherwise known
as the ideal (2) = 2Z, it has a lot of structure: it forms a group under addition,
and there is a well-defined multiplication operation satisfying all the properties of
a ring except one: namely, there is no 1, or multiplicative identity. (A ring with-
out identity is sometimes wryly called a rng, so the title of this section is not a typo.)

Let us consider factorization in E: in general, an element x of some structure should
be prime if every factorization x = yz is “trivial” in some sense. However, in E,
since there is no 1, there are no trivial factorizations, and we can define an element
x of E to be prime if it cannot be written as the product of two other elements of E.
Of course this is a new notion of prime: 2 is a conventional prime and also a prime
of E, but clearly none of the other conventional primes are E-prime. Moreover there
are E-primes which are not prime in the usual sense: e.g., 6 is E-prime. Indeed, it is
not hard to see that an element of E is an E-prime iff it is divisible by 2 but not by 4.

Now consider
36 = 2 · 18 = 6 · 6.

Since 2, 18 and 6 are all divisible by 2 and not 4, they are E-primes, so 36 has two
different factorizations into E-primes.

This example begins to arouse our skepticism about unique factorization: it is
not, for instance, inherent in the nature of factorization that factorization into
primes must be unique. On the other hand, the rng E is quite artificial: it is an
inconveniently small substructure of a better behaved ring Z. Later we will see
more distressing examples.

Example 2: Let R◦ = R[cos θ, sin θ] be the ring of real trigonometric polynomi-
als: i.e., the ring whose elements are polynomial expressions in sin θ and cos θ with
real coefficients. We view the elements as functions from R to R and add and mul-
tiply them pointwise.

Of course this ring is not isomorphic to the polynomial ring R[x, y], since we have
the Pythagorean identity cos2 θ + sin2 θ = 1. It is certainly plausible – and can be
shown to be true – that all polynomial relations between the sine and cosine are
consequences of this one relation, in the sense that R◦ is isomorphic to the quotient
ring R[x, y]/(x2 + y2 − 1).

Now consider the basic trigonometric identity

(4) (cos θ)(cos θ) = (1 + sin θ)(1− sin θ).

8This example is taken from Silverman’s book. In turn Silverman took it, I think, from Harold
Stark’s introductory number theory text. Maybe it is actually due to Stark (but probably not...)



10 PETE L. CLARK

It turns out that cos θ, 1+ sin θ and 1− sin θ are all irreducible elements in the ring
R◦. Moreover, the only units in R◦ are the nonzero real numbers, so all three of
these elements are nonassociate, and therefore (4) exhibits two different factoriza-
tions into irreducible elements! Thus, in a sense, the failure of unique factorization
in R◦ is the explanation for the subject of trigonometric identities!

To see how subtle the issue of unique factorization can be, consider now the ring

C◦ = C[cos θ, sin θ]

of trigonometric polynomials with complex coefficients. But the classic “Euler
identity”

eiθ = cos θ + i sin θ

shows that eiθ is an element of C◦, and conversely, both the sine and cosine functions
are expressible in terms of eiθ:

cos θ =
1
2

(
eiθ +

1
eiθ

)
,

sin θ =
1
2i

(
eiθ − 1

eiθ

)
.

Thus C◦ = C[eiθ, 1
eiθ ]. Now the ring C[eit] is isomorphic to the polynomial ring

C[T ], so C◦ is, up to isomorphism, obtained from C[T ] by adjoining T−1. Recall
that C[t] is a principal ideal domain (PID). Finally, if R is any PID with fraction
field K, and S is any ring such that R ⊂ S ⊂ K – i.e., any ring obtained by
adjoining to R the multiplicative inverses of each of some set of nonzero elements
of R – then it can be shown that S is also a PID, hence in particular a unique
factorization domain.

The foregoing discussion has been quite brief, with no pretense of presenting a
complete argument. A nice writeup, with all details provided, is to be found in
H.F. Trotter, An overlooked example of nonunique factorization, American Math-
ematical Monthly 95 (1988), 339-342. It would make a nice final project to read
and understand this article.9

4. Consequences of the fundamental theorem

The second proof of the fundamental theorem develops material which is very useful
in its own right. Let us look at some of it in more detail:

4.1. Applications of the prime power factorization.

There are certain functions of n which are most easily defined in terms of the
prime power factorization. This includes many so-called arithmetic functions
that we will discuss a bit later in the course. But here let us give some basic
examples. First, let us write the prime power factorization as

n =
∏

i

pai
i ,

9Alternately, in my preprint Elliptic Dedekind domains revisited – see
http://math.uga.edu/∼pete/ellipticded.pdf – there is a discussion of how this result can
be immediately deduced from a much more general theorem of M. Rosen. But I honestly think
you will find Trotter’s discussion much easier to understand.
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where pi denotes the ith prime in sequence, and ai is a non-negative integer. This
looks like an infinite product, but we impose the condition that ai = 0 for all but
finitely many i,10 so that past a certain point we are just multiplying by 1. The
convenience of this is that we do not need different notation for the primes dividing
some other integer.

Now suppose we have two such factored positive integers

a =
∏

i

pai
i ,

b =
∏

i

pbi
i .

Then we can give a simple and useful formula for the gcd and the lcm. Namely,
the greatest common divisor of a and b is

gcd(a, b) =
∏

i

p
min(ai,bi)
i ,

where min(c, d) just gives the smaller of the two integers c and d (and, of course, the
common value c = d when they are equal). More generally, we have that, writing
out two integers a and b in factored form above, we have that a | b ⇐⇒ ai ≤ bi

for all i. In fact this is exactly the statement that a|b ⇐⇒ a|pb for all p that we
expressed earlier.

We often (e.g. now) find ourselves wanting to make reference to the ai in the
prime power factorization of an integer a. The ai is the highest power of pi that
divides a. One often says that pai

i exactly divides a, meaning that pai
i |a and pai+1

i

does not. So let us define, for any prime p, ordp(a) to be the highest power of p
that divides a: equivalently:

n =
∏

i

p
ordpi

(n)

i .

Notice that ordp is reminiscent of a logarithm to the base p: in fact, that’s exactly
what it is when n = pa is a power of p only: ordp(pa) = a. However, for integers
n divisible by some prime q 6= p, logp(n) is nothing nice – in fact, it is an irra-
tional number – whereas ordp(n) is by definition always a non-negative integer. In
some sense, the beauty of the functions ordp is that they allow us to “localize” our
attention at one prime at a time: every integer n can be written as pr · m with
gcd(m, p) = 1, and the ordp just politely ignores the m: ordp(pr ·m) = ordp(pr) = r.

This is really just notation, but it is quite useful: for instance, we can easily see
that for all p,

ordp(gcd(a, b)) = min(ordp(a), ordp(b));
this just says that the power of p which divides the gcd of a and b should be the
largest power of p which divides both a and b. And then a positive integer n is
determined by all of its ordp(n)’s via the above equation.

10In fact, this representation is precisely analogous to the expression of (Z,·) = (N, +)∞ of
problem G1).
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Similarly, define the least common multiple lcm(a, b) of positive integers a and
b to be a positive integer m with the property that a|e & b|e =⇒ m|e. Then
essentially the same reasoning gives us that

ordp(lcm(a, b)) = max(ordp(a), ordp(b)),

and then that
lcm(a, b) =

∏
p

pmax(ordp(a),ordp(b)).

We can equally well define ordp on a negative integer n: it is again the largest
power i of p such that pi|n. Since multiplying by −1 doesn’t change divisibility in
any way, we have that ordp(n) = ordp(−n). Note however that ordp(0) is slightly
problematic – every pi divides 0: 0 · pi = 0 – so if we are going to define this at all
it would make sense to put ordp(0) = ∞.

We do lose a little something by extending the ord functions to negative inte-
gers: namely, since for all p, ordp(n) = ordp(−n), the ord functions do not allow
us to distinguish between n and −n. From a more abstract algebraic perspective,
this is because n and −n generate the same ideal (are associates; more on this
later), and we make peace with the fact that different generators of the same ideal
are more or less equivalent when it comes to divisibility. However, in Z we do have
a remedy: we could define a map ord−1 : Z \ {0} → ±1 such that ord−1(n) = +1
if n > 0 and −1 if n < 0. Then −1 acts as a “prime of order 2,” in contrast to
the other “infinite order primes,” and we get a corresponding unique factorization
statement.11 But although there is some sense to this, we will not adopt it formally
here.12

Proposition 12. For p a prime and m and n integers, we have:
a) ordp(mn) = ordp(m) + ordp(n).
b) ordp(m + n) ≥ min(ordp(m), ordp(n)).
c) If ordp(m) 6= ordp(n), ordp(m + n) = min(ordp(m), ordp(n)).

We leave these as exercises: suitably decoded, they are familiar facts about divisi-
bility. Note that part a) says that ordp is some sort of homomorphism from Z\{0}
to Z. However, Z \ {0} under multiplication is not our favorite kind of algebraic
structure: it lacks inverses, so is a monoid rather than a group. This perhaps sug-
gests that we should try to extend it to a map on the nonzero rational numbers
Q× (which, if you did problem G1), you will recognize as the group completion of
Z \ {0}; if not, no matter), and this is no sooner said than done:

For a nonzero rational number a
b , we define

ordp(
a

b
) = ordp(a)− ordp(b).

In other words, powers of p dividing the numerator count positively; powers of
p dividing the denominator count negatively. There is something to check here,

11This perspective is apparently due to John Horton Conway, and was explained to me by

Manjul Bhargava.
12By the way, Manjul never told me what ord−1(0) should be...
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namely that the definition does not depend upon the choice of representative of a
b .

But it clearly doesn’t:

ordp(
ac

bc
) = ordp(ac)− ordp(bc)

= ordp(a) + ordp(c)− ordp(b)− ordp(c) = ordp(a)− ordp(b) = ordp(
a

b
).

So we get a map
ordp : Q× → Z

which has all sorts of uses: among other things, we can use it to recognize whether
a rational number x is an integer: it will be iff ordp(x) ≥ 0 for all primes p.

Example: Let us look at the partial sums Si of the harmonic series
∑∞

n=1
1
n . The

first partial sum S1 = 1 – that’s a whole number. The second one is S2 = 1+ 1
2 = 3

2

which is not. Then S3 = 1 + 1
2 + 1

3 = 11
6 is not an integer either; neither is

S4 = 1 + 1
2 + 1

3 + 1
4 = 25

12 .
It is natural to ask whether any partial sum Sn for n ≥ 1 is an integer. Indeed,

this is a standard question in honors math classes because...well, frankly, because
it’s rather hard.13 But using properties of the ord function we can give a simple
proof. The first step is to look carefully at the data and see if we can find a pattern.
(This is, of course, something to do whenever you are presented with a problem
whose solution you do not immediately know. Modern presentations of mathemat-
ics – including, alas, these notes, to a large extent – often hide this experimentation
and discovery process.) What we see in the small partial sums is that not only are
they not integers, they are all not integers for “the same reason”: there is always a
power of 2 in the denominator.

So what we’d like to show is that for all n ≥ 1, ord2(Sn) < 0. It is true for
n = 2; moreover we don’t have to do the calculation for n = 3: since ord2( 1

3 ) =
0 6= ord2(S2), we must have ord2(S2 + 1

3 ) = min(ord2(S2), ord2(S3)) = −1. And
then we get 1

4 , which 2-order −2, which is different from ord2(S3), so again, using
that when we add two rational numbers with different 2-orders, the 2-order of the
sum is the smaller of the 2 2-orders, we get that ord2(S4) = −2. Excitedly testing
a few more values, we see that this pattern continues: ord2(Sn) and ord2( 1

n+1 ) are
always different; if only we can show that this always holds, this will prove the
result. In fact one can say even more: one can precisely what ord2(Sn) is as a
function of n and thus see in particular that it is always negative. I will leave the
final observation and proof to you – why should I steal your fun?

4.2. Linear Diophantine equations.

Recall that one of the two main things we agreed that number theory is about
was solving Diophantine equations, i.e., looking for solutions over Z and/or over
Q to polynomial equations. Certainly we saw some primes in the previous section;
now we solve the simplest class of Diophantine equations, namely the linear ones.

13When I first got assigned this problem (my very first semester at college), I found – or looked
up? – some quite elaborate solution which used, in particular, Bertrand’s Postulate that for
n > 1 there is always a prime p with n < p < 2n. (This was proven in the latter half of the 19th

century by Cebyshev. One of Paul Erdös’ early mathematical triumphs was an elegant new proof
of this result.)
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Historical remark: as I said before, nowadays when someone says Diophantine
equation, they mean that we are interested either in solutions over Z or solutions
over Q, or both. Diophantus himself considered positive rational solutions. Nowa-
days the restriction to positive numbers seems quite artificial (and I must wonder
whether Diophantus massaged his equations so as to get positive rather than neg-
ative solutions); it also makes things quite a bit more difficult: it stands to reason
that since equations become easier to solve if we allow ourselves to divide numbers,
correspondingly they become more difficult if we do not allow subtraction!

This also means that the term “Linear Diophantine equation” is, strictly speak-
ing, an anachronism. If you want to solve any number of linear equations with
coefficients in Q, then – since Q is a field – you are just doing linear algebra, which
works equally well over Q as it does over R or C. For instance, suppose we want to
solve the equation

ax + by = c

in rational numbers, where a and b are nonzero rational numbers and c is any
rational number. Well, it’s not much fun, is it? Let x be any rational number at
all, and solve for y:

y =
c− ax

b
.

Speaking more geometrically, any line y = mx+ b in the plane passing through one
rational point and with rational slope – roughly speaking, with m and b rational –
will have lots of rational solutions: one for every rational choice of x.

So for Diophantus, the first interesting example was quadratic polynomial equa-
tions. Indeed, after this section, the quadratic case will occupy our interest for
perhaps the majority of the course.

However, over Z things are never so easy: for instance, the equation

3x + 3y = 1

clearly does not have an integer solution, since no matter what integers x and y we
choose, 3x + 3y will be divisible by y. More generally, if a and b have a common
divisor d > 1, then it is hopeless to try to solve

ax + by = 1.

But this is the only restriction, and indeed we saw this before: en route to proving
the fundamental theorem, we showed that for any integers a and b, not both zero,
then gcd(a, b) generates the ideal {xa+yb | x, y ∈ Z}, meaning that for any integer
m, the equation

ax + by = m gcd(a, b)

has solutions in x and y. In other words, we can solve

ax + by = n

if n is a multiple of the gcd of a and b. By the above, it is also true that we can only
solve the equation if n is a multiple of the gcd of x and y – the succinct statement
is the equality of ideals Ia,b = (gcd(a, b)) – so we have (and already had, really) the
following important result.
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Theorem 13. For fixed a, b ∈ Z, not both zero, and any m ∈ Z, the equation

ax + by = m

has a solution in integers (x, y) iff gcd(a, b) | m.

In particular, if gcd(a, b) = 1, then we can solve the equation for any integer m.
The fundamental case is to solve

ax + by = 1,

because if we can find such x and y, then just by multiplying through by m we can
solve the general equation.

This is a nice result, but it raises two further questions. First, we found one
solution. Now what can we say about all solutions?14 Second, given that we know
that solutions exist, how do we actually find them?

Example: We are claiming that 3x + 7y = 1 has an integer solution. What could it
be? Well, a little experimentation yields x = −2, y = 1. Is this the only solution?
Indeed not: we could add 7 to x and the sum would increase by 21, and then sub-
tract 3 from y and the sum would decrease by 21. This leads us to write down the
family of solutions xn = −2+7n, yn = 1− 3n. Are there any more? Well, we have
found one integral solutions whose x-coordinates are evenly spaced, 7 units apart
from each other. If there is any other solution 3X + 7Y = 1, there must be some
n such that 0 < X − xn < 7. This would give a solution 3(X − xn) = −7(Y − yn)
with 0 < X − xn < 7. But this is absurd: the left hand side would therefore be
prime to 7, whereas the right hand side is divisible by 7. So we evidently found the
general solution.

The above argument does not, of course, use any special properties of 3 and 7:
with purely notational changes it carries over to a proof of the following result.

Theorem 14. For a and b coprime positive integers, the general integral solution
to xa+ yb = 1 is xn = x0 +nb, yn = y0−na, where x0a+ y0b = 1 is any particular
solution guaranteed to exist by Theorem 13.

However, let us take the oppotunity to give a slightly different reformulation and
reproof of Theorem 14. We will work in slightly more generality: for fixed, relatively
prime nonzero integers a and b and a variable integer N , consider all integral
solutions of the equation

(5) ax + by = N

To borrow terminology from other areas of mathematics,15 (5) is linear and inho-
mogeneous in x and y. What this means is that the left hand side is an expression
which is linear in x and y but the right-hand side is nonzero. There is an associated
homogeneous linear equation:

(6) ax + by = 0

14Diophantus was for the most part content with finding a single solution. The more pene-

trating inquiry into the set of all solutions was apparently first made by Fermat.
15Especially, from the elementary theory of differential equations.
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Here we are saying something quite basic in a fancy way: the real solutions of (6)
form a line through the origin in R2, with slope m = −a

b . But the set of integer
solutions to (6) also has a nice algebraic structure: if (x1, y1), (x2, y2) are any two
integer solutions and C is any integer, then since

a(x1 + x2) + b(y1 + y2) = (ax1 + by1) + (ax2 + by2) = 0 + 0 = 0,

a(Cx1) + b(Cy2) = C(ax1 + by1) = C · 0 = 0,

both the sum (x1, y1)+(x2, y2) and the integer multiple C(x1, y1) are solutions. To
be algebraically precise about it, the set of integer solutions to (6) forms a subgroup
of the additive group of the one-dimensional R-vector space of all real solutions.

Now we claim that it is easy to solve the homogeneous equation directly. The
Q-solutions are clearly {(x, −a

b x) | x ∈ Q}. And, since a and b are relatively prime,
in order for x and −a

b x to both be integers, it is necessary and sufficient that x
itself be an integer and that it moreover be divisible by b. Therefore the general
integral solution to the homogeneous equation is {(nb,−na) | n ∈ Z}.

Now we make the fundamental observation about solving inhomogeneous linear
equations in terms of the associated homogeneous linear equation. We claim that
if (x0, y0) is any one solution to the inhomogeneous equation (5) and (xn, yn) =
(nb,−na) is the general solution to the associated homogeneous equation (6), then
the general solution to the inhomogeneous equation is (x0, y0) + (xn, yn). Let’s
check this. On the one hand, we have

a(x0 + xn) + b(y0 + yn) = (ax0 + by0) + (axn + byn) = N + 0 = N,

so these are indeed solutions to the inhomogeneous equation. On the other hand,
if (x, y) and (x′, y′) are any two solutions to the inhomogeneous equation, then,
by a very similar computation, their difference (x − x′, y − y′) is a solution to the
homogeneous equation.

In other words the set of all solutions to the inhomogeneous equation is simply
a translate of the abelian group of all solutions to the homogeneous equation.
Thus, since the solutions to the homogeneous equation are simply a set of points
along the line with distance

√
a2 + b2 between consecutive solutions, the same holds

for all the inhomogeneous equations, independent of N .

Remark aside: At the cost of introducing some further fancy terminology, the
discussion can be summarized by saying that the solution set to the inhomoge-
neous equation is a principal homogeneous space for the commutative group
of solutions to the homogeneous equation. The general meaning of this is in terms
of group actions on sets: let G be a group, X a set, and • : G×X → X an action
of G on X. (We are assuming familiarity with this algebraic concept only to make
the present digression. It will not be needed in the rest of the course.) Then we say
that X is a principal homogeneous space for G if the action is simply transitivie:
for all x, y ∈ X, there exists a unique element g of G such that g · x = y.

To look back this homogeneous/inohomogeneous argument, what it doesn’t give
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us is any particular solution to the inhomogeneous equation.16 To get this in any
given case we can use Euclid’s algorithm, but in thinking about things in general it
is useful to acknowledge a certain amount of fuzziness in the picture: we can only
say where any particular solution will be located on the line to within an accuracy
of d =

√
a2 + b2.

What is interesting is that we can use these seemingly very primitive geometric
ideas to extract useful information about a more difficult problem. Namely, let us
now suppose that a, b, N are all positive integers, and we seek to solve the linear
Diophantine equation

ax + by = N

in positive integers (x, y). Then the geometric picture shows right away that we
are interested in the intersection of the infinite family of all integral solutions with
the first quadrant of R2. More precisely, we have a line segment LN which joins
(0, N

b ) to (N
a , 0), and we are asking whether there are integer solutions on LN .

Notice that the length of LN is

`N =

√(
N

a

)2

+
(

N

b

)2

= N

√
1
a2

+
1
b2

= N

√
a2 + b2

ab
=

(
d

ab

)
N.

Thus when N is small, LN is a very small line segment, and since consecutive
integral solutions on the line are spaced d units apart, it is by no means guaranteed
that there are any integral solutions on LN . For instance, since ax+by ≥ a+b ≥ 2,
there is no positive integral solution to ax + by = 1. But since LN grows linearly
with N and d is independent of N , when N is sufficiently large we must have some
integral points on LN . In fact this must happen as soon as `N > d.17 By similar
reasoning, the number of solutions must be extremely close to `n

d = N
ab . Precisely:

Theorem 15. Let a, b ∈ Z+ be relatively prime, and let N ∈ Z+.
a) If N > ab, then there exist positive integers x, y such that ax + by = N .
b) Let NN be the number of positive integral solutions (x, y) to ax + by = N . Then

bN
ab
c − 1 ≤ NN ≤ bN

ab
c+ 1.

We leave the details of the proof of Theorem 15 to the interested reader.

It turns out that the lower bound on N in part a) is of the right order of mag-
nitude, but is never sharp: for instance, if a = 2, b = 3, then the theorem asserts
2x + 3y = N has a positive integral solution if N > 6, whereas pure thought shows
that it suffices to take N ≥ 2. The sharp lower bound is known (in terms of a and
b, of course) and is a result of J.J. Sylvester: c.f. Problem Set XX.

16Indeed, so far as this abtract reasoning goes, such a solution might not exist: according
to the definition we gave for a principal homogeneous space, taking X = ∅ gives a principal

homogeneous space under any group G.
17To understand the reasoning here, imagine that you know that a certain bus comes once

every hour at a fixed time – i.e., at a certain number of minutes past each hour – but you don’t

know exactly what that fixed time is. Nevertheless, if you wait for any full hour, you will be able
to catch the bus.


