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1. Introduction

Principle of Mathematical Induction for sets
Let S be a subset of the positive integers. Suppose that:
(i) 1 ∈ S, and
(ii) ∀ n ∈ Z+, n ∈ S =⇒ n+ 1 ∈ S.
Then S = Z+.

The intuitive justification is as follows: by (i), we know that 1 ∈ S. Now ap-
ply (ii) with n = 1: since 1 ∈ S, we deduce 1 + 1 = 2 ∈ S. Now apply (ii) with
n = 2: since 2 ∈ S, we deduce 2 + 1 = 3 ∈ S. Now apply (ii) with n = 3: since
3 ∈ S, we deduce 3 + 1 = 4 ∈ S. And so forth.

This is not a proof. (No good proof uses “and so forth” to gloss over a key point!)
But the idea is as follows: we can keep iterating the above argument as many times
as we want, deducing at each stage that since S contains the natural number which
is one greater than the last natural number we showed that it contained. Now it
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is a fundamental part of the structure of the positive integers that every positive
integer can be reached in this way, i.e., starting from 1 and adding 1 sufficiently
many times. In other words, any rigorous definition of the natural numbers (for
instance in terms of sets, as alluded to earlier in the course) needs to incorporate,
either implicitly or (more often) explicitly, the principle of mathematical induction.
Alternately, the principle of mathematical induction is a key ingredient in any ax-
iomatic characterization of the natural numbers.

It is not a key point, but it is somewhat interesting, so let us be a bit more spe-
cific. In Euclidean geometry one studies points, lines, planes and so forth, but one
does not start by saying what sort of object the Euclidean plane “really is”. (At
least this is how Euclidean geometry has been approached for more than a hundred
years. Euclid himself gave such “definitions” as: “A point is that which has posi-
tion but not dimensions.” “A line is breadth without depth.” In the 19th century
it was recognized that these are descriptions rather than definitions, in the same
way that many dictionary definitions are actually descriptions: “cat: A small car-
nivorous mammal domesticated since early times as a catcher of rats and mice and
as a pet and existing in several distinctive breeds and varieties.” This helps you if
you are already familiar with the animal but not the word, but if you have never
seen a cat before this definition would certainly not allow you to determine with
certainty whether any particular animal you encountered was a cat, and still less
would it allow you to reason abstractly about the cat concept or “prove theorems
about cats.”) Rather “point”, “line”, “plane” and so forth are taken as undefined
terms. They are related by certain axioms, or abstract properties that they must
satisfy.

In 1889, the Italian mathematician and proto-logician Gisueppe Peano came up
with a similar (and, in fact, much simpler) system of axioms for the natural num-
bers. In slightly modernized form, this goes as follows:

The undefined terms are zero, number and successor.

There are five axioms that they must satisfy, the Peano axioms. The first four are:

(P1) Zero is a number.
(P2) Every number has a successor, which is also a number.
(P3) No two distinct numbers have the same successor.
(P4) Zero is not the successor of any number.

Using set-theoretic language we can clarify what is going on here as follows: the
structures we are considering are triples (X, 0, S), where X is a set, 0 is an element
of X, and S : X → X is a function, subject to the above axioms.

From this we can deduce quite a bit. First, we have a number (i.e., an element
of X) called S(0). Is 0 = S(0)? No, that is prohibited by (P4). We also have a
number S(S(0)), which is not equal to 0 by (P4) and it is also not equal to S(0),
because then S(0) = S(S(0)) would be the successor of the distinct numbers 0
and S(0), contradicting (P3). Continuing in this way, we can produce an infinite
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sequence of distinct elements of X:

(1) 0, S(0), S(S(0)), S(S(S(0)), . . . .

In particular X itself is infinite. The crux of the matter is this: is there any element
of X which is not a member of the sequence (1), i.e., is not obtained by starting at
0 and applying the successor function finitely many times?

The axioms so far do not allow us to answer this question. For instance, suppose
that the “numbers” consisted of the set [0,∞) of all non-negative real numbers, we
define 0 to be the real number of that name, and we define the successor of x to be
x + 1. This system satisfies (P1) through (P4) but has much more in it than just
the natural numbers we want, so we must be missing an axiom! Indeed, the last
axiom is:

(P5) If Y is a subset of the set X of numbers such that 0 ∈ Y and such that
x ∈ Y implies S(x) ∈ Y , then Y = X.

Notice that the example we cooked up above fails (P5), since in [0,∞) the subset
of natural numbers contains zero and contains the successor of each of its elements
but is a proper subset of [0,∞).

Thus it was Peano’s contribution to realize that mathematical induction is an ax-
iom for the natural numbers in much the same way that the parallel postulate is
an axiom for Euclidean geometry.

On the other hand, it is telling that this work of Peano is little more than one
hundred years old, which in the scope of mathematical history is quite recent.
Traces of what we now recognize as induction can be found from the mathematics
of antiquity (including Euclid’s Elements!) on forward. According to the (highly
recommended!) Wikipedia article on mathematical induction, the first mathemati-
cian to formulate it explicitly was Blaise Pascal, in 1665. During the next hundred
years various equivalent versions were used by different mathematicians – notably
the methods of infinite descent and minimal counterexample, which we shall dis-
cuss later – and the technique seems to have become commonplace by the end of
the 18th century. Not having an formal understanding of the relationship between
mathematical induction and the structure of the natural numbers was not much
of a hindrance to mathematicians of the time, so still less should it stop us from
learning to use induction as a proof technique.

Principle of mathematical induction for predicates
Let P (x) be a sentence whose domain is the positive integers. Suppose that:
(i) P (1) is true, and
(ii) For all n ∈ Z+, P (n) is true =⇒ P (n+ 1) is true.
Then P (n) is true for all positive integers n.

Variant 1: Suppose instead that P (x) is a sentence whose domain is the natu-
ral numbers, i.e., with zero included, and in the above principle we replace (i) by
the assumption that P (0) is true and keep the assumption (ii). Then of course the
conclusion is that P (n) is true for all natural numbers n. This is more in accordance
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with the discussion of the Peano axioms above.1

Exercise 1: Suppose that N0 is a fixed integer. Let P (x) be a sentence whose
domain contains the set of all integers n ≥ N0. Suppose that:
(i) P (N0) is true, and
(ii) For all n ≥ N0, P (n) is true =⇒ P (n+ 1) is true.
Show that P (n) is true for all integers n ≥ N0. (Hint: define a new predicate Q(n)
with domain Z+ by making a “change of variables” in P .)

2. The (Pedagogically) First Induction Proof

There are many things that one can prove by induction, but the first thing that
everyone proves by induction is invariably the following result.

Proposition 2.1. For all n ∈ Z+, 1 + . . .+ n = n(n+1)
2 .

Proof. We go by induction on n.

Base case (n = 1): Indeed 1 = 1(1+1)
2 .

Induction step: Let n ∈ Z+ and suppose that 1 + . . .+ n = n(n+1)
2 . Then

1 + . . .+ n+ n+ 1 = (1 + . . .+ n) + n+ 1
IH
=
n(n+ 1)

2
+ n+ 1

=
n2 + n

2
+

2n+ 2

2
=
n2 + 2n+ 3

2
=

(n+ 1)(n+ 2)

2
=

(n+ 1)((n+ 1) + 1)

2
.

Here the letters “IH” signify that the induction hypothesis was used. �

Induction is such a powerful tool that once one learns how to use it one can prove
many nontrivial facts with essentially no thought or ideas required, as is the case in
the above proof. However thought and ideas are good things when you have them!
In many cases an inductive proof of a result is a sort of “first assault” which raises
the challenge of a more insightful, noninductive proof. This is certainly the case
for Proposition 2.1 above, which can be proved in many ways.

Here is one non-inductive proof: replacing n by n− 1, it is equivalent to show:

(2) ∀n ∈ Z, n ≥ 2 : 1 + . . .+ n− 1 =
(n− 1)n

2
.

We recognize the quantity on the right-hand side as the binomial coefficient
(
n
2

)
:

it counts the number of 2-element subsets of an n element set. This raises the
prospect of a combinatorial proof, i.e., to show that the number of 2-element
subsets of an n element set is also equal to 1 + 2 + . . . + n − 1. This comes out
immediately if we list the 2-element subsets of {1, 2, . . . , n} in a systematic way:
we may write each such subset as {i, j} with 1 ≤ i ≤ n− 1 and i < j ≤ n. Then:

The subsets with least element 1 are {1, 2}, {1, 3}, . . . , {1, n}, a total of n− 1.
The subsets with least element 2 are {2, 3}, {2, 4}, . . . , {2, n}, a total of n− 2.
...
The subset with least element n− 1 is {n− 1, n}, a total of 1.

1In fact Peano’s original axiomatization did not include zero. What we presented above is a
standard modern modification which is slightly cleaner to work with.
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Thus the number of 2-element subsets of {1, . . . , n} is on the one hand
(
n
2

)
and

on the other hand (n − 1) + (n − 2) + . . . + 1 = 1 + 2 + . . . + n − 1. This gives a
combinatorial proof of Proposition 2.1.

For a very striking pictorial variation of the above argument, go to
http://mathoverflow.net/questions/8846/proofs-without-words and scroll down
to the first diagram.

3. The (Historically) First(?) Induction Proof

Theorem 3.1. (Euclid) There are infinitely many prime numbers.

Proof. For n ∈ Z+, let P (n) be the assertion that there are at least n prime
numbers. Then there are infinitely many primes if and only if P (n) holds for all
positive integers n. We will prove the latter by induction on n.
Base Case (n = 1): We need to show that there is at least one prime number. For
instance, 2 is a prime number.
Induction Step: Let n ∈ Z+, and assume that P (n) holds, i.e., that there are at
least n prime numbers p1 < . . . < pn. We need to show that P (n + 1) holds, i.e.,
there is at least one prime number different from the numbers we have already
found. To establish this, consider the quantity

Nn = p1 · · · pn + 1.

Since p1 · · · pn ≥ p1 ≥ 2, Nn ≥ 3. In particular it is divisible by at least one prime
number, say q.2 But I claim that Nn is not divisible by pi for any 1 ≤ i ≤ n. Indeed,
if Nn = api for some a ∈ Z, then let b = p1···pn

pi
∈ Z. Then kpi = p1 · · · pn + 1 =

bpi + 1, so (k − b)pi = 1 and thus pi = ±1, a contradiction. So if we take q to be,
for instance, the smallest prime divisor of Nn, then there are at least n + 1 prime
numbers: p1, . . . , pn, q. �

Remark: The proof that there are infinitely many prime numbers first appeared
in Euclid’s Elements (Book IX, Proposition 20). Euclid did not explicitly use
induction (no ancient Greek mathematician did), but in retrospect his proof is
clearly an inductive argument: what he does is to explain, as above, how given
any finite list p1, . . . , pn of distinct primes, one can produce a new prime which is
not on the list. (In particular Euclid does not verify the base case, and he must
have regarded it as obvious that there is at least one prime number. And it is –
but it should be included as part of the proof anyway!) What is strange is that
in our day Euclid’s proof is generally not seen as a proof by induction. Rather,
it is often construed as a classic example of a proof by contradiction – which it
isn’t! Rather, Euclid’s argument is perfectly contructive. Starting with any given
prime number – say p1 = 2 – and following his procedure, one generates an infinite
sequence of primes. For instance, N1 = 2+1 = 3 is prime, so we take p2 = 3. Then
N2 = 2 · 3 + 1 = 7 is again prime, so we take p3 = 7. Then N3 = 2 · 3 · 7 + 1 = 43 is
also prime, so we take p4 = 43. But this time something more interesting happens:

N4 = 2 · 3 · 7 · 43 + 1 = 13 · 139

2Later in these notes we will prove the stronger fact that any integer greater than one may be
expressed as a product of primes. For now we assume this (familiar) fact.
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is not prime.3 For definiteness let us take p5 to be the smallest prime factor of N4,
so p5 = 13. In this way we generate an infinite sequence of prime numbers – so the
proof is unassailably constructive.

By the way, this sequence of prime numbers is itself rather interesting. It is often
called the Euclid-Mullin sequence, after Albert A. Mullin who asked questions
about it in 1963 [Mu63]. The next few terms are

53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, 23003,

30693651606209, 37, 1741, 1313797957, 887, 71, 7127, 109, 23, . . . .

Thus one can see that it is rather far from just giving us all of the prime numbers
in increasing order! In fact, since to find pn+1 we need to factor Nn = p1 · · · pn + 1,
a quantity which rapidly increases with n, it is in fact quite difficult to compute the
terms of this sequence, and as of 2010 only the first 47 terms are known. Perhaps
Mullin’s most interesting question about this sequence is: does every prime num-
ber appear in it eventually? This is an absolutely open question. At the moment
the smallest prime which is not known to appear in the Euclid-Mullin sequence is 31.

Remark: Some scholars have suggested that what is essentially an argument by
mathematical induction appears in the later middle Platonic dialogue Parmenides,
lines 149a7-c3. But this argument is of mostly historical and philosophical interest.
The statement in question is, very roughly, that if n objects are placed adjacent
to another in a linear fashion, the number of points of contact between them is
n− 1. (Maybe. To quote the lead in the wikipedia article on the Parmenides: “It
is widely considered to be one of the more, if not the most, challenging and enig-
matic of Plato’s dialogues.”) There is not much mathematics here! Nevertheless,
for a thorough discussion of induction in the Parmenides the reader may consult
[Ac00] and the references cited therein.

4. Closed Form Identities

The inductiive proof of Proposition 2.1 is a prototype for a certain kind of in-
duction proof (the easiest kind!) in which P (n) is some algebraic identity: say
LHS(n) = RHS(n). In this case to make the induction proof work you need only
(i) establish the base case and (ii) verify the equality of successive differences

LHS(n+ 1)− LHS(n) = RHS(n+ 1)−RHS(n).

We give two more familiar examples of this.

Proposition 4.1. For all n ∈ Z+, 1 + 3 + . . .+ (2n− 1) = n2.

Proof. Let P (n) be the statement “1 + 3 + . . .+ (2n− 1) = n2”. We will show that
P (n) holds for all n ∈ Z+ by induction on n.
Base case n = 1: indeed 1 = 12.

Induction step: Let n be an arbitrary positive integer and assume P (n):

(3) 1 + 3 + . . .+ (2n− 1) = n2.

Adding 2(n+ 1)− 1 = 2n+ 1 to both sides, we get

(1 + 3 + . . .+ (2n− 1) + 2(n+ 1)− 1 = n2 + 2(n+ 1)− 1 = n2 + 2n+ 1 = (n+ 1)2.

3Many mathematical amateurs seem to have the idea that Nn = p1 · · · pn + 1 is always prime,
but clearly it isn’t.
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This is precisely P (n+ 1), so the induction step is complete. �

Proposition 4.2. For all n ∈ Z+, 12 + 22 + . . .+ n2 = n(n+1)(2n+1)
6 .

Proof. By induction on n.
Base case: n = 1.

Induction step: Let n ∈ Z+ and suppose that 12 + . . .+ n2 = n(n+1)(2n+1)
6 . Then

1 + . . .+ n2 + (n+ 1)2
IH
=
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 =

2n3 + 3n2 + n+ 6 + 6n2 + 12n+ 1

6
=

2n3 + 9n2 + 13n+ 7

6
.

On the other hand, expanding out (n+1)((n+1)+1)(2(n+1)+1)
6 , we also get 2n3+9n2+13n+7

6 .
�

Often a non-inductive proof, when available, offers more insight. Again returning
to our archetypical example: 1 + . . .+ n, it is time to tell the story of little Gauss.
As a child of no more than 10 or so, Gauss and his classmates were asked to add up
the numbers from 1 to 100. Most of the students did this by a laborious calculation
and got incorrect answers in the end. Gauss reasoned essentially as follows: put

Sn = 1 + . . .+ (n− 1) + n.

Of course the sum is unchanged if we we write the terms in descending order:

Sn = n+ (n− 1) + . . .+ 2 + 1.

Adding the two equations gives

2Sn = (n+ 1) + (n+ 1) + . . .+ (n+ 1) = n(n+ 1),

so

Sn =
n(n+ 1)

2
.

This is no doubt preferable to induction, so long as one is clever enough to see it.

Mathematical induction can be viewed as a particular incarnation of a much more
general proof technique: try to solve your problem by reducing it to a previously
solved problem. A more straightforward application of this philosophy allows us to
deduce Proposition 4.1 from Proposition 2.1:

1+3+. . .+(2n−1) =

n∑
i=1

(2i−1) = 2

n∑
i=1

i−
n∑
i=1

1 = 2

(
n(n+ 1)

2

)
−n = n2+n−n = n2.

5. More on Power Sums

Suppose now we want to find a formula for
∑n
i=1 i

3 = 13+. . .+n3.4 A key point: we
can’t use induction yet because we don’t know what the answer is! (As we will see
again and again, this is, like Kryptonite for Superman, induction’s only weakness.)

So let’s try to actually think about what’s going on. We previously found a formula

4Why might we want this? For instance, such sums arise in calculus as Riemann sums for the

integral
∫ b
a x3dx. Of course there is a better way to evaluate such integrals, via the Fundamental

Theorem of Calculus. Perhaps it is safest to say that finding closed formulas for sums is an

intrinsically interesting, and often quite challenging, endeavor.
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for
∑n
i=1 i which was a quadratic polynomial in n, and then a formula for

∑n
i=1 i

2

which was a cubic polynomial in n. We might therefore guess that the desired
formula for

∑n
i=1 i

3 is a fourth degree polynomial in n, say

a4n
4 + a3n

3 + a2n
2 + a1n+ a0.

If we think more seriously about Riemann sums, the fundamental theorem of calcu-

lus and the fact that x4

4 is an antiderivative for x3, this guess becomes more likely,

and we can even guess that a4 = 1
4 . Also by looking at the other examples we

might guess that a0 = 0. So we are looking for (presumably rational?) numbers
a1, a2, a3 such that

13 + . . .+ n3 =
1

4
n4 + a3n

3 + a2n
2 + a1n.

Now, inspired by the partial fractions technique in calculus, we can simply plug in
a few values and solve for the coefficients. For instance, taking n = 1, 2, 3 we get

13 = 1 =
1

4
+ a3 + a2 + a1,

13 + 23 = 9 = 4 + 8a3 + 4a2 + 2a1,

13 + 23 + 33 = 9 + 33 = 36 =
81

4
+ 27a3 + 9a2 + 3a1.

This gives us the linear system

a1 + a2 + a3 =
3

4
2a1 + 4a2 + 8a3 = 5

3a1 + 9a2 + 27a3 =
63

4
.

I will leave it to you to do the math here, in what way seems best to you.5 The
unique solution is a1 = 0, a2 = 1

4 , a3 = 1
2 , so that our conjectural identity is

13 + . . .+ n3 =
n4

4
+
n3

2
+
n2

4
=
n2

4
(n2 + 2n+ 1) =

(
n(n+ 1)

2

)2

.

Exercise 2: Prove (by induction, of course) that this identity is in fact correct.

Exercise 3: Use a similar technique to find a closed form expression for
∑n
i=1 i

4.

The above method is a useful one for solving many types of problems: make a
guess as to the general form the answer may take, plug that guess in and fine tune
the constants accordingly. In this case the method has two limitations: first, it in-
volves a rather large amount of calculation, and second we cannot find out whether
our general guess is correct until after all the calculations have been made. In this
case, there is a better way to derive formulas for the power sums

Sd(n) = 1d + . . .+ nd.

We begin with the sum

S =

n∑
i=1

(
(i+ 1)d+1 − id+1

)
,

5Yes, this is an allusion to The Return of the King.
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which we evaluate in two different ways. First, writing out the terms gives

S = 2d+1−1d+1+3d+1−2d+1+. . .+nd+1−(n−1)d+1+(n+1)d+1−nd+1 = (n+1)d+1−1.

Second, by first expanding out the binomial (i+ 1)d+1 we get

S =

n∑
i=1

(
(i+ 1)d+1 − id+1

)
=

n∑
i=1

(
id+1 +

(
d+ 1

1

)
id + . . .+

(
d+ 1

d

)
i+ 1− id−1

)
=

n∑
i=1

(

(
d+ 1

1

)
id + . . .+

(
d+ 1

d

)
i) =

(
d+ 1

1

) n∑
i=1

id + . . .+

(
d+ 1

d

) n∑
i=1

i+

n∑
i=1

1 =

d∑
j=0

(
d+ 1

d+ 1− j

)
Sj(n) =

d∑
j=0

(
d+ 1

j

)
Sj(n).

Equating our two expressions for S, we get

(n+ 1)d+1 − 1 =
d∑
j=0

(
d+ 1

j

)
Sj(n).

Solving this equation for Sd(n) gives

(4) Sd(n) =
(n+ 1)d+1 −

(∑d−1
j=0

(
d+1
j

)
Sj(n)

)
− 1

(d+ 1)
.

This formula allows us to compute Sd(n) recursively: that is, given exact formulas
for Sj(n) for all 0 ≤ j < d, we get an exact formula for Sd(n). And getting the ball
rolling is easy: S0(n) = 10 + . . .+ n0 = 1 + . . . 1 = n.

Example (d = 1): Our formula gives

1+. . .+n = S1(n) = (
1

2
)((n+1)2−S0(n)−1) = (

1

2
)(n2+2n+1−n−1) =

n(n+ 1)

2
.

Example (d = 2): Our formula gives 12 + . . .+ n2 = S2(n) =

(n+ 1)3 − S0(n)− 3S1(n)− 1

3
=
n3 + 3n2 + 3n+ 1− n− 3

2n
2 − 3

2n− 1

3
=

2n3 + 3n2 + n

6
=
n(n+ 1)(2n+ 1)

6
.

Our formula (4) also has theoretical applications: with it in hand we can apply
induction to a more worthy goal, namely the proof of the following result.

Theorem 5.1. For every positive integer d, there exist a1, . . . , ad ∈ Q such that
for all n ∈ Z+ we have

1d + . . .+ nd =
nd+1

d+ 1
+ adn

d + . . .+ a1n.

Proof. Exercise 4. �
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6. Inequalities

I remind the reader that for me, N denotes the non-negative integers {0, 1, 2, 3, . . .}.

Proposition 6.1. For all n ∈ N, 2n > n.

Proof analysis: For n ∈ N, let P (n) be the statement “2n > n”. We want to show
that P (n) holds for all natural numbers n by induction.
Base case: n = 0: 20 = 1 > 0.

Induction step: let n be an arbitrary natural number and asusme P (n): 2n > n.
Then

2n+1 = 2 · 2n > 2 · n.
We would now like to say that 2n ≥ n + 1. But in fact this is true if and only
if n ≥ 1. Well, don’t panic. We just need to restructure the argument a bit: we
verify the statement separately for n = 0 and then use n = 1 as the base case of
our induction argument. Here is a formal writeup:

Proof. Since 20 = 1 > 0 and 21 = 2 > 1, it suffices to verify the statement for all
natural numbers n ≥ 2. We go by induction on n.
Base case: n = 2: 22 = 4 > 2.

Induction step: Assume that for some natural number n ≥ 2 we have 2n > n.
Then

2n+1 = 2 · 2n > 2 · n > n+ 1,

since n > 1. �

Exercise 5: Use calculus to show that in fact 2x > x for all real x. (To see what’s
going on, it will be very helpful to graph the two functions. Of course, merely
drawing a picture will not be a sufficient proof.)

Proposition 6.2. There exists N0 ∈ Z+ such that for all n ≥ N0, 2n ≥ n3.

Proof analysis: A little experimentation shows that there are several small values
of n such that 2n < n3: for instance 29 = 512 < 93 = 729. On the other hand, it
seems to be the case that we can take N0 = 10: let’s try.
Base case: n = 10: 210 = 1024 > 1000 = 103.

Induction step: Suppose that for some n ≥ 10 we have 2n ≥ n3. Then

2n+1 = 2 · 2n ≥ 2n3.

Our task is then to show that 2n3 ≥ (n+ 1)3 for all n ≥ 10. (By considering limits
as n → ∞, it is certainly the case that the left hand side exceeds the right hand
side for all sufficiently large n. It’s not guaranteed to work for n ≥ 10; if not, we
will replace 10 with some larger number.) Now,

2n3 − (n+ 1)3 = 2n3 − n3 − 3n2 − 3n− 1 = n3 − 3n2 − 3n− 1 ≥ 0

⇐⇒ n3 − 3n2 − 3n ≥ 1.

Since everything in sight is a whole number, this is in turn equivalent to

n3 − 3n2 − 3n > 0.
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Now n3 − 3n2 − 3n = n(n2 − 3n − 3), so this is equivalent to n2 − 3n − 3 ≥ 0.

The roots of the polynomial x2 − 3x − 3 are x = 3±
√
21

2 , so n2 − 3n − 3 > 0 if

n > 4 = 3+
√
25

2 > 3+
√
21

2 . In particular, the desired inequality holds if n ≥ 10, so

by induction we have shown that 2n ≥ n3 for all n ≥ 10.

We leave it to to the student to convert the above analysis into a formal proof.

Remark: More precisely, 2n ≥ n3 for all natural numbers n except n = 2, 3, 4, 6, 7, 8, 9.
It is interesting that the desired inequality is true for a little while (i.e., at n = 0, 1)
then becomes false for a little while longer, and then becomes true for all n ≥ 10.
Note that it follows from our analysis that if for any N ≥ 4 we have 2N ≥ N3, then
this equality remains true for all larger natural numbers n. Thus from the fact that
29 < 93, we can in fact deduce that 2n < n3 for all 4 ≤ n ≤ 8.

Proposition 6.3. For all n ∈ Z+, 1 + 1
4 + . . .+ 1

n2 ≤ 2− 1
n .

Proof analysis: By induction on n.
Base case (n = 1): 1 ≤ 2− 1

1 .

Induction step: Assume that for some n ∈ Z+ we have 1 + 1
4 + . . . + 1

n2 ≤ 2 − 1
n .

Then

1 +
1

4
+ . . .+

1

n2
+

1

(n+ 1)2
≤ 2− 1

n
+

1

(n+ 1)2
.

We want the left hand side to be less than 2 − 1
n+1 , so it will suffice to establish

the inequality

2− 1

n
+

1

(n+ 1)2
< 2− 1

n+ 1
.

Equivalently, it suffices to show

1

n+ 1
+

1

(n+ 1)2
<

1

n
.

But we have

1

n+ 1
+

1

(n+ 1)2
=
n+ 1 + 1

(n+ 1)2
=

n+ 2

(n+ 1)2
.

Everything in sight is positive, so by clearing denominators, the desired inequality
is equivalent to

n2 + 2n = n(n+ 2) < (n+ 1)2 = n2 + 2n+ 1,

which, at last, is a true inequality. Thus we have all the ingredients of an induction
proof, but again we need to put things together in proper order, a task which we
leave to the reader.

Remark: Taking limits as n → ∞, it follows that
∑∞
n=1

1
n2 ≤ 2. In particular,

this argument shows that the infinite series converges. The exact value of the sum

is, in fact, π
2

6 . A proof of this requires techniques from advanced calculus.
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7. Extending binary properties to n-ary properties

Example: All horses have the same color.

Proposed proof: There are only finitely many horses in the world, so it will suffice
to show that for all n ∈ Z+, P (n) holds, where P (n) is the statement that in any
set of n horses, all of them have the same color.

Base case: In any set S of one horse, all of the horses in S have the same color!

Induction step: We suppose that for some positive integer n, in any set of n horses,
all horses have the same color. Consider now a set of n+ 1 horses, which for speci-
ficity we label H1, H2, . . . ,Hn, Hn+1. Now we can split this into two sets of n
horses:

S = {H1, . . . , Hn}
and

T = {H2, . . . ,Hn, Hn+1}.
By induction, every horse in S has the same color as H1: in particular Hn has
the same color as H1. Similarly, every horse in T has the same color as Hn: in
particular Hn+1 has the same color as Hn. But this means that H2, . . . ,Hn, Hn+1

all have the same color as H1. It follows by induction that for all n ∈ Z+, in any
set of n horses, all have the same color.

Proof analysis: Naturally one suspects that there is a mistake somewhere, and
there is. However it is subtle, and occurs in a perhaps unexpected place. In fact
the argument is completely correct, except the induction step is not valid when
n = 1: in this case S = {H1} and T = {H2} and these two sets are disjoint:
they have no horses in common. We have been misled by the “dot dot dot” no-
tation which suggests, erroneously, that S and T must have more than one element.

In fact, if only we could establish the argument for n = 2, then the proof goes
through just fine. For instance, the result can be fixed as follows: if in a finite set
of horses, any two have the same color, then they all have the same color.

There is a moral here: one should pay especially close attention to the smallest
values of n to make sure that the argument has no gaps. On the other hand,
there is a certain type of induction proof for which the n = 2 case is the most
important (often it is also the base case, but not always), and the induction step
is easy to show, but uses once again the n = 2 case. Here are some examples of this.

The following is a fundamental fact of number theory, called Euclid’s Lemma.

Proposition 7.1. Let p be a prime number, and a, b ∈ Z+. If p | ab, p | a or p | b.

Later in these notes we will give a proof of Euclid’s Lemma (yes, by induction!).
For now we simply assume it to be true. Our point is that we can swiftly deduce
the following useful generalization.

Proposition 7.2. Let p be a prime number, n ∈ Z+ and a1, . . . , an ∈ Z+. If
p | a1 · · · an, then p | ai for some 1 ≤ i ≤ n.
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Proof. This is trivial for n = 1. We show that it holds for all n ≥ 2 by induction.
Base case: n = 2: This is precisely Euclid’s Lemma.

Induction Step: We assume that for a given n ∈ Z+ and a1, . . . , an ∈ Z+, if a
prime p divides the product a1 · · · an, then it divides at least one ai. Now let
a1, . . . , an, an+1 ∈ Z, and that a prime p divides a1 · · · anan+1. Then p | (a1 · · · an)an+1,
so by Euclid’s Lemma, p | a1 · · · an or p | an+1. If the latter holds, we’re done. If
the former holds, then by our inductive hypothesis, p | ai for some 1 ≤ i ≤ n, so
we are also done. �

Comment: In this and other induction proofs of this type, it is the base case which
is nontrivial, and the induction step is essentially the same argument every time.

Corollary 7.3. Let p be a prime, n ∈ Z+, a ∈ Z+ such that p | an. Then p | a.

Exercise 6: Use Corollary 7.3 to show that for any prime p, p
1
n is irrational.

Proposition 7.4. Let n ≥ 3 be an integer, and let f1, . . . , fn : R→ R be differen-
tiable functions. Then

(f1 · · · fn)′ = f ′1f2 · · · fn + f1f
′
2 · · · fn + . . .+ f1 · · · fn−1f ′n.

Proof. We argue by induction on n.
Base case (n = 2): The assertion is (f1f2)′ = f ′1f2 + f1f

′
2, which is the product rule

from differential calculus.

Induction step: We assume the result is true for any n differentiable functions.
If f1, . . . , fn+1 are all differentiable, then

(f1 · · · fnfn+1)′ = ((f1 · · · fn)fn+1)′
∗
= (f1 · · · fn)′fn+1 + f1 · · · fnf ′n+1 =

(f ′1f2 · · · fn)fn+1
∗∗
= f1f

′
2f3 · · · fnfn+1 + . . .+ f1 · · · fn−1f ′nfn+1 + f1 · · · fnf ′n+1.

Note that in the first starred equality we have applied the usual product rule and
in the second starred equality we have applied the induction hypothesis. �

Corollary 7.5. For any positive integer n, if f(x) = xn, then f ′(x) = nxn−1.

Proof. Exercise 7. �

When teaching freshman calculus, it is very frustrating not to be able to prove the
power rule by this simple inductive argument!

8. Miscellany

Proposition 8.1. Let S be a finite set. Then #P(S) = 2#S.

Proof. Let n = #S. We go by induction on n.
Base case (n = 0): If #S = 0, then S = ∅ and P(S) = {∅}, so #P(S) = 1 = 2#S .

Induction step: assume the result holds for any finite set with n elements, and
let S be a set with n + 1 elements. In particular S is nonempty, so choose x ∈ S.
Define

P1 = {T ⊂ S | x ∈ T},
P2 = {T ⊂ S | x 6∈ T}.



14 PETE L. CLARK

First observe that #P1 = #P2. Indeed, to every subset T of S which contains x
as an element, we can associate the subset T ′ = T \ {x}. This gives a one-to-one
correspondence from P1 to P2. (More later on such correspondences!) Secondly, P2

is precisely the power set of S \{x}. Since #(S \{x}) = n, by induction #P2 = 2n.
Therefore

#P(S) = #P1 + #P2 = 2P1 = 2 · 2n = 2n+1 = 2#S .

�

Proposition 8.2. Let f(x) = ex
2

. Then for all n ∈ Z+ there exists a polynomial
Pn(x), of degree n, such that

dn

dxn
f(x) = Pn(x)ex

2

.

Proof. By induction on n.
Base case (n = 1):
d
dxe

x2

= 2xex
2

= P1(x)ex
2

, where P1(x) = 2x, a degree one polynomial.

Inductive step: Assume that for some positive integer n there exists Pn(x) of degree

n such that dn

dxn e
x2

= Pn(x)ex
2

. So dn+1

dxn+1 e
x2

=

d

dx

dn

dxn
ex

2 IH
=

d

dx
Pn(x)ex

2

= P ′n(x)ex
2

+ 2xPn(x)ex
2

= (P ′n(x) + 2xPn(x)) ex
2

.

Now, since Pn(x) has degree n, P ′n(x) has degree n − 1 and 2xPn(x) has degree
n + 1. If f and g are two polynomials such that the degree of f is different from
the degree of g, then deg(f + g) = max(deg(f),deg(g)). In particular, Pn+1(x) :=
P ′n(x) + 2xPn(x) has degree n+ 1, completing the proof of the induction step. �

Exercise 8: Use induction and L’Hôpital’s rule to show that for all n ∈ Z+,
limx→∞

xn

ex = 0.

Proposition 8.3. For all n ∈ N,
∫∞
0
xne−xdx = n!.

Proof. By induction on n.
Base case (n = 0):

∫∞
0
e−x = −e−x|∞0 = −e−∞ − (−e0) = −0− (−1) = 1 = 0!.

Induction step: let n ∈ N and assume
∫∞
0
xne−xdx = n!. Now to make progress in

evaluating
∫∞
0
xn+1e−xdx, we integrate by parts, taking u = xn + 1, dv = e−xdx.

Then du = (n+ 1)xndx, v = e−x, and∫ ∞
0

xn+1e−xdx = (n+ 1)xne−x|oo0 −
∫ ∞
0

(−e−x(n+ 1)xn)dx

= (0− 0) + (n+ 1)

∫ ∞
0

xne−xdx
IH
= (n+ 1)n! = (n+ 1)!.

Note that to evaluate the improper integral at ∞ we used limx→∞
(n+1)xn

ex = 0, as
established in Exercise 8. �
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9. One Theorem of Graph Theory

In this section we will give a micro-introduction to the field of mathematics known
as graph theory, which is relatively new but is rapidly becoming one of the most
active branches of contemporary mathematical research.

We will consider graphs which are simple, undirected and finite. Such a graph
is given by a finite set V of vertices, together with a set E ⊆ 2V of two-element
subsets {x, y} of V . Most practicing graph theorists would roll their eyes a little at
the formality of this definition. What it really means is: given any pair of distinct
vertices, they are either connected by an edge or they are not. (Because are graphs
are “simple,” we do not allow an edge to connect a vertex to itself, and we do not
allow more than one edge between the same pair of vertices.) Thus to give a graph

on a finite set V with n elements, you range over all n(n−1)
2 pairs of elements of

V , and for each one you get to decide, independently, whether you have an edge or
not. When two vertices x and y are connected by an edge we call them adjacent,
and when we are feeling lazy we will abbreviate “x is adjacent to y” by “x ∼ y.”

Let G = (V,E) be a finite graph. The degree of a vertex v is the number of
vertices which are adjacent to v; equivalently, it is the number of edges coming
out of v (formally, the number of e ∈ E for which v is a member). A vertex v is
isolated if it has degree 0: i.e., it has no edges coming out of it at all. For instance,
if V consists of a single element, we are not allowed to have any edges and that
vertex must be isolated. More generally for any finite set V we can make a graph
with no edges whatsoever: every vertex is isolated. (This is not a very interesting
graph, but it’s a legal one.) A vertex v is pendant if it has degree 1, i.e., there is
exactly one edge coming out of V .

A path in a finite graph G = (V,E) is a sequence of distinct vertices v0, . . . , vn
such that for all 0 ≤ i ≤ n − 1, vi is adjacent to vi+1. We say the path is from v0
to vn, that v0 is the initial vertex, and that vn is the terminal vertex. The length
of the path is n, i.e., the number of edges in the path. It may seem a bit silly, but
it will be convenient to regard a v0 as giving a path of length 0. A finite graph is
connected if for any pair of vertices vi 6= vj ∈ V , there is a path from vi to vj .

A cycle in a finite graph G = (V,E) is a sequence of vertices v0, . . . , vn (with
n ≥ 2) such that vi is adjacent to vi+1 for all 0 ≤ i ≤ n− 1, such that v0, . . . , vn−1
are all distinct and vn = v0. (Thus a cycle looks like a path until we traverse the
very last edge and discover that we are back where we started.)

I heartily suggest that you draw some pictures of finite graphs: give yourself some
points in the plane, and connect some of them with edges. The only subtlety here
is that the “edges” are not actually required to be curves in the Euclidean plane,
so you should not worry if the edges that you draw cross each other: you really can
have as many or as few edges as you like. In particular you should draw enough
pictures to convince you that the definition of connected is a good one: it corre-
sponds perfectly to the intuitive idea that a graph should have “one piece.”

Here is our final, key, definition.
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A (finite) tree is a finite, connected graph with no cycles.

Now you should draw all possible shapes of trees with a small number of vertices.
The graph with one vertex (and no edges, necessarily) is a tree, quite trivially.
There is (“up to isomorphism,” a concept we will not formalize here) one tree with
two vertices: we connect the two vertices with an edge, getting a path of length 2.
There is one tree with three vertices: a path of length 3. At four vertices, things
get more interesting: in addition to the path of length 4 there is a “star” obtained
by putting one vertex in the middle and drawing edges between it and each of the
other three vertices. The middle vertex has degree 3, so this is different from any
path. How many trees are there on five vertices?

Our goal now is to prove the following result, which occurs in the first pages of
most graph theory texts.

Theorem 9.1. Let T = (V,E) be a finite tree. Then #V = 1 + #E. That is, the
number of vertices is one more than the number of edges.

Theorem 9.1 provides a nice example of a certain kind of induction proof, in which
we have a problem of discrete “complexity” and we solve it by showing that we can
always “reduce the complexity” at every step. We need a preliminary result.

Lemma 9.2. Let T = (V,E) be a finite tree with more than one vertex. Then T
has a pendant (i.e., degree one) vertex.

Proof. Let G be a finite graph with n vertices. Then G has a path v0 ∼ . . . ∼ vk
of maximal length k ≤ n. Why? Well, we can start with a path of length 0. Being
given a path of length k, to say it is not of maximal length means that we can add
one more edge at the beginning or end to get a longer path. But since the vertices
of a path are required to be distinct and we have n vertices in the entire graph,
clearly this process of extending the path if necessary can occur at most n times.

That was true in any finite graph. Now in our finite tree let v0 ∼ v1 ∼ . . . ∼ vk
be our path of maximal length. First note that k ≥ 1: indeed any edge in a graph
gives a path of length 1, and if we have more than two vertices and no edges we
cannot have a connected graph! So v0 6= vk. I claim that in fact v0 and vk are both
pendant vertices. The argument is the same, so we look at vk. If it is not pendant,
then there is another edge coming out of vk making it adjacent to some vertex v′.
If v′ is different form all the vi, 0 ≤ i ≤ k then we can take vk+1 = v′ and we have
extended our maximal length path: contradiction. If on the other hand v′ = vi for
some 0 ≤ i < k, then vi ∼ vi+1 ∼ . . . ∼ vk ∼ vi is a cycle in T : contradiction. �

In fact the arugment showed that any finite tree with more than one vertex has
two pendant vertices, and this is the best possible result: for any n ≥ 1 a path of
length n has exactly two pendant vertices.

Proof of Theorem 9.1:
We go by induction on n, the number of vertices of our finite tree T .
Base Case (n = 1): If there is one vertex, there are no edges, and 1 = 1 + 0: OK.
Induction Step: Let n ∈ Z+, assume that every finite tree with n vertices has n− 1
edges, and let T be a finite tree with n + 1 vertices. By Lemma 9.2 we have a
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pendant vertex v, so that there is exactly one edge e coming out of v. Here is the
crux of the entire proof: we may prune the tree by removing the pendant vertex v
and its edge e. This leaves us with a tree T ′. Certainly T ′ has no cycles: if we start
with a graph with no cycles and remove stuff, certainly we have no cycles. Moreover
a pendant vertex cannot occur in the middle of a path (i.e., as neither the initial or
terminal vertex of the path), because being a middle vertex in a path means there
are at least two edges coming out of it. If v1 and v2 are distinct vertices in T ′, then
whatever path connected them in T cannot include the removed pendant vertex v,
so it still gives a path in T ′. The tree T ′ has n− 1 vertices, so by induction it has
n − 2 edges. On the other hand, clearly T ′ has one less edge than T , so T must
have n− 2 + 1− n− 1 edges. We’re done.

10. The Principle of Strong/Complete Induction

Problem: A sequence is defined recursively by a1 = 1, a2 = 2 and an = 3an−1 −
2an−2. Find a general formula for an and prove it by induction.

Proof analysis: Unless we know something better, we may as well examine the
first few terms of the sequence and hope that a pattern jumps out at us. We have

a3 = 3a2 − 2a1 = 3 · 2− 2 · 1 = 4.

a4 = 3a3 − 2a2 = 3 · 4− 2 · 2 = 8.

a5 = 3a4 − 2a3 = 3 · 8− 2 · 4 = 16.

a6 = 3a5 − 2a4 = 3 · 16− 2 · 8 = 32.

The evident guess is therefore an = 2n−1. Now a key point: it is not possible to
prove this formula using the version of mathematical induction we currently have.
Indeed, let’s try: assume that an = 2n−1. Then

an+1 = 3an − 2an−1.

By the induction hypothesis we can replace an with 2n−1, getting

an+1 = 3 · 2n−1 − 2an−1;

now what?? A little bit of thought indicates that we think an−1 = 2n−2. If for
some reason it were logically permissible to make that substitution, then we’d be
in good shape:

an+1 = 3 · 2n−1 − 2 · 2n−2 = 3 · 2n−1 − 2n−1 = 2 · 2n−1 = 2n = 2(n+1)−1,

which is what we wanted to show. Evidently this goes a bit beyond the type of
induction we have seen so far: in addition to assuming the truth of a statement
P (n) and using it to prove P (n+ 1), we also want to assume the truth of P (n− 1).

There is a version of induction that allows this, and more:

Principle of Strong/Complete Induction:
Let P (n) be a sentence with domain the positive integers. Suppose:
(i) P (1) is true, and
(ii) For all n ∈ Z+, if P (1), . . . , P (n− 1), P (n) are all true, then P (n+ 1) is true.
Then P (n) is true for all n ∈ Z+.

Thus, in a nutshell, strong/complete induction allows us to assume not only the
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truth of our statement for a single value of n in order to prove it for the next value
n + 1, but rather allows us to assume the truth of the statement for all positive
integer values less than n+ 1 in order to prove it for n+ 1.

It is easy to see that PS/CI implies the usual principle of mathematical induc-
tion. The logical form of this is simply6

(A =⇒ C) =⇒ (A ∧B =⇒ C).

In other words, if one can deduce statement C from statement A, then one can
also deduce statement C from A together with some additional hypothesis or hy-
potheses B. Specifically, we can take A to be P (n), C to be P (n+ 1) and B to be
P (1) ∧ P (2) ∧ . . . ∧ P (n− 1).7

Less obviously, one can use our previous PMI to prove PS/CI. To most mathemati-
cians this is a comforting fact: one does not want to keep introducing additional
“axioms” or “assumptions” in order to solve problems. Again the proof is not hard
but slightly tricky. Suppose that we believe in PMI and we wish to prove PS/CI.
Let P (n) be any sentence with domain the positive integers and satisfying (i) and
(ii) above. We wish to show that P (n) is true for all positive integers n, using only
ordinary induction.

The trick is to introduce a new predicate Q(n), namely

Q(n) = P (1) ∧ P (2) ∧ . . . ∧ P (n).

Notice that Q(1) = P (1) and that (ii) above tells us that Q(n) =⇒ P (n + 1).
But if we know Q(n) = P (1) ∧ . . . ∧ P (n) and we also know P (n + 1), then we
know P (1) ∧ . . . ∧ P (n) ∧ P (n + 1) = Q(n + 1). So Q(1) holds and for all n,
Q(n) =⇒ Q(n+ 1). So by ordinary mathematical induction, Q(n) holds for all n,
hence certainly P (n) holds for all n.

Exercise 9: As for ordinary induction, there is a variant of strong/complete induc-
tion where instead of starting at 1 we start at any integer N0. State this explicitly.

Here is an application which makes full use of the “strength” of PS/CI.

Proposition 10.1. Let n > 1 be an integer. Then there exist prime numbers
p1, . . . , pk (for some k ≥ 1) such that n = p1 · · · pk.

Proof. We go by strong induction on n.
Base case: n = 2. Indeed 2 is prime, so we’re good.

Induction step: Let n > 2 be any integer and assume that the statement is true for
all integers 2 ≤ k < n. We wish to show that it is true for n.
Case 1: n is prime. As above, we’re good.
Case 2: n is not prime. By definition, this means that there exist integers a, b, with
1 < a, b < n, such that n = ab. But now our induction hypothesis applies to both

6The symbol ∧ denotes logical conjunction: in other words, A ∧B means “A and B”.
7I do admit that the underlying logical reasoning here is rather abstract and hence mildly

confusing. If you want to follow along, give yourself some time and a quiet place to work it out!
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a and b: we can write a = p1 · · · pk and b = q1 · · · ql, where the pi’s and qj ’s are all
prime numbers. But then

n = ab = p1 · · · pkq1 · · · ql
is an expression of n as a product of prime numbers: done! �

This is a good example of the use of induction (of one kind or another) to give a
very clean proof of a result whose truth was not really in doubt but for which a
more straightforward proof is wordier and messier.

11. Solving Homogeneous Linear Recurrences

Recall our motivating problem for PS/CI: we were given a sequence defined by
a1 = 1, a2 = 2, and for all n ≥ 1, an = 3an−1 − 2an−2. By trial and error we
guessed that an = 2n−1, and this was easily confirmed using PS/CI.

But this was very lucky (or worse: the example was constructed so as to be easy
to solve). In general, it might not be so obvious what the answer is, and as above,
this is induction’s Kryptonite: it has no help to offer in guessing the answer.

Example: Suppose a sequence is defined by x0 = 2, xn = 5xn−1 − 3 for all n ≥ 1.

Here the first few terms of the sequence are x1 = 7, x2 = 32, x3 = 157, x4 = 782,
x5 = 3907. What’s the pattern? It’s not so clear.

This is a case where a bit more generality makes things much clearer: it is often
easier to detect a pattern involving algebraic expressions than a pattern involving
integers. So suppose that we have any three real numbers a, b, c, and we define a
sequence recursively by x0 = c, xn = axn−1 + b for all n ≥ 1. Now let’s try again:

x1 = ax0 + b = ac+ b.

x2 = ax1 + b = a(ac+ b) + b = ca2 + ba+ b.

x3 = ax2 + b = a(ca2 + ba+ b) + b = ca3 + ba2 + ba+ b.

x4 = ax3 + b = a(ca3 + ba2 + ba+ b) + b = ca4 + ba3 + ba2 + ba+ b.

Aha: it seems that we have for all n ≥ 1.

xn = can + ban−1 + . . .+ ba+ b.

Now we have something that induction can help us with: it is true for n = 1.
Assuming it is true for n, we calculate

xn+1 = axn+b
IH
= a(can+ban−1+ . . .+ba+b)+b) = can+1+ban+ · · ·+ba2+ba+b,

which is what we wanted. So the desired expression is correct for all n. Indeed, we
can simplify it:

xn = can + b

n∑
i=1

ai = can + b

(
an+1 − 1

a− 1

)
=

(ab+ ac− c)an − b
a− 1

.

In particular the sequence xn grows exponentially in n.

Let us try our hand on a famous two-term recurrence, the Fibonacci numbers:

F1 = F2 = 1, ∀n ≥ 1, Fn+2 = Fn+1 + Fn.
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Again we list some values:

F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 = 21, F9 = 34, F10 = 55,

F11 = 89, F12 = 144, F13 = 233, F14 = 377, F15 = 377,

F200 = 280571172992510140037611932413038677189525,

F201 = 453973694165307953197296969697410619233826.

This partial list suggests that Fn again grows exponentially in n. Indeed, if we
compare ratios of successive values, it seems that the base of the exponential is
somewhere between 1 and 2. Especially,

F201

F200
= 1.618033988749894848204586834 . . . .

If you happen to be very familiar with numbers, you might just recognize this as

the golden ratio ϕ = 1+
√
5

2 .

However, let’s consider a more general problem and make a vaguer guess. Namely,
for real numbers b, c we consider an recurrence of the form

(5) x1 = A1, x2 = A2, ∀n ≥ 1, xn+2 = bxn+1 + cxn.

In all the cases we have looked at, the solution was, roughly, exponential. So
let’s guess an exponential solution: xn = Crn. By plugging this in, we can get
information about r:

Crn+2 = xn+2 = b(Crn+1) + c(Crn),

which simplifies to

r2 − br − cr = 0.

Evidently the solutions to this are

r =
b±
√
b2 + 4c

2
.

Some cases to be concerned about are the case c = −b2
4 , in which case we have

only a single root r = b
2 , and the case c < −b2

4 in which case the roots are complex
numbers. But for the moment let’s look at the Fibonacci case: b = c = 1. Then
r = 1±

√
5

2 . So we recover the golden ratio ϕ = 1+
√
5

2 – a good sign! – as well as

1−
√

5

2
= 1− ϕ = −.618033988749894848204586834 . . . .

So we have two different bases – what do we do with that? A little thought shows
that if rn1 and rn2 are both solutions to the recurrence xn+2 = bxn+1cxn (with any
initial conditions), then so is C1r

n
1 +C2r

n
2 for any constants C1 and C2. Therefore

we propose xn = C1r
n
1 + C2r

n
2 as the general solution to the two-term homoge-

neous linear recurrence (5) and the two initial conditions x1 = A1, x2 = A2 provide
just enough information to solve for C1 and C2.

Trying this for the Fibonacci sequence, we get

1 = F1 = C1ϕ+ C2(1− ϕ).

1 = F2 = C1(ϕ)2 + C2(1− ϕ)2.
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Multiplying the first equation by ϕ and subtracting it from the second equation
will give us a linear equation to solve for C2, and then we plug the solution into
either of the equations and solve for C1. It turns out that

C1 =
1√
5
, C2 =

−1√
5
.

Interlude: This is easily said and indeed involves nothing more than high school
algebra. But one cannot say that the calculation is much fun. It is always fun to
find some clever way to circumvent a tedious calculation, so in that spirit I present
the following alternate argument. Namely, instead of determining the constants by
evaluating Fn at n = 1 and n = 2, it would be much easier algebraically to evaluate
at n = 1 and n = 0, because then we have

F0 = C1ϕ
0 + C2(1− ϕ)0 = C1 + C2.

But for this to work we need to know F0, which we have not defined. Can it be
defined in a sensible way? Yes! Writing the basic recurrence in the form Fn+1 =
Fn + Fn−1 and solving for Fn−1 gives:

Fn−1 = Fn+1 − Fn.
This allows us to define Fn for all integers n. In particular, we have

F0 = F2 − F1 = 1− 1 = 0.

Thus we get
0 = C1 + C2,

whereas plugging in n = 1 gives

1 = C1(ϕ) + C2(1− ϕ) = C1(ϕ)− C1(1− ϕ) = (2ϕ− 1)C1,

C1 =
1

2ϕ− 1
=

1

2
(

1+
√
5

2

)
− 1

=
1√
5
, C2 =

−1√
5
.

Now we are ready to prove the following result.

Theorem 11.1. (Binet’s Formula) For any n ∈ Z, the nth Fibonacci number is

Fn =
1√
5

(ϕn − (1− ϕ)n) ,

where ϕ = 1+
√
5

2 .

Proof. We go by strong/complete induction on n. The base cases are n = 1 and
n = 2, but we have already checked these: we used them to determine the constants
C1 and C2. So now assume that n ≥ 3 and that the formula is correct for all positive
integers smaller than n+ 2. Then, using the identities

ϕ2 = ϕ+ 1,

(1− ϕ) = −ϕ−1,
1− ϕ−1 = ϕ−2 = (−ϕ)−2,

we compute

Fn+2 = Fn+1 + Fn =
1√
5

(ϕn+1 + ϕn − (1− ϕ)n+1 − (1− ϕ)n))

=
1√
5

(ϕn(ϕ+ 1)− (1− ϕ)n(1− ϕ+ 1) =
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1√
5

(ϕn(ϕ2)− (−ϕ)−n((−ϕ)−1 + 1)

=
1√
5

(ϕn+2−(−ϕ)−n(−ϕ)−2) =
1√
5

(ϕn+2−(−ϕ)−(n+2)) =
1√
5

(ϕn+2−(1−ϕ)n+2).

�

Exercise 10: Find all n ∈ Z such that Fn < 0.

It is not quite true that any solution (5) must have exponential growth. For in-
stance, consider the recurrence

x1 = 1, x2 = 2, ∀n ≥ 1, xn+2 = 2xn+1 − xn.
Then

x3 = 2x2 − x1 = 2 · 2− 1 = 3, x4 = 2x3 − x2 = 2 · 3− 2 = 4, x5 = 2 · 4− 3 = 5.

It certainly looks as though xn = n for all n. Indeed, assuming it to be true for all
positive integers smaller than n+ 2, we easily check

xn+2 = 2xn+1 − xn = 2(n+ 1)− n = 2n+ 2− n = n+ 2.

What happened? The characteristic polynomial in this case is r2−2r+1 = (r−1)2,
so that it has repeated roots. One solution is C11n = C1 (i.e., xn is a constant
sequence). This occurs if and only if x2 = x1, so clearly there are nonconstant
solutions as well. It turns out that in general, if the characteristic polynomial is
(x− r)2, then the two basic solutions are xn = rn and also xn = nrn. It is unfor-
tunately harder to guess this in advance, but it is not hard to check that this gives
a solution to a recurrence of the form xn+2 = 2r0xn+1 − r20xn (which is the most
general recurrence whose characteristic polynomial is (r − r0)2.

These considerations will be eerily familiar to the reader who has studied homoge-
neous linear differential equations. For a more systematic exposition on “discrete
analogues” of calculus concepts (with applications to the determination of power
sums as in §3), see [DC].

12. The Well-Ordering Principle

There is yet another form of mathematical induction that can be used to give what
is, arguably, an even more elegant proof of Proposition 10.1 (and of course has other
uses as well). Namely:

Theorem 12.1. (Well-Ordering Principle) Let S be any nonempty subset of the
positive integers. Then S has a least element, i.e., there exists s ∈ S such that for
all t ∈ S, s ≤ t.

Intutitively, the statement is true by the following reasoning: first we ask the ques-
tion: is 1 ∈ S? If so, it is certainly the least element of S. If not, we ask: is 2 ∈ S?
If so, it is certainly the least element of S. And then we continue in this way: if
we eventually get a “yes” answer then we have found our least element. But if for
every n the answer to the question “Is n an element of S?” is negative, then S is
empty!
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The well-ordering principle (henceforth WOP) is often useful in its contraposi-
tive form: if a subset S ⊂ Z+ does not have a least element, then S = ∅.

Although WOP is, if anything, even more intuitively clear than PMI and PS/CI,
it is nevertheless interesting to know that it is logically equivalent to these two
principles.

First, we will assume PS/CI and show that WOP follows. For this, observe that
WOP holds iff P (n) holds for all n ∈ Z+, where P (n) is the following statement:

P (n): If S ⊂ Z+ and n ∈ S, then S has a least element.

Indeed, if P (n) holds for all n and S ⊂ Z is nonempty, then it contains some
positive integer n, and then we can apply P (n) to see that S has a least element.
Now we can prove that P (n) holds for all n by complete induction: first, if 1 ∈ S,
then indeed 1 is the least element of S, so P (1) is certainly true. Now assume P (k)
for all 1 ≤ k ≤ n, and suppose that n + 1 ∈ S. If n + 1 is the least element of S,
then we’re done. If it isn’t, then it means that there exists k ∈ S, 1 ≤ k ≤ S. Since
we have assumed P (k) is true, therefore there exists a least element of S.

Conversely, let us assume WOP and prove PMI. Namely, let S ⊂ Z and suppose
that 1 ∈ S, and that for all n, if n ∈ S then n + 1 ∈ S. We wish to show that
S = Z+. Equivalently, putting T = Z+ \ S, we wish to show that T = ∅. If not,
then by WOP T has a least element, say n. Reasoning this out gives an immediate
contradiction: first, n 6∈ S. By assumption, 1 ∈ S, so we must have n > 1, so that
we can write n = m+ 1 for some m ∈ Z+. Further, since n is the least element of
T we must have n − 1 = m ∈ S, but now our inductive assumption implies that
n+ 1 = n ∈ S, contradiction.

So now we have shown that PMI ⇐⇒ PS/CI =⇒ WOP =⇒ PMI. Thus
all three are logically equivalent.

Let us give another proof of Proposition 10.1 using WOP. We wish to show that
every integer n > 1 can be factored into primes. Similarly, to the above, let S be the
set of integers n > 1 which cannot be factored into primes. Seeking a contradiction,
we assume that S is nonempty. In that case, by WOP it has a least element, say
n. Now n is certainly not prime, since otherwise it can be factored into primes. So
we must have n = ab with 1 < a, b < n. But now, since a and b are integers greater
than 1 which are smaller than the least element of S, they must each have prime
factorizations, say a = p1 · · · pk, b = q1 · · · ql. But then (stop me if you’ve heard
this one before)

n = ab = p1 · · · pkq1 · · · ql

itself can be expressed as a product of primes, contradicting our assumption. there-
fore S is empty: every integer greater than 1 is a product of primes.

This kind of argument is often called proof by minimum counterexample.

Upon examination, the two proofs of Proposition 10.1 are very close: the difference
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between a proof using strong induction and a proof using well ordering is more a
matter of literary taste than mathematical technique.

13. Upward-Downward Induction

Proposition 13.1. (Upward-Downward Induction) Let P (x) be a sentence with
domain the positive integers. Suppose that:
(i) For all n ∈ Z+, P (n+ 1) is true =⇒ P (n) is true, and
(ii) For every n ∈ Z+, there exists N > n such that P (N) is true.
Then P (n) is true for all positie integers n.

Proof. Let S be the set of positive integers n such that P (n) is false. Seeking a
contradiction we suppose that S is nonempty. Then by Well-Ordering S has a least
element n0. By condition (ii) there exists N > n0 such that P (N) is true.

Now an inductive argument using condition (i) shows that P (N) is true for all
positive integers less than N . To be formal about it, for any negative integer let
P (n) be any true statement (e.g. 1 = 1). Then, for n ∈ N, define Q(n) = P (N−n).
Then Q(0) = P (N) holds, and for all n ∈ N, if Q(n) = P (N − n) holds, then by
(ii) P (N − (n+ 1)) = Q(n+ 1) holds, so by induction Q(n) holds for all n, which
means that P (n) holds for all n < N .

In particular P (n0) is true, contradiction. �

It is not every day that one proves a result by Upward-Downward Induction. But
there are a few nice applications of it, including the following argument of Cauchy.

Theorem 13.2. (Arithmetic-Geometric Mean Inequality) Let n ∈ Z+ and let
a1, . . . , an be positive real numbers. Then:

(6) (a1 · · · an)
1
n ≤ a1 + . . .+ an

n
.

Equality holds in (6) iff a1 = . . . = an.

Proof. Step 0: We will prove the result by Upward-Downward Induction on n. For
n ∈ Z+ let P (n) be the statement of the theorem. Then we will show:
• P (1) and P (2) hold.
• For all n ∈ Z+, if P (n) holds, then P (2n) holds.
• For all n > 1, if P (n) holds then P (n− 1) holds.
By Proposition 13.1 this suffices to prove the result.
Step 1 (Base Cases): P (1) is simply the assertion that a1 = a1, which is indeed
true. Now let a1, a2 be any two positive numbers. Then(

a1 + a2
2

)2

− a1a2 =
a21 + 2a1a2 + a22

4
− 4a1a2

4
=

(a1 − a2)2

4
≥ 0,

with equality iff a1 = a2. This proves P (2).
Step 2 (Doubling Step): Suppose that for some n ∈ Z+ P (n) holds, and let
a1, . . . , a2n be any positive numbers. Applying P (n) to the n positive numbers
a1, . . . , an and then to the n positive numbers an+1, . . . , a2n we get

a1 + . . .+ an ≥ n (a1 · · · an)
1
n

and
an+1 . . .+ a2n ≥ n (an+1 · · · a2n)

1
n .
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Adding these inequalities together gives

a1 + . . .+ a2n ≥ n
(

(a1 · · · an)
1
n + (an+1 · · · a2n

) 1
n

.

Now apply P(2) with α = (a1 · · · an)
1
n and β = (an+1 · · · a2n)

1
n to get

n(a1 · · · an)
1
n + n(an+1 · · · a2n)

1
n = n(α+ β) ≥ 2n(

√
αβ)

= 2n (a1 · · · a2n)
1
2n ,

so
a1 + . . .+ a2n

2n
≥ (a1 · · · a2n)

1
2n .

Also equality holds iff a1 = . . . = an, an+1 = . . . = a2n and α = β iff a1 = . . . = a2n.
Step 3 (Downward Step): Let n > 1 and suppose P (n) holds. Let a1, . . . , an−1 be
any positive numbers, and put s = a1 + . . .+ an−1, an = s

n−1 . Applying the result
with a1, . . . , an we get

a1 + . . .+ an = s+
s

n− 1
=

(
n

n− 1

)
s ≥ n

(
a1 · · · an−1s

n− 1

) 1
n

,

so
s

n−1
n ≥ (n− 1)

n−1
n (a1 · · · an−1)

1
n

and thus
a1 + . . .+ an−1 = s ≥ (n− 1)(a1 · · · an−1)

1
n−1 .

We have equality iff a1 = . . . = an iff a1 = . . . = an−1. �

14. The Fundamental Theorem of Arithmetic

14.1. Euclid’s Lemma and the Fundamental Theorem of Arithmetic.

The following are the two most important theorems in beginning number theory.

Theorem 14.1. (Euclid’s Lemma) Let p be a prime number and a, b be positive
Suppose that p | ab. Then p | a or p | b.

Theorem 14.2. (Fundamental Theorem of Arithmetic) The factorization of any
integer n > 1 into primes is unique, up to the order of the factors. Explicitly,
suppose that

n = p1 · · · pk = q1 · · · ql,
are two factorizations of n into primes, with p1 ≤ . . . ≤ pk and q1 ≤ . . . ≤ ql. Then
k = l and pi = qi for all 1 ≤ i ≤ k.

Let us say that a prime factorization n = p1 · · · pk is in standard form if, as
above, we have p1 ≤ . . . ≤ pk. Every prime factorization can be put in standard
form by ordering the primes from least to greatest, and dealing with standard form
factorizations is a convenient bookkeeping device, since otherwise our uniqueness
statement would have to include a proviso “up to the order of the factors”, which
makes everything slightly more complicated.

Remark: When I teach number theory I state the existence of prime factoriza-
tions as the first part of the Fundamental Theorem of Arithmetic and the above
uniqueness statement as the second part. Since we have already proven – twice! –
that every integer greater than one may be factored into a product of primes, it
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doesn’t seem necessary to restate it here. Anyway, the uniqueness of prime factor-
izations lies much deeper than the existence.

We wish to draw the reader’s attention to the following important point: given
Proposition 10.1 – i.e., the existence of prime factorizations, Theorems 14.1 and
14.2 are equivalent: each can be easily deduced from the other.

EL implies FTA: Assume Euclid’s Lemma. As we have already seen, this im-
plies the Generalized Euclid’s Lemma (Proposition 7.2): if a prime divides any
finite product of integers it must divide one of the factors. Our proof will be by
minimal counterexample: suppose that there are some integers greater than one
which factor into primes in more than one way, and let n be the least such integer,
so

(7) n = p1 · · · pk = q1 · · · ql,

where each of the primes is written in nonincreasing order. Evidently p1 | n =
q1 · · · ql, so by the Generalized Euclid’s Lemma (Proposition 7.2), we must have
that p1 | qj for some 1 ≤ j ≤ l. But since qj is also prime, this means that p1 = qj .
Therefore we can cancel them from the expression, getting

(8)
n

p1
= p2 · · · pk = q1 · · · qj−1qj+1 · · · ql.

But now n
p1

is strictly less than the least integer which has two different factoriza-

tions into primes, so it must have a unique factorization into primes, meaning that
the primes on the left hand side of (8) are equal, in order, to the primes on the
right hand side of (8). This also implies that p1 = qj is less than or equal to all the
primes appearing on the right hand side, so j = 1. Thus we have k = l, p1 = qj = q1
and pi = qi for 2 ≤ i ≤ j. But this means that in (7) the two factorizations are the
same after all! Done.

FTA implies EL: Assume that every integer greater than one factors uniquely
into a product of primes, and let p be a prime, and let a and b be positive integers
such that p | ab. If either a or b is 1, then the other is just p and the conclusion is
clear, so we may assume that a and b are both greater than one and therefore have
unique prime factorizations

a = p1 · · · pr, b = q1 · · · qs;

our assumption that p divides ab means ab = kp for some k ∈ Z+ and thus

ab = p1 · · · prq1 · · · qs = kp.

The right hand side of this equation shows that p must appear in the prime factor-
ization of ab. Since the prime factorization is unique, we must have at least one pi or
at least one qj equal to p. In the first case p divides a; in the second case p divides b.

The traditional route to FTA is via Euclid’s Lemma, and the traditional route
to Euclid’s Lemma (employed, famously, by Euclid in his Elements) is via a series
of intermediate steps including the Euclidean algorithm and finding the set of all
integer solutions to equations of the form ax+ by = 1. This route takes some time
to develop – perhaps a week in an elementary number theory course. It is therefore
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remarkable that one can bypass all these intermediate steps and give direct induc-
tive proofs of both EL and FTA. We will give both of these in turn (which is, to
be sure, twice as much work as we need to do given the just proved equivalence of
EL and FTA).

14.2. Rogers’ Inductive Proof of Euclid’s Lemma.

Here is a proof of Euclid’s Lemma using the Well-Ordering Principle, following
K. Rogers [Ro63].

As we saw earlier in the course, one can prove Euclid’s Lemma for any partic-
ular prime p by consideration of cases. In particular we have already seen that
Euclid’s Lemma holds for all a and b when p = 2, and so forth. So suppose for a
contradiction that there exists at least one prime such that Euclid’s Lemma does
not hold for that prime, and among all such primes, by WOP we consider the least
one, say p. What this means that there exist a, b ∈ Z+ such that p | ab but p - a
and p - b. Again we apply WOP to choose the least positive integer a such that
there exists at least one positive integer b with p | ab and p - a, p - b.

Now consider the following equation:

ab = (a− p)b+ pb,

which shows that p | ab ⇐⇒ p | (a− p)b. There are three cases:

Case 1: a − p is a positive integer. Then, since 0 < a − p < a and a was by
assumption the least positive integer such that Euclid’s Lemma fails for the prime
p, we must have that p | a − p or p | b. By assumption p - b, so we must have
p | a− p, but then p | (a− p) + p = a, contradiction!
Case 2: We have a = p. But then p | a, contradiction.
Case 3: We have a < p. On the other hand, certainly a > 1 – if p | 1 ·b, then indeed
p | b! – so that a is divisible by at least one prime (a consequence of Proposition
10.1) q, and q | a < p, so q < p. Therefore q is a prime which is smaller than the
least prime for which Euclid’s Lemma fails, so Euclid’s Lemma holds for q. Since
p | ab, we may write pk = ab for some k ∈ Z+, and now q | a =⇒ q | ab = pk, so
by Euclid’s Lemma for q, q | p or q | k. The first case is impossible since p is prime
and 1 < q < p, so we must have q | k. Therefore

p

(
k

q

)
=

(
a

q

)
b,

so p | aq b. But 1 < a
q < a and a is the least positive integer for which Euclid’s

Lemma fails for p and a, so it must be that p | aq (so in particular p | a) or p | b.
Contradiction. Therefore Euclid’s Lemma holds for all primes p.

14.3. The Lindemann-Zermelo Inductive Proof of FTA.

Here is a proof of FTA using the Well-Ordering Principle, following Lindemann
[Li33] and Zermelo [Ze34].

We claim that the standard form factorization of a positive integer is unique. As-
sume not; then the set of positive integers which have at least two different standard
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form factorizations is nonempty, so has a least elment, say n, where:

(9) n = p1 · · · pr = q1 · · · qs.
Here the pi’s and qj ’s are prime numbers, not necessarily distinct from each other.
However,we must have p1 6= qj for any j. Indeed, if we had such an equality, then
after relabelling the qj ’s we could assume p1 = q1 and then divide through by
p1 = q1 to get a smaller positive integer n

p1
. By the assumed minimality of n, the

prime factorization of n
p1

must be unique: i.e., r − 1 = s − 1 and pi = qi for all

2 ≤ i ≤ r. But then multiplying back by p1 = q1 we see that we didn’t have two
different factorizations after all. (In fact this shows that for all i, j, pi 6= qj .)

In particular p1 6= q1. Without loss of generality, assume p1 < q1. Then, if we
subtract p1q2 · · · qs from both sides of (9), we get

(10) m := n− p1q2 · · · qs = p1(p2 · · · pr − q2 · · · qs) = (q1 − p1)(q2 · · · qs).
Evidently 0 < m < n, so by minimality of n, the prime factorization of m must
be unique. However, (10) gives two different factorizations of m, and we can use
these to get a contradiction. Specifically, m = p1(p2 · · · pr − q2 · · · qs) shows that
p1 | m. Therefore, when we factor m = (q1 − p1)(q2 · · · qs) into primes, at least
one of the prime factors must be p1. But q2, . . . , qj are already primes which are
different from p1, so the only way we could get a p1 factor is if p1 | (q1 − p1). But
this implies p1 | q1, and since q1 is also prime this implies p1 = q1. Contradiction!
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