REVIEW PROBLEMS FOR SECOND 3200 MIDTERM

PETE L. CLARK
1)a) State Euclid's Lemma (the one involving prime numbers and divisibility).
b) Use Euclid's Lemma to show that $3^{1 / 5}$ and $5^{1 / 3}$ are both irrational.
2) Let $x, y \in \mathbb{Z}$, and suppose that x is of the form $9 k+3$ for some integer k.
a) Show that $2 x^{2}+54 y$ is divisible by 9 .
b) Show that $2 x^{2}+54 y$ is not divisible by 27 .
3) Let $x \in \mathbb{Z}$. Prove or disprove each of the following statements:
a) If $4 \mid x^{2}$, then $4 \mid x$.
b) If $5 \mid x^{2}$, then $5 \mid x$.
c) If $6 \mid x^{2}$ then $6 \mid x$.
4) Let $r \neq 1$ be a real number. Show that for all $n \in \mathbb{Z}^{+}, 1+r+\ldots+r^{n}=\frac{r^{n+1}-1}{r-1}$.
5) Consider the following statement: for all $n \in \mathbb{Z}^{+}, 3 \mid n^{3}+2 n$.
a) Prove the statement using congruences.
b) Prove the statement using induction.
6) A student has been asked to prove: $\forall x \in \mathbb{Z}, P(x) \Longrightarrow Q(x) .{ }^{1}$ For each of the following openers, comment on the proof technique, or explain why it is not a valid proof technique.

Example: "Let $x \in S$, and suppose $P(x)$ is true."
Comment: This is the beginning of a direct proof.
a) "Let $x \in S$, and suppose $P(x)$ is false."
b) "Let $x \in S$, and suppose that $Q(x)$ is true."
c) "Let $x \in S$, and suppose $Q(x)$ is false."
d) "Let $x=1$. Then" [the student shows that $P(1)$ is true and $Q(1)$ is true].
e) "Let $x=2$. Then" [the student shows that $P(2)$ is false and $Q(2)$ is false].
f) "Let $x=3$. Then" [the student shows that $P(3)$ is true and $Q(3)$ is false].
g) Let $x \in S$, and suppose that $P(x)$ is true and $Q(x)$ is false.
7) a) State the principle of mathematical induction as it applies to subsets of \mathbb{Z}^{+} and also as a proof technique.
b) True or false: Suppose that for $P(x)$ is an open sentence with domain the real numbers. Then it is simply not possible to use mathematical induction to show that for all $x \in \mathbb{R}, P(x)$ holds.

[^0]8) a) Show: $n!>2^{n}$ for all $n \geq 4$.
b) Show: $n!>3^{n}$ for all $n \geq 7$.
(You may use that $7!=5040$ and $3^{7}=2187$.)
9) Show: for all integers $n \geq 0$, we have $\int_{0}^{\infty} x^{n} e^{-x} d x=n$!
10) Let A be a set. Prove or disprove: if for every set $B, A \backslash B=\varnothing$, then $A=\varnothing$.
11) Prove or disprove:
a) For all rational numbers a and $b, a+b$ and $a b$ are both rational.
b) For all irrational (real) numbers a and $b, a+b$ is irrational.
c) For all irrational (real) numbers a and $b, a+b$ is rational.
d) For all irrational (real) numbers a and $b, a b$ is irrational.
e) For all irrational (real) numbers a and $b, a b$ is rational.

[^0]: Date: March 16, 2016.
 ${ }^{1}$ Here $P(x)$ and $Q(x)$ are sentences involving an arbitrary integer x.

