REVIEW PROBLEMS FOR SECOND 3200 MIDTERM

PETE L. CLARK

1)a) State Euclid's Lemma (the one involving prime numbers and divisibility). b) Use Euclid's Lemma to show that $3^{1/5}$ and $5^{1/3}$ are both irrational.

2) Let $x, y \in \mathbb{Z}$, and suppose that x is of the form 9k + 3 for some integer k.

a) Show that $2x^2 + 54y$ is divisible by 9.

b) Show that $2x^2 + 54y$ is not divisible by 27.

3) Let $x \in \mathbb{Z}$. Prove or disprove each of the following statements:

- a) If $4 \mid x^2$, then $4 \mid x$.
- b) If $5 \mid x^2$, then $5 \mid x$.
- c) If $6 \mid x^2$ then $6 \mid x$.

4) Let $r \neq 1$ be a real number. Show that for all $n \in \mathbb{Z}^+$, $1 + r + \ldots + r^n = \frac{r^{n+1}-1}{r-1}$.

5) Consider the following statement: for all $n \in \mathbb{Z}^+$, $3 \mid n^3 + 2n$.

a) Prove the statement using congruences.

b) Prove the statement using induction.

6) A student has been asked to prove: $\forall x \in \mathbb{Z}, P(x) \implies Q(x)$.¹ For each of the following openers, comment on the proof technique, or explain why it is not a valid proof technique.

Example: "Let $x \in S$, and suppose P(x) is true." Comment: This is the beginning of a direct proof.

- a) "Let $x \in S$, and suppose P(x) is false."
- b) "Let $x \in S$, and suppose that Q(x) is true."
- c) "Let $x \in S$, and suppose Q(x) is false."
- d) "Let x = 1. Then" [the student shows that P(1) is true and Q(1) is true].
- e) "Let x = 2. Then" [the student shows that P(2) is false and Q(2) is false].
- f) "Let x = 3. Then" [the student shows that P(3) is true and Q(3) is false].
- g) Let $x \in S$, and suppose that P(x) is true and Q(x) is false.

7) a) State the principle of mathematical induction as it applies to subsets of \mathbb{Z}^+ and also as a proof technique.

b) True or false: Suppose that for P(x) is an open sentence with domain the real numbers. Then it is simply not possible to use mathematical induction to show that for all $x \in \mathbb{R}$, P(x) holds.

1

Date: March 16, 2016.

¹Here P(x) and Q(x) are sentences involving an arbitrary integer x.

8) a) Show: $n! > 2^n$ for all $n \ge 4$. b) Show: $n! > 3^n$ for all $n \ge 7$. (You may use that 7! = 5040 and $3^7 = 2187$.)

9) Show: for all integers $n \ge 0$, we have $\int_0^\infty x^n e^{-x} dx = n!$

10) Let A be a set. Prove or disprove: if for every set $B, A \setminus B = \emptyset$, then $A = \emptyset$.

11) Prove or disprove:

- a) For all rational numbers a and b, a + b and ab are both rational.
- b) For all irrational (real) numbers a and b, a + b is irrational.
- c) For all irrational (real) numbers a and b, a + b is rational.
- d) For all irrational (real) numbers a and b, ab is irrational.
- e) For all irrational (real) numbers a and b, ab is rational.

 $\mathbf{2}$