
ARITHMETICAL FUNCTIONS III: ORDERS OF MAGNITUDE

1. Introduction

Having entertained ourselves with some of the more elementary and then the more
combinatorial/algebraic aspects of arithmetical functions, we now grapple with
what is fundamentally an analytic number theory problem: for a given arithmetical
function f , approximately how large is f(n) as a function of n?

It may at first be surprising that this is a reasonable – and, in fact, vital – ques-
tion to ask even for the “elementary” functions f for which we have found exact
formulas, e.g. d(n), σ(n), ϕ(n), µ(n) (and also r2(n), which we have not yet taken
the time to write down a formula for but could have based upon our study of the
Gaussian integers). What we are running up against is nothing less than the multi-
plicative/additive dichotomy that we introduced at the beginning of the course: for
simple multiplicative functions f like d and ϕ, we found exact formulas. But these
formulas were not directly in terms of n, but rather made reference to the standard
form factorization pa1

1 · · · par
r . It is easy to see that the behavior of, say, ϕ(n) as a

function of “n alone” cannot be so simple. For instance, suppose N = 2p − 1 is a
Mersenne prime. Then

ϕ(N) = N − 1.

But

ϕ(N + 1) = ϕ(2p) = 2p − 2p−1 = 2p−1 =
N + 1

2
.

This is a bit disconcerting: N + 1 is the tiniest bit larger than N , but ϕ(N + 1) is
half the size of ϕ(N)!

Still we would like to say something about the size of ϕ(N) for large N . For
instance, we saw that for a prime p there are precisely ϕ(p − 1) primitive roots
modulo p, and we would like to know something about how many this is.

Ideal in such a situation would be to have an asymptotic formula for ϕ: that is, a
simple function g : Z+ → (0,∞) such that limn→∞

ϕ(n)
g(n) = 1. (In such a situation

we would write ϕ ∼ g.) But it is easy to see that this is too much to ask. Indeed,
as above we have ϕ(p) = p− 1, so that restricted to prime values ϕ(p) ∼ p; on the
other hand, restricted to even values of n, ϕ(n) ≤ n

2 , so there is too much variation
in ϕ for there to be a simple asymptotic expression.

This is typical for the classical arithmetical functions; indeed, some of them, like
the divisor function, have even worse behavior than ϕ. In other words, ϕ has more
than one kind of limiting behavior, and there is more than one relevant question to
ask. We may begin with the following:

Question 1. a) Does ϕ(n) grow arbitrarily large as n does?
b) How small can ϕ(n)/n be for large n?
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Part a) asks about the size of ϕ in an absolute sense, whereas part b) is asking
about ϕ in a relative sense. In particular, since there are ϕ(p) = p− 1 elements of
(Z/pZ)×, the quantity ϕ(p−1)

p−1 measures the chance that a randomly chosen nonzero
residue class is a primitive root modulo p. Note we ask “how small” because we
know how large ϕ(n)

n can be: arbitrarily close to 1, when n is a large prime.

2. Lower bounds on Euler’s totient function

Anyone who works long enough with the ϕ function (for instance, in computing all
n such that ϕ(n) ≤ 10) will guess the following result:

Proposition 1. We have limn→∞ ϕ(n) = ∞.

Equivalently: for any L ∈ Z+, there are only finitely many n such that ϕ(n) ≤ L.

The idea of the proof is a simple and sensible one: if a positive integer n is “large”,
it is either divisible by a large prime p, or it is divisible by a large power a of a prime,
or both. To formalize this a bit, consider the set S(A,B) of positive integers n which
are divisible only by primes p ≤ A and such that ordp(n) ≤ B for all primes p. Then
S(A,B) is a finite set: indeed it has at most (B + 1)A elements. (Also its largest
element is at most

∏
p≤A pB ≤ (A!)B , which is, unfortunately, pretty darned large.)

So if we assume that n is sufficiently large – say larger than (L!)L – then n is
divisible either by a prime p > L or by pL+1 for some prime p. It is easy to show
that if m | n, ϕ(m)|ϕ(n) – and thus ϕ(m) ≤ ϕ(n). So in the first case we have

ϕ(n) ≥ ϕ(p) = p− 1 ≥ L,

and in the second case we have

ϕ(n) ≥ ϕ(pL+1) = pL(p− 1) ≥ pL > L.

So we’ve shown that if n > (L!)L, then ϕ(n) ≥ L, which proves the result.

It was nice to get an explicit lower bound on ϕ, but the bound we got is com-
pletely useless in practice: to compute all n for which ϕ(n) ≤ 5 above argument
tells us that it suffices to look at n up to 1205 = 24883200000. But this is ridiculous:
ad hoc arguments do much better. For instance, if n is divisible by a prime p ≥ 7,
then ϕ(n) is divisible by p − 1 ≥ 6, so we must have n = 2a3b5c. If c ≥ 2, then
25 | n so 20 = ϕ(25) ≤ ϕ(n). Similarly, if b ≥ 2, then 9 | n so 6 = ϕ(9) ≤ ϕ(n), and
if a ≥ 4, then 16 | n so 8 = ϕ(16) ≤ ϕ(n). So, if n = 5m, then ϕ(n) = 4ϕ(m) so
ϕ(m) = 1 and thus m = 1 or 2. If n = 3m, then ϕ(n) = 2ϕ(m), so ϕ(m) = 1 or 2,
so n = 3 · 1, 3 · 2, 3 · 4. Otherwise n is not divisible by 9 or by any prime p ≤ 5, so
that b ≤ 1 and a ≤ 3. This yields the possibilities n = 1, 2, 4, 8, 3, 6. In summary,
ϕ(n) ≤ 5 iff

n = 1, 2, 3, 4, 5, 6, 8, 10, 12.

More practical lower bounds are coming up later.

However, it is interesting to note that essentially the same idea allows us to give
us a much better asymptotic lower bound on ϕ. Namely, we have the following
pretty result which once again underscores the importance of keeping an eye out
for multiplicativity:
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Theorem 2. Suppose f is a multiplicative arithmetical function such that f(pa) →
0 as pa →∞. Then f(n) → 0 as n →∞.

In other words if f is a multiplicative function such that for every ε > 0, |f(pm)| < ε
for all sufficiently large prime powers, it follows that |f(n)| < ε for all sufficiently
large n, prime power or otherwise.

Remark: As long as our multiplicative function f is never 0, an equivalent state-
ment is that if f(pn) → ∞ for all prime powers than f(n) → ∞ for all n. (Just
apply the theorem to g = 1

f , which is multiplicative iff f is.) So assuming the
theorem, we can just look at

ϕ(pa) = pa−1(p− 1) ≥ max(p− 1, a− 1),

and if pa is large, at least one of p and a is large. But actually we get more:

Corollary 3. For any fixed δ, 0 < δ < 1, we have ϕ(n)/nδ →∞.

Proof: We wish to show that f(n) := nδ

ϕ(n) → 0 as n →∞. Since both nδ and ϕ(n)
are multiplicative, so is their quotient f , so by the theorem it suffices to show that
f approaches zero along prime powers. No problem:

f(pn) =
pnδ

pn−1(p− 1)
=

p

p− 1
· (pδ−1)n.

Here δ − 1 < 0, so as p → ∞ the first factor approaches 1 and the second factor
approaches 0 (just as xα → 0 as x → ∞ for negative α). On the other hand, if p
stays bounded and n →∞ then the expression tends to 0 exponentially fast.

Now let us prove Theorem 2. We again use the idea that for any L > 0, there
exists N = N(L) such that n > N implies N is divisible by a prime power pa > L.

First let’s set things up: since f(pm) → 0 we have that f is bounded on prime
powers, say |f(pm)| ≤ C. Moreover, there exists a b such that |f(pm)| ≤ 1 for all
pm ≥ b; and finally, for every ε > 0 there exists L(ε) such that pm > L(ε) implies
|f(pm)| < ε. Now write n = pa1

1 · · · par
r , so that

f(n) = f(pa1
1 ) · · · f(par

r ).

Since there are at most b indices i such that pai
i ≤ B, there are at most b factors in

the product which are at least 1 in absolute value, so that the product over these
“bad” indices has absolute value at most Cb. Every other factor has absolute value
at most 1. Moreover, if n is sufficiently large with respect to L(ε) (explicitly, if
n > L(ε)!L(ε), as above), then the largest prime power divisor par

r of n is greater
than L(ε) and hence |f(par

r )| < ε. This gives

|f(n)| = |f(pa1
1 · · · par

r )| ≤ Cb · ε.
Since C and b are fixed and ε is arbitrary, this shows that f(n) → 0 as n →∞.

A nice feature of Theorem 2 is that it can be applied to other multiplicative func-
tions. For instance, it allows for a quick proof of the following useful upper bound
on the divisor function:

Theorem 4. For every fixed δ > 0, we have

lim
n→∞

d(n)
nδ

= 0.
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Proof: Exercise!

Note that Corollary 3 is equivalent to the following statement: for every 0 < δ < 1,
there exists a positive constant C(δ) such that for all n,

ϕ(n) ≥ C(δ)nδ.

Still equivalent would be to have such a statement for all n ≥ N0. This would
be very useful provided we actually knew an acceptable value of C(δ) for some δ,
possibly with an explicitly given and reasonably small N0(δ) of excluded values.
We quote without proof the following convenient result for δ = 1

2 :

Theorem 5. For all n > 6, ϕ(n) ≥
√

n.

So in other words, to find all n for which ϕ(n) ≤ 10, according to this result we need
only look at n up to 100, which is fairly reasonable. Of course if you are interested
in very large values of ϕ you will want even stronger bounds. The “truth” is coming
up later: there is a remarkable explicit lower bound on ϕ(n).

3. Upper bounds on Euler’s ϕ function

Proposition 6. For any ε > 0, there is an n such that ϕ(n)/n ≤ ε.

Proof. Recall that one of our formulas for ϕ(n), or rather for ϕ(pa1
1 · · · par

r ), is really
a formula for ϕ(n)/n:

ϕ(n)/n =
r∏

i=1

(1− 1
pi

).

Just for fun, let’s flip this over:

n

ϕ(n)
=

r∏
i=1

(1− 1
pi

);

now what we need to show is that for any L > 0, we can choose primes p1, . . . , pr

such that
∏r

i=1(
pi−1

pi
)−1 > L.

Well, at the moment we (sadly for us) don’t know much more about the sequence
of primes except that it is infinite, so why don’t we just take n to be the product
of the first r primes p1 = 2, . . . , pr? And time for a dirty trick: for any i, 1 ≤ i ≤ r,
we can view 1

1− 1
pi

as the sum of a geometric series with ratio r = 1
pi

. This gives

n

ϕ(n)
=

r∏
i=1

(1− 1
pi

)−1 =
r∏

i=1

(1 + p−1
i + p−2

i + . . .).

The point here is that if we formally extended this product over all primes:
∞∏

i=1

(1 + p−1
i + p−2

i + p−3
i + . . .)

and multiplied it all out, what would we get? A moment’s reflection reveals a
beautiful surprise: the uniqueness of the prime power factorization is precisely
equivalent to the statement that multiplying out this infinite product we get the
infinite series

∑∞
n=1

1
n , i.e., the harmonic series! Well, except that the harmonic

series is divergent. That’s actually a good thing; but first let’s just realize that
if we multiply out the finite product

∏r
i=(1 − 1

pi
)−1 we get exactly the sum of
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the reciprocals of the integers n which are divisible only by the first r primes. In
particular – since of course pr ≥ r, this sum contains the reciprocal of the first r
integers, so: with n = p1 · · · pr,

n

ϕ(n)
≥

r∑
n=1

1
n

.

But now we’re done, since as we said before the harmonic series diverges – re-
call that a very good approximation to the rth partial sum is log r, and certainly
limr→∞ log r = ∞. This proves the result. �

To summarize, if we want to make ϕ(n)/n arbitrarily small, we can do so by taking
n to be divisible by sufficiently many primes. On the other hand ϕ(n)/n doesn’t
have to be small: ϕ(p)/p = p−1

p = 1− 1
p , and of course this quantity approaches 1

as p →∞. Thus the relative size of ϕ(n) compared to n depends quite a lot on the
shape of the prime power factorization of n.

Contemplation of this proof shows that we had to take n to be pretty darned
large in order for ϕ(n) to be significantly smaller than n. In fact this is not far from
the truth.

4. The truth about Euler’s ϕ function

It is the following:

Theorem 7. a) For any ε > 0 and all sufficiently large n, one has

ϕ(n) log log n

n
≥ e−γ − ε.

b) There exists a sequence of distinct positive integers nk such that

lim
k→∞

ϕ(nk) log log nk

nj
= e−γ .

Comments: (a) Here γ is our friend the Euler-Mascheroni constant, i.e.,

lim
n→∞

n∑
k=1

(
1
k

)− log n ≈ 0.5772.

(b) What the result is really saying is that n/ϕ(n) can be, for arbitrarily large n,
as large as a constant times log log n, but no larger.

In stating the result in two parts we have just spelled out a fundamental concept
from real analysis (which however is notoriously difficult for beginning students to
understand): namely, if for any function f : Z+ → R we have a number L with the
property: for every ε > 0, then
(i) for all sufficiently large n one has

f(n) > L− ε,

and (ii) for all L′ < L there are only finitely many n such that f(n) < L′, then one
says that L is the lower limit (or limit inferior) of f(n), written

lim inf
n→∞

f(n) = L.
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There is a similar definition of the upper limit (or limit superior) of a function:
it is the largest L such that for any ε > 0, for all but finitely many n we have
f(n) < L + ε. A function which is unbounded below (i.e., takes arbitrarily small
values) has no lower limit according to our definition, so instead one generally says
that lim inf f = −∞, and similarly we put lim sup f = +∞ when f is unbounded
above. With these provisos, the merit of the upper and lower limits is that they
always exist; moreover one has

lim inf f ≤ lim sup f

always, and equality occurs iff limn→∞ f exists (or is ±∞). Using this terminology
we can summarize the previous results much more crisply:

Since ϕ(p) = p− 1, we certainly have

lim sup ϕ(n)/n = 1,

so we are only interested in how small ϕ(n) can be for large n. We first showed
that limn→∞ ϕ(n) = +∞, and indeed that for any δ < 1,

lim
n→∞

ϕ(n)/nδ = ∞.

However, for δ = 1,
lim inf

n→∞
ϕ(n)/n = 0.

Thus the “lower order” of ϕ(n) lies somewhere between nδ for δ < 1 (i.e., ϕ is larger
than this for all sufficiently large n) and n (i.e., ϕ is smaller than this for infinitely
many n). In general, one might say that an arithmetical function f has lower
order g : Z+ → (0,∞) (where g is presumably some relatively simple function) if

lim inf
n→∞

f

g
= 1.

So the truth is that the lower order of ϕ is eγn
log log n . We will not prove this here.

Remark: all statements about limits, lim inf’s lim sup’s and so on of a function
f , by their nature are independent of the behavior of f on any fixed finite set of
values: if we took any arithmetical function and defined it completely randomly for
the first 101010

values, then we would not change its lower/upper order. However in
practice we would like inequalities which are true for all values of the function, or
at least are true for an explicitly excluded and reasonably small finite set of values.
In the jargon of the subject one describes the latter, better, sort of estimate as an
effective bound. You can always ask the question “Is it effective?” at the end of
any analytic number theory talk and the speaker will either get very happy or very
defensive according to the answer. So here we can ask if there is an effective lower
bound for ϕ of the right order of magnitude, and the answer is a resounding yes.
Here is a nuclear-powered lower bound for the totient function:

Theorem 8. For all n > 2 we have

ϕ(n) >
n

eγ log log n + 3
log log n

.

5. Similar results for other functions
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5.1. The sum of divisors function σ. The story for the function σ is quite
similar to that of ϕ. In fact there is a very close relationship between the size of σ
and the size of ϕ coming from the following beautiful double inequality.

Proposition 9. For all n, we have

1
ζ(2)

<
σ(n)ϕ(n)

n2
< 1.

Proof: Indeed, if n =
∏

i pai
i , then

σ(n) =
∏

i

pai+1
i − 1
pi − 1

= n
∏

i

1− p−ai−1

1− p−1
i

,

whereas
ϕ(n) = n

∏
i

(1− p−1
i ),

so
σ(n)ϕ(n)

n2
=

∏
i

(1− p−ai−1
i ).

We have a product of terms in which each factor is less than one; therefore the
product is at most 1. Conversely, each of the exponents is less than or equal to −2,
so the product is at least as large as the product

∏
p(1− p−2). Now in general, for

s > 1 we have∏
p

(1− p−s)−1 =
∏
p

(1 + p−s + p−2s + . . .) =
∞∑

n=1

1
ns

= ζ(s),

so the last product is equal to 1
ζ(2) . This completes the proof.

Remark: Recall that ζ(2) = π2

6 , so that 1
ζ(2) = 6

π2 .

From this result and the corresponding results for ϕ we immediately deduce:

Theorem 10. For every δ > 0, σ(n)
n1+δ → 0.

In fact we can prove this directly, the same way as for the ϕ function.

The “truth” about the lower order of ϕ dualizes to give the true upper order of σ,
up to an ambiguity in the multiplicative constant, which will be somewhere between
ζ(2)−1e−γ and e−γ . In fact the latter is correct:

Theorem 11.

lim sup
n→∞

e−γσ(n)
n log log n

= 1.

And again, because σ(p) = p + 1 ∼ p for primes, we find that the lower order of
σ(n) is just n.

5.2. The divisor function. The divisor function d(n) is yet more irregularly be-
haved than ϕ and σ, as is clear because d(p) = 2 for all primes 2, but of course
d takes on arbitrarily large values. In particular the lower order of d is just the
constant function 2. As regards the upper order, we limit ourselves to the following
two estimates, which you are asked to establish in the homework:
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Theorem 12. For any δ > 0, limn→∞
d(n)
nδ = 0.

In other words, for large n, the number of divisors of n is less than any prearranged
power of n. This makes us wonder whether its upper order is logarithmic or smaller,
but in fact this is not the case either.

Proposition 13. For any k ∈ Z+ and any real number C, there exists an n such
that d(n) > C(log n)k.

Thus the upper order of d(n) is something greater than logarithmic and something
less than any power function. We leave the matter there, although much more
could be said.


