
MATH 3200 THIRD MIDTERM EXAM

Directions: Do any four of the five problems. If there is any doubt as to which
four problems you want me to grade, I will grade the first four problems, whether
that is to your benefit or not. Always justify your reasoning completely. No calcu-
lators are permitted.

1) Let R ⊆ X × Y be a relation.
a) Define the inverse relation R−1.

Solution: R−1 is the set {(y, x) ∈ Y ×X | (x, y) ∈ R}.

b) Prove or disprove: if R ⊆ X × Y is a relation whose inverse relation R−1 is
a function from Y to X, then R is itself a function from X to Y .

Solution: This is false. For instance suppose X = {1, 2}, Y = {a, b} and R =
{(1, a), (1, b)}. Then R−1 = {(a, 1), (b, 1)}, which is a function from Y to X, but
R itself is not a function, because the single element 1 ∈ X is related to two distinct
elements a and b ∈ Y .

Remark: We saw in class that if, instead of an arbitrary relation on X × Y , we
have a function f : X → Y , then if the inverse relation f−1 is a function, it follows
that f is invertible and f−1 is its inverse. But for this it is crucial that f itself be
a function, as the above example shows.

2) Let f : X → Y and g : Y → Z be functions.
a) Suppose that f and g are both injective. Show that g ◦ f is injective.

Solution: Let x1, x2 ∈ X be such that (g ◦ f)(x1) = (g ◦ f)(x2), or in other
words g(f(x1)) = g(f(x2)). Since g is injective, this implies f(x1) = f(x2). Since
f is injective, this implies x1 = x2. Thus g ◦ f is injective.

b) Prove or disprove: it is possible for f to be injective, g to be surjective, and
g ◦ f to be neither injective nor surjective.

Solution: This is true. Take, for instance X = Z = {a, b}, Y = {1, 2, 3}, f :
a 7→ 1, b 7→ 2, g : 1 7→ a, 2 7→ a, 3 7→ b. Evidently f is injective and g is surjective.
Then (g ◦ f) : a 7→ a, b 7→ a, which is neither injective nor surjective.

Remark: Ths above solution is most efficient one in the following sense: If X = Y =
∅ everything holds vacuously. If X is empty and Y is nonempty, then no function
g : Y → X exists; similarly, if X is nonempty and Y is empty then no function
f : X → Y exists. If X has a single element, then there is only one function from X
to itself, the identity function, which is both injective and surjective. So #X ≥ 2.
If #X = 2 and #Y = 1 then there is no injection from X to Y . If X and Y are
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both finite sets of the same cardinality, then a function between them is an injection
iff it is a surjection iff it is a bijection, so the hypotheses would imply that g ◦ f is
a composition of bijections and therefore a bijection. So if #X = 2 we need #Y ≥ 3.

3) Show that for all n ∈ Z, en > n.

Solution: For any real number x, ex > 0, so if n < 0 we have en > 0 > n.
Therefore we may assume n ∈ N and go by induction on n. However, things will
go more smoothly if we start at n = 1, so we separately verify the claim for n = 0:
e0 = 1 > 0.
Base case: n = 1: e1 = e = 2.71828 . . . > 1
Inductive step: Assume that for some n ∈ Z+, en > n. Then

en+1 = een > en = (e− 1)n + n ≥ (e− 1) + n ≥ 1 + n.

Alternate solution: We will show in fact that for all x ∈ R, ex > x. As above, this
is trivial for x < 0 because ex > 0 and x < 0. We also have e0 = 1 > 0. Now
put f(x) = ex and g(x) = x. Then (f − g)′ = ex − 1. This is non-negative for all
x ≥ 0 and strictly positive for all x > 0, because ex, having a positive derivative, is
strictly increasing, and e0 = 1. Therefore f − g = ex − x is strictly increasing for
all x ≥ 0. Therefore, since it is positive at x = 0, it must also be positive for all
positive x.

4) For each of the following functions f : R → R, determine whether f is in-
jective, surjective and/or bijective.
a) f(x) = x3 + x + 1.

Solution: Any polynomial function of odd degree P (x) = anx
n + . . . + a1x + a0 :

R→ R is surjective. Indeed, if an > 0, then limxra∞ P (x) =∞, limx→−∞ = −∞.
On the other hand, if an < 0, then limx→∞ P (x) = −∞, limx→−∞ = ∞. Either
way, P assumes arbitarily large and arbitrarily small real values. Since P is con-
tinuous, by the intermediate value theorem all values are assumed. To see that f is
injective, it suffices to show that it is strictly increasing. But f ′(x) = 3x2 + 1 > 0
for all real x, so indeed f is strictly increasing. In summary, f is injective and
surjective, hence bijective.

b) f(x) = x3 − x + 1.

Solution: As above, since f is a polynomial of odd degree, it is surjective. However,
this time f is not injective. The easiest way is to observe that f(0) = f(1) = 1.
(How could you see this easily? One way: adding or subtracting a constant does
not change the injectivity or surjectivity of a function, so we might as well be given
f(x) = x3 − x. Evidently, this factors as x(x2 − 1) and thus as x(x− 1)(x + 1). So
it has three zeros so is not injective.)

A more sophisticated, but also more general, solution is to look at the derivative:
f ′(x) = 3x2 − 1 and observe that the first derivative test shows that it has a local
minimum and local maximum, and is not injective in any neighborhood of either
point. (Draw a picture!)

c) f(x) = ln(x2 + 1).
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Solution: Since f(−x) = f(x), f is even, and no even function is injective. As
for surjectivity, the function lnx is indeed surjective, but for any real x, x2 + 1 ≥ 1,
so the image is ln([1,∞)) = [0,∞). In plainer terms, we are only plugging in num-
bers which are at least one, so their natural logarithms must be at least zero. Thus
f is neither injective nor surjective.

d) f(x) = ee
x3

.

Solution: f is of the form g3 ◦ g2 ◦ g1, with g1(x) = x3 and g2(x) = g3(x) = ex.
As we know, the composition of two injective functions is surjective. Similarly one
shows that the composition of three injective functions is injective. (In fact, it is
an easy induction problem to show that for all n ≥ 2, the composition of any n
injective functions is injective. Make sure you know how to do it!) So f is injective.
However, because the outside function ex is not surjective – its range is (0,∞),
certainly f is not surjective.

5) Let X be the set of all functions f : R → R. For each of the following rela-
tions R on X, determine whether R is an equivalence relation, a partial ordering
and/or a total ordering.

a) f R g iff f(2009) = g(2009).

Solution: It is straightforward to verify that this relation is reflexive, symmet-
ric and transitive, so is an equivalence relation.

b) f R g iff f(2009) < g(2009).

Solution: This relation is very far from being reflexive: for no function f : R→ R
do we have f(2009) < f(2009). So it cannot be an equivalence relation or a partial
ordering. Since a total ordering is a special kind of partial ordering, it cannot be a
total ordering either.

c) f R g iff f(2009) ≤ g(2009).

Solution: This relation is reflexive. It is rather clearly not symmetric: suppose
f(2009) < g(2009), then we do not have g(2009) ≤ f(2009). It is also not anti-
symmetric: fRg and gRf means that f(2009) ≤ g(2009) and g(2009) ≤ f(2009),
i.e., f(2009) = g(2009). But certainly this does not imply f = g: e.g. take f(x) = x
and g(x) = 2009. So it is not an equivalence relation or a partial ordering.

d) f R g iff f(x) ≤ g(x) for all x ∈ R.

Solution: f is indeed reflexive: for all f , f(x) ≤ f(x) for all x ∈ R. It is not
symmetric, as above. It is anti-symmetric: if f(x) ≤ g(x) for all x and g(x) ≤ f(x)
for all x, then f(x) = g(x) for all x, which means that f = g. It is also transitive:
if f(x) ≤ g(x) for all x and g(x) ≤ h(x) for all x, then f(x) ≤ h(x) for all x.
Therefore R is not an equivalence relation but is a partial ordering. It is not a total
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ordering: to say that it is is to say that given any two functions, the graph of one
of them lies entirely above or equal to the graph of the other, which is certainly not
true: e.g. f(x) = sinx, g(x) = 0.

Extra credit: One version of Fermat’s Little Theorem states that for any prime
number p and for any natural number a, ap ≡ a (mod p). Prove this as follows:

Step 1: Show that for 0 < i < p, the binomial coefficient
(
p
i

)
is 0 mod p.

Solution: We have
(
p
i

)
= p!

i!(p−i)! . But i! and (p−i)! are both products of positive in-

tegers which are strictly less than p, so (by Euclid’s Lemma) neither is divisible by p.
So the numerator is divisible by p and the denominator isn’t, so

(
p
i

)
is divisible by p.

Step 2: Use Step 1 to show that for all a ∈ Z, (a + 1)p ≡ ap + 1 (mod p).

Solution: We have

(a + 1)p = ap +

(
p

1

)
ap−1 + . . . +

(
p

p− 1

)
a + 1.

Since all the binomial coefficients
(
p
i

)
are divisible by p, modulo p they are congruent

to 0:
(a + 1)p ≡ ap + 0ap−1 + . . . + 0a + 1 ≡ ap + 1 (mod p).

Step 3: Now apply induction.

Solution: The case case is a = 0: 0p = 0 ≡ 0 (mod p). Assume that the result
holds for any natural number a: ap ≡ a (mod p). Then by Step 2 we have

(a + 1)p ≡ ap + 1 ≡ a + 1 (mod p).


