3200 PROBLEM SET 8: TYPED PROBLEMS

Recall that a relation R between sets X and Y is, formally, given by a subset R of the Cartesian product $X \times Y$. In many interesting cases we have $X=Y$, and then instead of saying "a relation between X and X " we generally abbreviate to "a relation on X ".

1) Let R be a relation on X, and let Y be any subset of X. Then there we can define a relation $\left.R\right|_{Y}$ on Y, called the restriction of R to Y, simply as $R \cap(Y \times Y)$. In other words, it consists of all ordered pairs $\left(y, y^{\prime}\right) \in Y \times Y$ such that $y R y^{\prime}$.
a) Let R the relation on \mathbb{R} given by $x R y \Longleftrightarrow x^{2}+y^{2}=1$. Describe the restriction of this relation to the subset $R^{>0}$ of positive real numbers; describe the restriction of this relation to the subset \mathbb{Z} of integers.
b) Let R be a relation on X, and let D be its domain. Show that the domain of $\left.R\right|_{D}$ is simply D. Describe this process explicitly for the relation R on \mathbb{R} given in part a).
c) Show that any restriction of a reflexive relation is reflexive.
d) Show that any restriction of a symmetric relation is symmetric.
e) Show that any restriction of an anti-symmetric relation is anti-symmetric.
f) Show that any restriction of a transitive relation is transitive.
g) Conclude that the restriction of an equivalence relation (respectively, a partial ordering) on X to any subset Y is an equivalence relation (respectively, a partial ordering) on Y.
h) Equivalence relations correspond to partitions. So by part g), given a partition on a set X and a subset Y of X, there exists a natural "restricted partition" on Y. Describe this explicitly.
2) Let R be a relation on X which is symmetric and transitive.
a) Show by example that R need not be reflexive.
b) Show however that the restriction of X to its domain D is reflexive, hence is an equivalence relation on D. In particular, a symmetric transitive relation with domain X is an equivalence relation.
3) Let R be a relation on X which is both symmetric and anti-symmetric. Show that the restriction of R to the domain of X is the equality relation. Must R actually be equality on X ?
4) A relation may or may not be reflexive, may or may not be symmetric, and may or may not be transitive, so that there are altogether $2 \cdot 2 \cdot 2=8$ possibilities. Give examples to show that all 8 of these possibilities actually occur.
5) A relation may or may not be anti-symmetric, so in conjunction with the three properties of 3) above, this gives 16 independent possibilities. Figure out which of these 16 possibilities actually occur, and give examples of those which do.
