MATH 3200 THIRD MIDTERM EXAM

Directions: Do all five problems. No calculators are permitted.

1) Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions. Prove or disprove:
a) If f is injective and g is injective, then $g \circ f$ is injective.
b) If f is surjective and g is surjective, then $g \circ f$ is surjective.
c) If f is surjective and g is injective, then $g \circ f$ is either injective or surjective.
2) For each of the following functions $f: \mathbb{R} \rightarrow \mathbb{R}$, determine whether f is injective, surjective and/or bijective. Briefly justify your answers.
a) $f(x)=x^{5}-x$.
b) $f(x)=e^{x}+x+5$.
c) $f(x)=(x-1)(x-2)(x-3)(x-4)$.
3) a) Consider the relation $R_{1} \subset \mathbb{Z} \times \mathbb{Z}$ defined by $x R_{1} y \Longleftrightarrow x \mid y$ (i.e., the divisibility relation). Is R_{1} reflexive? symmetric? transitive? Is it an equivalence relation? If so, describe explicitly the partition of \mathbb{Z} into equivalence classes.
b) Consider the relation $R_{2} \subset \mathbb{Z} \times \mathbb{Z}$ defined by $x R_{2} y \Longleftrightarrow(x \mid y$ and $y \mid x)$. Is R_{2} reflexive? symmetric? transitive? Is it an equivalence relation? If so, describe explicitly the partition of \mathbb{Z} into equivalence classes.
4) Recall that the Fibonacci sequence is defined as follows $F_{1}=F_{2}=1$ and for all $n \geq 3, F_{n}=F_{n-1}+F_{n-2}$. Prove that for all positive integers $n, F_{n} \leq 2^{n}$. (Hint: strong induction on n.)
5) Let $f: X \rightarrow Y$ be a function. What does it mean to say that f has an inverse function? Give a necessary and sufficient condition for f to have an inverse function.
