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1. Introducing Sets

Sets are the first of the three languages of mathematics. They are the most basic
kind of mathematical structure; all other structures are built out of them.1

A set is a collection of mathematical objects. This is not a careful definition;
it is an informal description meant to convey (shortly) the correct intuition to you.
We begin with some familiar examples.

Example 1. One can think of a set as a kind of club; some things are members
(already a little lie to be fixed later!); some things are not. So for instance current
UGA students form a set. You are a member; I am not. Past or present presidents
of the United States form a set. Barack Obama is a member. Mitt Romney is not.

Example 2. For any whole number n ≥ 1, {1, 2, . . . , n} is a set, whose elements
are indeed 1, 2, 3, . . . , n. Let us denote this set by [n]. So for instance

5 ∈ [9] = {1, 2, 3, 4, 5, 6, 7, 8, 9}

and

9 /∈ [5] = {1, 2, 3, 4, 5}.
(For whole numbers a, b ≥ 1, we have a ∈ [b] precisely when a ≤ b.)

1Like most broad, sweeping statements made at the beginning of courses, this one is not
completely true. Mathematics is at least 2500 years old: Pythagoras died circa 495 BCE. The

practice of describing all mathematical objects in terms of sets dates from approximately 1900.
Many mathematicians have at least contemplated basing mathematics on other kinds of objects;

something called “categories,” first introduced in the 1940’s by Eilenberg and Mac Lane, have

long had a significant (though minority) popularity. Nevertheless every student or practitioner of
mathematics must speak the language of sets, which is what we are now introducing.
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Example 3. The positive integers

Z+ = {1, 2, 3, . . .}
are a set. The positive integer 1 is an element, or member of Z+: we write this
statement as

1 ∈ Z+.

So is the positive integer 2: we write

2 ∈ Z+.

Similarly,
3 ∈ Z+, 4 ∈ Z+, and so forth.

The negative integer −3 is not an element of Z+. We write this as

−3 /∈ Z+.

The integer 0, which is not positive (this is an explanation of terminology, not a
mathematical fact), is not a member of Z+:

0 /∈ Z+.

Also 4/5 /∈ Z,
√

2 /∈ Z+ and Barack Obama /∈ Z+. Of course lots of things are not
in Z+: we had better move on.

Example 4. The non-negative integers, or natural numbers

N = {0, 1, 2, 3, . . . , }
are a set. The only difference between Z+ and N is that 0 ∈ N whereas 0 /∈ Z+.
(This may seem silly, but it is actually useful to have both Z+ and N around.)

Example 5. The integers, both positive and negative

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
form a set. This time −3 ∈ Z, but still 4/5 /∈ Z,

√
2 /∈ Z and Barack Obama /∈ Z.

Example 6. A rational number is a quotient of two integers a
b with b 6= 0.

Rational numbers have many such representations, but a
b = c

d exactly when ad = bc.

The rational numbers form a set, denoted Q.
√

2 /∈ Z+ (this is an important theorem
of ancient Greek mathematics that we will discuss later); Barack Obama /∈ Q.

Example 7. The real numbers form a set, denoted R. A real number can be
represented as an integer followed by an infinite decimal expansion. Still Barack
Obama /∈ R.

Example 8. A complex number is an expression of the form a + bi, where
i2 = −1. The set of complex numbers is denoted by C. i is a member; still Barack
Obama /∈ C.

Example 9. The Euclidean plane forms a set, denoted R2. Its elements are the
points in the plane, i.e., ordered pairs (x, y) with x, y real numbers: we write x, y ∈
R. For a positive integer n, n-dimensional Euclidean space forms a set, whose
elements are ordered tuples (x1, . . . , xn) of real numbers. It is denoted Rn.

Example 10. a) The lines in the Euclidean plane form a set.
b) The planes in Euclidean space form a set.

Example 11. The continuous functions f : [0, 1]→ R form a set.
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We admit that some of these examples were an excuse to introduce common math-
ematical notation. But the idea of a set is clear: it is a collection of objects.
Practically speaking, this amounts to the following: if S is a set and x is any ob-
ject, then exactly one of the following must hold: x ∈ S or x /∈ S. That’s the point
of a set: if you know exactly what is and is not a member of a set, then you know
the set. Thus a set is like a bag of objects...but not a red bag or a cloth bag. The
bag itself has no features: it is no more and no less than the objects it contains.

Remark 12. We have included the last two examples in an attempt to drive home
that the elements of a set need not (i) be numbers or (ii) “pointlike” in any geometric
sense. (Sometimes it is helpful to think of the elements of an arbitrary set as
“points,” but this is just a way of thinking: they need not be points.)

Example 13. The empty set, denoted ∅, is a set. This is a set which contains no
objects whatsoever: for any object x, we have x /∈ ∅. Not only is this a fully kosher
set, in some circles it is the most important example of a set.

The following is the basic principle of sets: two sets S and T are equal precisely
when they contain exactly the same objects: that is, for any object x, if x ∈ S then
x ∈ T , and conversely if x ∈ T then x ∈ S.

An important consequence of this basic principle is that whereas above we said
that the empty set ∅ is a set which contains no objects whatsoever, in fact it is
the set which contains no such objects: any two sets which contain nothing contain
exactly the same things!

A finite list of elements is something of the form x1, x2, . . . , xn, where n is a
positive integer, and for each 1 ≤ i ≤ n, xi is an object. We allow the empty list
when n = 0 (no objects!). Note that we do not require these objects to be different:
e.g. 1, 1, 1, 1, 1, 1 is a finite list of objects. A set is finite if it is of the form

S = {x1, . . . , xn}

for some finite list x1, . . . , xn: that is, for any object x, we have x ∈ S precisely
when x = xi for some i. A set is infinite if it is not finite. The cardinality of a
finite set is the least number n of elements such that the set is associated to a list
of n elements: in other (perhaps simpler) terms, it is the number of elements of a
defining finite list that has no repetitions. I will denote the cardinality of a finite
set by #S.

Example 14. a) The empty set ∅ is finite, and #∅ = 0.
b) The set [n] = {1, 2, . . . , n} is finite, and #[n] = n.
c) The sets, Z+, Z, Q, R, C are all infinite. (In fact most interesting mathematical
sets are infinite.)

A finite list has more structure than the finite set it determines: the objects of a
set come in a certain order, a notion which allows them to occur more than once.
The set determined by a finite set list ignores both of these things. Thus

{1, 2, 3} = {1, 3, 2} = {2, 1, 3} = {2, 3, 1} = {3, 1, 2} = {3, 2, 1}

and

{1, 2, 2, 3, 3, 3, 4, 4, 4, 4} = {1, 2, 3, 4}.
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We call will the process of defining a set using a finite list an extensional definition
of a set. The other way of giving a set, called intentional, is by giving a defining
property of the set. When we write

Z+ = {1, 2, 3, . . .}

it looks like we’re giving an extensional definition, but there is an “ellipsis” . . .:
what does this mean? The only honest answer to give now is that the ellipsis
stands for “and so on” and is thus a shorthand for the intentional concept of a
positive whole number. Which is a fancy way of saying that I am assuming that
you are familiar with the concept of a positive whole number and I am just referring
to it, rather than giving some kind of precise, comprehensive description of it.

Thus the intentional description of a set is as the collection of objects satisfying
a certain property. This description however must be taken with a grain of salt:
for any set S there is a corresponding property of objects...namely the property of
being in that set! Thus being an element of {17, 2016, 74 , π,blue} defines a property,
although in the everyday sense there is certainly no evident rule that is being used
to form this set. Again, think of a set as any collection of objects; the difficulties
we have in describing or specifying a set – especially, an infinite set – are “our
problem”. They do not restrict the notion of a set.

Example 15. Here are some more examples of sets:
(i) {∅}.
(ii) {∅, {∅}}.
(iii) {∅, 1, 2}.
(iv) {∅, {1}, {2}, {1, 2}}.

The sets above have a new feature: the elements are themselves sets! This is
absolutely permissible. While we have not given a definition of an object, a set
absolutely qualifies. Starting with the empty set and using our extensional method
in a recursive way, we can swiftly build a large family of sets...of a sort which is ac-
tually a bit confusing and needs to be thought about carefully. Thus for instance,
the sets ∅ and {∅} are certainly not equal: the first set has zero elements and
the second set has one element, which happens to be the set which has zero ele-
ments. In other terms (not guaranteed to be less confusing!), we must distinguish
a bag which is empty from a bag which contains, precisely, an empty bag. Part
(ii) shows how this madness can be continued. You should think carefully about
the difference between the sets in parts (iii) and (iv): the set in part (iii) has some
elements which are sets and some elements which are numbers. It also has 3 el-
ements. Every element of the set in part (iv) is itself a set, and there are 4 elements.

We call a set pure if all its elements are sets. Although I will not try to jus-
tify this now, in fact all of mathematics could be done only with pure sets. This
means that everything in sight can be defined to be a set of some kind. So for
instance numbers like 0 and 1 would have to be defined to be sets. I will not say
anything more about this now: if this interests you, you might want to think of a
reasonable definition for 0, 1, 2,. . . in terms of the empty set and lots of brackets.
If this troubles you: never mind, we move on!
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2. Subsets

Let S and T be sets. We say that S is a subset of T if every element of S is also
an element of T . Otherwise put, for all objects x, if x ∈ S then also x ∈ T . The
symbol for this is

S ⊆ T.
It is useful to have vocabulary to describe S ⊆ T “from T ’s perspective.” And we
do: if S ⊆ T , we say that T contains S. However this comes with a

WARNING!!! If x ∈ T , then we often say “S contains x.” However, if S ⊆ T
we also say “T contains S.” So if the object x happens to be a set, then saying
“S contains x” is ambiguous: it could mean x ∈ S or also x ⊆ S. These need not
be the same thing! Thus we should not say “S contains x” when x is a set unless
the context makes completely clear what is intended; if necessary we could say “S
contains x as an element” to mean x ∈ S.

A subset S of T is proper if S 6= T : every element of S is an element of T ,
but at least one element of T is not an element of S. We denote this by S ( T .

Exercise 16. The empty set is a subset of every set S: ∅ ⊆ S. We have ∅ ( S
precisely when S is nonempty.

Example 17. With regard to our previously defined sets of numbers, we have

Z+ ( N ( Z ( Q ( R ( C.
The complex numbers are not “the end of the line” in any set-theoretic sense: we
could take for instance the set of things which are either complex numbers or lines
in the plane, and that would be bigger. In fact there are even “number systems”
which extend the complex numbers...but they are not as ubiquitous in undergraduate
mathematics as the number systems we have given above.

Exercise 18. Let S and T be sets. Then S = T precisely when S ⊆ T and T ⊆ S.

Although the preceding result is almost obvious, it is also very useful: in practice,
it can be much easier to each “one-sided containment” S ⊆ T and T ⊆ S then
to show S = T all at once. This is analogous to the method of showing that two
real numbers x and y are equal by showing x ≤ y and then that y ≤ x. (The
set-theoretic method comes up more often.)

3. Power Sets

For a set X, the power set of X is the set of all subsets of X. We denote the
power set of X by 2X .

Example 19. 0) The set ∅ has 0 elements. Its power set is 2∅ = {∅}, which has
1 = 20 elements.
(i) The set [1] = {1} has 1 element. Its power set is 2[1] = {∅, {1}}, which has
2 = 21 elements.
(ii) The set [2] = {1, 2} has 2 elements. Its power set is {∅, {1}, {2}, {1, 2}}, which
has 4 = 22 elements.

Proposition 20. Let S be a finite set of cardinality n. Then the power set 2S is
finite of cardinality 2n.
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Proof. A set of cardinality n can be given as {x1, . . . , xn}. To form a subset, we
must choose whether to include x1 or not: that’s two options. Then, independently,
we choose whether to include x2 or not: two more options. And so forth: all in all,
we get a subset precisely by decidind, independently, whether to include or exclude
each of the n elements. This gives us 2 · · · 2 (n times) = 2n options altogether. �

We hope the previous result gives some explanation for our notation 2S .

Observe that for a set S, we have x ∈ 2S precisely when x ⊆ S. Thus one feature
of the power set is to convert the relation ⊆ to the relation ∈.

4. Operations on Sets

We wish here to introduce some – rather familiar, I hope – operations on sets.

For sets S and T , we define their union S ∪ T to be the set of all objects x
which are elements of S, elements of T or both. (As we will see in the next chap-
ter, in mathematics, the term “or” is always used inclusively.) We define their
intersection S ∩ T to be the set of all objects which are elements of both S and
T . Two sets S and T are disjoint if S∩T = ∅; i.e., they have no objects in common.

For sets S and T , we define their set-theoretic difference

S \ T = {x | x ∈ S and x /∈ T}.

If we are only considering subsets of a fixed set X, then for Y ⊆ X we define its
complement Y c to be X \ Y .

Example 21. Let X = Z, the integers. Let E be the set of even integers, i.e.,
integers of the form 2n for n ∈ Z. Let O be the subset of odd integers, i.e., integers
of the form 2n+ 1 for n ∈ Z. Then:
a) We have E ∩ O = ∅: that is, no integer is both even and odd. Indeed, if
2m = x = 2n + 1, then 1 = 2(m− n), and thus m− n = 1

2 . But that’s ridiculous:

if m,n are integers, so is m− n, and 1
2 /∈ Z.

b) We have E ∪ O = Z. First note that if x ∈ E then x = 2m, so −x = −2m =
2(−m) ∈ E; similarly if x ∈ O then x = 2n+1, so −x = −2n−1 = −2n−2+2−1 =
2(−n− 1) + 1 ∈ O. Moreover 0 ∈ E and 1 ∈ O, so it is enough to show that every
integer n ≥ 2 is either even or odd. The key observation is now that if for any
k ∈ Z+, if x − 2k ∈ E then x ∈ E, and if x − 2k ∈ O then x ∈ O. Now consider
x− 2. Since x ≥ 2, x− 2 ≥ 0. If x− 2 ∈ {0, 1}, then x− 2 is either even or odd, so
x is either even or odd. Otherwise x− 2 ≥ 2, so consider x− 4. We may continue
in this way: in fact, there is a unique positive integer k such that x − 2k ∈ {0, 1}:
if we keep subtracting 2, then eventually we will get something negative, and if we
add back 2 then we must have either 0 or 1. This shows what we want.
c) Taking complements with respect to the fixed set X, we have Oc = E and Ec = O.
We say that E and O are complementary subsets of the integers.

Proposition 22. (DeMorgan’s Laws for Sets)
Let A and B be subsets of a fixed set X. Then:
a) We have (A ∪B)c = Ac ∩Bc.
b) We have (A ∩B)c = Ac ∪Bc.
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Proof.
a) Since A ∪ B consists of all elements of X which lie in A or in B (or both), the
complement (A ∪ B)c consists of all elements of X which lie in neither A nor B.
That is, it consists precisely of elements which do not lie in A and do not lie in B,
hence of elements which lie in the complement of A and in the complement of B.
b) Since A∩B consists of all elements of X which in both A and B, the complement
(A∩B)c consists of all elements of X which do not lie in both A and B. An element
of X does not lie in both A and B precisely when it does not lie in A or it does not
lie in B (or both), i.e., we get precisely the elements of Ac ∪Bc. �

Although these things can be converted to “word problems” and sounded out with
little trouble, many people prefer a more visual approachl For this Venn diagrams
are useful. A Venn diagram for two subsets A and B of a fixed set X consists of a
large rectangle (say) representing X and within it two smaller, overlapping circles,
representing A and B. Notice that this divides the rectangle X into four regions:

• A ∩B is the common intersection of the two circles.
• A \B is the part of A which lies outside B.
• B \A is the part of B which lies outside A.
• (A ∪B)c is the part of X which lies outside both A and B.

Exercise 23. Use Venn diagrams to prove DeMorgan’s Laws for Sets.

Proposition 24. (Distributive Laws) Let A,B,C be sets. Then:
a) We have (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C).
b) We have (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C).
That is: intersection distributes over union and union distributes over intersection.

Proof. a) We will use the technique of showing that two sets are equal by showing
that each contains the other. Suppose x ∈ (A∪B)∩C. Then x ∈ C and x ∈ A∪B,
so either x ∈ A or x ∈ B. If x ∈ A then x ∈ A∩C, whereas if x ∈ B then x ∈ B∩C,
so either way x ∈ (A ∩ C) ∪ (B ∩ C). Thus

(A ∪B) ∩ C ⊆ (A ∩ C) ∪ (B ∩ C).

Conversely, suppose x ∈ (A ∩ C) ∪ (B ∩ C). Then x ∈ A ∩ C or x ∈ B ∩ C. Since
both A and B are subsets of A ∪B, either way we have x ∈ (A ∪B) ∩ C, so

(A ∩ C) ∪ (B ∩ C) ⊆ (A ∪B) ∩ C.
b) This is similar; I leave it to you as an exercise. �

Exercise 25. A Venn diagram for three subsets A,B,C of a fixed set X consists of
three circles inside a rectangle X positioned so as to divide X into 8 = 23 regions in
all (this comes from being in A vs. not being in A, being in B vs. not being in B,
and being in C vs. not being in C). This is no problem to achieve: just draw three
circles with the same radius and noncolinear centers sufficiently close together. Use
this kind of Venn diagram to prove the distributive laws.

Remark 26. The more familiar distributive law is that multiplication – say of
complex numbers – distributes over addition: for all x, y, z ∈ C we have (x +
y) · z = (x · z) + (y · z). It is interesting that in the set theoretic context each
of union and intersection distributes over the other. This is a pleasant symmetry
which is not present in the case of numbers: for most x, y, z ∈ C we do not have
(x · y) + z = (x+ z) · (y + z). For instance try it with x = y = z = 1.
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5. Families of Sets

We can define unions and intersections for more than two sets. For now we will
restrict to finitely many sets: let A1, . . . , An be subsets of a fixed set X. Then we
define A1 ∩ . . . ∩An to be the set of all objects which lie in all of the Ai’s, and we
define A1 ∪ . . .∪An to be the set of all objects which lie in at least one of the Ai’s.

Exercise 27. Show that DeMorgan’s Laws extend to n sets (for any integer n ≥ 2):

(A1 ∪ . . . ∪An)c = Ac
1 ∩ . . . ∩Ac

n

and

(A1 ∩ . . . ∩An)c = Ac
1 ∪ . . . ∪Ac

n.

Exercise 28. Formulate and prove an extension of the distributive laws to n sets.

Exercise 29. Are there Venn diagrams for n sets with n ≥ 4?
(Hint: yes, but you cannot use circles.)

There is another, rather more sophisticated perspective to take on the expression
A1, . . . , An: namely that it is a family of sets indexed by the set [n] = {1, . . . , n}.
Really this is a kind of function (although functions will not be formally defined
and considered until much later in the course), by which I mean that it is an
assignment of a set Ai to each i ∈ {1, . . . , n}: we write

1 7→ A1, 2 7→ A2, . . . , n 7→ An.

More generally, a family of sets indexed by a set I is just a set I – let’s say it’s
nonempty; nothing very interesting can happen otherwise – and an assignment of
each i ∈ I a set Ai. This is a construction that comes up naturally in mathematics,
but we don’t have too much to say about it now: mainly that it makes sense to
take unions and intersections over an indexed family of sets: we define the union⋃

i∈I Ai to be the set of all elements x which lie in Ai for at least one i ∈ I and
the intersection

⋃
i∈I Ai to be the set of all elements x which lie in Ai for all

i ∈ I. Thus the union is the set of elements which lie in some set of the family
and the intersection is the set of elements which lie in every set in the family. This
generalizes the kind of union and intersection we studied before when I has two
elements or has finitely many elements.

Example 30. a) If I = Z+ then we have a sequence of sets

A1, A2, . . . .

b) Suppose I = Z and for all n ∈ I we put An = {n}. Then⋃
n∈Z
{n} = Z

and ⋂
n∈Z
{n} = ∅.

c) More generally, let I be any set which contains more than one element, and for
i ∈ I put Ai = {i}. Then ⋃

i∈I

Ai = I
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and ⋂
i∈I

Ai = ∅.

(Why is it important here that I have more than one element?)

Example 31. (Monotone Sequences of Sets)
a) For n ∈ Z+ we put

An = [−n, n] ⊆ R.
Then we have

A1 = [−1, 1] ⊆ A2 = [−2, 2] ⊆ . . . ⊆ An = [−n, n] ⊆ . . . .

In this case we have ⋃
n∈Z+

An = R,

since every real number has absolute value less than n for some integer n. More
easily, we have ⋂

n∈Z+

An = [−1, 1].

This sequence of sets has the interesting property that An ⊆ An+1 for all n. For
any such sequence of sets, the common intersection of all the sets is just A1. One
might call this an increasing sequence of sets.
b) For n ∈ Z+ we put

Bn = (
−1− n
n

,
n+ 1

n
) ⊆ R.

Thus we have

B1 = (−2, 2) ⊇ B2 = (
−3

2
,

3

2
) ⊇ B3 = (

−4

3
,

4

3
) ⊇ . . . ⊇ Bn ⊇ . . .

This time we have ⋃
n∈Z+

Bn = B1 = (−2, 2)

and the more interesting case is ⋂
n∈Z+

Bn = [−1, 1].

Thus the intersection of an infinite sequence of open intervals turns out to be a
closed interval. This sequence has the interesting property that Bn ⊇ Bn+1 for all
n: we call this a decreasing sequence of sets or a nested sequence of sets.
For any nested sequence of sets, the union is the first set B1.

A family {Ai}i∈I of sets is pairwise disjoint if for all i 6= j we have Ai ∩Aj = ∅.

Example 32. If I = Z then we can take An = R for all n ∈ Z. This is a family of
sets indexed by Z each element of which is the set of real numbers. This example
illustrates something that the course text seems to soft-pedal: that an indexed family
of sets is more than just a set of sets; it consists of an assignment of a set to each
element of an index set I. We are allowed to assign the same set to two different
elements of I.
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6. Partitions

Let X be a nonempty set. A partition of X is, roughly, an exhaustive division of
X into nonoverlapping nonempty pieces. More precisely, a partition of X is a set
P of subsets of X satisfying all of the following properties:

(P1)
⋃

S∈P S = X.
(P2) For distinct elements S 6= T in P, we have S ∩ T = ∅.
(P3) If S ∈ P then S 6= ∅.

Example 33. Let X = [5] = {1, 2, 3, 4, 5}. Then:
a) The set P1 = {{1, 3}, {2}, {4, 5}} is a partition of X.
b) The set P2 = {{1, 2, 3}, {4}} is not a partition of X: 5 ∈ X, but 5 is not an
element of any element of P2, so (P1) fails. However, (P2) and (P3) both hold.
c) The set P3 = {{1, 2, 3}, {3, 4, 5}} is not a partition of X because {1, 2, 3} and
{3, 4, 5} are not disjoint sts. However, (P1) and (P3) both hold.
d) The set P4 = {{1, 2, 3, 4, 5},∅} is not a partition of X because it contains the
empty set, so (P3) fails. However, (P1) and (P2) both hold.

Example 34. a) Let X = [1] = {1}. There is exactly one partition, P = {X}.
b) Let X = [2] = {1, 2}. There are two partitions on X,

P1 = {{1, 2}}, P2 = {{1}, {2}}.

c) Let X be any set with more than one element. Then the analogues of the above
partitions exist: namely there is the trivial partition (or indiscrete partition)

Pt = {X}

and the discrete partition

PD = {{x} | x ∈ X}.

I hope the notation does not distract you from the simplicity of what’s happening
here: in the trivial partition we “break X up into one piece” (or in another words,
we don’t break it up at all). In the discrete partition we “break X up into the largest
possible number of pieces,” i.e., one-element sets.
d) If X has more than two elements then there are partitions on X other than the
trivial partition and the discrete partition. For instance on X = [3] = {1, 2, 3} there
are three more:

{{1}, {2, 3, }}, {{2}, {1, 3}, }, {{3}, {1, 2}}.

Note that these three different partitions share a common feature: namely for each
positive integer n, they have the same number of pieces of size n. If we count
partitions on a set altogether, we find ourselves counting a lot of similar-looking
decompositions which are labelled differently, as are the above three guys. It is a
classic number theory problem to count partitions on [n] up to the various sizes of
the pieces. In other words, in this sense 3 has 3 partitions:

3 = 3 = 2 + 1 = 1 + 1.

Similarly, in this sense 4 has 5 partitions:

4 = 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.
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For a positive integer n, define P (n) to be the number of partitions of n in this
sense, so what we’ve seen so far is

P (1) = 1, P (2) = 2, P (3) = 3, P (4) = 5.

There is an enormous amount of deep 20th century mathematics studying the as-
ymptotic behavior of the partition function P (n), which is a fancy way of saying
studying how quickly it grows.

Example 35. Let E be the set of even integers, and let O be the set of odd integers.
Then {E,O} is a partition of Z. This serves to illustrate why partitions of sets are
important: one can think of elements of the same set in a partition as sharing a
common property, in this case the property that they are both even (if they are
both in E) or that they are both odd (if they are both in O). Later we will see that
conversely, a certain type of property of objects of a set X – called an equivalence
relation – determines a partition of X and that conversely every partition on X
arises from an equivalence relation on X.

7. Cartesian Products

Let X and Y be sets. Then the Cartesian product X × Y is the set of ordered
pairs (x, y) where x ∈ X and y ∈ Y .

Example 36. The main example (trope-namer, in contemporary internet slang) is
of course R2 = R× R, the Cartesian plane.

More generally, if X1, . . . , Xn are sets then the Cartesian product X1 × . . .×Xn is
the set of all ordered n-tuples (x1, . . . , xn) with x1 ∈ X1, . . . , xn ∈ Xn.

One can ask (although I didn’t think to do so until after I got my PhD in mathe-
matics) what an ordered pair “really is.” And one can give an actual set-theoretic
definition: this was done by various people in the early 20th century, and nowadays
most like Kuratowski’s definition best. This is pursued in one of the typed prob-
lems on the second problem set. More seriously though, it doesn’t matter what
kind of object (x, y) is; what matters is when two ordered pairs are equal, and the
answer is that (x1, x2) = (y1, y2) precisely when x1 = y1 and x2 = y2. Similarly,
two ordered n-tuples (x1, . . . , xn) and (y1, . . . , yn) are equal precisely when x1 = y1,
x2 = y2,...,xn = yn.

Even more generally, if I is a nonempty set and {Xi}i∈I is an indexed family
of sets, then we can consider the Cartesian product

∏
i∈I Xi. An element of this is

an object {xi}i∈I : that is, for each i ∈ I, an element xi ∈ Xi.

Exercise 37. a) Let X1, . . . , Xn be sets. Show that the Cartesian product X1 ×
. . .×Xn is empty precisely when at least one Xi is empty.
b) Let X1, . . . , Xn be finite sets. Show that the number of elements of

∏n
i=1Xi

is (#X1) · (#X2) · . . . · (#Xn), i.e., the cardinality of the Cartesian product is
the product of the cardinalities of the “factor” sets. (This is just the principle of
“independent choices” that we have used above to count elements of power sets.)


