
THE MORDELL EQUATION

PETE L. CLARK

1. The coprime powers trick in Z

We have by now seen several ways in which the fundamental theorem of arithmetic
can be used to solve Diophantine equations, and that suitably generalized, these
techniques often apply to more general unique factorization domains.

We will now consider another such technique, the coprime powers trick. In
the interest of linear exposition, we present the technique first and then give an
application. However, the reader might prefer to skip ahead and see how it is used.

Proposition 1. (Coprime Powers Trick, v. 1)
Let n ∈ Z+, let x, y, z ∈ Z be such that gcd(x, y) = 1 and xy = zn.

a) There exist a, b ∈ Z such that x = ±an, y = ±bn.
b) If n is odd, then there exist a, b ∈ Z such that x = an, y = bn.

Proof. If x, y ∈ Z, then x = ±y iff ordp(x) = ordp(y) for all prime numbers p. We
exploit this as follows: for any prime p, take ordp of both sides of xy = zn to get

ordp(x) + ordp(y) = n ordp(z).

Since x and y are relatively prime, at least one of ordp(x), ordp(y) is equal to 0,
and therefore they are both divisible by n. Now define a, b ∈ Z+ as follows:

a =
∏
p

p
ordp(x)

n , b =
∏
p

p
ordp(y)

n .

Then for all primes p, ordp(an) = n ordp(a) = ordp(x) and ordp(bn) = n ordp(b) =
ordp(y). We conclude x = ±an, y = ±bn, establishing part a). Part b) follows upon
noticing that if n is odd, (−1)n = −1, so we may write x = (±a)n, y = (±b)n. �

1.1. An application.

Theorem 2. The only integral solutions to

(1) y2 − y = x3

are (0, 0) and (0, 1).

Proof. Suppose (x, y) ∈ Z2 satisfy equation (1), i.e., y(y − 1) = x3. As for any
two consecutive integers, y and y − 1 are relatively prime. We can therefore apply
Proposition 1b) to conclude that there exist a, b ∈ Z such that

y = a3, y − 1 = b3.

This gives
1 = y − (y − 1) = a3 − b3 = (a− b)(a2 + ab + b2),

Thanks to Keith Conrad for pointing out a simplfication in the proof of Theorem 3.
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and the only way this can happen is for

a− b = a2 + ab + b2 = ±1.

Suppose first that a− b = 1, so b = a− 1; then

1 = a2 + ab + b2 = a2 + a(a− 1) + (a− 1)2 = 3a2 − 3a + 1,

or
3a2 − 3a = 0.

The solutions of this quadratic are a = 0 and a = 1. If a = 0, then y = a3 = 0, and
x3 = 02 − 0 = 0: we get the solution (x, y) = (0, 0) to (1). If a = 1, then y = 1 and
x3 = 12 − 1 = 0: we get the solution (x, y) = (0, 1).
Next suppose that a− b = −1, so b = a + 1; then

−1 = a2 + ab + b2 = a2 + a(a + 1) + (a + 1)2 = 3a2 + 3a + 1,

or
3a2 + 3a + 2 = 0,

a quadratic equation with discriminant 32 − 4 · 3 · 2 = −13 < 0; thus there are no
real solutions. �

2. The Mordell Equation

We now turn to a family of Diophantine equations which has received persistent
attention over the centuries and remains of interest to this day. Namely, fix an
integer k and consider

(2) y2 + k = x3.

We wish to find all integral solutions. If k = 0 we get the “degenerate” equation
y2 = x3. A moment’s thought shows that this equation has solution set {(x, y) =
(a2, a3) | a ∈ N}. In particular there are infinitely many solutions. The great
Philadelphian mathematician Louis J. Mordell showed that conversely, for each
nonzero k, (2) has only finitely many integer solutions. Because of this and other
results over the course of his long career, (2) is often called the Mordell Equation,
despite the fact that other distinguished mathematicians also worked on it. In
particular, the case of k = −2 was considered by Claude-Gaspar Bachet and Fermat
in the seventeenth century, and the following result is attributed to Fermat.

Theorem 3. (Fermat) The only integral solutions to

(3) y2 + 2 = x3

are (3, 5) and (3,−5).

Proof. We wish to argue similarly to the previous result, but here the only factor-
ization in sight takes place over the quadratic ring Z[

√
−2], namely:

x3 = (y +
√
−2)(y −

√
−2).

Looking back at the previous argument, it seems that what we would like to say is
that there are elements α = a + b

√
−2, β = c + d

√
−2 ∈ Z[

√
−2] such that

y +
√
−2 = α3, y −

√
−2 = β3.

The justification for this will be a version of the coprime powers trick in the ring
Z[
√
−2], but let us assume it just for a moment and see what comes of it.
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By expanding out α3 we get

y +
√
−2 = (a + b

√
−2)3 = (a3 − 6ab2) + (3a2b− 2b3)

√
−2,

and this means that
y = a3 − 6ab2 = a(a3 − 6b2),

1 = 3a2b− 2b3 = b(3a2 − 2b2).
Again this very much limits our options: we must have

b = 3a2 − 2b2 = 1

or
b = 3a2 − 2b2 = −1.

Taking the first option – b = 1 – gives 3a2 = 2b2 + 1 = 3, so a = ±1. Taking
(a, b) = (1, 1) leads to y = 1(13 − 6 · 12) = −5, so x3 = y2 + 2 = 52 + 2 = 27,
so x = 3: we get the solution (x, y) = (3, 5). Taking (a, b) = (−1, 1) leads to
y = −1((−1)3 − 6 · 12) = 7, so x3 = y2 + 2 = 72 + 2 = 51, which has no integral
solutions since 51 is not a perfect cube.

The second option – b = −1 – gives 3a2 = 2b2 + 1 = 3, so again a = ±1.
Taking (a, b) = (1,−1) leads to y = 1(13 − 6 · (−1)2) = −5, and as above we
get x = 3 and the solution (x, y) = (3,−5). Taking (a, b) = (−1,−1) leads to
y = −1((−1)3 − 6 · (−1)2) = 7, which as above yields no solution. �

The time has come to justify our assumption that there exist elements α, β as
above. The justification is in two parts: first, we need a version of the coprime
powers trick that applies to the domain Z[

√
−2]; and second we need to verify that

the hypotheses are justified in our particular case: in particular, that the elements
y ±

√
−2 of Z[

√
−2] are indeed coprime!

3. The coprime powers trick in a UFD

3.1. ord functions and coprime powers. Let R be a UFD and x, y ∈ R. We
say that x, y are coprime if z | x, | z | y implies z ∈ R×. Equivalently, x and y
are coprime if there is not prime element which divides both of them.

Proposition 4. (Coprime powers trick, v. 2) Let R be a UFD, n ∈ Z+, and let
x, y, z ∈ R be coprime elements such that xy = zn.
a) There exist α, β ∈ R and units u, v ∈ R× such that

x = uαn, y = vβn.

b) If every unit in R is an nth power, then there exist α, β ∈ R such that

x = αn, y = βn.

In other words, if in a UFD the product of two relatively prime elements is a perfect
nth power, then each of them is a perfect nth power, up to a unit.

Before giving the proof, we set up a more general notion of “ord functions”. We
work in the context of an integral domain R which satisfies the ascending chain
condition on principal ideals (ACCP). In plainer terms we assume that there is no
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infinite sequence {xi}∞i=1 of elements of R such that xi+1 properly divides1 xi for
all i. This is a very mild condition: it is satisfied by any Noetherian ring and by
any UFD: c.f. [Factorization in Integral Domains].

Now let π be a nonzero prime element of R, and let x ∈ R \ {0}. The condi-
tion (ACCP) ensures that there exists a largest non-negative integer n such that
πn | x, for otherwise πn | x for all n and { x

πn } is an infinite sequence in which
each element properly divides the previous one. We put ordπ(x) to be this largest
integer n. In other words, ordπ(x) = n iff πn | x and πn+1 - x. We formally set
ordπ(0) = +∞, and we extend ordπ to a function on the fraction field K of R by
multiplicativity:

ordπ

(
x

y

)
:= ordπ(x)− ordπ(y).

This generalizes the functions ordp on Z and Q, and the same properties hold.

Proposition 5. Let R be an (ACCP) domain with fraction field K. Let π be a
nonzero prime element of R and x, y ∈ K \ {0}. Then:
a) ordπ(xy) = ordπ(x) + ordπ(y).
b) ordπ(x + y) ≥ min(ordπ(x), ordπ(y)).
c) Equality holds in part b) if ordπ(x) 6= ordπ(y).

Proof. We will suppose for simplicity that x, y ∈ R \ {0}. The general case follows
by clearing denominators as usual. Put a = ordπ(x), b = ordπ(y). By hypothesis,
there exists x′, y′ such that x = πax′, y = πby′ and π - x′, y′.
a) xy = πa+b(x′y′). Thus ordπ(xy) ≥ a + b. Conversely, suppose that πa+b+1 | xy.
Then π | x′y′, and, since π is a prime element, this implis π | x′ or π | y′, contra-
diction. Thus ordπ(xy) = a + b = ordπ(x) + ordπ(y).
b) Let c = min a, b, so x + y = πc(πa−cx′ + πb−cy′, and thus πc | x + y and
ordπ(x + y) ≥ c = min(ordπ(x), ordπ(y)).
c) Suppose without loss of generality that a < b, and write x+y = πa(x′+πb−ay′).
If πa+1 | x + y = πax′ + πby′, then π | x′ + πb−ay′. Since b − a > 0, we have
π | (x′ + πb−ay′)− (πb−ay′) = x′, contradiction. �

Suppose that π and π′ are associate nonzero prime elements, i.e., there exists a unit
u ∈ R such that π′ = uπ. Then a moment’s thought shows that the ord functions
ordπ and ordπ′ coincide. This means that ordπ depends only on the principal ideal
p = (π) that the prime element π generates. We could therefore redefine the ord
function as ordp for a nonzero principal prime ideal p = (π) of R, but for our pur-
poses it is convenient to just choose one generator π of each such ideal p. Let P
be a maximal set of mutually nonassociate nonzero prime elements, i.e., such that
each nonzero prime ideal p contains exactly one element of P.

Now suppose that R is a UFD, and x ∈ R\{0} is an element such that ordπ(x) = 0
for all π ∈ P. Then x is not divisible by any irreducible elements, so is necessarily
a unit. In fact the same holds for elements x ∈ K \ {0}, since we can express x = a

b
with a and b not both divisible by any prime element. (In other words, in a UFD we
can reduce fractions to lowest terms!) It follows that any x ∈ K \{0} is determined

1We say that a properly divides b if a | b but a is not associate to b.
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up to a unit by the integers ordπ(x) as π ranges over elements of P. Indeed, put

y =
∏
π∈P

πordπ x.

Then we have ordπ(x
y ) = 0 for all π ∈ P, so that x

y = u is a unit in R, and x = yu.

After these preparations, the proof of Proposition 4 is straightforward: we have
xy = zn. For any prime element p, take ordp of both sides to get

ordp(x) + ordp(y) = n ordp(z).

But since x and y are assumed coprime, for any fixed prime p, we have either
ordp(x) = 0 or ordp(y) = 0. Either way we get that n | ordp(x) and n | ordp(y)
(since n | 0 for all n). So the following are well-defined elements of R:

x′ =
∏
p∈P

p
ordp(x)

n ,

y′ =
∏
p∈P

p
ordp(y)

n ,

where the product extends over a maximal set of pairwise nonassociate nonzero
prime elements of R. By construction, we have ordp((x′)n) = n ordp(x′) = n

ordp(x)
n =

ordp(x) for all p ∈ P, so the elements x and (x′)n are associate: i.e., there exists
a unit u in R such that x = u(x′)n. Exactly the same applies to y and y′: there
exists a unit v ∈ R such that y = v(y′)n.

3.2. Application to the Bachet-Fermat Equation.

To complete the proof of Theorem 3 we need to verify that the hypotheses of
Proposition 4b) apply: namely, that every unit in Z[

√
−2] is a cube and that the

elements y +
√
−2, y −

√
−2 are indeed relatively prime. For the former, we are

fortunate in that, as for Z, the only units in R = Z[
√
−2] are ±1, both of which

are indeed cubes in R.
For the latter, we suppose that d ∈ R is a common divisor of y +

√
−2 and

y −
√
−2. Then also d | (y +

√
−2)− (y −

√
−2) = 2

√
−2, i.e., there exists d′ ∈ R

with dd′ = 2
√
−2. Taking norms of both sides we get

N(d)N(d′) = N(2
√
−2) = 8,

so N(d) | 8. Moreover, there exists α ∈ R such that dα = y +
√
−2, hence

N(d)N(α) = N(dα) = N(y +
√

2) = y2 + 2 = x3,

so N(d) | x3. We claim that x must be odd. For if not, then reducing the equation
x3 = y2 + 2 mod 8 gives y2 ≡ 6 (mod 8), but the only squares mod 8 are 0, 1, 4.
Thus x3 is odd and N(d) | gcd(x3, 8) = 1 so d = ±1 is a unit in R.

3.3. Application to the Mordell Equation with k = 1.

Theorem 6. The only integer solution to y2 + 1 = x3 is (1, 0).

Proof: This time we factor the left hand side over the UFD R = Z[
√
−1]:

(y +
√
−1)(y −

√
−1) = x3.
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If a nonunit d in R divides both y +
√
−1 and y−

√
−1, then it divides (y +

√
−1)−

(y −
√
−1) = 2

√
−1 = (1 +

√
−1)2

√
−1. The element 1 +

√
−1, having norm

N(1 +
√
−1) = 2 a prime number, must be an irreducible (hence prime) element of

R. So 1 + i is the only possible common prime divisor. We compute

y ±
√
−1

1 +
√
−1

· 1−
√
−1

1−
√
−1

=
y ± 1 + (y ± 1)

√
−1

2
,

which is an element of R iff y is odd. But consider the equation y2 +1 = x3 modulo
4: if y is odd, then y2 +1 ≡ 2 (mod 4), but 2 is not a cube modulo 4. Therefore we
must have that y is even, so that y±

√
−1 are indeed coprime. Moreover, although

the unit group of R is slightly larger in this case – it is {±1,±
√
−1} – it is easily

checked that every unit is a cube in R. So Proposition 4b) applies here, giving
α, β ∈ R such that

y +
√
−1 = α3, y −

√
−1 = β3.

Again we will put α = a + b
√
−1 and expand out α3, getting

y +
√
−1 = a3 − 3b2a + (3a2b− b3)

√
−1,

or
y = a(a2 − 3b2), 1 = b(3a2 − b2).

So we have either 1 = b = 3a2 − b2, which leads to 3a2 = 2, which has no integral
solution, or −1 = b = 3a2 − b2, which leads to a = 0, so α = −

√
−1, y =

(−
√
−1)3 −

√
−1 = 0, x = 1 and thus to (x, y) = (1, 0).

4. Beyond UFDs

The situation here is somewhat analogous to our study of the equations x2+Dy = p,
where the assumption that he quadratic ring Z[

√
−D] is a UFD leads to a complete

solution of the problem. However there are also some differences. First, whereas in
the present situation we are using the assumption that Z[

√
−k] is a UFD in order

to show that y2 + k = x3 has very few solutions, earlier we used the assumption
that Z[

√
−D] is a UFD to show that the family of equations x2 + Dy2 = p had

many solutions, namely for all primes p for which −D is a square mod p.
A more significant difference is that the assumption Z[

√
−D] was necessary as

well as sufficient for our argument to go through: we saw that whenever D < −3 2
is not of the form x2+Dy2. On the other hand, suppose Z[

√
−k] is not a UFD: must

the coprime powers trick fail? It is not obvious, so let us study it more carefully.

We would like to axiomatize the coprime powers trick. There is an agreed upon
definition of coprimality of two elements x and y in a general domain R: if d | x
and d | y then d is a unit. However it turns out to be convenient to require a
stronger property than this, namely that the ideal 〈x, y〉 = {rx + sy | r, s ∈ R}
generated by x and y be the unit ideal R. More generally, for two ideals I, J of a
ring, the sum I + J = {i + j | i ∈ I, j ∈ J} is an ideal, and we say that I and J
are comaximal if I + J = R; equivalently, the only ideal which contains both I
and J is the “improper” ideal R. Since every proper ideal in a ring is contained in
a maximal, hence prime, ideal, the comaximality can be further reexpressed as the
property that there is no prime ideal p containing both I and J . (This will be the
formulation which is most convenient for our application.)

Notice that the condition that x and y be coprime can be rephrased as saying
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that the only principal ideal (d) containing both x and y is the improper ideal
R = (1). So the notions of coprime and comaximal elements coincide in a principal
domain, but not in general.

Now, for a positive positive integer n, say that an integral domain R has prop-
erty CM(n) if the comaximal powers trick is valid in degree n: namely, for all
x, y, z ∈ R with 〈x, y〉 = R and xy = zn, then there exist elements a, b ∈ R and
units u, v ∈ R such that x = uan, y = vbn. Exactly as above, if we also have
(R×)n = (R×) – i.e., every unit in R is an nth power – then the units u and v can
be omitted. Now consider the following

Theorem 7. Let k ∈ Z+ be squarefree with k ≡ 1, 2 (mod 4). Suppose that the
ring Z[

√
−k] has property CM(3). Then:

a) If there exists an integer a such that k = 3a2± 1, then the only integer solutions
to the Mordell equation y2 + k = x3 are (a2 + k,±a(a2 − 3k)).
b) If there is no integer a as in part a), the Mordell equation y2 + k = x3 has no
integral solutions.

Proof. Suppose (x, y) is an integral solution to y2+k = x3. Reduction mod 4 shows
that x is odd. Also gcd(k, x) = 1: otherwise there exists a prime p dividing both
k and x, so p |x3 − k = y2 and p | y2 =⇒ p2 | x3 − y2 = k, contradicting the
squarefreeness of k. Now consider

(y +
√
−k)(y −

√
−k) = x3.

We wish to show that 〈y +
√
−k, y −

√
−k〉 = R. If not, there exists a prime ideal

p of R with y ±
√
−k ∈ p. Then (y +

√
−k) − (y −

√
−k) = 2

√
−k ∈ p, hence

also −(2
√
−k)2 = 4k ∈ p. Moreover p contains y2 + k = x3 and since it is prime,

it contains x. But since x is odd and gcd(x, k) = 1, also gcd(x, 4k) = 1, so that
there exist m,n ∈ Z with 1 = xm + 4kn and thus 1 ∈ p. Moreover, either k = 1
(a case which we have already treated) or k > 1 and the only units of Z[

√
−k] are

±1. Therefore there exists α = a + b
√
−k ∈ R such that

y +
√
−k = α3 = (a + b

√
−k)3 = a(a2 − 3kb2) + b(3a2 − kb2)

√
−k.

So b = ±1 and k = db2 = 3a2 ± 1. The integer a determined by this equation is
unique up to sign. So y = ±a(a2 − 3k), and one easily computes x = a2 + k. �

Since property CM(3) holds in the PIDs Z[
√
−1] and Z[

√
−2], whatever else The-

orem 7 may be good for, it immediately implies Theorems 3 and 6. Moreover its
proof was shorter than the proofs of either of these theorems! The economy was
gained by consideration of not necessarily principal ideals.

Thus, if for a given k as in the statement of Theorem 7 we can find more solu-
tions to the Mordell Equation than the ones enumerated in the conclusion of the
theorem we know that Z[

√
−k] does not satisfy property CM(3). In the following

examples we simply made a brute force search over all x and y with |x| ≤ 106.
(There is, of course, no guarantee that we will find all solutions this way!)

Example: The equation y2 + 26 = x3 has solutions (x, y) = (3,±1), (35,±207), so
Z[
√
−26] does not have property CM(3).
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Example: The equation y2 + 53 = x3 has solutions (x, y) = (9,±26), (29,±156),
so Z[

√
−53] does not have CM(3).

Example: The equation y2 + 109 = x3 has solutions (x, y) = (5,±4), (145,±1746).
Note that the latter solutions are already impractical to find by hand, so it is easier
to observe that 5 is not of the form a2+109, Z[

√
−109], so by Theorem 7, Z[

√
−109]

does not have property CM(3).

In fact, whether a ring Z[
√
−k] (here we keep the assumptions on k of Theorem 7,

so in particular Z[
√
−k] is the full ring of algebraic integers of the quadratic field

Q(
√
−k); this would not be the case if k ≡ 3 (mod 4)) has property CM(k) can

be determined algorithmically. It depends on an all-important numerical invariant
called the class number of Z[

√
−k].

For any integral domain R, we can define an equivalence relation on the nonzero
ideals of R. Namely, we decree that I ∼ J iff there exist a, b ∈ R \ {0} such that
(a)I = (b)J . Roughly speaking, we regard two ideals as being principal if and only
if they differ multiplicatively from a principal ideal. When there are only finitely
many equivalence classes, we define the class number of R to be the number of
equivalence classes.2 For example, if every ideal of R is principal, then the class
number is equal to 1. Conversely, if the class number of R is equal to 1 and I is any
nonzero ideal of R, then there exist a, b such that aI = bR. Then b = b · 1 ∈ aI, so
for some x ∈ I, ax = b. In particular a | b, and it is then easy to see that I = ( b

a )R.
Thus the domains with class number one are precisely the principal ideal domains.

Now let K be a number field, and let ZK be the ring of all algebraic integers
in K. In particular this includes Z[

√
−k] for k as above.

Theorem 8. Let K be a field and ZK be the ring of algebraic integers in K. Then:
a) There are only finitely many equivalence classes of ideals of ZK , so there is a
well-defined class number, denoted h(K).
b) The ring ZK is a PID iff it is a UFD iff h(K) = 1.
c) Let n ∈ Z+. If gcd(n, h(K)) = 1, then ZK has property CM(n).

At several points in this course we have flirted with crossing the border into the
land of algebraic number theory, but that no such passport is required is one of our
ground rules. Because of this it is simply not possible to prove Theorem 8 here.
We can only say that the study of such properties of the ring ZK is a central topic
in the classical theory of algebraic numbers.

Moreover, algorithms for computing the class number have been a very active part
of algebraic number theory for more than one hundred years. Such algorithms are
available – indeed, they have been implemented in many software packages – the
question is only of the speed and memory needed to do the job. The case of (imagi-
nary) quadratic fields is especially classical and relates to (positive definite) binary
quadratic forms. So the following table of class numbers of Q(

√
−k) for squarefree

2As we have stated it, the definition makes sense for arbitrary domains and is equivalent to

the usual definition for number rings ZK . For more general domains – and even some quadratic
rings – there is another (less elementary) definition which is more useful.
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k, 1 ≤ k ≤ 200 is more than two hundred years old:

h(Q(
√
−k)) =

1 for k = 1, 2, 3, 7, 11, 19, 43, 67, 163
2 for k = 5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187
3 for k = 23, 31, 59, 83, 107, 139
4 for k = 14, 17, 21, 30, 33, 34, 39, 42, 46, 55, 57, 70, 73, 78, 82, 85, 93, 97, 102, 130,
133, 142, 155, 177, 190, 193, 195
5 for k = 47, 79, 103, 127, 131, 179
6 for k = 26, 29, 38, 53, 61, 87, 106, 109, 118, 157
7 for k = 71, 151
8 for k = 41, 62, 65, 66, 69, 77, 94, 98, 105, 113, 114, 137, 138, 141, 145, 154, 158, 165, 178
9 for k = 199
10 for k = 74, 86, 122, 166, 181, 197 11 for k = 167
12 for k = 89, 110, 129, 170, 174, 182, 186
13 for k = 191
14 for k = 101, 134, 149, 173
16 for k = 146, 161, 185
20 for k = 194

So Theorem 7 applies to give a complete solution to the Mordell equation y2+k = x3

for the following values of k:

1, 2, 5, 6, 10, 13, 14, 17, 21, 22, 30, 33, 34, 37, 41, 42, 46, 57, 58, 62, 65, 69, 70, 73, 74, 77, 78,

82, 85, 86, 93, 94, 97, 98, 101, 102, 106, 113, 114, 122, 130, 133, 134, 137, 138,

141, 142, 145, 146, 149, 154, 158, 161, 165, 166, 177, 178, 181, 185, 190, 193, 194, 197.

Example: The equation y2+47 = x3 has solutions (x, y) = (6,±13), (12,±41), (63,±500).
On the other hand Z[

√
−47] has class number 5 so does have property CM(3). Note

that 47 ≡ 3 (mod 4).

Example: Z[
√
−29] has class number 6, but nevertheless y2 + 29 = x3 has no

integral solutions.3 Thus there is (much) more to this story than the coprime pow-
ers trick. For more details, we can do no better than recommend Chapter 26 of
L.J. Mordell’s Diophantine Equations.

5. Remarks and Acknowledgements

Our first inspiration for this material was a short expository note by Keith Conrad:

http://www.math.uconn.edu/∼kconrad/blurbs/ringtheory/ufdapp.pdf

Therein he proves Theorems 2 and 3 as an application of unique factorization in Z
and Z[

√
−2]. Many more examples of successful (and one unsuccessful!) solution

of Mordell’s equation for various values of k are given at

3How do we know? For instance, we can look it up on the internet:
http://www.research.att.com/∼njas/sequences/A054504
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http://www.math.uconn.edu/∼kconrad/blurbs/gradnumthy/mordelleqn1.pdf

A range of techniques are showcased here, including the coprime powers trick but
also: elementary (but somewhat intricate) congruence arguments and applications
of quadratic reciprocity.

Also useful for us were lecture notes of P. Stevenhagen:

http://websites.math.leidenuniv.nl/algebra/ant.pdf

Stevenhagen’s treatment is analogous our discussion of quadratic rings. In par-
ticular, he first proves Theorem 6. He then assumes that Z[

√
−19] satisfies CM(3)

and deduces that y2 + 19 = x3 has no integral solutions; finally he points out
(x, y) = (18, 7). We did not discuss this example in the text because it depends
critically on the fact that Z[

√
−19] is not the full ring of integers in K = Q(

√
−19):

rather ZK = Z[ 1+
√
−19

2 ]. For rings like Z[
√
−19] the definition we gave of the class

number is not the correct one: we should count only equivalence classes of invert-
ible ideals – i.e., nonzero ideals I for which there exists J such that IJ is principal.
In this amended sense the class number of Z[

√
−19] is 3.

Theorem 7 was taken from the classic text of Ireland and Rosen.

A generalization of Theorem 7 appears in §5.3 of lecture notes of Franz Lemmer-
meyer:

http://www.fen.bilkent.edu.tr/∼franz/ant/ant1-7.pdf

Lemmermeyer finds all integer solutions to the equation y2 + k = x3 whenever
3 - h(Q(

√
−k) and k 6≡ 7 (mod 8). Again we have avoided this case so as not to

have to deal with the case where Z[
√
−k]is not the full ring of integers.

It is interesting to look at the work which has been done on the Mordell equation
since Mordell’s death in 1972. In 1973, London and Finkelstein found all solutions
to Mordell’s equation for |k| ≤ 102. The current state of the art is another story
entirely: a 1998 paper of Gebel, Pethö and Zimmer solves the Mordell equation for
|k| ≤ 104 and for about 90% of integers k with |k| ≤ 105.


