MATH 3200 SECOND MIDTERM EXAM

Directions: Do all five problems. Always justify your reasoning completely. No calculators are permitted (nor would they be helpful in any way that I can see).

1) a) State the principle of mathematical induction.

Solution: Let $P(n)$ be a statement with domain \mathbb{Z}^{+}. Suppose that:
(i) $P(1)$ holds, and
(ii) for all $n \in \mathbb{Z}^{+}, P(n) \Longrightarrow P(n+1)$.

Then, for all $n \in \mathbb{Z}^{+}, P(n)$ holds.
b) State the principle of strong/complete induction.

Solution: Let $P(n)$ be a statement with domain \mathbb{Z}^{+}. Suppose that:
(i) $P(1)$ holds, and
(ii) for all $n \in \mathbb{Z}^{+}, P(1) \wedge \ldots \wedge P(n) \Longrightarrow P(n+1)$.

Then, for all $n \in \mathbb{Z}^{+}, P(n)$ holds.
2) Prove or disprove:
a) There exist nonzero rational numbers a and b such that a^{b} is irrational.

Solution: This is true: take $a=2, b=\frac{1}{2}$, so $a^{b}=2^{\frac{1}{2}}=\sqrt{2}$.
b) For all nonzero rational numbers a and b, a^{b} is irrational.

Solution: This is false: take $a=b=1$, so $a^{b}=1^{1}=1$.
3) a) Let a be a real number. Prove that if a^{2} is irrational, then a is irrational.

Solution: We prove the contrapositive: if a is rational, then a^{2} is rational. Indeed, if $a=\frac{x}{y}$, with $x, y \in \mathbb{Z}$ and $y \neq 0$, then $a^{2}=\frac{x^{2}}{y^{2}}$ with $x^{2}, y^{2} \in \mathbb{Z}$ and $y^{2} \neq 0$.
b) Prove that $\sqrt{77}$ is irrational.
(Hint: you may use Euclid's Lemma: if a prime p divides $a b$, then $p \mid a$ or $p \mid b$.)
Solution: Seeking a contradiction, we suppose that $\sqrt{77}$ is rational. Since $\sqrt{77}>0$, this means there exist positive integers a and b, with no common factor greater than 1 , such that $\sqrt{77}=\frac{a}{b}$. Squaring both sides gives $77=\frac{a^{2}}{b^{2}}$ and then $77 b^{2}=a^{2}$. Thus 7 divides a^{2}. Since 7 is a prime, by Euclid's Lemma, $7 \mid a$. Put $a=7 A$, so

$$
77 b^{2}=a^{2}=(7 A)^{2}=49 A^{2}
$$

which implies

$$
11 b^{2}=7 A^{2}
$$

Thus $7 \mid 11 b^{2}$. By Euclid's Lemma $7|11,7| b$ or $7 \mid b$. The first alternative is manifestly false, so we must have $7 \mid b$. Thus a and b are both divisible by 7 , contradicting the assumption that they have no common factor greater than one.
c) Prove that $\alpha=\sqrt{7}+\sqrt{11}$ is irrational. (Hint: use parts a) and b).)

Solution: By part a), it suffices to prove that α^{2} is irrational. Suppose for a contradiction that $\alpha^{2}=\frac{a}{b}$, for positive integers a and b. Then

$$
\frac{a}{b}=\alpha^{2}=(\sqrt{7}+\sqrt{11})^{2}=7+2 \sqrt{77}+11=18+2 \sqrt{77}
$$

Thus

$$
\sqrt{77}=\frac{\frac{a}{b}-18}{2}=\frac{a-18 b}{2 b}
$$

so that $\sqrt{77}$ is rational. This contradicts part b).
4) Prove that for all $n \in \mathbb{N}$ (i.e., for all non-negative integers!), 5 divides $3^{2 n}-(-1)^{n}$.

Solution: We go by induction on n.
Base case: $n=0$: $3^{2 \cdot 0}-(-1)^{0}=1-1=0$, which is divisible by 5 .
Inductive Step: Assume that for $n \in \mathbb{N}, 5$ divides $3^{2 n}-(-1)^{n}$. Then

$$
\begin{aligned}
& 3^{2 n+2}-(-1)^{n+1}=3^{2 n} 3^{2}+(-1)^{n}=9 \cdot 3^{2 n}+(-1)^{n} \\
& =(10-1) \cdot 3^{2 n}+(-1)^{n}=10 \cdot 3^{2 n}-\left(3^{2 n}-(-1)^{n}\right)
\end{aligned}
$$

The first term is certainly divisible by 5 , and by induction, the second term is also divisible by 5 , so the entire expression is divisible by 5 .
5) Define a sequence of natural numbers by:

$$
x_{0}=2, x_{1}=5, \forall n \geq 1, x_{n+1}=5 x_{n}-6 x_{n-1}
$$

Prove that for all $n \in \mathbb{N}, x_{n}=2^{n}+3^{n}$.
Proof: We go by strong/complete induction on n.
Base cases: $n=0: 2^{0}+3^{0}=1+1=2=x_{0}$. $n=1: 2^{1}+3^{1}=5=x_{1}$.

Inductive step: let $n \in \mathbb{Z}^{+}$and assume that for all $0 \leq k \leq n$ we have $x_{k}=2^{k}+3^{k}$. Especially, we assume that $x_{n-1}=2^{n-1}+3^{n-1}$ and that $x_{n}=2^{n}+3^{n}$. Then

$$
\begin{gathered}
x_{n+1}=5 x_{n}-6 x_{n-1}=5\left(2^{n}+3^{n}\right)-6\left(2^{n-1}+3^{n-1}\right) \\
=5 \cdot 2^{n}-3 \cdot 2^{n}+5 \cdot 3^{n}-2 \cdot 3^{n}=2 \cdot 2^{n}+3 \cdot 3^{n}=2^{n+1}+3^{n+1}
\end{gathered}
$$

