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Introduction

This is a text concerned with the theory of infinite sequences and series, largely at
an intermediate undergraduate level. The proximate cause of the text is the Math
3100 course that I taught at UGA in Spring 2011, which (as usual) motivated me
to type up my own notes.

The current text is admittedly a bit strange, and it is not necessarily intended
for use in an undergraduate course. Rather the purpose upon conception was to
be supplementary to what appears in more standard texts. In the 19th century,
the theory of infinite series was the crown jewel of mathematics, and most of the
leading mathematicians contributed to it in some way. In our day this is no longer
the case. On the contrary, for a while now the “theory of infinite series” has been
synonymous with certain chapters in undergraduate real analysis. One can even
put a finer point on it: after the introduction of Rudin’s breakthrough text [R],
what an American student learns about infinite series is some (or better, all) of
Chapters 3 and 7 of [R]. Let me be clear: I find these chapters to be high points
of what must be the most influential and successful of all American mathematical
textbooks. And yet there is – must be – more to infinite series than what fits in
these 75 pages, and there must be other valid – even novel – takes on the material.
In fact the most recent generation of American texts has followed up on the latter
point, if not the former. It is now recognized that relatively few undergraduate math
majors are prepared for a presentation like Rudin’s, and the most successful con-
temporary texts are more student friendly. I do not in any way object to this trend,
but the current text does not participate in it: though I know a positive number
of undergraduate students who have read and learned from (various drafts of) this
text, it is intended more for the instructors of such courses than the students than
the students themselves. Most of all it is intended for me, and in places it is openly
experimenal: I have tried out certain things in order to determine which aspects of
them (if any) may be suitable to include in actual lectures to actual undergraduates.

The desire to be different at any price is most clearly evident in Chapter 0. This
is an approach to the foundations of the subject as might be done by Little Nicky
Bourbaki. The conceit here is that the theory of infinite series arises from the
confluence of multiple structures: (i) sequences in a set R; (ii) a total ordering on
R, which provides a notion of convergence, and which satisfies any of several com-
pleteness properties (iii) the compatible structure of a field on R. Saying things this
way makes one want to analyze the setup: how much can be said when some but
not all of these structures are present? One may well say that this kind of general
nonsense is antithetical to the contentful concreteness of “real real analysis,” and
I have several colleagues who would say at least this much. I would say that I
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6 INTRODUCTION

am participating in the recent trend of “real analysis in reverse” which – though
motivated by any number of things which have little to do with the substance of
real analysis, nevertheless has a way of cutting to the core of “what is really going
on” in undergraduate analysis, with some nice payoffs both at the research level
and (more importantly, to me) pedagogically.

Most “real real analysts” would agree that just about the worst thing to spend
time on in any undergraduate analysis course is a formal construction of the real
numbers. What is less acknowledged, but I think must be true, is that the reason
for this is the full success of the structural approach to the real numbers: they are
characterized as being the unique complete ordered field (here “complete” can be
construed in several different ways and the statement remains true). Thus there is
at least some promise beginning the theory of sequences and series with a structural
approach.

Here is a final remark about Chapter 0: it is almost dispensable. Most of the
concepts which are given in obnoxious generality in Chapter 0 are repeated in the
case of R in Chapter 1. I would advise anyone using this text in an American
undergraduate course to start with Chapter 1 and dip backwards into Chapter 0 if
needed.



CHAPTER 0

Foundations

1. Prerequisites

These notes are for a student who has had some prior exposure to proofs, basic
mathematical structures and mathematical abstraction. At UGA these concepts are
taught in Math 3200. We will draw more strongly on having a certain minimum
comfort level with such things than on any specific prior knowledge, but for instance
the student should be familiar with the following terms:

set, subset, proper subset, power set, cardinality of a finite set, relation, equiv-
alence relation, partition, function, injection, surjection, bijection.

2. Number Systems

We begin by reminding the reader about basic number systems. One should view
this as being little more than fixing notation: sophisticated readers will know that
there is some mathematical content involved in giving complete definitions of these
structures. It is by no means our goal to do so here.

We define
Z+ = {1, 2, 3, . . . , n, . . .},

the set of positive integers. We define

N = {0, 1, 2, 3, . . . , n, . . .},
the set of natural numbers. Note that the two sets N and Z+ differ precisely in
that 0 is a member of the natural numbers and is not a member of the positive in-
tegers. There are some (very minor) mathematical reasons behind this distinction,
but in practice it functions mostly as a convention. Moreover it is not a universally
held one, and when you read or hear others using the terms “positive integers” or
“natural numbers,” you will need to figure out from the context – or ask – whether
0 is meant to be included. (And it is annoying, because the answer is not very
important, but a misunderstanding could still cause some trouble.)

We define
Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .},

the set of integers.

We define

Q =
{a
b
| a, b ∈ Z, b 6= 0

}
,

the set of rational numbers.
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8 0. FOUNDATIONS

We define R to be the set of real numbers . This is a point where a formal def-
inition is challenging enough to be unhelpful for a beginning student, but roughly
the real numbers are the mathematical structure which make precise the idea of
“points on the number line”. A non-negative real number can be thought of as
a distance between two points (in the Euclidean plane or Euclidean space), which
need not be a rational quantity. One can represent any real number by its decimal
expansion:

a0.a1a2 . . . an . . .

Here a0 is an integer and

a1, a2, . . . ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
are decimal digits. To make real sense out of this definition requires the theory
of sequences and series! Later on in this chapter we will give not a definition of R
but a perfectly effective and useful operational description of them: they form a
complete ordered field. (You are not supposed to know what these terms mean yet.)

We define

C = {x+ yi | x, y ∈ R, i2 = −1}
to be the set of complex numbers.

Each of these number systems is a proper subset of the next: we have

Z+ ( N ( Z ( Q ( R ( C.

3. Sequences

Let X be a set. A sequence in X is a function x : Z+ → X. Thus, as for any
function, for each element n ∈ Z+ we must assign exactly one element x(n) ∈ X.
This has the effect of giving us an infinite ordered list of elements of X:

x(1), x(2), x(3), . . . , x(n), . . . .

We say that e.g. x(3) is the 3rd term of the sequence and in general that x(n) is
the nth term of the sequence.

Example 0.1. For a set X, we denote the set of sequences in X by XZ+

. (This
is a case of the notation Y X for the set of functions from a set X to a set Y .)
a) Suppose X = ∅. Then a sequence in X is a function from the nonempty set Z+

to the empty set ∅. There are no such functions, so there are no sequences in X.
b) Suppose #X = 1, i.e., X = {•} has a single element. A sequence in X is a
function from the set Z+ to the one-point set {•}. There is exactly one function:
we must have x(n) = • for all n ∈ Z+.
c) Things become considerably more interesting when X has at least two elements.
Suppose that #X = 2, and to fix notation, take X = {0, 1}. A sequence Z+ → {0, 1}
is called an (infinite) binary sequence. This is an extremely basic, important and
useful mathematical structure. We can represent every real number between 0 and
1 by an infinite binary sequence, for instance. (Unfortunately the representation is
not always unique, an annoyance that we do not need to deal with at the moment.)
More to the point, the collection of all infinite binary sequences {f : Z+ → {0, 1}}
is naturally in bijection with the power set 2Z

+

, i.e., the set of all subsets of Z+.
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Namely, let S ⊂ Z+ be a subset. To S we associate the binary sequence s(S): for
n ∈ Z+, we put s(S) = 1 if n ∈ S and s(S) = 0 if n /∈ S. This gives us a map

s : 2Z
+

→ {0, 1}Z
+

.

To see that s is a bijection we write down the inverse function

t : {0, 1}Z
+

→ 2Z
+

.

Namely, to any binary sequence x : Z+ → {0, 1} we associate the subset t(x) =
{n ∈ Z+ | x(n) = 1}. I leave it to you to check that for any subset S ⊂ Z+ we have
t(s(S)) = S and that for any binary sequence x : Z+ → {0, 1} we have s(t(x)) = x.
d) We will be most interested in the case of sequences in R. This is a very large
set. (Those who are familiar with cardinalities of infinite sets may wish to show

that the cardinality of the set RZ+

of all rael sequences has the same cardinality as
that of the power set 2R of all real numbers. Those who are not: no worries.)

The “theory of infinite sequences” really means the theory of sequences in R, C
or closely related things (e.g. RN ). There is very little “theory of sequences in an
arbitrary set X.” Very little but not none: we now give some.

To a sequence x : Z+ → X we can associate the set

x(Z+) = {x(n) ∈ X | n ∈ Z+}

of all terms of the sequence. This is just the image of the corresponding function.
Notice that knowing the sequence itself is more information than knowing its image:
consider in particular the case of binary sequences: X = {0, 1}. There is exactly
one binary sequence with image 0, namely

0, 0, 0, . . . , 0, . . .

There is exactly one binary sequence with image 1, namely

1, 1, 1, . . . , 1, . . .

All others have image {0, 1}: there are (uncountably) infinitely many of them.

Let f : X → Y be a function. Given a sequence x : Z+ → X in X, we can
push it forward to a sequence f∗(x) in X by

f∗(x) : n 7→ f(x(n)).

In other words, f∗(x) is simply the composite function f ◦ x : Z+ → Y .

Example 0.2. Let x : Z+ → Z+ by x(n) = n2. Thus x is a sequence in Z.
a) Using the inclusion map f : Z ↪→ R we can view x as a sequence of real numbers:
f∗(x)(n) = n2 ∈ R.
b) Let f : Z+ → {0, 1} by f(n) = 0 if n is even and f(n) = 1 if n is odd. (That is:
we map an integer to its class modulo 2.) We push forward the integer sequence

1, 4, 9, 16, 25, 36, 49, . . .

to get the binary sequence

1, 0, 1, 0, 1, 0, 1, 0 . . . .

(We have such a nice pattern here because n2 is even iff n is even.)
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Exercise 0.1. Let f : X → Y be a map of nonempty sets. Consider the
associated map

f∗ : XZ+

→ Y Z+

, x 7→ (n 7→ f(x(n))).

a) Show: f∗ is injective iff f is injective.
b) Show: f∗ is surjecive iff f is surjective.
c) Deduce: f∗ is bijective iff f is bijective.

However, if we have a sequence y : Z+ → Y in a set Y and a function f : X → Y ,
it does not make sense to “pull back” y to a sequence in X: the functions don’t
compose correctly. However, if we have a sequence x : Z+ → X and a function
g : Z+ → Z+, we get a new sequence by precomposing with g:

g∗(x) = x ◦ g : Z+ → X, n 7→ x(g(n)).

In full generality this is a rather strange operation. We single out two special cases
which will become significant later.

Suppose g : Z+ → Z+ is strictly increasing: if n1 < n2 then g(x1) < g(x2).
Then the process of passing from x to g∗x is called passing to a subsequence.

Example 0.3. The function g : Z+ → Z+ by n 7→ n2 is strictly increasing, and
this process carries a sequence

x(1), x(2), x(3), . . . , x(n), . . .

to
x(1), x(4), x(9), . . . , x(n), . . . .

Exercise 0.2. Let I be the set of all strictly increasing functions g : Z+ → Z+.
We define a function

Φ : I → 2Z
+

from I to the power set of Z+ by mapping each function to its image:

Φ : g 7→ g(Z+) ⊂ Z+.

Show: Φ is an injection with image the set of all infinite subsets of Z+.

The previous exercise reconciles our definition of a subsequence with another (per-
haps more natural and useful) way of thinking about them: namely, passage to a
subsequence means choosing an infinite set S of positive integers and only keeping
the terms xn of the sequence with n ∈ S.

The other case in which precomposing a sequence with a function g : Z+ → Z+ is
a reasonable thing to do in real life is when the function g;Z+ → Z+ is a bijection.
Then we may view g∗x as a rearrangement of x.

Example 0.4. Let g : Z+ → Z+ be the map which for all n ∈ Z+ interchanges
the 2n− 1 and 2n: thus

g(1) = 2, g(2) = 1, g(3) = 4, g(4) = 3, g(5) = 6, g(6) = 5, . . . .

Then precomposing with g carries the sequence

x(1), x(2), x(3), x(4), x(5), x(6) . . .

to the sequence
x(2), x(1), x(4), x(3), x(6), x(5) . . . .
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Remark: We wished to spend a little time with the notation x(n) to drive the point
home that a sequence is a function. However no one actually uses this notation for
sequences: rather, everyone writes n 7→ xn....and so will we.

4. Binary Operations

Let S be a set. A binary operation on S is simply a function from S × S
to S. Rather than using multivariate function notation – i.e., (x, y) 7→ f(x, y) – it
is common to fix a symbol, say ∗, and denote the binary operation by (x, y) 7→ x∗y.

A binary operation is commutative if for all x, y ∈ S, x ∗ y = y ∗ x.

A binary operation is associative if for all x, y, z ∈ S, (x ∗ y) ∗ z = x ∗ (y ∗ z).

Example 0.5. Let S = Q be the set of rational numbers. Then addition (+),
subtraction (−) and multiplication (·) are all binary operations on S. Note that
division is not a binary operation on Q because it is not everywhere defined: the
symbol a÷ b has no meaning if b = 0.

As is well known, + and · are both commutative and associative whereas it is
easy to see that − is neither commutative nor associative: e.g.

3− 2 = 1 6= 2− 3,

(1− 0)− 1 = 0 6= 2 = 1− (0− 1).

Perhaps the most familiar binary operation which is associative but not commuta-
tive is matrix multiplication. Precisely, fix an integer n ≥ 2 and let S = Mn(Q) be
the set of n× n square matrices with rational entries.

Exercise 0.3. Give an example of a binary operation which is commutative
but not associative. In fact, give at least two examples, in which the first one has
the set S finite and as small as possible (e.g. is it possible to take S to have two
elements?). Give a second example in which the operation is as “natural” as you
can think of: i.e., if you told it to someone else, they would recognize that operation
and not accuse you of having made it up on the spot.

Let ∗ be a binary operation on a set S. We say that an element e ∈ S is an identity
element (for ∗) if for all x ∈ S,

e ∗ x = x ∗ e = x.

Remark: If ∗ is commutative (as will be the case in the examples of interest to us
here) then of course we have e ∗ x = x ∗ e for all x ∈ S, so in the definition of an
identity it would be enough to require x ∗ e = x for all x ∈ S.

Proposition 0.6. A binary operation ∗ on a set S has at most one identity
element.

Proof. Suppose e and e′ are identity elements for ∗. The dirty trick is to play
them off each other: consider e ∗ e′. Since e is an identity, we must have e ∗ e′ = e′,
and similarly, since e′ is an identity, we must have e ∗ e′ = e, and thus e = e′. �

Example 0.7. For the operation + on Q, there is an identity: 0. For the
operation · on Q, there is an identity: 1. For matrix multiplication on Mn(Q),
there is an identity: the n× n identity matrix In.
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Example 0.8. The addition operation + on Q restricts to a binary operation
on Z+ (that is, the sum of any two positive integers is again a positive integer).
Since by our convention 0 /∈ Z+, it is not clear that (Z+,+) has an identity element,
and indeed a moment’s thought shows that it does not.

Suppose (S, ∗) is a binary operation on a set which possesses an identity element e.
For an element x ∈ S, an element x′ ∈ S is said to be inverse to x (with respect
to ∗) if x ∗ x′ = x′ ∗ x = e.

Proposition 0.9. Let (S, ∗) be an associative binary oepration with an identity
element e. Let x ∈ S be any element. Then x has at most one inverse.

Proof. It’s the same trick: suppose x′ and x′′ are both inverses of x with
respect to ∗. We have x ∗ x′ = e, and now we apply x′′ “on the left” to both sides:

x′′ = x′′ ∗ e = x′′ ∗ (x ∗ x′) = (x′′ ∗ x) ∗ x′ = e ∗ x′ = x′. �

Example 0.10. For the operation + on Q, every element x has an inverse,
namely −x = (−1) · x. For the operation · on Q, every nonzero element has an
inverse, but 0 does not have a multiplicative inverse: for any x ∈ Q, 0 · x = 0 6= 1.
(Later we will prove that this sort of thing holds in any field.)

5. Binary Relations

Let S be a set. Recall that a binary relation on S is given by a subset R of the
Cartesian product S2 = S × S. Restated in equivalent but less formal terms, for
each ordered pair (x, y) ∈ S×, either (x, y) lies in the relation R – in which case we
sometimes write xRy – or (x, y) does not lie in the relation R.

For any binary relation R on S and any x ∈ S, we define

[x]R = {y ∈ S | (x, y) ∈ R},

R[x] = {y ∈ S | (y, x) ∈ R}.
In words, [x]R is the set of elements of S which are related to R “on the right”, and

R[x] is the set of elements of S which are related to R “on the left”.

Example 0.11. Let S be the set of people in the world, and let R be the par-
enthood relation, i.e., (x, y) ∈ R iff x is the parent of y. Then [x]R is the set of x’s
children and R[x] is the set of x’s parents.

Here are some important properties that a relation R ⊂ S2 may satisfy.

(R) Reflexivity: for all x ∈ S, (x, x) ∈ R.
(S) Symmetry: for all x, y ∈ S, (x, y) ∈ R =⇒ (y, x) ∈ R.
(AS) Antisymmetry: for all x, y ∈ S, if (x, y) ∈ R and (y, x) ∈ R then x = y.
(Tr) Transitivity: for all x, y, z ∈ S, if (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R.
(To) Totality: for all x, y ∈ S, either (x, y) ∈ R or (y, x) ∈ R (or both).

Exercise 0.4. Let R be a binary relation on a set S.
a) Show: R is reflexive iff for all x ∈ S, x ∈ [x]R iff for all x ∈ S, x ∈ R[x].
b) Show: R is symmetric iff for all x ∈ S, [x]R = R[x]. In this case we put

[x] = [x]R =R[x].
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c) Show: R is antisymmetric iff for all x, y ∈ S, x ∈ R[y], y ∈ [x]R implies x = y.
d) Show R is transitive iff for all x, y, z ∈ S, x ∈ R[y] and y ∈ R[z] implies x ∈
R[z].
e) Show that R is total iff for all x ∈ R, either x ∈ R[y] or x ∈ [y]R.

An equivalence relation is a relation which is reflexive, symmetric and transitive.

If R is an equivalence relation on x, we call

[x] =R[x] = [x]R

the equivalence class of R.
Let R be an equivalence relation on S, suppose that for x, y, z ∈ S we have

z ∈ [x]∩[y]. Then transitivity gives (x, y) ∈ R. Moreover if x′ ∈ [x] then (x, x′) ∈ R,
(x, y) ∈ R and hence (x′, y) ∈ R, i.e., x′ ∈ [y]. Thus [x] ⊂ [y]. Arguing similarly
with the roles of x and y interchanged gives [y] ⊂ [x] and thus [x] = [y]. That is,
any two distinct equivalence classes are disjoint. Since by reflexivity, for all x ∈ S,
x ∈ [x], it follows that the distinct equivalence classes give a partition of S.

The converse is also true: if X =
⋃
i∈I Xi is a partition of X – i.e., for all i ∈ I,

Xi is nonempty, for all i 6= j, Xi ∩Xj = ∅ and every element of X lies in some Xi,
then there is an induced equivalence relation R by defining (x, y) ∈ R iff x, y lie in
the same element of the partition.

6. Ordered Sets

A partial ordering on S is a relation R which is reflexive, anti-symmetric and
transitive. We then commonly write x ≤ y for (x, y) ∈ R. We also refer to the pair
(S,≤) as a partially ordered set. A totally ordered set is a partially ordered
set (S,≤) satisfying totality: for all x, y ∈ S, either x ≤ y or y ≤ x.

Example 0.12. (The Key Example) The real numbers R under the standard
≤ is a totally ordered set.

It will be useful to borrow some auxiliary notation from the above case. Namely,
for a partially ordered set (S,≤) and x, y ∈ S, we write y ≥ x to mean x ≤ y. We
also write x < y to mean x ≤ y and x 6= y, and finally y > x to mean x < y.

Exercise 0.5.
For a partially ordered set (S,≤), we may view < as a relation on S.
a) Show that the relation < satisfies:
(i) anti-reflexivitiy: for no x ∈ S do we have x < x.
(ii) strict anti-symmetry: for no x, y ∈ S do we have x < y and y < x.
(iii) transitivity.
b) Conversely, we say a relation < on a set S is a strict partial ordering if it is
anti-reflexive, strictly anti-symmetric and transitive. Given a strict partial ordering
< on S, define a new relation ≤ by x ≤ y iff x < y or x = y. Show: ≤ is a partial
ordering on S.
c) Check that the processes of passing from a partial ordering to a strict partial
ordering and of passing from a strict partial ordering to a partial ordering are
mutually inverse. (The upshot is that we can work with < or ≤ as the basic relation;
nothing is lost either way.)
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Exercise 0.6. Let X be a set, and let R be the equality relation on X: that is,
(x, y) ∈ R ⇐⇒ x = y.
a) Show: R is an equivalence relation on X.
b) Show: R is a partial ordering on X.
c) Show: conversely, if R′ is a relation on X which is both an equivalence relation
and a partial ordering, then R′ = R.

We call a partially ordered set (X,≤) totally disordered if ≤ is the equality
relation, i.e., x ≤ y ⇐⇒ x = y. Thus every set can be made into a totally
disordered partially ordered set in a unique way.

Example 0.13. For a set X, let S = 2X be the power set of X (the set of all
subsets of X). The containment relation on subsets of X is a partial ordering
on S: that is, for subsets A,B of X, we put A ≤ B iff A ⊂ B. Note that as
soon as X has at least two distinct elements x1, x2, there are subsets A and B such
that neither is contained in the other, namely A = {x1}, B = {x2}. Thus we have
neither A ≤ B nor B ≤ A.

In general, two elements x, y in a partially ordered set are comparable if x ≤ y or
y ≤ x; otherwise we say they are incomparable. A total ordering is thus a partial
ordering in which any two elements are comparable.

A bottom element b in a partially ordered set (S,≤) is an element of S such
that b ≤ x for all x ∈ S. Similarly a top element t in (S,≤) is an element of S
such that x ≤ t for all x ∈ S.

Exercise 0.7. a) Show: a partially ordered set has at most one bottom element
and at most one top element.
b) Show: every power set (2X ,≤) admits a bottom element and a top element. What
are they?
c) Show: (Z,≤) has neither a bottom element nor a top element.
d) Suppose that in a partially ordered set (S,≤) we have a bottom element m, a top
element M and moreover m = M . What can be said about S?
e) Show: a finite, nonempty totally ordered set has bottom and top elements.

We now have a pair of closely related concepts: an element m in a partially ordered
set (S,≤) is minimal if there does not exist x ∈ S with x < m. An element M in
a partially ordered set (S,≤) is maximal if there does not exist ∈ S with M < y.

Proposition 0.14. a) In any partially ordered set, a bottom element is minimal
and a top element is maximal.
b) In a totally ordered set, a minimal element is a bottom element and a maximal
element is a top element.
c) A partially ordered set can have a minimal element which is not a bottom element
and a maximal which is not a top element.

Proof. a) If b is a bottom element, then for all x 6= b we have b < x, so we
cannot also have x < b: b is minimal. The argument for top elements is similar and
left to the reader.
b) Let m be a minimal element in a totally ordered set, and let x 6= m. We cannot
have x < m and we are totally ordered, so we must have m < x: m is a bottom
element. The argument maximal elements is similar and left to the reader.
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c) Let X be a set with more than one element, and endow it with the equality
relation. Then for no x, y ∈ X do we have x < y, so every element of X is both
minimal and maximal, and X has neither bottom nor top elements. �

Comment on terminology: I am sorry to tell you that some people say “max-
imum” instead of “top element” and “minimum” instead of “bottom element” of
a partially ordered set. In a totally ordered set, Proposition 0.14b) ensures this is
fine, and we will usually refer to the top and bottom elements of a totally ordered
set in this way. However, in a partially ordered set that is not totally ordered, this
terminology is most unfortunate: e.g. Proposition 0.14c) would read: “A partially
ordered set can have a minimal element which is not a minimum and a maximal
element which is not a maximum.” Thus changing an adjective to a noun changes
the mathematical meaning!

Now let {xn}∞n=1 be a sequence in the partially ordered set (S,≤). We say that
the sequence is increasing (respectively, strictly increasing) if for all m ≤ n,
xm ≤ xn (resp. xm < xn). Similarly, we say that the sequence is decreasing (
respectively, strictly decreasing if for all m ≤ n, xm ≥ xn (resp. xm > xn).

A partially ordered set (S,≤) is well-founded if there is no strictly decreasing
sequence {xn}∞n=1 in S. A well-ordered set is a well-founded totally ordered set.

Let R be a relation on S, and let T ⊂ S. We define the restriction of R to
T as the set of all elements (x, y) ∈ R ∩ (T × T ). We denote this by R|T . F

Exercise 0.8. Let R be a binary relation on S, and let T be a subset of S.
a) Show: if R is an equivalence relation, then R|T is an equivalence relation on T .
b) Show that if R is a partial ordering, then R|T is a partial ordering on T .
c) Show that if R is a total ordering, then R|T is a total ordering on T .
d) Show that if R is a well-founded partial ordering, then R|T is a well-founded
partial ordering on T .

Proposition 0.15. For a totally ordered (S,≤), the following are equivalent:
(i) S is well-founded: it admits no infinite strictly decreasing sequence.
(ii) For every nonempty subset T of S, the restricted totally ordered set (T,≤) has
a bottom element.

Proof. (i) =⇒ (ii): We go by contrapositive: suppose that there is a
nonempty subset T ⊂ S without a minimum element. From this it follows imme-
diately that there is a strictly decreasing sequence in T : indeed, by nonemptiness,
choose x1 ∈ T . Since x1 is not the minimum in the totally ordered set T , there
must exist x2 ∈ T with x2 < x1. Since x2 is not the minimum in the totally ordered
set T , there must exist x3 in T with x3 < x2. Continuing in this way we build a
strictly decreasing sequence in T and thus T is not well-founded. It follows that S
itself is not well-founded, e.g. by Exercise 0.4d), but let’s spell it out: an infinite
strictly decreasing sequence in the subset T of S is, in particular, an infinite strictly
decreasing sequence in S!
(ii) =⇒ (i): Again we go by contrapositive: suppose that {xn} is a strictly de-
creasing sequence in S. Then let T be the underlying set of the sequence: it is a
nonempty set without a minimum element! �
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Example 0.16. (Key Example): For any integer N , the set Z≥N of integers
greater than or equal to N is well-ordered: there are no strictly decreasing infinite
sequences of integers all of whose terms are at least N .1

Exercise 0.9. Let (X,≤) be a totally ordered set. Define a subset Y of X to
be inductive if for each x ∈ X, if Ix = {y ∈ X | y < x} ⊆ Y , then x ∈ Y .
a) Show that X is well-ordered iff the only inductive subset of X is X itself.
b) Explain why the result of part a) is a generalization of the principle of mathe-
matical induction.

Let x, y be elements of a totally ordered set X. We say that y covers x if x < y
and there does not exist z ∈ X with x < z < y.

Example 0.17. In X = Z, y covers X iff y = x + 1. In X = Q, no element
covers any other element.

A totally ordered set X is right discrete if for all x ∈ X, either x is the top
element of X or there exists y in X such that y covers x. A totally ordered set
X is left discrete if for all x ∈ X, either x is the bottom element of X or there
exists z in X such that x covers z. A totally ordered set is discrete if it is both
left discrete and right discrete.

Exercise 0.10. a) Show that (Z,≤) is discrete.
b) Show that any subset of a discrete totally ordered set is also discrete.

7. Upper and Lower Bounds

Let (S,≤) be a partially ordered set, and let Y ⊂ S. We say M ∈ S is an upper
bound for Y if y ≤ M for all y ∈ Y . We say m ∈ S is a lower bound for Y if
m ≤ y for all y ∈ Y .

Notice that if M is an upper bound for Y and M ′ > M then also M ′ is an upper
bound for Y . So in general a subset will have many upper bounds. If the set of all
upper bounds of Y has a bottom element, we call that the supremum or least
upper bound of Y and denote it by sup(Y ). Similarly, if m is a lower bound for
Y and m′ < m then also m′ is a lower bound for Y . If the set of all lower bounds
of Y has a top element, we call tha the infimum or greatest lower bound of Y
and denote it by inf(Y ). Since a partially ordered set can have at most one bottom
element and at most one top element, sup(Y ) is unique if it exists and so is inf(Y ).

Exercise 0.11. Let (S,≤) be a partially ordered set.
a) Show: sup(∅) exists iff X has a bottom element b, in which case sup(∅) = b.
b) Show: inf(∅) exists iff X has a top element t, in which case inf(∅) = t.

A lattice is a partially ordered set (S,≤) in which every two element subset {a, b}
has an infimum and a supremum. In this case it is traditional to write

a ∨ b = sup({a, b}), a ∧ b = inf({a, b}).

1As usual in these notes, we treat structures like N, Z and Q as being known to the reader.

This is not to say that we expect the reader to have witnessed a formal construction of them.

Such formalities would be necessary to prove that the natural numbers are well-ordered, and one
day the reader may like to see it, but such considerations take us backwards into the foundations

of mathematics in terms of formal set theory, rather than forwards as we want to go.
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A totally ordered set is certainly a lattice, since we have

a ∨ b = max(a, b), a ∧ b = min(a, b).

A partially ordered set is complete if every subset has a supremum and an infimum.
A partially ordered set is Dedekind complete if every subset that is nonempty
and bounded above admits a supremum. m.

Example 0.18. A finite nonempty totally ordered set is complete.

Example 0.19. Let X be a set. Then the partially ordered set (2X ,⊂) is
complete. If Y ⊂ 2X , then Y is a family of subsets of X, and we have

sup(Y ) =
⋃
A∈Y

A, inf(Y ) =
⋂
A∈Y

A.

Exercise 0.12. a) Let (X,≤) be a partially ordered set in which every subset
has a supremum. Show: X is complete.
b) Let (X,≤) be a partially ordered set in which every subset has an infimum. Show:
X is complete.
c) Let (X,≤) be a Dedekind complete lattice. Show: X is complete iff it has a top
element and a bottom element.

8. Intervals and Convergence

Let (S,≤) be a totally ordered set, and let x < y be elements of S.

We define intervals

(x, y) = {z ∈ S | x < z < y},
[x, y) = {z ∈ S | x ≤ z < y},
(x, y] = {z ∈ S | x < z ≤ y},
[x, y] = {z ∈ S | x ≤ z ≤ y.

These are straightforward generalizations of the notion of intervals on the real line.
The intervals (x, y) are called open. We also define

(−∞, y) = {z ∈ S | z < y},

(−∞, y] = {z ∈ S | z ≤ y},
(x,∞) = {z ∈ S | x < z},
[x,∞) = {z ∈ S | z ≤ z}.

The intervals (−∞, y) and [x,∞) are also called open. Finally,

(−∞,∞) = S

is also called open.

There are some subtleties in these definitions. Depending upon the ordered set
S, some intervals which “do not look open” may in fact be open. For instance,
suppose that S = Z with its usual ordering. Then for any m ≤ n ∈ Z, the interval
[m,n] does not look open, but it is also equal to (m − 1, n + 1), and so it is. For
another example, let S = [0, 1] the unit interval in R with the restricted ordering.
Then by definition (−∞, 12 ) is an open interval, which by definition is the same set

as [0, 12 ). The following exercise nails down this phenomenon in the general case.
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Exercise 0.13. Let (S,≤) be a totally ordered set.
a) If S has a minimum element m, then for any x > m, the interval [m,x) is equal
to (−∞, x) and is thus open.
b) If S has a maximum element M , then for any x < M , the interval (x,M ] is
equal to (x,∞) and is thus open.

Let xn : Z+ → X be a sequence with values in a totally ordered set (X,≤). We
say that the sequence converges to x ∈ X if for every open interval I containing
x, there exists N ∈ Z+ such that for all n ≥ N , xn ∈ I.

9. Fields

9.1. The Field Axioms.

A field is a set F endowed with two binary operations + and · satisfying the
following field axioms:
(F1) + is commutative, associative, has an identity element – called 0 – and every
element of F has an inverse with respect to +.
(F2) · is commutative, associative, has an identity element – called 1 – and every
x 6= 0 has an inverse with respect to ·.
(F3) (Distributive Law) For all x, y, z ∈ F , (x+ y) · z = (x · z) + (y · z).
(F4) 0 6= 1.

Thus any field has at least two elements, 0 and 1.

Example 0.20. The rational numbers Q, the real numbers R and the complex
numbers C are all fields under the familiar binary operations of + and ·. We
treat these as known facts: that is, it is not our ambition here to construct any of
these fields from simpler mathematical structures (although this can be done and
the reader may want to see it someday).

It is common to abbreviate x · y to just xy, and we shall feel free to do so here.

Remark: The definition of a field consists of three structures: the set F , the binary
operation + : F ×F → F and the binary operation · : F ×F → F . Thus we should
speak of “the field (F,+, ·)”. But this is tedious and is in fact not done in practice:
one speaks e.g. of “the field Q”, and the specific binary operations + and · are
supposed to be understood. This sort of practice in mathematics is so common
that it has its own name: abuse of notation.

Example 0.21. There is a field F with precisely two elements 0 and 1. Indeed,
the axioms completely determine the “addition and multiplication tables” of such
an F : we must have 0 + 0 = 0, 0 + 1 = 1, 0 · 0 = 0, 0 · 1 = 0, 1 · 1 = 1. Keeping in
mind the commutativity of + and ·, the only missing entry from these “tables” is
1 + 1: what is that? Well, there are only two possibilities: 1 + 1 = 0 or 1 + 1 = 1.
But the second possibility is not tenable: letting z be the additive inverse of 1 and
adding it both sides of 1 + 1 = 1 cancels the 1 and gives 1 = 0, in violation of (F4).
Thus 1 + 1 = 0 is the only possibility. Converesely, it is easy to check that these
addition and multiplication tables do indeed make F = {0, 1} into a field. This is
in fact quite a famous and important example of a field, denoted either F2 or Z/2Z
and called the binary field or the field of integers modulo 2. It is important
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in set theory, logic and computer science, due for instance to the interpretation of
+ as “OR” and · as “AND”.

Example 0.22. Let N ≥ 2 be an integer. Let Z/NZ be the set {0, 1, . . . , N−1},
and consider the following binary operations on Z/NZ: for x, y ∈ Z/NZ, x + y
(resp. xy) is defined by first taking the usual sum x+ y ∈ Z (resp. product xy ∈ Z)
and then taking the remainder upon division by N . This generalizes the previous
example, which took N = 2.

It is not difficult to show that the set Z/NZ endowed with these two binary
operations satisfies axioms (F1), (F3) and (F4). Moreover it satisfies most of (F2):
the multiplication is commutative, associative, has an identity element – the integer
1 – however it need not be the case that every nonzero element has a multiplicative
inverse. For example, if N = 4, then the element 2 has no multiplicative inverse:
2 · 1 = 2 · 3 = 2 and 2 · 0 = 2 · 2 = 0. More generally, if N is not a prime number,
then there are integers 1 < a, b < N such that ab = N , and then then the element
a has no multiplicative inverse: if xa = 1, then

0 = x(0) = x(ab) = (xa)b = 1(b) = b.

It turns out that when N = p is a prime number, then every nonzero element has a
multiplicative inverse, so Z/pZ is a field, often denoted Fp. This uses a nontrivial
result from number theory, Euclid’s Lemma, and as we do not need finite fields
for anything in these notes, we will leave things there.

9.2. Some simple consequences of the field axioms.

There are many, many different fields. Nevertheless the field axioms are rich enough
to imply certain consequences for all fields.

Proposition 0.23. Let F be any field. For all x ∈ F , we have 0 · x = 0.

Proof. For all x ∈ F , 0 ·x = (0 + 0) ·x = (0 ·x) + (0 ·x). Let y be the additive
inverse of 0 ·x. Adding y to both sides has the effect of “cancelling” the 0 ·x terms:

0 = y + (0 · x) = y + ((0 · x) + (0 · x))

= (y + (0 · x)) + (0 · x) = 0 + (0 · x) = 0 · x. �

Proposition 0.24. Let (F,+, ·) be a set with two binary operations satisfying
axioms (F1), (F2) and (F3) but not (F4): that is, we assume the first three axioms
and also that 1 = 0. Then F = {0} = {1} consists of a single element.

Proof. Let x be any element of F . Then

x = 1 · x = 0 · x = 0. �

Proposition 0.23 is a very simple, and familiar, instance of a relation between the
additive structure and the multiplicative structure of a field. We want to further
explore such relations and establish that certain familiar arithmetic properties hold
in an arbitrary field.

To help out in this regard, we define the element −1 of a field F to be the
additive inverse, i.e., the unique element of F such that 1 + (−1) = 0. (Note that
although −1 is denoted differently from 1, it need not actually be a distinct element:
indeed in the binary field F2 we have 1 + 1 = 0 and thus −1 = 1.)
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Proposition 0.25. Let F be a field and let −1 be the additive inverse of 1.
Then for any element x ∈ F , (−1) · x is the additive inverse of x.

Proof.

x+ ((−1) · x) = 1 · x+ (−1) · x = (1 + (−1)) · x = 0 · x = 0. �

In light of Proposition 0.25 we create an abbreviated notation: for any x ∈ F , we
abbreviate (−1) · x to −x. Thus −x is the additive inverse of x.

Proposition 0.26. For any x ∈ F , we have −(−x) = x.

Proof. We prove this in two ways. First, from the definition of additive
inverses, suppose y is the additive inverse of x and z is the additive inverse of y.
Then, what we are trying to show is that z = x. But indeed x + y = 0 and since
additive inverses are unique, this means x is the additive inverse of y.

A second proof comes from identifying −x with (−1) · x: for this it will suffice
to show that (−1) · (−1) = 1. But

(−1) · (−1)− 1 = (−1) · (−1) + (1) · (−1) = (−1 + 1) · (−1) = 0 · (−1) = 0.

Adding one to both sides gives the desired result. �

Exercise 0.14. Apply Proposition 0.26 to show that for all x, y in a field F :
a) (−x)(y) = x(−y) = −(xy).
b) (−x)(−y) = xy.

For a nonzero x ∈ F our axioms give us a (necessarily unique) multiplicative inverse,
which we denote – as usual – by x−1.

Proposition 0.27. For all x ∈ F \ {0}, we have (x−1)−1 = x.

Exercise 0.15. Prove Proposition 0.27.

Proposition 0.28. For x, y ∈ F , we have xy = 0 ⇐⇒ (x = 0) or (y = 0).

Proof. If x = 0, then as we have seen xy = 0 · y = 0. Similarly if y = 0,
of course. Conversely, suppose xy = 0 and x 6= 0. Multiplying by x−1 gives
y = x−10 = 0. �

Let F be a field, x ∈ F , and let n be any positive integer. Then – despite the fact
that we are not assuming that our field F contains a copy of the ordinary integers
Z – we can make sense out of n · x: this is the element x+ . . .+ x (n times).

Exercise 0.16. Let x be an element of a field F .
a) Give a reasonable definition of 0 · x, where 0 is the integer 0.
b) Give a reasonable definition of n · x, where n is a negative integer.

Thus we can, in a reasonable sense, multiply any element of a field by any positive
integer (in fact, by Exercise 0.16, by any integer). We should however beware not
to carry over any false expectations about this operation. For instance, if F is the
binary field F2, then we have 2 · 0 = 0 + 0 = 0 and 2 · 1 = 1 + 1 = 0: that is, for
all x ∈ F2, 2x = 0. It follows from this for all x ∈ F2, 4x = 6x = . . . = 0. This
example should serve to motivate the following definition.

A field F has finite characteristic if there exists a positive integer n such that
for all x ∈ F , nx = 0. If this is the case, the characteristic of F is the least
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positive integer n such that nx = 0 for all x ∈ F . A field which does not have finite
characteristic is said to have characteristic zero.2

Exercise 0.17. Show that the characteristic of a field is either 0 or a prime
number. (Hint: suppose for instance that 6x = 0 for all x ∈ F . In particular
(2 · 1)(3 · 1) = 6 · 1 = 0. It follows that either 2 · 1 = 0 or 3 · 1 = 0.

Example 0.29. a) The binary field F2 has characteristic 2. More generally,
for any prime number p, the integers modulo p form a field which has characteristic
p. (These examples are perhaps misleading: for every prime number p, there are
fields of characteristic p which are finite but contain more than p elements as well
as fields of characteristic p which are infinite. However, as we shall soon see, as
long as we are studying calculus / sequences and series / real analysis, we will not
meet fields of positive characteristic.)
b) The fields Q,R,C have characteristic zero.

Proposition 0.30. Let F be a field of characteristic 0. Then F contains the
rational numbers Q as a subfield.

Proof. Since F has characteristic zero, for all n ∈ Z+, n·1 6= 0 in F . We claim
that this implies that in fact for all pairs m 6= n of distinct integers, m · 1 6= n · 1 as
elements of F . Indeed, we may assume that m > n (otherwise interchange m and
n) and thus m · 1−n · 1 = (m−n) · 1 6= 0. Thus the assignment n 7→ n · 1 gives us a
copy of the ordinary integers Z inside our field F . We may thus simply write n for
n ·1. Having done so, notice that for all n ∈ Z+, 0 6= n ∈ F , so 1

n ∈ F , and then for

any m ∈ Z, m 1
n = m

n ∈ F . Thus F contains a copy of Q in a canonical way, i.e., via
a construction which works the same way for any field of characteristic zero. �

10. Ordered Fields

An ordered field (F,+, ·, <) is a set F equipped with the structure (+, ·) of a field
and also with a total ordering <, satisfying the following compatbility conditions:

(OF1) For all x1, x2, y1, y2 ∈ F , x1 < x2 and y1 < y2 implies x1 + y1 < x2 + y2.
(OF2) For all x, y ∈ F , x > 0 and y > 0 implies xy > 0.

The rational numbers Q and the real numbers R are familiar examples of ordered
fields. In fact the real numbers are a special kind of ordered field, the unique
ordered field satisfying any one of a number of fundamental properties which are
critical in the study of calculus and analysis. One of the main goals of this section
is to understand these special properties of R and their interrelationships.

Proposition 0.31. For elements x, y in an ordered field F , if x < y, then
−y < −x.

Proof. We rule out the other two possibilities: if −y = −x, then multiplying
by −1 gives x = y, a contradiction. If −x < −y, then adding this to x < y using
(OF1) gives 0 < 0, a contradiction. �

2Perhaps you were expecting “infinite characteristic”. This would indeed be reasonable. But
the terminology is traditional and well-established, and we would not be doing you a favor by

changing it here.
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Proposition 0.32. Let x, y be elements of an ordered field F .
a) If x > 0 and y < 0 then xy < 0.
b) If x < 0 and y < 0 then xy > 0.

Proof. a) By Proposition 0.31, y < 0 implies −y > 0 and thus x(−y) =
(−xy) > 0. Applying 0.31 again, we get xy < 0.
b) If x < 0 and y < 0, then −x > 0 and −y > 0 so xy = (−x)(−y) > 0. �

Proposition 0.33. Let x1, x2, y1, y2 be elements of an ordered field F .
a) (OF1′) If x1 < x2 and y1 ≤ y2, then x1 + y1 < x2 + y2.
b) (OF1′′) If x1 ≤ x2 and y1 ≤ y2, then x1 + y1 ≤ x2 + y2.

Proof. a) If y1 < y2, then this is precisely (OF1), so we may assume that
y1 = y2. We cannot have x1 + y1 = x2 + y2 for then adding −y1 = −y2 to
both sides gives x1 = x2, contradiction. Similarly, if x2 + y2 < x1 + y1, then
by Proposition 0.31) we have −y2 < −y1 and adding these two inequalities gives
x2 < x1, a contradiction.
b) The case where both inequalities are strict is (OF1). The case where exactly one
inequality is strict follows from part a). The case where we have equality both times
is trivial:if x1 = x2 and y1 = y2, then x1 + y1 = x2 + y2, so x1 + y1 ≤ x2 + y2. �

Remark: What we have shown is that given any field (F,+, ·) with a total ordering
<, the axiom (OF1) implies (OF1′) and also (OF1′′). In fact (OF1′) implies (OF1)
and (OF1′′) and that (OF1′′) implies (OF1)and (OF1′), so all three are equivalent.

Proposition 0.34. Let x, y be elements of an ordered field F .
(OF2′) If x ≥ 0 and y ≥ 0 then xy ≥ 0.

Exercise 0.18. Prove Proposition 0.34.

Proposition 0.35. Let F be an ordered field and x a nonzero element of F .
Then exactly one of the following holds:
(i) x > 0.
(ii) −x > 0.

Proof. First we show that (i) and (ii) cannot both hold. Indeed, if so, then
using (OF1) to add the inequalities gives 0 > 0, a contradiction. (Or apply Proposi-
tion 0.31: x > 0 implies −x < 0.) Next suppose neither holds: since x 6= 0 and thus
−x 6= 0, we get 0 < x and 0 < −x. Adding these gives 0 < 0, a contradiction. �

Proposition 0.36. Let 0 < x < y in an ordered field F . Then 0 < 1
y <

1
x .

Proof. First observe that for any z > 0 in F , 1
z > 0. Indeed, it is certainly

not zero, and if it were negative then 1 = z · 1z would be negative, by Proposition

0.32. Moreover, for x 6= y, we have 1
x −

1
y = (y−x) · (xy)−1. Since x < y, y−x > 0;

since x, y > 0, xy > 0 and thus (xy)−1, so 1
x −

1
y > 0: equivalently, 1

y <
1
x . �

Proposition 0.37. Let F be an ordered field.
a) We have 1 > 0 and hence −1 < 0. b) For any x ∈ F , x2 ≥ 0.
c) For any x1, . . . , xn ∈ F \ {0}, x21 + . . .+ x2n > 0.

Proof. a) By definition of a field, 1 6= 0, hence by Proposition 0.35 we have
either 1 > 0 or −1 > 0. In the former case we’re done, and in the latter case (OF2)
gives 1 = (−1)(−1) > 0. that −1 < 0 follows from 0.31.
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b) If x ≥ 0, then x2 ≥ 0. Otherwise x < 0, so by Proposition 0.31, −x > 0 and
thus x2 = (−x)(−x) > 0.
c) This follows easily from part b) and is left as an exercise for the reader. �

Proposition 0.37 can be used to show that certains field cannot be ordered, i.e.,
cannot be endowed with a total ordering satisfying (OF1) and (OF2). First of all
the field C of complex numbers cannot be ordered, because C contains an element
i such that i2 = −1, whereas by Proposition 0.37b) the square of any element in
an ordered field is non-negative and by Proposition 0.37a) −1 is negative.

The binary field F2 of two elements cannot be ordered: because 0 = 1 + 1 =
12 + 12 contradicts Proposition 0.37c). Similarly, the field Fp = Z/pZ of integers
modulo p cannot be ordered, since 0 = 1 + 1 + . . . + 1 = 12 + . . . + 12 (each sum
having p terms). This generalizes as follows.

Corollary 0.38. An ordered field F must have characteristic 0.

Proof. Seeking a contradiction, suppose there is n ∈ Z+ such that n · x = 0
for all x ∈ F . Then 12 + . . .+ 12 = 0, contradicting Proposition 0.37c). �

Combining Proposition 0.30 and Corollary 0.38, we see that every ordered field
contains a copy of the rational numbers Q.

11. Archimedean Ordered Fields

Recall that every ordered field (F,+, ·, <) has contained inside it a copy of the
rational numbers Q with the usual ordering. An ordered field F is Archimedean
if the subset Q is not bounded above and non-Archimedean otherwise.

Example 0.39. The ordered field Q is Archimedean. From our intuitive under-
standing of R – e.g., by considerations involving the decimal expansion – it is clear
that R is an Archimedean field. (Later we will assert a stronger axiom satisfied by
R from which the Archimedean property follows.)

Non-archimedean ordered fields do exist. Indeed, in a sense we will not try to make
precise here, “most” ordered fields are non-Archimedean.

Suppose F is a non-Archimedean ordered field, and let M be an upper bound
for Q. Then one says that M is infinitely large. Dually, if m is a positive element
of F such that m < 1

n for all n ∈ Z+, one says that m is infinitely small.

Exercise 0.19. Let F be an ordered field, and M an element of F .
a) Show that M is infinitely large iff 1

M is infinitely small.
b) Conclude that F is Archimedean iff it does not have infinitely large elements iff
it does not have infinitely small elements.





CHAPTER 1

Real Sequences

1. Least Upper Bounds

Proposition 1.1. Let F be an Archimedean ordered field, {an} a sequence in
F , and L ∈ F . Then an → L iff for all m ∈ Z+ there exists N ∈ Z+ such that for
all n ≥ N , |an − L| < 1

m .

Proof. Let ε > 0. By the Archimedean property, there exists m > 1
ε ; by

Proposition 0.32 this implies 0 < 1
m < ε. Therefore if N is as in the statement of

the proposition, for all n ≥ N ,

|an − L| <
1

m
< ε. �

Exercise 1.1. Show that for an ordered field F the following are equivalent:
(i) limn→∞ n =∞.
(ii) F is Archimedean.

Proposition 1.2. For an ordered field F , the following are equivalent:
(i) Q is dense in F : for every a < b ∈ F , there exists c ∈ Q with a < c < b.
(ii) The ordering on F is Archimedean.

Proof. (i) =⇒ (ii): we show the contrapositive. Suppose the ordering on F
is non-Archimedean, and let M be an infinitely large element. Take a = M and
b = M + 1: there is no rational number in between them.
(ii) =⇒ (i): We will show that for a, b ∈ F with 0 < a < b, there exists x ∈ Q
with a < x < b: the other two cases are a < 0 < b – which reduces immediately to
this case – and a < b < 0, which is handled very similarly.

Because of the nonexistence of infinitesimal elements, there exist x1, x2 ∈ Q
with 0 < x1 < a and 0 < x2 < b − a. Thus 0 < x1 + x2 < b. Therefore the set
S = {n ∈ Z+ | x1 + nx2 < b} is nonempty. By the Archimedean property S is
finite, so let N be the largest element of S. Thus x1 +Nx2 < b. Moreover we must
have a < x1 +Nx2, for if x1 +Nx2 ≤ a, then x1 + (N + 1)x2 = (x1 +Nx2) + x2 <
a+ (b− a) = b, contradicting the definition of N . �

Let (X,≤) be an ordered set. Earlier we said that X satisfies the least upper
bound axiom (LUB) if every nonempty subset S ⊂ F which is bounded above
has a least upper bound, or supremum. Similarly, X satisfies the greatest lower
bound axiom (GLB) if every nonempty subset S ⊂ F which is bounded below
has a greatest lower bound, or infimum. We also showed the following basic result.

Proposition 1.3. An ordered set (X,≤) satisfies the least upper bound axiom
if and only if it satisfies the greatest lower bound axiom.

25
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The reader may find all of this business about (LUB)/(GLB) in ordered fields quite
abstract. And so it is. But our study of the foundations of real analysis takes
a great leap forward when we innocently inquire which ordered fields (F,+, ·, <)
satisfy the least upper bound axiom. Indeed, we have the following assertion.

Fact 1. The real numbers R satsify (LUB): every nonempty set of real numbers
which is bounded above has a least upper bound.

Note that we said “fact” rather than “theorem”. The point is that stating this
result as a theorem cannot, strictly speaking, be meaningful until we give a precise
definition of the real numbers R as an ordered field. This will come later, but what
is remarkable is that we can actually go about our business without needing to know
a precise definition (or construction) of R.

(It is not my intention to be unduly mysterious, so let me say now – for whatever
it is worth – that the reason for this is that there is, in the strongest reasonable
sense, exactly one Dedekind complete ordered field. Thus, whatever we can say
about any such field is really being said about R.)

2. Monotone Sequences

A sequence {xn} with values in an ordered set (X,≤) is increasing if for all n ∈ Z+,
xn ≤ xn+1. It is strictly increasing if for all n ∈ Z+, xn < xn+1. It is decreasing
if for all n ∈ Z+, xn ≥ xn+1. It is strictly decreasing if for all n ∈ Z+, xn < xn+1.
A sequence is monotone if it is either increasing or decreasing.

Example 1.4. A constant sequence xn = C is both increasing and decreasing.
Conversely, a sequence which is both increasing and decreasing must be constant.

Example 1.5. The sequence xn = n2 is strictly increasing. Indeed, for all
n ∈ Z+, xn+1 − xn = (n + 1)2 − n2 = 2n + 1 > 0. The sequence F xn = −n2 is
strictly decreasing: for all n ∈ Z+, xn+1 − xn = −(n+ 1)2 + n2 = −(2n+ 1) < 0.

Exercise 1.2. Let {xn} be an increasing (resp. strictly increasing) sequence
in an ordered field. Show: {−xn} is decreasing (resp. strictly decreasing).

We claim that an increasing sequence is the discrete analogue of an increasing
function in calculus. Recall that a function f : R → R is increasing if for all
x1 < x2, f(x1) ≤ f(x2), is strictly increasing if for all x1 < x2, f(x1) < f(x2),
and similarly for decreasing and strictly decreasing functions. Looking carefully,
we notice that this does not line up preicsely with the definition of increasing. But
we can resolve the situation happily.

Proposition 1.6. Let {xn} be a sequence with values in an ordered field. Then
{xn} is increasing if and only if: for all m,n ∈ Z+, if m ≤ n then xm ≤ xn.

Proof. Suppose {xn} is increasing. Let m ∈ Z+. Then for all k ∈ Z+ we have

xm+k − xm = (xm+k − xm+k−1) + (xm+k−1 − xm+k−2) + . . .+ (xm+1 − xm).

Since {xn} is increasing, each term on the right is non-negative, so xm+k − xm is
non-negative. Taking n = m + k this gives xm ≤ xn for all n > m (and the case
n = m is trivial).

The converse is immediate: if we suppose that for all m ≤ n ∈ Z+ we have
xm ≤ xn, then taking n = m+ 1 shows that {xn} is increasing. �
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Exercise 1.3. Show that Proposition 1.6 holds verbatim for sequences in any
ordered set. (The point here is not to make any use of the field operations.) Sug-
gestion: let S be the set of positive integers k such that for all m ∈ Z+, we have
xm ≤ xm+k. Use induction to show S = Z+.

Exercise 1.4. Let f : R→ R be a differentiable function.
a) Recall from calculus (or, if it is more to your taste, prove using the Mean Value
Theorem) that the following are equivalent:
(i) For all x, y ∈ R, if x ≤ y then f(x) ≤ f(y).
(ii) For all x ∈ R we have f ′(x) ≥ 0.
b) I claim that Proposition 1.6 is the discrete analogue of part a). Do you see why?

Example 1.7. Let us show that the sequence { lognn }
∞
n=3 is strictly decreasing.

Consider the function f : [1,∞)→ R given by f(x) = log x
x . Then

f ′(x) =
x · 1x − log x · 1

x2
=

1− log x

x2
.

Thus f ′(x) < 0 ⇐⇒ 1− log x < 0 ⇐⇒ log x > 1 ⇐⇒ x > e. Thus f is strictly
decreasing on [e,∞) so {xn}∞n=3 = {f(n)}∞n=3 is strictly decreasing.

This example illustrates something else: many naturally occurring sequences are not
increasing or decreasing for all values of n, but are eventually increaasing/decreasing:
that is, they become increasing or decreasing upon omitting some finite number of
initial terms of the sequence. Since we are mostly interested in the limiting behav-
ior of sequences here, being eventually monotone is just as good as being monotone.

Speaking of limits of monotone sequences...let’s. It turns out that such sequences
are especially well-behaved, as catalogued in the following simple result.

Theorem 1.8. Let {xn}∞n=1 be an increasing sequence in an ordered field F .
a) If xn → L, then L is the least upper bound of the term set X = {xn : n ∈ Z+}.
b) Conversely, if the term set X = {xn : n ∈ Z+} has a least upper bound L ∈ F ,
then xn → L.
c) Suppose that some subsequence xnk converges to L. Then also the original se-
quence xn converges to L.

Proof. a) First we claim that L = limn→∞ xn is an upper bound for the term
set X. Indeed, assume not: then there exists N ∈ Z+ such that L < xN . But since
the sequence is increasing, this implies that for all n ≥ N , L < xN ≤ xn. Thus if
we take ε = xN − L, then for no n ≥ N do we have |xn − L| < ε, contradicting
our assumption that xn → L. Second we claim that L is the least upper bound,
and the argument for this is quite similar: suppose not, i.e., that there is L′ such
that for all n ∈ Z+, xn ≤ L′ < L. Let ε = L − L′. Then for no n do we have
|xn − L| < ε, contradicting our asumption that xn converges to L.
b) Let ε > 0. We need to show that for all but finitely many n ∈ Z+ we have
−ε < L − xn < ε. Since L is the least upper bound of X, in particular L ≥ xn
for all n ∈ Z+, so L − xn ≥ 0 > −ε. Next suppose that there are infinitely many
terms xn with L− xn ≥ ε, or L ≥ xn + ε. But if this inequality holds for ifninitely
many terms of the sequence, then because xn is increasing, it holds for all terms of
the sequence, and this implies that L− ε ≥ xn for all n, so that L− ε is a smaller
upper bound for X than L, contradiction.
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c) By part a) applied to the subsequence {xnk}, we have that L is the least upper
bound for {xnk : k ∈ Z+}. But as above, since the sequence is increasing, the
least upper bound for this subsequence is also a least upper bound for the original
sequence {xn}. Therefore by part b) we have xn → L. �

Exercise 1.5. State and prove an analogue of Theorem 1.8 for decreasing
sequences.

Theorem 1.8 makes a clear connection between existence of least upper bounds in
an ordered field F and limits of monotone sequences in F . In fact, we deduce the
following important fact almost immediately.

Theorem 1.9. (Monotone Sequence Lemma) Let F be an ordered field satisfy-
ing (LUB): every nonempty, bounded above subset has a least upper bound. Then:
a) Every bounded increasing sequence converges to its least upper bound.
b) Every bounded decreasing sequence converges to its greatest upper bound.

Proof. a) If {xn} is increasing and bounded above, then the term set X =
{xn : n ∈ Z+} is nonempty and bounded above, so by (LUB) it has a least upper
bound L. By Theorem 1.8b), xn → L.
b) We can either reduce this to the analogue of Theorem 1.8 for decreasing sequences
(c.f. Exercise X.X) or argue as follows: if {xn} is bounded and increasing, then
{−xn} is bounded and increasing, so by part a) −xn → L, where L is the least
upper bound of the term set −X = {−xn : n ∈ Z+. Since L is the least upper
bound of −X, −L is the greatest lower bound of X and xn → −L. �

We can go further by turning the conclusion of Theorem 1.9 into axioms for an
ordered field F . Namely, consider the following conditions on F :

(MSA) An increasing sequence in F which is bounded above is convergent.
(MSB) A decreasing sequence in F which is bounded below is convergent.

Comment: The title piece of the distinguished Georgian writer F. O’Connor’s1

last collection of short stories is called Everything That Rises Must Converge. De-
spite the fact that she forgot to mention boundedness, (MSA) inevitably makes me
think of her, and thus I like to think of it as the Flannery O’Connor axiom.
But this says more about me than it does about mathematics.

Proposition 1.10. An ordered field F satisfies (MSA) iff it satisfies (MSB).

Exercise 1.6. Prove Proposition 1.10.

We may refer to either or both of the axioms (MSA), (MSB) as the “Monotone
Sequence Lemma”, although strictly speaking these are properties of a field, and
the Lemma is that these properties are implied by property (LUB).

Here is what we know so far about these axioms for ordered fields: the least
upper bound axiom (LUB) is equvialent to the greatest lower bound axiom (GLB);
either of these axioms implies (MSA), which is equivalent to (MSB). Symbolically:

(LUB) ⇐⇒ (GLB) =⇒ (MSA) ⇐⇒ (MSB).

1Mary Flannery O’Connor, 1925-1964
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Our next order of business is to show that in fact (MSA)/(MSB) implies (LUB)/(GLB).
For this we need a preliminary result.

Proposition 1.11. An ordered field satisfying the Monotone Sequence Lemma
is Archimedean.

Proof. We prove the contrapositive: let F be a non-Archimedean ordered
field. Then the sequence xn = n is increasing and bounded above. Suppose that it
were convergent, say to L ∈ F . By Theorem 1.8, L must be the least upper bound
of Z+. But this is absurd: if n ≤ L for all n ∈ Z+ then n + 1 ≤ L for all n ∈ Z+

and thus n ≤ L− 1 for all n ∈ Z+, so L− 1 is a smaller upper bound for Z+. �

Theorem 1.12. The following properties of an ordered field are equivalent:
(ii) The greatest lower bound axiom (GLB).
(ii) The least upper bound axiom (LUB).
(iii) Every increasing sequence which is bounded above is convergent (MSA).
(iv) Everu decreasing sequence which is bounded below is convergent (MSB).

Proof. Since we have already shown (i) ⇐⇒ (ii) =⇒ (iii) ⇐⇒ (iv), it will
suffice to show (iv) =⇒ (i). So assume (MSB) and let S ⊂ R be nonempty and
bounded above by M0.
claim For all n ∈ Z+, there exists yn ∈ S such that for any x ∈ S, x ≤ yn + 1

n .

Proof of claim: Indeed, first choose any element z1 of S. If for all x ∈ S, x ≤ z1+ 1
n ,

then we may put yn = z1. Otherwise there exists z2 ∈ S with z2 > z1 + 1
n . If for

all x ∈ S, x ≤ z2 + 1
n , then we may put yn = z2. Otherwise, there exists z3 ∈ S

with z3 > z2 + 1
n . If this process continues infinitely, we get a sequence with

zk ≥ z1 + k−1
n . But by Proposition 1.11, F is Archimedean, so that for sufficiently

large k, zk > M , contradiction. Therefore the process musts terminate and we may
take yn = zk for sufficiently large k.
Now we define a sequence of upper bounds {Mn}∞n=1 of S as follows: for all n ∈ Z+,
Mn = min(Mn−1, yn + 1

n ). This is a decreasing sequence bounded below by any
element of S, so by (MSB) it converges, say to M , and by Theorem 1.8a) M is
the greatest lower bound of the set {Mn}. Moreover M must be the least upper
bound of S, since again by the Archimedean nature of the order, for any m < M ,
for sufficiently large n we have m+ 1

n < M ≤Mn ≤ yn + 1
n and thus m < yn. �

We now have four important and equivalent properties of an ordered field: (LUB),
(GLB), (MSA) and (MSB). It is time to make a new piece of terminology for an
ordered field that satisfies any one, and hence all, of these equivalent properties.
Let us say – somewhat mysteriously, but following tradition – that such an ordered
field is Dedekind complete. As we go on we will find a similar pattern with
respect to many of the key theorems in this chapter: (i) in order to prove them we
need to use Dedekind completeness, and (ii) in fact assuming that the conclusion of
the theorem holds in an ordered field implies that the field is Dedekind complete.
In particular, all of these facts hold in R, and what we are trying to say is that
many of them hold only in R and in no other ordered field.

3. The Bolzano-Weierstrass Theorem

Lemma 1.13. (Rising Sun) Each infinite sequence has a monotone subsequence.
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Proof. Let us say that m ∈ Z+ is a peak of the sequence {an} if for all
n > m, we have an < am. Suppose first that there are infinitely many peaks. Then
any sequence of peaks forms a strictly decreasing subsequence, hence we have found
a monotone subsequence. So suppose on the contrary that there are only finitely
many peaks, and let N ∈ N be such that there are no peaks n ≥ N . Since n1 = N
is not a peak, there exists n2 > n1 with an2

≥ an1
. Similarly, since n2 is not a peak,

there exists n3 > n2 with an3 ≥ an2 . Continuing in this way we construct an infinite
(not necessarily strictly) increasing subsequence an1 , an2 , . . . , ank , . . .. Done! �

I learned Lemma 1.13 (with its suggestive name) from Evangelos Kobotis in my first
quarter of college at the University of Chicago (1994). It seems that this argument
first appeared in a short note of Newman and Parsons [NP88].

Theorem 1.14. (Bolzano2-Weierstrass3) Every bounded sequence of real num-
bers admits a convergent subsequence.

Proof. By the Rising Sun Lemma, every real sequence admits a monotone
subsequence which, as a subsequence of a bounded sequence, is bounded. By the
Monotone Sequence Lemma, every bounded monotone sequence converges. QED!

�

Remark: Thinking in terms of ordered fields, we may say that an ordered field
F has the Bolzano-Weierstrass Property if every bounded sequence in F ad-
mits a convergent subsequence. In this more abstract setting, Theorem 1.14 may
be rephrased as: a Dedekind complete ordered field has the Bolzano-Weierstrass
property. The converse is also true:

Theorem 1.15. An ordered field satisfying the Bolzano-Weierstrass property –
every bounded sequence admits a convergent subsequence – is Dedekind complete.

Proof. One of the equivalent formulations of Dedekind completeness is the
Monotone Sequence Lemma. By contraposition it suffices to show that the negation
of the Monotone Sequence Lemma implies the existence of a bounded sequence with
no convergent subsequence. But this is easy: if the Monotone Sequence Lemma
fails, then there exists a bounded increasing sequence {xn} which does not converge.
We claim that {xn} admits no convergent subsequence. Indeed, suppose that there
exists a subsequence xnk → L. Then by Theorem 1.8, L is the least upper bound of
the subsequence, which must also be the least upper bound of the original sequence.
But an increasing sequence converges iff it admits a least upper bound, so this
contradicts the divergence of {xn}. �

Theorem 1.16. (Supplements to Bolzano-Weierstrass)
a) A real sequence which is unbounded above admits a subsequence diverging to ∞.
b) A real sequence which is unbounded below admits a subsequence diverging to −∞.

Proof. We will prove part a) and leave the task of adapting the given argu-
ment to prove part b) to the reader.

Let {xn} be a real sequence which is unbounded above. Then for every M ∈ R,
there exists at least one n such that xn ≥ M . Let n1 be the least positive integer
such that xn1 > 1. Let n2 be the least positive integer such that xn2 > max(xn1 , 2).

2Bernhard Placidus Johann Nepomuk Bolzano, 1781-1848
3Karl Theodor Wilhelm Weierstrass, 1815-1897
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And so forth: having defined nk, let nk+1 be the least positive integer such that
xnk+1

> max(xnk , k + 1). Then limk→∞ xnk =∞.4 �

4. The Extended Real Numbers

We define the set of extended real numbers to be the usual real number R
together with two elements, ∞ and −∞. We denote the extended real numbers by
[−∞,∞]. They naturally have the structure of an ordered set just by decreeing

∀x ∈ (−∞,∞],−∞ < x,

∀x ∈ [−∞,∞), x <∞.
From a purely order theoretic perspective, this extension process is very satisfactory.

Proposition 1.17. The extended real numbers [−∞,∞] form a complete or-
dered set: every subset has a supremum and an infimum.

Proof. Let S ⊂ [−∞,∞]. If S = ∅, then supS = −∞ and inf S = ∞. If
S 6= ∅, then if S ∩ R is bounded above, then it has a supremum s ∈ R, and we
have s = supS. If S is not bounded above, then supS =∞. Similarly, if S ∩ R is
bounded below, then it has an infimum i ∈ R, and we have i = inf S. If S is not
bounded below, then inf S = i. �

We can also partially extend the addition and multiplication operations to [−∞,∞]
in a way which is compatible with how we compute limits. Namely, we define

∀x ∈ (−∞,∞], x+∞ =∞,

∀x ∈ [−∞,∞), x−∞ = −∞,

∀x ∈ (0,∞), x · ∞ =∞, x · (−∞) = −∞,

∀x ∈ (−∞, 0), x · ∞ = −∞, x · (−∞) =∞.
However some operations need to remain undefined since the corresponding limits
are indeterminate: there is no consistent way to define 0 · (±∞) or ∞−∞.

Exercise 1.7. a) Show that there is no way to extend addition and multipli-
cation on R to binary operations on all of [−∞,∞] so as to make [−∞,∞] into an
ordered field.
b) Show that there is no way to extend addition and multiplication on R to binary
operations on all of [−∞,∞] so as to make [−∞,∞] into a field.

Proposition 1.18. Let {an} be a monotone sequence of extended real numbers.
Then there exists L ∈ [−∞,∞] such that an → L.

Proof. Let S and I be the supremum and infimum of the underlying set of
terms {an | n ∈ Z+}; by Proposition 1.17, both exist in [−∞,∞]. Them: if {an} is
increasing, then an → S, while if {an} is decreasing, then an → I. �

4This is one of these unforunate situations in which the need to spell things out explicitly

and avoid a very minor technical pitfall – namely, making that we are not choosing the same

term of the sequence more than once – makes the proof twice as long and look significantly more
elaborate than it really is. I apologize for that but feel honorbound to present complete, correct

proofs in this course.
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5. Partial Limits

For a real sequence {an}, we say that an extended real number L ∈ [−∞,∞] is a
partial limit of {an} if there exists a subsequence ank such that ank → L.

Lemma 1.19. Let {an} be a real sequence. Suppose that L is a partial limit of
some subsequence of {an}. Then L is also a partial limit of {an}.

Exercise 1.8. Prove Lemma 1.19. (Hint: this comes down to the fact that a
subsequence of a subsequence is itself a subsequence.)

Theorem 1.20. Let {an} be a real sequence.
a) {an} has at least one partial limit L ∈ [−∞,∞].
b) The sequence {an} is convergent iff it has exactly one partial limit L and L is
finite, i.e., L 6= ±∞.
c) an →∞ iff ∞ is the only partial limit.
d) an → −∞ iff −∞ is the only partial limit.

Proof. a) If {an} is bounded, then by Bolzano-Weierstrass there is a finite
partial limit. If {an} is unbounded above, then by Theorem 1.16a) +∞ is a partial
limit. It {an} is unbounded below, then by Theorem 1.16b) −∞ is a partial limit.
Every sequence is bounded, unbounded above or unbounded below (the last two
are not mutually exclusive), so there is always at least one partial limit.
b) Let L ∈ R be the unique partial limit of {an}. We wish to show that an → L.
First observe that {an} must be bounded above and below, for otherwise it would
have an infinite partial limit. So choose M ∈ R such that |an| ≤M for all n.

Now suppose that an does not converge to L: then there exists ε > 0 such that
it is not the case that there exists N ∈ N such that |an − L| < ε for all n ≥ N .
What this means is that there are infinitely many values of n such that |an−L| ≥ ε.
Moreover, since |an − L| ≥ ε means either −M ≤ an ≤ L− ε or L+ ε ≤ an ≤ M ,
there must in fact be in infinite subset S ⊂ N such that either for all n ∈ S we have
an ∈ [−M,L− ε] or for all n ∈ S we have an ∈ [L+ ε,M ].

Let us treat the former case. The reader who understands the argument will
have no trouble adapting to the latter case. Writing the elements of S in increasing
order as n1, n2, . . . , nk, we have shown that there exists a subsequence {ank} all of
whose terms lie in the closed interval [−M,L − ε]. Applying Bolzano-Weierstrass
to this subsequence, we get a subsubsequence (!) ank` which converges to some L′.
We note right away that a subsubsequence of an is also a subsequence of an: we
still have an infinite subset of N whose elements are being taken in increasing order.
Moreover, since every term of ank` is bounded above by L − ε, its limit L′ must

satisfy L′ ≤ L− ε. But then L′ 6= L so the sequence has a second partial limit L′:
contradiction.
c) Suppose an → ∞. Then also every subsequence diverges to +∞, so +∞ is a
partial limit and there are no other partial limits. We will prove the converse via
its contrapositive (the inverse): suppose that an does not diverge to∞. Then there
exists M ∈ R and infinitely many n ∈ Z+ such that an ≤M , and from this it follows
that there is a subsequence {ank} which is bounded above by M . This subsequence
does not have +∞ as a partial limit, hence by part a) it has some partial limit
L < ∞. By Lemma 1.19, L is also a partial limit of the original sequence, so it is
not the case that +∞ is the only partial limit of {an}.
d) Left to the reader to prove, by adapting the argument of part c) or otherwise. �
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Exercise 1.9. Let {xn} be a real sequence. Suppose that:
(i) Any two convergent subsequences converge to the same limit.
(ii) {xn} is bounded.
Show that {xn} is convergent.
(Suggestion: Combine Theorem 1.20b) with the Bolzano-Weierstrass Theorem.)

Exercise 1.10. Let {xn} be a real sequence, and let a ≤ b be extended real
numbers. Suppose that there exists N ∈ Z+ such that for all n ≥ N , a ≤ xn ≤ b.
Show that {an} has a partial limit L with a ≤ L ≤ b.

6. The Limit Supremum and Limit Infimum

For a real sequence {an}, let L be the set of all partial limits of {an}.

We define the limit supremum L of a real sequence to be supL, i.e., the supremum
of the set of all partial limits.

Theorem 1.21. For any real sequence {an} , L is a partial limit of the sequence
and is thus the largest partial limit.

Proof. Case 1: The sequence is unbounded above. Then +∞ is a partial
limit, so L = +∞ is a partial limit.

Case 2: The sequence diverges to −∞. Then −∞ is the only partial limit and
thus L = −∞ is the largest partial limit.

Case 3: The sequence is bounded above and does not diverge to −∞. Then it
has a finite partial L (it may or may not also have −∞ as a partial limit), so
L ∈ (−∞,∞). We need to find a subsequence converging to L.

For each k ∈ Z+, L− 1
k < L, so there exists a subsequence converging to some

L′ > L − 1
k . In particular, there exists nk such that ank > L − 1

k . It follows from
these inequalities that the subsequence ank cannot have any partial limit which
is less than L; moreover, by the definition of L = supL the subsequence cannot
have any partial limit which is strictly greater than L: therefore by the process of
elimination we must have ank → L. �

Similarly we define the limit infimum L of a real sequence to be inf L, i.e., the
infimum of the set of all partial limits. As above, L is a partial limit of the sequence,
i.e., there exists a subsequence ank such that ank → L.

Here is a very useful characterization of the limit supremum of a sequence {an} it is
the unique extended real number L such that for any M > L, {n ∈ Z+ | an ≥M}
is finite, and such that for any m < L, {n ∈ Z+ | an ≥ m} is infinite.

Exercise 1.11. a) Prove the above characterization of the limit supremum.
b) State and prove an analogous characterization of the limit infimum.

Proposition 1.22. For any real sequence an, we have

(1) L = lim
n→∞

sup
k≥n

ak

and

(2) L = lim
n→∞

inf
k≥n

ak.
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Because of these identities it is traditional to write lim sup an in place of L and
lim inf an in place of L.

Proof. As usual, we will prove the statements involving the limit supremum
and leave the analogous case of the limit infimum to the reader.

Our first order of business is to show that limn→∞ supk≥n ak exists as an ex-
tended real number. To see this, define bn = supk≥n ak. The key observation is
that {bn} is decreasing. Indeed, when we pass from a set of extended real numbers
to a subset, its supremum either stays the same or decreased. Now it follows from
Proposition 1.18 that bn → L′ ∈ [−∞,∞].

Now we will show that L = L′ using the characterization of the limit supre-
mum stated above. First suppose M > L′. Then there exists n ∈ Z+ such that
supk≥n ak < M . Thus there are only finitely many terms of the sequence which are

at least M , so M ≥ L. It follows that L′ ≥ L.
On the other hand, suppose m < L′. Then there are infinitely many n ∈ Z+

such that m < an and hence m ≤ L. It follows that L ≤ L′, and thus L = L′. �

The merit of these considerations is the following: if a sequence converges, we have a
number to describe its limiting behavior, namely its limit L. If a sequence diverges
to ±∞, again we have an “extended real number” that we can use to describe
its limiting behavior. But a sequence can be more complicated than this: it may
be highly oscillatory and therefore its limiting behavior may be hard to describe.
However, to every sequence we have now associated two numbers: the limit infimum
L and the limit supremum L, such that

−∞ ≤ L ≤ L ≤ +∞.
For many purposes – e.g. for making upper estimates – we can use the limit
supremum L in the same way that we would use the limit L if the sequence were
convergent (or divergent to ±∞). Since L exists for any sequence, this is very
powerful and useful. Similarly for L.

Corollary 1.23. A real sequence {an} is convergent iff L = L ∈ (−∞,∞).

Exercise 1.12. Prove Corollary 1.23.

7. Cauchy Sequences

Let (F,<) be an ordered field. A sequence {an}∞n=1 in F is Cauchy if for all ε > 0,
there exists N ∈ Z+ such that for all m,n ≥ N , we have |am − an| < ε.

Exercise 1.13. Show that each subsequence of a Cauchy sequence is Cauchy.

Proposition 1.24. In any ordered field, a convergent sequence is Cauchy.

Proof. Suppose an → L. Then there exists N ∈ Z+ such that for all n ≥ N ,
|an − L| < ε

2 . Thus for all m,n ≥ N we have

|an − am| = |(an − L)− (am − L)| ≤ |an − L|+ |am − L| <
ε

2
+
ε

2
= ε. �

Proposition 1.25. In any ordered field, a Cauchy sequence is bounded.

Proof. Let {an} be a Cauchy sequence in the ordered field F . There exists
N ∈ Z+ such that for all m,n ≥ N , |am − an| < 1. Therefore, taking m = N we
get that for all n ≥ N , |an − aN | < 1, so |an| ≤ |aN |+ 1 = M1, say. Moreover put
M2 = max1≤n≤N |an| and M = max(M1,M2). Then for all n ∈ Z+, |an| ≤M . �
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Proposition 1.26. In any ordered field, a Cauchy sequence which admits a
convergent subsequence is itself convergent.

Proof. Let {an} be a Cauchy sequence in the ordered field F and suppose that
there exists a subsequence ank converging to L ∈ F . We claim that an converges
to L. Fix any ε > 0. Choose N1 ∈ Z+ such that for all m,n ≥ N1 we have
|an − am| = |am − an| < ε

2 . Further, choose N2 ∈ Z+ such that for all k ≥ N2 we
have |ank − L| < ε

2 , and put N = max(N1, N2). Then nN ≥ N and N ≥ N2, so

|an − L| = |(an − anN )− (anN − L)| ≤ |an − anN |+ |anN − L| <
ε

2
+
ε

2
= ε. �

Theorem 1.27. Any real Cauchy sequence is convergent.

Proof. Let {an} be a real Cauchy sequence. By Proposition 1.25, {an} is
bounded. By Bolzano-Weierstrass there exists a convergent subeqeuence. Finally,
by Proposition 1.26, this implies that {an} is convergent. �

Theorem 1.28.
For an Archimedean ordered field F , the following are equivalent:
(i) F is Dedekind complete.
(ii) F is sequentially complete: every Cauchy sequence converges.

Proof. The implication (i) =⇒ (ii) is the content of Theorem 1.27, since the
Bolzano-Weierstrass Theorem holds in any ordered field satisfying (LUB).
(ii) =⇒ (i): Let S ⊂ F be nonempty and bounded above, and write U(S) for
the set of least upper bounds of S. Our strategy will be to construct a decreasing
Cauchy sequence in U(S) and show that its limit is supS.

Let a ∈ S and b ∈ U(S). Using the Archimedean property, we choose a negative
integer m < a and a positive integer M > b, so

m < a ≤ b ≤M.

For each n ∈ Z+, we define

Sn = {k ∈ Z | k
2n
∈ U(A) and k ≤ 2nM}.

Every element of Sn lies in the interval [2nm, 2nM ] and 2nM ∈ Sn, so each Sn is
finite and nonempty. Put kn = minSn and an = kn

2n , so 2kn
2n+1 = kn

2n ∈ U(S) wihle
2kn−2
2n+1 = kn−1

2n /∈ U(S). It follows that we have either kn+1 = 2kn or kn+1 = 2kn−1

and thus either an+1 = an or an+1 = an − 1
2n+1 . In particular {an} is decreasing.

For all 1 ≤ m < n we have

0 ≤ am − an = (am − am+1) + (am+1 − am+2) + . . .+ (an−1 − an)

≤ 2−(m+1) + . . .+ 2−n = 2−m.

This shows that {an} is a Cauchy sequence, hence by our assumption on F it
converges to an element L of F .

We claim L = sup(S). Seeking a contradiction we suppose that L /∈ U(S).
Then there exists x ∈ S such that L < x, and thus there exists n ∈ Z+ such that

an − L = |an − L| < x− L.
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It follows that an < x, contradicting an ∈ U(S). So L ∈ U(S). Finally, if there
exists L′ ∈ U(S) with L′ < L, then (using the Archimedean property) choose
n ∈ Z+ with 1

2n < L− L′, and then

an −
1

2n
≥ L− 1

2n
> L′,

so an − 1
2n = kn−1

2n ∈ U(S), contradicting the minimality of kn. �

Remark: The proof of (ii) =⇒ (i) in Theorem 1.28 above is taken from [HS] by
way of [Ha11]. It is rather unexpectedly complicated, but I do not know a simpler
proof at this level. However, if one is willing to introduce the notion of convergent
and Cauchy nets, then one can show first that in an Archimedean ordered field,
the convergence of all Cauchy sequences implies the convergence of all Cauchy nets,
and second use the hypothesis that all Cauchy nets converge to give a proof which
is (in my opinion of course) more conceptually transparent. This is the approach
taken in my (more advanced) notes on Field Theory [FT].

8. Sequentially Complete Non-Archimedean Ordered Fields

We have just seen that in an Archimedean ordered field, the convergence of all
Cauchy sequences holds iff the field satisfies (LUB). This makes one wonder what
happens if the hypothesis of “Archimedean” is dropped. In fact there are many non-
Archimedean (hence not Dedekind complete) fields in which all Cauchy sequences
converge. We will attempt to give two very different examples of such fields here.
We hasten to add that an actual sophomore/junior undergraduate learning about
sequences for the first time should skip past this section and come back to it in
several years’ time (if ever!).

Example 1.29. Let F = R((t)) be the field of formal Laurent series with R-
coefficients: an element of F is a formal sum

∑
n∈Z ant

n where there exists N ∈ Z
such that an = 0 for all n < N . We add such series term by term and multiply
them in the same way that we multiply polynomials. It is not so hard to show that
K is actually a field: we skip this.

We need to equip K with an ordering; equivalently, we need to specify a set of
positive elements. For every nonzero element x ∈ F , we put v(x) to be the smallest
n ∈ Z such that an 6= 0. Then we say that x is positive if the coefficient av(x) of the
smallest nonzero term is a positive real number. It is straightforward to see that the
sum and product of positive elements is positive and that for each nonzero x ∈ F ,
exactly one of x and −x is positive, so this gives an ordering on F in the usual
way: we decree that x < y iff y − x is positive.

We observe that this ordering is non-Archimedean. Indeed, the element 1
t is

positive – its one nonzero coefficient is 1, which is a positive real number – and
infinitely large: for any n ∈ Z, 1

t − n is still positive – recall that we look to the

smallest degree coefficient to check positivity – so 1
t > n for all n.

Next we observe that the set { 1
tn } is unbounded in F . Taking reciprocals, it fol-

lows that the sequence {tn} converges to 0 in K: explicitly, given any ε > 0 – here ε
is not necessarily a real number but any positive element of F ! – for all sufficiently
large n we have that 1

tn >
1
ε , so |tn| = tn < ε. We will use this fact to give a simple

explicit description of all convergent sequences in F . First, realize that a sequence
in F consists of, for each m ∈ Z+ a formal Laurent series xm =

∑
n∈Z am,nt

n,
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so in fact for each n ∈ Z we have a real sequence {am,n}∞m=1. Now consider the
following conditions on a sequence {xm} in K:

(i) There is an integer N such that for all m ∈ Z+ and n < N , am,n = 0, and
(ii) For each n ∈ Z the sequence am,n is eventually constant: i.e., for all sufficiently
large m, am,n = Cn ∈ R. (Because of (i) we must have Cn = 0 for all n < N .)

Then condition (i) is equivalent to boundedness of the sequence.

I claim that if the sequence converges – say xm → x =
∑∞
n=N ant

n ∈ F – then
(i) and (ii) both hold. Indeed convergent sequences are bounded, so (i) holds. Then
for all n ≥ N , am,n is eventually constant in m iff am,n − an is eventually con-
stant in m, so we may consider xm − x instead of xm and thus we may assume
that xm → 0 and try to show that for each fixed n, am,n is eventually equal to 0.
As above, this holds iff for all k ≥ 0, there exists Mk such that for all m ≥ Mk,
|xm| ≤ tk. This latter condition holds iff the coefficient am,n of tn in xn is zero for
all N < k. Thus, for all m ≥Mk, am,−N = am,−N+1 = . . . = am,k−1 = 0, which is
what we wanted to show.

Conversely, suppose (i) and (ii) hold. Then since for all n ≥ N the sequence
am,n is eventually constant, we may define an to be this eventual value, and an
argument very similar to the above shows that xm → x =

∑
n≥N ant

n.

Next I claim that if a sequence {xn} is Cauchy, then it satisfies (i) and (ii) above,
hence is convergent. Again (i) is immediate because every Cauchy sequence is
bounded. The Cauchy condition here says: for all k ≥ 0, there exists Mk such
that for all m,m′ ≥ Mk we have |xm − x′m| ≤ tk, or equivalently, for all n < k,
am,n − am′,n = 0. In other words this shows that for each fixed n < k and all
m ≥Mk, the sequence am,n is constant, so in particular for all n ≥ N the sequence
am,n is eventually constant in m, so the sequence xm converges.

In the above example of a non-Archimedean sequentially complete ordered field,
there were plenty of convergent sequences, but they all took a rather simple form
that enabled us to show that the condition for convergence was the same as the
Cauchy criterion. It is possible for a non-Archimedean field to be sequentially com-
plete in a completely different way: there are non-Archimedean fields for which
every Cauchy sequence is eventually constant. Certainly every eventually constant
sequence is convergent, so such a field F must be sequentially complete!

In fact a certain property will imply that every Cauchy sequence is eventually con-
stant. It is the following: every sequence in F is bounded. This is a “weird”
property for an ordered field to have: certainly no Archimedean ordered field has
this property, because by definition in an Archimedean field the sequence xn = n
is unbounded. And there are plenty of non-Archimedean fields which do not have
this property, for instance the field R((t))) discussed above, in which {t−n} is an
unbounded sequence. Nevertheless there are such fields.

Suppose F is an ordered field in which every sequence is bounded, and let {xn}
be a Cauchy sequence in F . Seeking a contradiction, we suppose that {xn} is not
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eventually constant. Then there is a subsequence which takes distinct values, i.e.,
for all k 6= k′, xnk 6= xnk′ , and a subsequence of a Cauchy sequence is still a Cauchy
sequence. Thus if there is a non-eventually constant Cauchy sequence, there is a
noneventually constant Cauchy sequence with distinct terms, so we may assume
from the start that {xn} has distinct terms. Now for n ∈ Z+, put zn = |xn+1−xn|,
so zn > 0 for all n, hence so is Zn = 1

zn
. By our assumption on K, the sequence Zn

is bounded: there exists α > 0 such that Zn < α for all n. Now put ε = 1
α . Taking

reciprocals we find that for all n ∈ Z+,

|xn+1 − xn| = zn =
1

Zn
>

1

α
= ε.

This shows that the sequence {xn} is not Cauchy and completes the argument.

It remains to construct an ordered field having the property that every sequence is
bounded. At the moment the only constructions I know are wildly inappropriate
for an undergraduate audience. For instance, one can start with the real numbers R
and let K be an ultrapower of R corresponding to a nonprincipal ultrafilter on the
positive integers. Unfortunately even if you happen to know what this means, the
proof that such a field K has the desired property that all sequences are bounded
uses the saturation properties of ultraproducts. There must be a better way to go:
please let me know if you have one.

9. The Stolz-Cesaro Theorem

Theorem 1.30. (Stolz-Cesaro) a) Let {an} and {bn} be real sequences. Suppose
that bn > 0 for all n ∈ Z+ and that limn→∞(b1 + . . .+ bn) =∞. Then

lim inf
an
bn

(A)

≤ lim inf
a1 + . . .+ an
b1 + . . .+ bn

(B)

≤ lim sup
a1 + . . .+ an
b1 + . . .+ bn

(C)

≤ lim sup
an
bn

In particular, if for some L ∈ [−∞,∞] we have an
bn
→ L, then also a1+...+an

b1+...+bn
→ L.

b) Let {an} and {bn} be real sequences. Suppose that {bn} is strictly increasing and
limn→∞ bn =∞. Then

lim inf
an − an−1
bn − bn−1

≤ lim inf
an
bn
≤ lim sup

an
bn
≤ lim sup

an − an−1
bn − bn−1

.

Proof. (G. Nagy) For n ∈ Z+ we put An = a1+. . .+an and Bn = b1+. . .+bn.
a) There are three inequalities here: (A), (B) and (C). Of these, (B) holds for any
real sequence. Moreover, (C) holds for the sequence {an} iff (A) holds for the
sequence {−an}, so it suffices to prove (C). Let L = lim sup an

bn
. If L =∞ there is

nothing to show, so suppose L ∈ [−∞,∞). Let ` > L; then there is N ∈ N such
that for all n > N we have

(3)
an
bn
≤ `.

From (3) it follows that for all n > N we have

An ≤ AN + `(Bn −BN )

and thus

(4)
An
Bn
≤ `+

AN − `BN
Bn

.
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In (4), take n→∞; since Bn →∞, we get

lim sup
a1 + . . .+ an
b1 + . . .+ bn

≤ `.

Since this holds for all ` > L = lim sup an
bn

, we conclude

lim sup
a1 + . . .+ an
b1 + . . .+ bn

≤ L = lim sup
an
bn
.

b) For a sequence {cn}, put c′1 = c1 and put c′n = cn − cn−1 for all n ≥ 2. Then
{cn} is strictly increasing iff c′n > 0 for all n ∈ Z+; moreover, we have

lim
n→∞

(c′1 + . . .+ c′n) = lim
n→∞

cn.

So under the hypotheses of part b), we may apply the result of part a) with {an}
replaced by {a′n} and {bn} replaced by {b′n}, getting the conclusion of part b). �





CHAPTER 2

Real Series

1. Introduction

1.1. Zeno Comes Alive: a historico-philosophical introduction.

Humankind has had a fascination with, but also a suspicion of, infinite processes
for well over two thousand years. Historically, the first kind of infinite process that
received detailed infomation was the idea of adding together infinitely many quan-
titties; or, to put a slightly different emphasis on the same idea, to divide a whole
into infinitely many parts.

The idea that any sort of infinite process can lead to a finite answer has been
deeply unsettling to philosophers going back at least to Zeno,1 who believed that a
convergent infinite process was absurd. Since he had a sufficiently penetrating eye
to see convergent infinite processes all around him, he ended up at the lively con-
clusion that many everyday phenomena are in fact absurd (so, in his view, illusory).

We will get the flavor of his ideas by considering just one paradox, Zeno’s ar-
row paradox. Suppose that an arrow is fired at a target one stadium away. Can
the arrow possibly hit the target? Call this event E. Before E can take place,
the arrow must arrive at the halfway point to its target: call this event E1. But
before it does that it must arrive halfway to the halfway point: call this event E2.
We may continue in this way, getting infinitely many events E1, E2, . . . all of which
must happen before the event E. That infinitely many things can happen before
some predetermined thing Zeno regarded as absurd, and he concluded that the
arow never hits its target. Similarly he deduced that all motion is impossible.

Nowadays we have the mathematical tools to retain Zeno’s basic insight (that a
single interval of finite length can be divided into infinitely many subintervals)
without regarding it as distressing or paradoxical. Indeed, assuming for simplicity
that the arrow takes one second to hit its target and (rather unrealistically) travels
at uniform velocity, we know exactly when these events Ei take place: E1 takes
place after 1

2 seconds, E2 takes place after 1
4 seconds, and so forth: En takes place

after 1
2n seconds. Nevertheless there is something interesting going on here: we

have divided the total time of the trip into infinitely many parts, and the conclu-
sion seems to be that

(5)
1

2
+

1

4
+ . . .+

1

2n
+ . . . = 1.

1Zeno of Elea, ca. 490 BC - ca. 430 BC.

41
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So now we have not a problem not in the philosophical sense but in the mathematical
one: what meaning can be given to the left hand side of (5)? Certainly we ought
to proceed with some caution in our desire to add infinitely many things together
and get a finite number: the expression

1 + 1 + . . .+ 1 + . . .

represents an infinite sequence of events, each lasting one second. Surely the ag-
gregate of these events takes forever.

We see then that we dearly need a mathematical definition of an infinite series
of numbers and also of its sum. Precisely, if a1, a2, . . . is a sequence of real numbers
and S is a real number, we need to give a precise meaning to the equation

a1 + . . .+ an + . . . = S.

So here it is. We do not try to add everything together all at once. Instead, we
form from our sequence {an} an auxiliary sequence {Sn} whose terms represent
adding up the fist n numbers. Precisely, for n ∈ Z+, we define

Sn = a1 + . . .+ an.

The associated sequence {Sn} is said to be the sequence of partial sums of the
sequence {an}; when necessary we call {an} the sequence of terms. Finally, we
say that the infinite series a1 + . . . + an + . . . =

∑∞
n=1 an converges to S – or

has sum S – if limn→∞ Sn = S in the familiar sense of limits of seqeunces. If the
sequence of partial sums {Sn} converges to some number S we say the infinite se-
ries is convergent (or sometimes summable, although this term will not be used
here); if the sequence {Sn} diverges then the infinite series

∑∞
n=1 an is divergent.

Thus the trick of defining the infinite sum
∑∞
n=1 an is to do everything in terms

of the associated sequence of partial sums Sn = a1 + . . .+ an.
In particular by

∑∞
n=1 an =∞ we mean the sequence of partial sums diverges

to ∞, and by
∑∞
n=1 an = −∞ we mean the sequence of partial sums diverges to

−∞. So to spell out the first definition completely,
∑∞
n=1 an =∞ means: for every

M ∈ R there exists N ∈ Z+ such that for all n ≥ N , a1 + . . .+ an ≥M .

Let us revisit the examples above using the formal definition of convergence.

Example 2.1. Consider the infinite series 1+1+ . . .+1+ . . ., in which an = 1
for all n. Then Sn = a1 + . . .+ an = 1 + . . .+ 1 = n, and we conclude

∞∑
n=1

1 = lim
n→∞

n =∞.

Thus this infinite series indeed diverges to infinity.

Example 2.2. Consider 1
2 + 1

4 + . . .+ 1
2n + . . ., in which an = 1

2n for all n, so

(6) Sn =
1

2
+ . . .+

1

2n
.

There is a standard trick for evaluating such finite sums. Namely, multiplying (6)
by 1

2 and subtracting it from (6) all but the first and last terms cancel, and we get

1

2
Sn = Sn −

1

2
Sn =

1

2
− 1

2n+1
,
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and thus

Sn = 1− 1

2n
.

It follows that
∞∑
n=1

1

2n
= lim
n→∞

(1− 1

2n
) = 1.

So Zeno was right!

It is not necessary for the sequence of terms {an} of an infinite series to start with
a1. In our applications it will be almost as common to consider series starting with
a0. More generally, if N is any integer, then by

∑∞
n=N an we mean the sequence of

partial sums aN , aN + aN+1, aN + aN+1 + aN+2, . . ..

1.2. Geometric Series.

Recall that a geometric sequence is a sequence {an}∞n=0 of nonzero real numbers
such that the ratio between successive terms an+1

an
is equal to some fixed number r,

the geometric ratio. In other words, if we write a0 = A, then for all n ∈ N we
have an = Arn. A geometric sequence with geometric ratio r converges to zero if
|r| < 1, converges to A if r = 1 and otherwise diverges.

We now define a geometric series to be an infinite series whose terms form a
geometric sequence, thus a series of the form

∑∞
n=0Ar

n. Geometric series will play
a singularly important role in the development of the theory of all infinite series,
so we want to study them carefully here. In fact this is quite easily done.

Indeed, for n ∈ N, put Sn = a0 + . . . + an = A + Ar + . . . + Arn, the nth partial
sum. It happens that we can give a closed form expression for Sn, for instance using
a technique the reader has probably seen before. Namely, consider what happens
when we multiply Sn by the geometric ratio r: it changes, but in a very clean way:

Sn = A+Ar + . . .+Arn,

rSn = Ar + . . .+Arn +Arn+1.

Subtracting the two equations, we get

(r − 1)Sn = A(rn+1 − 1)

and thus

(7) Sn =

n∑
k=0

Ark = A

(
1− rn+1

1− r

)
.

Note that the division by r− 1 is invalid when r = 1, but this is an especially easy
case: then we have Sn = A+A(1)+. . .+A(1)n = (n+1)A, so that | limn→∞ Sn| =∞
and the series diverges. For r 6= 1, we see immediately from (7) that limn→∞ Sn
exists iff limn→∞ rn exists iff |r| < 1, in which case the latter limit is 0 and thus
Sn → A

1−r . We record this simple computation as a theorem.

Theorem 2.3. Let A and r be nonzero real numbers. Then the geometric series∑∞
n=0Ar

n converges iff |r| < 1, in which case the sum is A
1−r .

Exercise 2.1. Show: for all N ∈ Z, we have
∑∞
n=N Ar

n = ArN

1−r .
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Exercise 2.2. Many ordinary citizens are uncomfortable with the identity

0.999999999999 . . . = 1.

Interpret it as a statement about geometric series, and show that it is correct.

1.3. Telescoping Series.

Example: Consider the series
∑∞
n=1

1
n2+n . We have

S1 =
1

2
,

S2 = S1 + a2 =
1

2
+

1

6
=

2

3
,

S3 = S2 + a3 =
2

3
+

1

12
=

3

4
,

S4 = S3 + a4 =
3

4
+

1

20
=

4

5
.

It certainly seems as though we have Sn = 1− 1
n+1 = n

n+1 for all n ∈ Z+. If this is
the case, then we have

∞∑
n=1

an = lim
n→∞

n

n+ 1
= 1.

How to prove it?

First Proof: As ever, induction is a powerful tool to prove that an identity holds
for all positive integers, even if we don’t really understand why the identity should
hold!. Indeed, we don’t even have to fully wake up to give an induction proof: we
wish to show that for all n ∈ Z+,

(8) Sn =

n∑
k=1

1

k2 + k
=

n

n+ 1
.

Indeed this is true when n = 1: both sides equal 1
2 . Now suppose that (8) holds

for some n ∈ Z+; we wish to show that it also holds for n+ 1. But indeed we may
just calculate:

Sn+1 = Sn +
1

(n+ 1)2 + (n+ 1)

IH
=

n

n+ 1
+

1

n2 + 3n+ 2
=

n

n+ 1
+

1

(n+ 1)(n+ 2)

=
(n+ 2)n+ 1

(n+ 1)(n+ 2)
=

(n+ 1)2

(n+ 1)(n+ 2)
=
n+ 1

n+ 2
.

This proves the result.

As above, this is certainly a way to go, and the general technique will work whenever
we have some reason to look for and successfully guess a simple closed form identity
for Sn. But in fact, as we will see in the coming sections, in practice it is exceedingly
rare that we are able to express the partial sums Sn in a simple closed form. Trying
to do this for each given series would turn out to be a discouraging waste of time.
We need some insight into why the series

∑∞
n=1

1
n2+n happens to work out so nicely.

Well, if we stare at the induction proof long enough we will eventually notice how
convenient it was that the denominator of 1

(n+1)2+(n+1) factors into (n+ 1)(n+ 2).
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Equivalently, we may look at the factorization 1
n2+n = 1

(n+1)(n) . Does this remind

us of anything? I hope so, yes – recall from calculus that every rational function ad-
mits a partial fraction decomposition. In this case, we know there are constants
A and B such that

1

n(n+ 1)
=
A

n
+

B

n+ 1
.

I leave it to you to confirm – in whatever manner seems best to you – that we have

1

n(n+ 1)
=

1

n
− 1

n+ 1
.

This makes the behavior of the partial sums much more clear! Indeed we have

S1 = 1− 1

2
.

S2 = S1 + a2 = (1− 1

2
) + (

1

2
− 1

3
) = 1− 1

3
.

S3 = S2 + a3 = (1− 1

3
) + (

1

3
− 1

4
) = 1− 1

4
,

and so on. This much simplifies the inductive proof that Sn = 1 − 1
n+1 . In fact

induction is not needed: we have that

Sn = a1 + . . .+ an = (1− 1

2
) + (

1

2
− 1

3
) + . . .+ (

1

n
− 1

n+ 1
) = 1− 1

n+ 1
,

the point being that every term except the first and last is cancelled out by some
other term. Thus once again

∑∞
n=1

1
n2+n = limn→∞ 1− 1

n+1 = 1.

Finite sums which cancel in this way are often called telescoping sums, I be-
lieve after those old-timey collapsible nautical telescopes. In general an infinite
sum

∑∞
n=1 an is telescoping when we can find an auxiliary sequence {bn}∞n=1 such

that a1 = b1 and for all n ≥ 2, an = bn − bn−1, for then for all n ≥ 1 we have

Sn = a1 + a2 + . . .+ an = b1 + (b2 − b1) + . . .+ (bn − bn−1) = bn.

But looking at these formulas shows something curious: every infinite series is
telescoping: we need only take bn = Sn for all n! Another, less confusing, way to
say this is that if we start with any infinite sequence {Sn}∞n=1, then there is a unique
sequence {an}∞n=1 such that Sn is the sequence of partial sums Sn = a1 + . . .+ an.
Indeed, the key equations here are simply

S1 = a1,

∀n ≥ 2, Sn − Sn−1 = an,

which tells us how to define the an’s in terms of the Sn’s.

In practice all this seems to amount to the following: if you can find a simple
closed form expression for the nth partial sum Sn (in which case you are very
lucky), then in order to prove it you do not need to do anything so fancy as mathe-
matical induction (or fancier!). Rather, it will suffice to just compute that S1 = a1
and for all n ≥ 2, Sn − Sn−1 = an. This is the discrete analogue of the fact that if
you want to show that

∫
fdx = F – i.e., you already have a function F which you

believe is an antiderivative of f – then you need not use any integration techniques
whatsoever but may simply check that F ′ = f .
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Exercise 2.3. Let n ∈ Z+. We define the nth harmonic number Hn =∑n
k=1

1
k = 1

1 + 1
2 + . . .+ 1

n . Show that for all n ≥ 2, Hn ∈ Q\Z. (Suggestion: more
specifically, show that for all n ≥ 2, when written as a fraction a

b in lowest terms,

then the denominator b is divisible by 2.)2

Exercise 2.4. Let k ∈ Z+. Use the method of telescoping sums to give an
exact formula for

∑∞
n=1

1
n(n+k) in terms of the harmonic number Hk of the previous

exercise.

2. Basic Operations on Series

Given an infinite series
∑∞
n=1 an there are two basic questions to ask:

Question 2.4. For an infinite series
∑∞
n=1 an:

a) Is the series convergent or divergent?
b) If the series is convergent, what is its sum?

It may seem that this is only “one and a half questions” because if the series diverges
we cannot ask about its sum (other than to ask whether it diverges to ±∞ or “due
to oscillation”). However, later on we will revisit this missing “half a question”:
if a series diverges we may ask how rapidly it diverges, or in more sophisticated
language we may ask for an asymptotic estimate for the sequence of partial sums∑N
n=1 an as a function of N as N →∞.

Note that we have just seen an instance in which we asked and answered both
of these questions: for a geometric series

∑∞
n=N cr

n, we know that the series con-

verges iff |r| < 1 and in that case its sum is crN

1−r . We should keep this success
story in mind, both because geometric series are ubiquitous and turn out to play
a distinguished role in the theory in many ways, but also because other examples
of series in which we can answer Question 2.4b) – i.e., determine the sum of a
convergent series – are much harder to come by. Frankly, in a standard course
on infinite series one all but forgets about Question 2.4b) and the game becomes
simply to decide whether a given series is convergent or not. In these notes we try
to give a little more attention to the second question in some of the optional sections.

In any case, there is a certain philosophy at work when one is, for the moment,
interested in determining the convergence / divergence of a given series

∑∞
n=1 an

rather than the sum. Namely, there are certain operations that one can perform
on an infinite series that will preserve the convergence / divergence of the series –
i.e., when applied to a convergent series yields another convergent series and when
applied to a divergent series yields another divergent series – but will in general
change the sum.

The simplest and most useful of these is simply that we may add or remove any
finite number of terms from an infinite series without affecting its convergence. In
other words, suppose we start with a series

∑∞
n=1 an. Then, for any integer N > 1,

consider the series
∑∞
n=N+1 an = aN+1 + aN+2 + . . .. Then the first series con-

verges iff the second series converges. Here is one (among many) ways to show this

2This is a number theory exercise which has, so far as I know, nothing to do with infinite
series. But I am a number theorist...
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formally: write Sn = a1 + . . .+ an and Tn = aN+1 + aN+2 + . . .+ aN+n. Then for
all n ∈ Z+(

N∑
k=1

ak

)
+ Tn = a1 + . . .+ aN + aN+1 + . . .+ aN+n = SN+n.

It follows that if limn→∞ Tn =
∑∞
n=N+1 an exists, then so does limn→∞ SN+n =

limn→∞ Sn =
∑∞
n=1 an exists. Conversely if

∑∞
n=1 an exists, then so does limn→∞

∑N
k=1 ak+

Tn =
∑n
k=1 ak + limn→∞ Tn, hence limn→∞ Tn =

∑∞
n=N+1 an exists.

Similarly, if we are so inclined (and we will be, on occasion), we could add finitely
many terms to the series, or for that matter change finitely many terms of the
series, without affecting the convergence. We record this as follows.

Proposition 2.5. The addition, removal or altering of any finite number of
terms in an infinite series does not affect the convergence or divergence of the series
(though of course it may change the sum of a convergent series).

As the reader has probably already seen for herself, reading someone else’s formal
proof of this result can be more tedious than enlightening, so we leave it to the
reader to construct a proof that she finds satisfactory.

Because the convergence or divergence of a seies
∑∞
n=1 an is not affected by chang-

ing the lower limit 1 to any other integer, we often employ a simplified notation∑
n an when discussing series only up to convergence.

Proposition 2.6. Let
∑∞
n=1 an,

∑∞
n=1 bn be two infinite series, and let α be

any real number.
a) If

∑∞
n=1 an = A and

∑∞
n=1 bn = B are both convergent, then the series

∑∞
n=1 an+

bn is also convergent, with sum A+B.
b) If

∑∞
n=1 an = S is convergent, then so also is

∑∞
n=1 αan, with sum αS.

Proof. a) Let Aan = a1 + . . . + an, Bbn = b1 + . . . + bn and Cn = a1 + b1 +
. . . + an + bn. By definition of convergence of infinite series we have An → Sa
and Bn → B. Thus for any ε > 0, there exists N ∈ Z+ such that for all n ≥ N ,
|An −A| < ε

2 and |Bn −B| < ε
2 . It follows that for all n ≥ N ,

|Cn − (A+B)| = |An +Bn −A−B| ≤ |An −A|+ |Bn −B| ≤
ε

2
+
ε

2
= ε.

b) We leave the case α = 0 to the reader as an (easy) exercise. So suppose that
α 6= 0 and put Sn = a1 + . . .+ an, and our assumption that

∑∞
n=1 an = S implies

that for all ε > 0 there exists N ∈ Z+ such that for all n ≥ N , |Sn − S| < ε
|α| . It

follows that

|αa1 + . . .+ αan − αS| = |α||a1 + . . .+ an − S| = |α||Sn − S| < |α|
(
ε

|α|

)
= ε.

�

Exercise 2.5. Let
∑
n an be an infinite series and α ∈ R.

a) If α = 0, show that
∑
n αan = 0.3

3This is a rare case in which we are interested in the sum of the series but the indexing does
not matter!



48 2. REAL SERIES

b) Suppose that α 6= 0. Show that
∑
n an converges iff

∑
n αan converges. Thus

multiplying every term of a series by a nonzero real number does not affect its
convergence.

Exercise 2.6. Prove the Three Series Principle: let
∑
n an,

∑
n bn,

∑
n cn

be three infinite series with cn = an + bn for all n. If any two of the three series∑
n an,

∑
n bn,

∑
n cn converge, then so does the third.

2.1. The Nth Term Test.

The following result is the first of the “convergence tests” that one encounters
in freshman calculus.

Theorem 2.7. (Nth Term Test) Let
∑
n an be an infinite series. If

∑
n an

converges, then an → 0.

Proof. Let S =
∑∞
n=1 an. Then for all n ≥ 2, an = Sn − Sn−1. Therefore

lim
n→∞

an = lim
n→∞

Sn − Sn−1 = lim
n→∞

Sn − lim
n→∞

Sn−1 = S − S = 0. �

The result is often applied in its contrapositive form: if
∑
n an is a series such that

an 9 0 (i.e., either an converges to some nonzero number, or it does not converge),
then the series

∑
n an diverges.

Warning: The converse of Theorem 2.7 is not valid! It may well be the case
that an → 0 but

∑
n an diverges. Later we will see many examples. Still, when put

under duress (e.g. while taking an exam) many students can will themselves into
believing that the converse might be true. Don’t do it!

Exercise 2.7. Let P (x)
Q(x) be a rational function, i.e., a quotient of polynomials

with real coefficients (and, to be completely precise, such that Q is not the identically
zero polynomial!). The polynomial Q(x) has only finitely many roots, so we may
choose N ∈ Z+ such that for all n ≥ N , Q(x) 6= 0. Show that if the degree of P (x)

is at least at large as the degree of Q(x), then
∑∞
n=N

P (n)
Q(n) is divergent.

2.2. Associativity of infinite sums.

Since we write infinite series as a1 + a2 + . . . + an + . . ., it is natural to won-
der whether the familiar algebraic properties of addition carry over to the context
of infinite sums. For instance, one can ask whether the commutative law holds: if
we were to give the terms of the series in a different order, could this change the
convergence/divergence of the series, or change the sum. This has a surprisingly
complicated answer: yes in general, but no provided we place an additional re-
quirement on the convergence of the series. In fact this is more than we wish to
discuss at the moment and we will come back to the commmutativity problem in
the context of our later discussion of absolute convergence.

What about the associative law: may we at least insert and delete parentheses
as we like? For instance, is it true that the series

a1 + a2 + a3 + a4 + . . .+ a2n−1 + a2n + . . .

is convergent iff the series

(a1 + a2) + (a3 + a4) + . . .+ (a2n−1) + a2n) + . . .
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is convergent? Here it is easy to see that the answer is no: take the geometric series
with r = −1, so

(9) 1− 1 + 1− 1 + . . . .

The sequence of partial sums is 1, 0, 1, 0, . . ., which is divergent. However, if we
group the terms together as above, we get

(1− 1) + (1− 1) + . . .+ (1− 1) + . . . = 0,

so this regrouped series is convergent. This makes one wonder whether perhaps our
definition of convergence of a series is overly fastidious: should we perhaps try to
widen our definition so that the given series converges to 1? In fact this does not
seem fruitful, because a different regrouping of terms leads to a convergent series
with a different sum:

1 + (−1 + 1) + (−1 + 1) + . . .+ (−1 + 1) + . . . = 1.

(In fact there are more permissive notions of summability of a series than the one
we have given, and in this case most of them agree that the right sum to associate
to the series 9 is 1

2 . For instance this was the value associated to the series by the

eminent 18th century analyst Euler.4)

It is not difficult to see that adding parentheses to a series can only help it to
converge. Indeed, suppose we add parentheses in blocks of lengths n1, n2, . . .. For
example, the case of no added parentheses at all is n1 = n2 = . . . = 1 and the two
cases considered above were n1 = n2 = . . . = 2 and n1 = 1, n2 = n3 = . . . = 2.
The point is that adding parentheses has the effect of passing from the sequence
S1, S2, . . . , Sn of partial sums to the subsequence

Sn1 , Sn1+n2 , Sn1+n2+n3 , . . . .

Since we know that any subsequence of a convergent sequence remains convergent
and has the same limiting value, it follows that adding parentheses to a convergent
series is harmless: the series will still converge and have the same sum. On the
other hand, by suitably adding parentheses we can make any series converge to any
partial limit of the sequence of partial sums. Thus it follows from the Bolzano-
Weierstrass theorem that for any series

∑
n an with bounded partial sums it is

possible to add parentheses so as to make the series converge.

The following result gives a condition under which parentheses can be removed
without affecting convergence.

Proposition 2.8. Let
∑∞
n=1 an be a series such that an → 0. Let {nk}∞k=1 be

a bounded sequence of positive integers. Suppose that when we insert parentheses
in blocks of length n1, n2, . . . the series converges to S. Then the original series∑∞
n=1 an converges to S.

Exercise 2.8. Prove Proposition 2.8.

4Leonhard Euler, 1707-1783 (pronounced “oiler”)



50 2. REAL SERIES

2.3. The Cauchy criterion for convergence.

Recall that we proved that a sequence {xn} of real numbers is convergent iff it
is Cauchy: that is, for all ε > 0, there exists N ∈ Z+ such that for all m,n ≥ N we
have |xn − xm| < ε.

Applying the Cauchy condition to the sequence of partial sums {Sn = a1+ . . .+an}
of an infinite series

∑∞
n=1 an, we get the following result.

Proposition 2.9. (Cauchy criterion for convergence of series) An infinite
series

∑∞
n=1 an converges iff: for every ε > 0, there exists N0 ∈ Z+ such that for

all N ≥ N0 and all k ∈ N, |
∑N+k
n=N an| < ε.

Note that taking k = 0 in the Cauchy criterion, we recover the Nth Term Test
for convergence (Theorem 2.7). It is important to compare these two results: the
Nth Term Test gives a very weak necessary condition for the convergence of the
series. In order to turn this condition into a necessary and sufficient condition
we must require not only that an → 0 but also an + an+1 → 0 and indeed that
an + . . . + an+k → 0 for a k which is allowed to be (in a certain precise sense)
arbitrarily large.

Let us call a sum of the form
∑N+k
n=N = aN + aN+1 + . . . + aN+k a finite tail

of the series
∑∞
n=1 an. As a matter of notation, if for a fixed N ∈ Z+ and all k ∈ N

we have |
∑N+k
n=N an| ≤ ε, let us abbreviate this by

|
∞∑
n=N

an| ≤ ε.

In other words the supremum of the absolute values of the finite tails |
∑N+k
n=N an|

is at most ε. This gives a nice way of thinking about the Cauchy criterion.

Proposition 2.10. An infinite series
∑∞
n=1 an converges iff: for all ε > 0,

there exists N0 ∈ Z+ such that for all N ≥ N0, |
∑∞
n=N an| < ε.

In other (less precise) words, an infinite series converges iff by removing sufficiently
many of the initial terms, we can make what remains arbitrarily small.

3. Series With Non-Negative Terms I: Comparison

3.1. The sum is the supremum.

Starting in this section we get down to business by restricting our attention to
series

∑∞
n=1 an with an ≥ 0 for all n ∈ Z+. This simplifies matters considerably

and places an array of powerful tests at our disposal.

Why? Well, assume an ≥ 0 for all n ∈ Z+ and consider the sequence of partial
sums. We have

S1 = a1 ≤ a1 + a2 = S2 ≤ a1 + a2 + a3 = S3,

and so forth. In general, we have that Sn+1−Sn = an+1 ≥ 0, so that the sequence
of partial sums {Sn} is increasing. Applying the Monotone Sequence Lemma we
immediately get the following result.
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Proposition 2.11. Let
∑
n an be an infinite series with an ≥ 0 for all n.

Then the series converges iff the partial sums are bounded above, i.e., iff there
exists M ∈ R such that for all n, a1 + . . . + an ≤ M . Moroever if the series
converges, its sum is precisely the least upper bound of the sequence of partial sums.
If the partial sums are unbounded, the series diverges to ∞.

Because of this, when dealing with series with non-negative terms we may express
convergence by writing

∑
n an <∞ and divergence by writing

∑
n an =∞.

3.2. The Comparison Test.

Example: Consider the series
∑∞
n=1

1
n2n . Its sequence of partial sums is

Tn = 1 ·
(

1

2

)
+

1

2
·
(

1

4

)
+ . . .+

1

n
·
(

1

2n

)
.

Unfortunately we do not (yet!) know a closed form expression for Tn, so it is
not possible for us to compute limn→∞ Tn directly. But if we just want to decide
whether the series converges, we can compare it with the geometric series

∑∞
n=1

1
2n :

Sn =
1

2
+

1

4
+ . . .+

1

2n
.

Since 1
n ≤ 1 for all n ∈ Z+, we have that for all n ∈ Z+, 1

n2n ≤
1
2n . Summing these

inequalities from k = 1 to n gives Tn ≤ Sn for all n. By our work with geometric
series we know that Sn ≤ 1 for all n and thus also Tn ≤ 1 for all n. Therefore our
given series has partial sums bounded above by 1, so

∑∞
n=1

1
n2n ≤ 1. In particular,

the series converges.

Example: conside the series
∑∞
n=1

√
n. Again, a closed form expression for Tn =√

1 + . . . +
√
n is not easy to come by. But we don’t need it: certainly Tn ≥

1+ . . .+1 = n. Thus the sequence of partial sums is unbounded, so
∑∞
n=1

√
n =∞.

Theorem 2.12. (Comparison Test) Let
∑∞
n=1 an,

∑∞
n=1 bn be two series with

non-negative terms, and suppose that an ≤ bn for all n ∈ Z+. Then

∞∑
n=1

an ≤
∞∑
n=1

bn.

In particular: if
∑
n bn <∞ then

∑
n an <∞, and if

∑
n an =∞ then

∑
n bn =∞.

Proof. There is really nothing new to say here, but just to be sure: write

Sn = a1 + . . .+ an, Tn = b1 + . . .+ bn.

Since ak ≤ bk for all k we have Sn ≤ Tn for all n and thus

∞∑
n=1

an = sup
n
Sn ≤ sup

n
Tn =

∞∑
n=1

bn.

The assertions about convergence and divergence follow immediately. �
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3.3. The Delayed Comparison Test.

The Comparison Test is beautifully simple when it works. It has two weaknesses:
first, given a series

∑
n an we need to find some other series to compare it to.

Thus the test will be more or less effective according to the size of our repertoire
of known convergent/divergent series with non-negative terms. (At the moment,
we don’t know much, but that will soon change.) Second, the requirement that
an ≤ bn for all n ∈ Z+ is rather inconveniently strong. Happily, it can be weakened
in several ways, resulting in minor variants of the Comparison Test with a much
wider range of applicability. Here is one for starters.

Example: Consider the series

∞∑
n=0

1

n!
= 1 + 1 +

1

2
+

1

2 · 3
+

1

2 · 3 · 4
+ . . .+

1

2 · 3 · . . . · n
+ . . . .

We would like to show that the series converges by comparison, but what to compare
it to? Well, there is always the geometric series! Observe that the sequence n! grows
faster than any geometric rn in the sense that limn→∞

n!
rn =∞. Taking reciprocals,

it follows that for any 0 < r < 1 we will have 1
n! <

1
rn – not necessarily for all

n ∈ Z+, but at least for all sufficiently large n. For instance, one easily establishes
by induction that 1

n! <
1
2n iff n ≥ 4. Putting an = 1

n! and bn = 1
2n we cannot apply

the Comparison Test because we have an ≥ bn for all n ≥ 4 rather than for all
n ≥ 0. But this objection is more worthy of a bureaucrat than a mathematician:
certainly the idea of the Comparison Test is applicable here:

∞∑
n=0

1

n!
=

3∑
n=0

1

n!
+

∞∑
n=4

1

n!
≤ 8/3 +

∞∑
n=4

1

2n
=

8

3
+

1

8
=

67

24
<∞.

So the series converges. More than that, we still retain a quantitative estimate on
the sum: it is at most (in fact strictly less than, as a moment’s thought will show)
67
24 = 2.79166666 . . .. (Perhaps this reminds you of e = 2.7182818284590452353602874714 . . .,

which also happens to be a bit less than 67
24 . It should! More on this later...)

We record the technique of the preceding example as a theorem.

Theorem 2.13. (Delayed Comparison Test) Let
∑∞
n=1,

∑∞
n=1 bn be two series

with non-negative terms. Suppose that there exists N ∈ Z+ such that for all n > N ,
an ≤ bn. Then

∞∑
n=1

an ≤

(
N∑
n=1

an − bn

)
+

∞∑
n=1

bn.

In particular: if
∑
n bn <∞ then

∑
n an <∞, and if

∑
n an =∞ then

∑
n bn =∞.

Exercise 2.9. Prove Theorem 2.13.

Thus the Delayed Comparison Test assures us that we do not need an ≤ bn for all n
but only for all sufficiently large n. A different issue occurs when we wish to apply
the Comparison Test and the inequalities do not go our way.
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3.4. The Limit Comparison Test.

Theorem 2.14. (Limit Comparison Test) Let
∑
n an,

∑
n bn two series. Sup-

pose that there exists N ∈ Z+ and M ∈ R≥0 such that for all n ≥ N , 0 ≤ an ≤Mbn.
Then if

∑
n bn converges,

∑
n an converges.

Exercise 2.10. Prove Theorem 2.14.

Corollary 2.15. (Calculus Student’s Limit Comparison Test) Let
∑
n an and∑

n bn be two series. Suppose that for all sufficiently large n both an and bn are
positive and limn→∞

an
bn

= L ∈ [0,∞].

a) If 0 < L < ∞, the series
∑
n an and

∑
n bn converge or diverge together (i.e.,

either both convege or both diverge).
b) If L =∞ and

∑
n an converges, then

∑
n bn converges.

c) If L = 0 and
∑
n bn converges, then

∑
n an converges.

Proof. In all three cases we deduce the result from the Limit Comparison
Test (Theorem 2.14).
a) If 0 < L < ∞, then there exists N ∈ Z+ such that 0 < L

2 bn ≤ an ≤ (2L)bn.
Applying Theorem 2.14 to the second inequality, we get that if

∑
n bn converges,

then
∑
n an converges. The first inequality is equivalent to 0 < bn ≤ 2

Lan for all
n ≥ N , and applying Theorem 2.14 to this we get that if

∑
n an converges, then∑

n bn converges. So the two series
∑
n an,

∑
n bn converge or diverge together.

b) If L = ∞, then there exists N ∈ Z+ such that for all n ≥ N , an ≥ bn ≥ 0.
Applying Theorem 2.14 to this we get that if

∑
n converges, then

∑
n bn converges.

c) This case is left to the reader as an exercise. �

Exercise 2.11. Prove Theorem 2.15.

Example: We will show that for all p ≥ 2, the p-series
∑∞
n=1

1
np converges. In

fact it is enough to show this for p = 2, since for p > 2 we have for all n ∈ Z+ that
n2 < np and thus 1

np <
1
n2 so

∑
n

1
np ≤

∑
n

1
n2 . For p = 2, we happen to know that

∞∑
n=1

1

n2 + n
=

∞∑
n=1

(
1

n
− 1

n+ 1

)
= 1,

and in particular that
∑
n

1
n2+n converges. For large n, 1

n2+n is close to 1
n2 . Indeed,

the precies statement of this is that putting an = 1
n2+n and bn = 1

n2 we have
an ∼ bn, i.e.,

lim
n→∞

an
bn

= lim
n→∞

n2

n2 + n
= lim
n→∞

1

1 + 1
n

= 1.

Applying Theorem 2.15, we find that
∑
n

1
n2+n and

∑
n

1
n2 converge or diverge

together. Since the former series converges, we deduce that
∑
n

1
n2 converges, even

though the Direct Comparison Test does not apply.

Exercise 2.12. Let P (x)
Q(x) be a rational function such that the degree of the

denominator minus the degree of the numerator is at least 2. Show that
∑∞
n=N

P (n)
Q(n) .

(Recall from Exercise X.X our convention that we choose N to be larger than all
the roots of Q(x), so that every term of the series is well-defined.)

Exercise 2.13. Determine whether each of the following series converges or
diverges:
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a)
∑∞
n=1 sin 1

n2 .

b)
∑∞
n=1 cos 1

n2 .

3.5. Cauchy products I: non-negative terms.

Let
∑∞
n=0 an and

∑∞
n=0 bn be two infinite series. Is there some notion of a product

of these series?

In order to forestall possible confusion, let us point out that many students are
tempted to consider the following “product” operation on series:

(

∞∑
n=0

an) · (
∞∑
n=0

bn)
??
=

∞∑
n=0

anbn.

In other words, given two sequences of terms {an}, {bn}, we form a new sequence of
terms {anbn} and then we form the associated series. In fact this is not a very useful
candidate for the product. What we surely want to happen is that if

∑
n an = A

and
∑
n bn = B then our “product series” should converge to AB. But for in-

stance, take {an} = {bn} = 1
2n . Then

∑∞
n=0 an =

∑∞
n=0 bn = 1

1− 1
2

= 2, so AB = 4,

whereas
∑∞
n=0 anbn =

∑∞
n=0

1
4n = 1

1− 1
4

= 4
3 . Of course 4

3 < 4. What went wrong?

Plenty! We have ignored the laws of algebra for finite sums: e.g.

(a0 + a1 + a2)(b0 + b1 + b2) = a0b0 + a1b1 + a2b2 + a0b1 + a1b0 + a0b2 + a1b1 + a2b0.

The product is different and more complicated – and indeed, if all the terms are
positive, strictly lager – than just a0b0 + a1b1 + a2b2. We have forgotten about
the cross-terms which show up when we multiply one expression involving several
terms by another expression involving several terms.5

Let us try again at formally multiplying out a product of infinite series:

(a0 + a1 + . . .+ an + . . .)(b0 + b1 + . . .+ bn + . . .)

= a0b0 + a0b1 + a1b0 + a0b2 + a1b1 + a2b0 + . . .+ a0bn + a1bn−1 + . . .+ anb0 + . . . .

So it is getting a bit notationally complicated. In order to shoehorn the right hand
side into a single infinite series, we need to either (i) choose some particular ordering
to take the terms akb` on the right hand side, or (ii) collect some terms together
into an nth term.

For the moment we choose the latter: we define for any n ∈ N

cn =

n∑
k=0

akbn−k = a0bn + a1bn−1 + . . .+ anbn

and then we define the Cauchy product of
∑∞
n=0 an and

∑∞
n=0 bn to be the series

∞∑
n=0

cn =

∞∑
n=0

(
n∑
k=0

akbn−k

)
.

5To the readers who did not forget about the cross-terms: my apologies. But it is a common
enough misconception that it had to be addressed.
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Theorem 2.16. Let {an}∞n=0, {bn}∞n=0 be two series with non-negative terms.
Let

∑∞
n=0 an = A and

∑∞
n=0 bn = B. Putting cn =

∑n
k=0 akbn−k we have that∑∞

n=0 cn = AB. In particular, the Cauchy product series converges iff the two
“factor series”

∑
n an and

∑
n bn both converge.

Proof. It is instructive to define yet another sequence, the box product, as
follows: for all N ∈ N,

�N =
∑

0≤i,j≤N

aibj = (a0 + . . .+ aN )(b0 + . . .+ bN ) = ANBN .

Thus by the usual product rule for sequences, we have

lim
N→∞

�N = lim
N→∞

ANBN = AB.

So the box product clearly converges to the product of the sums of the two series.
This suggests that we compare the Cauchy product to the box product. The entries
of the box product can be arranged to form a square, viz:

�N = a0b0 + a0b1 + . . .+ a0bN

+a1b0 + a1b1 + . . .+ a1bN

...

+aNb0 + aNb1 + . . .+ aNbN .

On the other hand, the terms of the Nth partial sum of the Cauchy product can
naturally be arranged in a triangle:

CN = a0b0

+a0b1 + a1b0

+ a0b2 + a1b1 + a2b0

+a0b3 + a1b2 + a2b1 + a3b0

...

+a0bN + a1bN−1 + a2bN−2 + . . .+ aNb0.

Thus while �N is a sum of (N + 1)2 terms, CN is a sum of 1 + 2 + . . .+N + 1 =
(N+1)(N+2)

2 terms: those lying on our below the diagonal of the square. Thus in
considerations involving the Cauchy product, the question is to what extent one
can neglect the terms in the upper half of the square – i.e., those with aibj with
i+ j > N – as N gets large.

Here, since all the ai’s and bj ’s are non-negative and �N contains all the terms
of CN and others as well, we certainly have

CN ≤ �N = ANBN ≤ AB.

Thus C = limN→∞ CN ≤ AB. For the converse, the key observation is that if we
make the sides of the triangle twice as long, it will contain the box: that is, every
term of �N is of the form aibj with 0 ≤ i, j ≤ N ; thus i+ j ≤ 2N so aibj appears
as a term in C2N . It follows that C2N ≥ �N and thus

C = lim
N→∞

CN = lim
N→∞

C2N ≥ lim
N→∞

�N = lim
N→∞

ANBN = AB.
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Having shown both that C ≤ AB and C ≥ AB, we conclude

C =

∞∑
n=0

an = AB =

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
. �

4. Series With Non-Negative Terms II: Condensation and Integration

We have recently been studying criteria for convergence of an infinite series
∑
n an

which are valid under the assumption that an ≥ 0 for all n. In this section we place
ourselves under more restrictive hypotheses: that for all n ∈ N, an+1 ≥ an ≥ 0,
i.e., that the sequence of terms is non-negative and decreasing.

Remark: It is in fact no loss of generality to assume that an > 0 for all n. In-
deed, if not we have aN = 0 for some N and then since the terms are assumed to
be decreasing we have 0 = aN = aN+1 = . . . and our infinite series reduces to the

finite series
∑N−1
n=1 an: this converges!

4.1. The Harmonic Series.

Consider
∑∞
n=1

1
n , the harmonic series. Does it converge? None of the tests

we have developed so far are up to the job: especially, an → 0 so the Nth Term
Test is inconclusive.

Let us take a computational approach by looking at various partial sums. S100

is approximately 5.187. Is this close to a familiar real number? Not really. Next
we compute S150 ≈ 5.591 and S200 ≈ 5.878. Perhaps the partial sums never exceed
6? (If so, the series would converge.) Let’s try a significantly larger partial sums:
S1000 ≈ 7.485, so the above guess is incorrect. Since S1050 ≈ 7.584, we are getting
the idea that whatever the series is doing, it’s doing it rather slowly, so let’s instead
start stepping up the partial sums multiplicatively:

S100 ≈ 5.878.

S103 ≈ 7.4854.

S104 ≈ 9.788.

S105 ≈ 12.090.

Now there is a pattern for the perceptive eye to see: the difference S10k+1 − S10k

appears to be approaching 2.30 . . . = log 10. This points to Sn ≈ log n. If this is so,
then since log n→∞ the series would diverge. I hope you notice that the relation
between 1

n and log n is one of a function and its antiderivative. We ask the reader
to hold this thought until we discuss the integral test a bit late on.

For now, we give the following brilliant and elementary argument due to Cauchy.

Consider the terms arranged as follows:(
1

1

)
+

(
1

2
+

1

3

)
+

(
1

4
+

1

5
+

1

6
+

1

7

)
+ . . . ,

i.e., we group the terms in blocks of length 2k. Now observe that the power of 1
2

that begins each block is larger than every term in the preceding block, so if we
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replace every term in the current block withthe first term in the next block, we only
decrease the sum of the series. But this latter sum is much easier to deal with:
∞∑
n=1

1

n
≥
(

1

2

)
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ . . . =

1

2
+

1

2
+

1

2
+ . . . =∞.

Therefore the harmonic series
∑∞
n=1 diverges.

Exercise 2.14. Determine the convergence of
∑
n

1

n1+ 1
n

.

Exercise 2.15. Let P (x)
Q(x) be a rational function such that the degree of the

denominator is exactly one greater than the degree of the numerator. Show that∑∞
n=N

P (n)
Q(n) diverges.

Collecting Exercises 2.12, 2.13 and 2.14 on rational functions, we get the following
result.

Proposition 2.17. For a rational function P (x)
Q(x) , the series

∑
n=N

P (n)
Q(n) con-

verges iff the degree of the denominator minus the degree of the numerator is at
least two.

4.2. Criterion of Abel-Olivier-Pringsheim.

Theorem 2.18. (Abel6-Olivier-Prinsgheim7 [Ol27]) Let
∑
n an be a convergent

infinite series with an ≥ an+1 ≥ 0 for all n. Then limn→∞ nan = 0.

Proof. (Hardy) By the Cauchy Criterion, for all ε > 0, there exists N ∈ N
such that for all n ≥ N , |

∑2n
k=n+1 ak| < ε. Since the terms are decreasing we get

|na2n| = a2n + . . .+ a2n ≤ an+1 + . . .+ a2n = |
2n∑

k=n+1

an| < ε.

It follows that limn→∞ na2n = 0, hence limn→∞ 2na2n = 2 · 0 = 0. Thus also

(2n+ 1)a2n+1 ≤
(

2n+ 1

2n

)
(2na2n) ≤ 4 (na2n)→ 0.

Thus both the even and odd subsequences of nan converge to 0, so nan → 0. �

In other words, for a series
∑
n an with decreasing terms to converge, its nth term

must be qualitatively smaller than the nth term of the harmonic series.

Exercise 2.16. Let an be a decreasing non-negative sequence, and let n1 <
n2 < . . . < nk be a strictly increasing sequence of positive integers. Suppose that
limk→∞ nkank = 0. Deduce that limn→∞ nan = 0.

Warning: The condition given in Theorem 2.18 is necessary for a series with
decreasing terms to converge, but it is not sufficient. Soon enough we will see that
e.g.

∑
n

1
n logn does not converge, even though n( 1

n logn ) = 1
logn → 0.

6Niels Henrik Abel, 1802-1829
7Alfred Israel Pringsheim, 1850-1941
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4.3. Condensation Tests.

The apparently ad hoc argument used to prove the divergence of the harmonic
series can be adapted to give the following useful test.

Theorem 2.19. (Cauchy Condensation Test) Let
∑∞
n=1 an be an infinite series

such that an ≥ an+1 ≥ 0 for all n ∈ N. Then:
a) We have

∑∞
n=1 an ≤

∑∞
n=0 2na2n ≤ 2

∑∞
n=1 an.

b) Thus the series
∑
n an converges iff the condensed series

∑
n 2na2n converges.

Proof. We have
∞∑
n=1

an = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + . . .

≤ a1 + a2 + a2 + a4 + a4 + a4 + a4 + 8a8 + . . . =

∞∑
n=0

2na2n

= (a1 +a2) + (a2 +a4 +a4 +a4) + (a4 +a8 +a8 +a8 +a8 +a8 +a8 +a8) + (a8 + . . .)

≤ (a1 +a1) + (a2 +a2 +a3 +a3) + (a4 +a4 +a5 +a5 +a6 +a6 +a7 +a7) + (a8 + . . .)

= 2

∞∑
n=1

an.

This establishes part a), and part b) follows immediately. �

The Cauchy Condensation Test is, I think, an a priori interesting result: it says
that, under the given hypotheses, in order to determine whether a series converges
we need to know only a very sparse set of the terms of the series – whatever is
happening in between a2n and a2n+1 is immaterial, so long as the sequence remains
decreasing. This is a very curious phenomenon, and of couse without the hypothesis
that the terms are decreasing, nothing like this could hold.

On the other hand, it may be less clear that the Condensation Test is of any
practical use: after all, isn’t the condensed series

∑
n 2na2n more complicated than

the original series
∑
n an? In fact the opposite is often the case: passing from the

given series to the condensed series preserves the convergence or divergence but
tends to exchange subtly convergent/divergent series for more obviously (or better:
more rapidly) converging/diverging series.

Example: Fix a real number p and consider the p-series8
∑∞
n=1

1
np . Our task

is to find all values of p for which the series converges.

Step 1: The sequence an = 1
np has positive terms. The terms are decreasing iff

the sequence np is increasing iff p > 0. So we had better treat the cases p ≤ 0 sepa-
rately. First, if p < 0, then limn→∞

1
np = limn→∞ n|p| =∞, so the p-series diverges

by the nth term test. Second, if p = 0 then our series is simply
∑
n

1
n0 =

∑
n 1 =∞.

So the p-series “obviously diverges” when p ≤ 0.

8Or sometimes: hyperharmonic series.
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Step 2: Henceforth we assume p > 0, so that the hypotheses of Cauchy’s Conden-
sation Test apply. We get that

∑
n n
−p converges iff

∑
n 2n(2n)−p =

∑
n 2n2−np =∑

n(21−p)n converges. But the latter series is a geometric series with geometric
ratio r = 21−p, so it converges iff |r| < 1 iff 2p−1 > 1 iff p > 1.

Thus we have proved the following important result.

Theorem 2.20. For p ∈ R, the p-series
∑
n

1
np converges iff p > 1.

Example (p-series continued): Let p > 1. By applying part b) of Cauchy’s Con-
densation Test we showed that

∑∞
n=1

1
np < ∞. What about part a)? It gives an

explicit upper bound on the sum of the series, namely
∞∑
n=1

1

np
≤
∞∑
n=0

2n(2n)−p =

∞∑
n=0

(21−p)n =
1

1− 21−p
.

For instance, taking p = 2 we get
∞∑
n=1

1

n2
≤ 1

1− 21−2
= 2.

Using a computer algebra package I get

1 ≤
1024∑
n=1

1

n2
= 1.643957981030164240100762569 . . . .

So it seems like
∑∞
n=1

1
n2 ≈ 1.64, whereas the Condensation Test tells us that it

is at most 2. (Note that since the terms are positive, simply adding up any finite
number of terms gives a lower bound.)

The following exercise gives a technique for using the Condensation Test to es-
timate

∑∞
n=1

1
np to arbitrary accuracy.

Exercise 2.17. Let N be a non-negative integer.
a) Show that under the hypotheses of the Condensation Test we have

∞∑
n=2N+1

an ≤
∞∑
n=0

2na2n+N .

b) Apply part a) to show that for any p > 1,∑
n=2N+1

1

np
≤ 1

2Np (1− 21−p)
.

Example:
∑∞
n=2

1
n logn . an = 1

n logn is positive and decreasing (since its reciprocal

is positive and increasing) so the Condensation Test applies. We get that the
convergence of the series is equivalent to the convergence of∑

n

2n

2n log 2n
=

1

log 2

∑
n

1

n
=∞,

so the series diverges. This is rather subtle: we know that for any ε > 0,
∑
n

1
nnε

converges, since it is a p-series with p = 1 + ε. But log n grows more slowly than
nε for any ε > 0, indeed slowly enough so that replacing nε with log n converts a
convergent series to a divergent one.
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Exercise 2.18. Determine whether the series
∑
n

1
log(n!) converges.

Exercise 2.19. Let p, q, r be positive real numbers.
a) Show that

∑
n

1
n(logn)q converges iff q > 1.

b) Show that
∑
n

1
np(logn)q converges iff p > 1 or (p = 1 and q > 1).

c) Find all values of p, q, r such that
∑
n

1
np(logn)q(log logn)r converges.

The pattern of Exercise 2.18 could be continued indefinitely, giving series which
converge or diverge excruciatingly slowly, and showing that the difference between
convergence and divergence can be arbitarily subtle.

Exercise 2.20. ([H, §182]) Use the Cauchy Condensation Test and Exercise
X.X to give another proof of the Abel-Olivier-Pringsheim Theorem.

It is natural to wonder at the role played by 2n in the Condensation Test. Could
it not be replaced by some other subsequence of N? For instance, could we replace
2n by 3n? It is not hard to see that the answer is yes, but let us pursue a more
ambitious generalization.

Suppose we are given two positive decreasing sequences {an}∞n=1 and {bn}∞n=1

and a subsequence g(1) < g(2) < . . . < g(n) of the positive integers such that
ag(n) = bg(n) for all n ∈ Z+. In other words, we have two monotone sequences
which agree on the subsequence given by g. Under what circumstances can we
assert that

∑
n an <∞ ⇐⇒

∑
n bn <∞? Let us call this the monotone inter-

polation problem. Note that Cauchy’s Condensation Test tells us, among other
things, that the monotone interpolation problem has an affirmative answer when
g(n) = 2n: since

∑
n an <∞ iff

∑
n 2na2n <∞, evidently in order to tell whether a

series
∑
n an with decreasing terms converges, we only need to know a2, a4, a8, . . .:

whatever it is doing in between those values is not enough to affect the convergence.

But quite generally, given two sequences {an}, {bn} as above such that ag(n) = bg(n)
for all n, we can give upper and lower bounds on the size of bn’s in terms of the
ag(n)’s, using exactly the same reasoning we used to prove the Cauchy Condensation
Test. Indeed, putting g(0) = 0, we have

∞∑
n=1

bn = b1 + b2 + b3 + . . .

≤ (g(1)− 1)b1 + (g(2)− g(1))ag(1) + (g(3)− g(2))ag(2) + . . .

= (g(1)− 1)b1 +

∞∑
n=1

(g(n+ 1)− g(n))ag(n)

and also
∞∑
n=1

bn = b1 + b2 + b3 + . . .

≥ (g(1)− g(0))ag(1) + (g(2)− g(1))ag(2) + . . . =

∞∑
n=1

(g(n)− g(n− 1))ag(n).
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Putting these inequalities together we get

(10)

∞∑
n=1

(g(n)−g(n−1))ag(n) ≤
∞∑
n=1

bn ≤ (g(1)−1)b1 +

∞∑
n=1

(g(n+1)−g(n))ag(n).

Let us stop and look at what we have. In the special case g(n) = 2n, then g(n) −
g(n− 1) = 2n−1 and g(n+ 1)− g(n) = 2n = 22n−1, and since these two sequences
have the same order of magnitude, it follows that the third series is finite iff the first
series is finite iff the second series is finite, and we get that

∑
n bn and

∑
n g(n +

1)− g(n)ag(n) =
∑
n(g(n+ 1)− g(n))bg(n) converge or diverge together. Therefore

by imposing the condition that g(n+ 1)− g(n) and g(n)− g(n− 1) agree up to a
constant, we get a more general condensation test originally due to O. Schlömilch.9

Theorem 2.21. (Schlömilch Condensation Test [Sc73]) Let {an} be a sequence
with an ≥ an+1 ≥ 0 for all n ∈ N. Let g : N → N be a strictly increasing function
satisfying Hypothesis (S): there exists M ∈ R such that for all n ∈ N,

∆g(n)

∆g(n− 1)
:=

g(n+ 1)− g(n)

g(n)− g(n− 1)
≤M.

Then the two series
∑
n an,

∑
n (g(n)− g(n− 1)) ag(n) converge or diverge together.

Proof. Indeed, take an = bn for all n in the above discussion, and put A =
(g(1)− 1)a1. Then (10) gives

∞∑
n=1

(g(n)− g(n− 1))ag(n) ≤
∞∑
n=1

an ≤ A+

∞∑
n=1

(g(n+ 1)− g(n))ag(n)

≤ A+M

∞∑
n=1

(g(n)− g(n− 1))ag(n),

which shows that
∑
n an and

∑
n(g(n)−g(n−1))ag(n) converge or diverge together.

�

Exercise 2.21. Use Theorem 2.21 to show that for any sequence
∑
n an with

decreasing terms and any integer r ≥ 2,
∑
n an converges iff

∑
n r

narn converges.

Exercise 2.22. Use Theorem 2.21 with g(n) = n2 to show that the series∑
n

1
2
√
n converges. (It is also possible to do this with a Limit Comparison argument,

but using Theorem 2.21 is a pleasantly clean way to go.)

Note that we did not solve the monotone interpolation problem: we got “distracted”
by Theorem 2.21. It is not hard to use (10) to show that if the difference sequence
(∆g)(n) grows sufficiently rapidly, then the convergence of

∑
n an does not imply

the convergence of the interpolated series
∑
n bn. For instance, take an = 1

n2 ; then
the estimates of (10) correspond to taking the largest possible monotone interpo-
lation bn – but the key here is “possible” – in which case we get∑

n

bn =
∑
n

g(n+ 1)− g(n)

g(n)2
.

9Oscar Xavier Schlömilch, 1823-1901
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We can then define a sequence g(n) so as to ensure that g(n+1)−g(n)
g(n)2 ≥ 1 for all n,

and then the series diverges.10 Some straightforward (and rough) analysis shows
that the function g(n) is doubly exponential in n.

4.4. The Integral Test.

Theorem 2.22. (Integral Test) Let f : [1,∞) → R be a positive decreasing
function, and for n ∈ N put an = f(n). Then

∞∑
n=2

an ≤
∫ ∞
1

f(x)dx ≤
∞∑
n=1

an.

Thus the series
∑
n an converges iff the improper integral

∫∞
1
f(x)dx converges.

Proof. This is a rare opportunity in analysis in which a picture supplies a
perfectly rigorous proof. Namely, we divide the interval [1,∞) into subintervals

[n, n+ 1] for all n ∈ N and for any N ∈ N we compare the integral
∫ N
1
f(x)dx with

the upper and lower Riemann sums associated to the partition {1, 2, . . . , N}. From
the picture one sees immediately that – since f is decreasing – the lower sum is∑N+1
n=2 an and the upper sum is

∑N
n=1 an, so that

N+1∑
n=2

an ≤
∫ N

1

f(x)dx ≤
N∑
n=1

an.

Taking limits as N →∞, the result follows. �

Remark: The Integral Test is due to Maclaurin11 [Ma42] and later in more modern
form to A.L. Cauchy [Ca89]. I don’t know why it is traditional to attach Cauchy’s
name to the Condensation Test but not the Integral Test, but I have preserved the
tradition nevetheless.

It happens that, at least among the series which arise naturally in calculus and
undergraduate analysis, it is usually the case that the Condensation Test can be
successfully applied to determine convergence / divergence of a series iff the Integral
Test can be successfully applied.

Example 2.23. Let us use the Integral Test to determine the set of p > 0 such
that

∑
n

1
np converges. Indeed the series converges iff the improper integral

∫∞
1

dx
xp

is finite. If p 6= 1, then we have∫ ∞
1

dx

xp
=
x1−p

1− p
|x=∞x=1 .

The upper limit is 0 if p− 1 < 0 ⇐⇒ p > 1 and is ∞ if p < 1. Finally,∫ ∞
1

dx

x
= log x

∣∣∣∣∞
x=1

=∞.

So, once again, the p-series converges iff p > 1.

10In analysis one often encounters increasing sequences g(n) in which each term is chosen to
be much larger than the one before it – sufficiently large so as drown out some other quantity.
Such sequences are called lacunary (this is a description rather than a definition) and tend to be

very useful for producing counterexamples.
11Colin Maclaurin, 1698-1746
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Exercise 2.23. Verify that all of the above examples involving the Condensa-
tion Test can also be done using the Integral Test.

Given the similar applicability of the Condensation and Integral Tests, it is perhaps
not so surprising that many texts content themselves to give one or the other. In
calculus texts, one almost always finds the Integral Test, which is logical since often
integration and then improper integation are covered earlier in the same course in
which one studies infinite series. In elementary analysis courses one often develops
sequences and series before the study of functions of a real variable, which is log-
ical because a formal treatment of the Riemann integral is necessarily somewhat
involved and technical. Thus many of these texts give the Condensation Test.

From an aesthetic standpoint, the Condensation Test is more appealing (to me).
On the other hand, under a mild additional hypothesis the Integral Test can be
used to give asymptotic expansions for divergent series.12

Lemma 2.24. Let {an} and {bn} be two sequences of positive real numbers with

an ∼ bn and
∑
n an =∞. Then

∑
n bn =∞ and

∑N
n=1 an ∼

∑N
n=1 bn.

Proof. That
∑
n an = ∞ follows from the Limit Comparison Test. Now fix

ε > 0 and choose K ∈ N such that for all n ≥ K we have an ≤ (1 + ε)bn. Then for
N ≥ K,

N∑
n=1

an =

K−1∑
n=1

an +

N∑
n=K

an ≤
K−1∑
n=1

an +

N∑
n=K

(1 + ε)bn

=

(
K1∑
n=1

an −
K−1∑
n=1

(1 + ε)bn

)
+

N∑
n=1

(1 + ε)bn = Cε,K + (1 + ε)

N∑
n=1

bn,

say, where Cε,K is a constant independent of N . Dividing both sides by
∑N
n=1 bn

and using the fact that limN→∞
∑N
n=1 bn =∞, we find that the quantity

∑N
n=1 an∑N
n=1 bn

is at most 1 + 2ε for all sufficiently large N . Because our hypotheses are symmetric

in
∑
n an and

∑
n bn, we also have that

∑N
n=1 bn∑N
n=1 an

is at most 1 + 2ε for all suffiicently

large N . It follows that

lim
N→∞

∑N
n=1 an∑N
n=1 bn

= 1.

�

Theorem 2.25. Let f : [1,∞)→ R be a positive monotone continuous function.
Suppose the series

∑
n f(n) diverges and that as x→∞, f(x) ∼ f(x+ 1). Then

N∑
n=1

f(n) ∼
∫ N

1

f(x)dx.

Proof. Case 1: Suppose f is increasing. Then, for n ≤ x ≤ n + 1, we have

f(n) ≤
∫ n+1

n
f(x)dx ≤ f(n+ 1), or

1 ≤
∫ n+1

n
f(x)dx

f(n)
≤ f(n+ 1)

f(n)
.

12Our treatment of the next two results owes a debt to K. Conrad’s Estimating the Size of
a Divergent Sum.
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By assumption we have

lim
n→∞

f(n+ 1)

f(n)
= 1,

so by the Squeeze Principle we have

(11)

∫ n+1

n

f(x)dx ∼ f(n).

Applying Lemma 2.24 with an = f(n) and bn =
∫ n+1

n
f(x)dx, we conclude∫ N+1

1

f(x)dx =

N∑
k=1

∫ k+1

k

f(x)dx ∼
N∑
n=1

f(n).

Further, we have

lim
N→∞

∫ N+1

1
f(x)dx∫ N

1
f(x)dx

=
∞
∞
∗
= lim
N→∞

f(N + 1)

f(N)
= 1,

where in the starred equality we have applied L’Hopital’s Rule and then the Fun-
damental Theorem of Calculus. We conclude∫ N

1

f(x)dx ∼
∫ N+1

1

f(x)dx ∼
N∑
n=1

f(n),

as desired.
Case 2: Suppose f is decreasing. Then for n ≤ x ≤ n+ 1, we have

f(n+ 1) ≤
∫ n+1

n

f(x)dx ≤ f(n),

or
f(n+ 1)

f(n)
≤
∫ n+1

n
f(x)dx

f(n)
≤ 1.

Once again, by our assumption that f(n) ∼ f(n + 1) and the Squeeze Principle
we get (11), and the remainder of the proof proceeds exactly as in the previous
case. �

4.5. Euler Constants.

Theorem 2.26. (Maclaurin-Cauchy) Let f : [1,∞)→ R be positive, continuous
and decreasing, with limx→∞ f(x) = 0. Then we may define the Euler constant

γf := lim
N→∞

(
N∑
n=1

f(n)−
∫ N

1

f(x)dx

)
.

In other words, the above limit exists.

Proof. Put

aN =

N∑
n=1

f(n)−
∫ N

1

f(x)dx,

so our task is to show that the sequence {aN} converges. As in the integral test we
have that for all n ∈ Z+

(12) f(n+ 1) ≤
∫ n+1

n

f(x)dx ≤ f(n).
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Using the second inequality in (12) we get

aN = f(N) +

N−1∑
n=1

f(n)−
∫ N

1

f(x)dx ≥
N∑
n=1

(f(n)−
∫ n+1

n

f(x)dx) ≥ 0,

and the first inequality in (12) we get

aN+1 − aN = f(N + 1)−
∫ N+1

N

f(x)dx ≤ 0.

Thus {aN} is decreasing and bounded below by 0, so it converges. �

Example: Let f(x) = 1
x . Then

γ = lim
N→∞

N∑
n=1

f(n)−
∫ N

1

f(x)dx

is the Euler-Mascheroni constant. In the notation of the proof one has a1 =
1 > a2 = 1 + 1/2− log 2 ≈ 0.806 > a3 = 1 + 1/2 + 1/3− log 3 ≈ 0.734, and so forth.
My laptop computer took a couple of minutes to calculate (by sheer brute force)
that

a5×104 = 0.5772256648681995272745120903 . . .

This shows well the limits of brute force calculation even with modern computing
power since this is correct only to the first nine decimal places: in fact the tenth
decimal digit of γ is 9. In fact in 1736 Euler correctly calculated the first 15
decimal digits of γ, whereas in 1790 Lorenzo Mascheroni correctly calculated the
first 19 decimal digits (while incorrectly calculating several more). As of 2009,
29,844,489,545 digits of γ have been computed, by Alexander J. Yee and Raymond
Chan.

The constant γ in fact plays a prominent role in classical analysis and number
theory: it tends to show in asymptotic formulas in the darndest places. For instance,
for a positive integer n, let ϕ(n) be the number of integers k with 1 ≤ k ≤ n such
that no prime number p simultaneously divides both k and n. (The classical name
for ϕ is the totient function, but nowadays most people seem to call it the “Euler
phi function”.) It is not so hard to see that limn→∞ ϕ(n), but function is somewhat
irregular (i.e., far from being monotone) and it is of great interest to give precise
lower bounds. The best lower bound I know is that for all n > 2,

(13) ϕ(n) >
n

eγ log log n+ 3
log logn

.

Note that directly from the definition we have ϕ(n) ≤ n. On the other hand,
taking n to be a product of increasingly many distinct primes, one sees that

lim infn→∞
ϕ(n)
n = 0, i.e., ϕ cannot be bounded below by Cn for any positive

constant n. Given these two facts, (13) shows that the discrepancy between ϕ(n)
and n is very subtle indeed.

Remark: Whether γ is a rational or irrational number is an open question. It
would be interesting to know if there are any ir/rationality results on other Euler
constants γf .

4.6. Stirling’s Formula.
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5. Series With Non-Negative Terms III: Ratios and Roots

We continue our analysis of series
∑
n an with an ≥ 0 for all n. In this section we

introduce two important tests based on a very simple – yet powerful – idea: if for
sufficiently large n an is bounded above by a non-negative constant M times rn for
0 ≤ r < 1, then the series converges by comparison to the convergent geometric
series

∑
nMrn. Conversely, if for sufficiently large n an is bounded below by a

positive constant M times rn for r ≥ 1, then the series diverges by comparison to
the divergent geometric series

∑
nMrn.

5.1. The Ratio Test.

Theorem 2.27. (Ratio Test) Let
∑
n an be a series with an > 0 for all n.

a) Suppose there exists N ∈ Z+ and 0 < r < 1 such that for all n ≥ N , an+1

an
≤ r.

Then the series
∑
n an converges.

b) Suppose there exists N ∈ Z+ and r ≥ 1 such that for all n ≥ N , an+1

an
≥ r. Then

the series
∑
n an diverges.

c) The hypothesis of part a) holds if ρ = limn→∞
an+1

an
exists and is less than 1.

d) The hypothesis of part b) holds if ρ = limn→∞
an+1

an
exists and is greater than 1.

Proof. a) Our assumption is that for all n ≥ N , an+1

an
≤ r < 1. Then

an+2

an
= an+2

an+1

an+1

an
≤ r2. An easy induction argument shows that for all k ∈ N,

aN+k

aN
≤ rk,

so

aN+k ≤ aNrk.
Summing these inequalities gives

∞∑
k=N

ak =

∞∑
k=0

aN+k ≤
∞∑
k=0

aNr
k <∞,

so the series
∑
n an converges by comparison.

b) Similarly, our assumption is that for all n ≥ N , an+1

an
≥ r ≥ 1. As above, it

follows that for all k ∈ N,
aN+k

aN
≥ rk,

so

aN+k ≥ aNrk ≥ aN > 0.

It follows that an 9 0, so the series diverges by the Nth Term Test.
We leave the proofs of parts c) and d) as exercises. �

Exercise 2.24. Prove parts c) and d) of Theorem 2.27.

Example: Let x > 0. We will show that the series
∑∞
n=0

xn

n! converges. (Recall we
showed this earlier when x = 1.) We consider the quantity

an+1

an
=

xn+1

(n+1)!
xn

n!

=
x

n+ 1
.

It follows that limn→∞
an+1

an
= 0. Thus the series converges for any x > 0.
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5.2. The Root Test.

In this section we give a variant of the Ratio Test. Instead of focusing on the
property that the geometric series

∑
n r

n has constant ratios of consecutive terms,
we observe that the sequence has the property that the nth root of the nrth term
is equal to r. Suppose now that

∑
n is a series with non-negative terms with the

property that a
1
n
n ≤ r for some r < 1. Raising both sides to the nth power gives

an ≤ rn, and once again we find that the series converges by comparison to a
geometric series.

Theorem 2.28. (Root Test) Let
∑
n an be a series with an ≥ 0 for all n.

a) Suppose there exists N ∈ Z+ and 0 < r < 1 such that for all n ≥ N , a
1
n
n ≤ r.

Then the series
∑
n an converges.

b) Suppose that for infinitely many positive integers n we have a
1
n
n ≥ 1. Then the

series
∑
n an diverges.

c) The hypothesis of part a) holds if ρ = limn→∞ a
1
n
n exists and is less than 1.

d) The hypothesis of part b) holds if ρ = limn→∞ a
1
n
n exists and is greater than 1.

Exercise 2.25. Prove Theorem 2.28.

5.3. Ratios versus Roots.

It is a fact – somewhat folkloric among calculus students – that the Root Test
is stronger than the Ratio Test. That is, whenever the ratio test succeeds in de-
termining the convergence or divergence of an infinite series, the root test will also
succeed.

In order to explain this result we need to make use of the limit infimum and limit
supremum. First we recast the ratio and root tests in those terms.

Exercise 2.26. Let
∑
n an be a series with positive terms. Put

ρ = lim inf
n→∞

an+1

an
, ρ = lim sup

n→∞

an+1

an
.

a) Show that if ρ < 1, the series
∑
n an converges.

b) Show that if ρ > 1 the series
∑
n an diverges.

Exercise 2.27. Let
∑
n an be a series with non-negative terms. Put

θ = lim sup
n→∞

a
1
n
n .

a) Show that if θ < 1, the series
∑
n an converges.

b) Show that if θ > 1, the series
∑
n an diverges.13

Exercise 2.28. Consider the following conditions on a real sequence {xn}∞n=1:
(i) lim supn→∞ xn > 1.
(ii) For infinitely many n, xn ≥ 1.
(iii) lim supn→∞ xn ≥ 1.
a) Show that (i) =⇒ (ii) =⇒ (iii) and that neither implication can be reversed.
b) Explain why the result of part b) of the previous Exercise is weaker than part b)

13This is not a typo: we really mean the limsup both times, unlike in the previous exercise.
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of Theorem 2.28.

c) Give an example of a non-negative series
∑
n an with θ = lim supn→∞ a

1
n
n = 1

such that
∑
n an =∞.

Exercise 2.29. Let A and B be real numbers with the following property: for
any real number r, if A < r then B ≤ r. Show that B ≤ A.

Proposition 2.29. For any series
∑
n an with positive terms, we have

ρ = lim inf
n→∞

an+1

an
≤ θ = lim inf

n→∞
a

1
n
n ≤ θ = lim sup

n→∞
a

1
n
n ≤ ρ = lim sup

n→∞

an+1

an
.

Proof. Step 1: Since for any sequence {xn} we have lim inf xn ≤ lim supxn,
we certainly have θ ≤ θ.
Step 2: We show that θ ≤ ρ. For this, suppose r > ρ, so that for all sufficiently
large n, an+1

an
≤ r. As in the proof of the Ratio Test, we have an+k < rkan for all

k ∈ N. We may rewrite this as

an+k < rn+k
(an
rn

)
,

or

a
1

n+k

n+k < r
(an
rn

) 1
n+k

.

Now

θ = lim sup
n→∞

a
1
n
n = lim sup

k→∞
a

1
k

n+k ≤ lim sup
k→∞

r
(an
rn

) 1
n+k

= r.

By the preceding exercise, we conclude θ ≤ ρ.
Step 3: We must show that ρ ≤ θ. This is very similar to the argument of Step 2,
and we leave it as an exercise. �

Exercise 2.30. Give the details of Step 3 in the proof of Proposition 2.29.

Now let
∑
n an be a series which the Ratio Test succeeds in showing is convergent:

that is, ρ < 1. Then by Proposition 2.29, we have θ ≤ ρ ≤ 1, so the Root Test also
shows that the series is convegent. Now suppose that the Ratio Test succeeds in
showing that the series is divergent: that is ρ > 1. Then θ ≥ θ ≥ ρ > 1, so the
Root Test also shows that the series is divergent.

Exercise 2.31. Consider the series
∑
n 2−n+(−1)n .

a) Show that ρ = 1
8 and ρ = 2, so the Ratio Test fails.

b) Show that θ = θ = 1
2 , so the Root Test shows that the series converges.

Exercise 2.32. Construct further examples of series for which the Ratio Test
fails but the Root Test succeeds to show either convergence or divergence.

Warning: The sense in which the Root Test is stronger than the Ratio Test is a
theoretical one. For a given relatively benign series, it may well be the case that the
Ratio Test is easier to apply than the Root Test, even though in theory whenever
the Ratio Test works the Root Test must also work.

Example: Consider again the series
∑∞
n=0

1
n! . In the presence of factorials one

should always attempt the Ratio Test first. Indeed

lim
n→∞

an+1

an
= lim
n→∞

1/(n+ 1)!

1/n!
= lim
n→∞

n!

(n+ 1)n!
= lim
n→∞

1

n+ 1
= 0.
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Thus the Ratio Test limit exists (no need for liminfs or limsups) and is equal to 0,
so the series converges. If instead we tried the Root Test we would have to evaluate
limn→∞( 1

n! )
1
n . This is not so bad if we keep our head – e.g. one can show that for

any fixed R > 0 and sufficiently large n, n! > Rn and thus ( 1
n! )

1
n ≤ ( 1

Rn )
1
n = 1

R .

Thus the root test limit is at most 1
R for any positive R, so it is 0. But this is

elaborate compared to the Ratio Test computation, which was immediate. In fact,
turning these ideas around, Proposition 2.29 can be put to the following sneaky
use.

Corollary 2.30. Let {an}∞n=1 be a sequence of positive real numbers. Assume

that limn→∞
an+1

an
→ L ∈ [0,∞]. Then also limn→∞ a

1
n
n = L.

Proof. Indeed, the hypothesis gives that for the infinite series
∑
n an we have

ρ = L, so by Proposition 2.29 we must also have θ = L!14 �

Exercise 2.33. Use Corollary 2.30 to evaluate the following limits:
a) limn→∞ n

1
n .

b) For α ∈ R, limn→∞ n
α
n .

c) limn→∞(n!)
1
n .

5.4. Remarks.

Parts a) and b) of the Ratio Test (Theorem 2.27) are due to d’Alembert.15 They
imply parts c) and d), which is the version of the Ratio Test one meets in calculus,
in which the limit is assumed to exist. As we saw above, it is equivalent to express
d’Alembert’s Ratio Test in terms of lim sups and lim infs: this is the approach
commonly taken in contemporary undergraduate analysis texts. However, our de-
cision to suppress the lim sups and lim infs was clinched by reading the treatment
of these tests in Hardy’s16 classic text [H]. (He doesn’t include the lim infs and lim
sups, his treatment is optimal, and his analytic pedigree is beyond reproach.)

Similarly, parts a) and b) of our Root Test (Theorem 2.28) are due to Cauchy.
The reader can by now appreciate why calling it “Cauchy’s Test” would not be a
good idea. Similar remarks about the versions with lim sups apply, except that this
time, the result in part b) is actually stronger than the statement involving a lim
sup, as Exercise XX explores. Our statement of this part of the Root Test is taken
from [H, §174].

6. Series With Non-Negative Terms IV: Still More Convergence Tests

If you are taking or teaching a first course on infinite series / undergraduate analysis,
I advise you to skip this section! It is rather for those who have seen the basic
convergence tests of the preceding sections many times over and who have started
to wonder what lies beyond.

14There is something decidedly strange about this argument: to show something about a

sequence {an} we reason in terms of the corresponding infinite series
∑
n an. But it works!

15Jean le Rond d’Alembert, 1717-1783
16Godfrey Harold Hardy, 1877-1947



70 2. REAL SERIES

6.1. The Ratio-Comparison Test.

Theorem 2.31. (Ratio-Comparison Test) Let
∑
n an,

∑
n bn be two series

with positive terms. Suppose that there exists N ∈ Z+ such that for all n ≥ N we
have

an+1

an
≤ bn+1

bn
.

Then:
a) If

∑
n bn converges, then

∑
n an converges.

b) If
∑
n an diverges, then

∑
n bn converges.

Proof. As in the proof of the usual Ratio Test, for all k ∈ N,

aN+k

aN
=

aN+k

aN+k−1

aN+k−1

aN+k−2
· · · aN+1

aN
≤ bN+k

bN+k−1

bN+k−1

bN+k−2
· · · bN+1

bN
=
bN+k

bN
,

so

aN+k ≤
(
aN
bN

)
bN+k.

Now both parts follow by the Comparison Test. �

Warning: Some people use the term “Ratio Comparison Test” for what we (and
many others) have called the Limit Comparison Test.

Exercise 2.34. State and prove a Root-Comparison Test.

If we apply Theorem 2.31 by taking bn = rn for r < 1 and then an = rn for r > 1,
we get the usual Ratio Test. It is an appealing idea to choose other series, or fami-
lies of series, plug them into Theorem 2.31, and see whether we get other useful tests.

After the geometric series, perhaps our next favorite class of series with non-negative
terms are the p-series

∑
n

1
np . Let us first take p > 1, so that the p-series converges,

and put bn = 1
np . Then our sufficient condition for the convergence of a series∑

n an with positive terms is

an+1

an
≤ bn+1

bn
=

(n+ 1)−p

n−p
=

(
n

n+ 1

)p
=

(
1− 1

n+ 1

)p
.

Well, we have something here, but what? As is often the case for inequalities, it is
helpful to weaken it a bit to get something that is simpler and easier to apply (and
then perhaps come back later and try to squeeze more out of it).

Lemma 2.32. Let p > 0 and x ∈ [0, 1]. Then :
a) If p > 1, then 1− px ≤ (1− x)p.
b) If p < 1, then 1− px ≥ (1− x)p.

Proof. For x ∈ [0, 1], put f(x) = (1 − x)p − (1 − px). Then f is continuous
on [0, 1], differentiable on [0, 1) with f(0) = 0. Moreover, for x ∈ [0, 1) we have
f ′(x) = p(1− (1− x)p−1). Thus:
a) If p > 1, f ′(x) ≥ 0 for all x ∈ [0, 1), so f is inceasing on [0, 1]. Since f(0) = 0,
f(x) ≥ 0 for all x ∈ [0, 1].
b) If 0 < p < 1, f ′(x) ≤ 0 for all x ∈ [0, 1), so f is decreasing on [0, 1]. Since
f(0) = 0, f(x) ≤ 0 for all x ∈ [0, 1]. �
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Remark: Although it was no trouble to prove Lemma 2.32, we should not neglect
the following question: how does one figure out that such an inequality should exist?

The answer comes from the Taylor series expansion (1+x)α = 1+αx+α(α−1)
2 x2+. . .

– the point being that the last term is positive when α > 1 and negative when
0 < α < 1 – which will be discussed in the following chapter.

We are now in the position to derive a classic test due to J.L. Raabe.17

Theorem 2.33. (Raabe’s Test)
a) Let

∑
n an be a series with positive terms. Suppose that for some p > 1 and all

sufficiently large n we have an+1

an
≤ 1− p

n . Then
∑
n an <∞.

b) Let
∑
n bn be a series with positive terms. Suppose that for some 0 < p < 1 and

all sufficiently large n we have 1− p
n ≤

bn+1

bn
. Then

∑
n bn =∞.

Proof. a) We have an+1

an
≤ 1− p

n ≤ 1− p
n+1 for all sufficiently large n. Applying

Lemma 2.32 with x = 1
n+1 gives

an+1

an
≤ 1− p

n+ 1
≤
(

1− 1

n+ 1

)p
=
bn+1

bn
,

where bn = 1
np . Since

∑
n bn <∞,

∑
n an <∞ by the Ratio-Comparison Test.

b) The proof is close enough to that of part a) to be left to the reader. �

Exercise 2.35. Prove Theorem 2.33b).

Theorem 2.33b) can be strengthened, as follows.

Theorem 2.34. Let
∑
n bn be a series with positive terms such that for all

sufficiently large n, bn ≥ 1− 1
n . Then

∑
n bn =∞.

Proof. We give two proofs.
First proof: Let an = 1

n . Then an+1

an
= 1 − 1

n and
∑
n an =

∑
n

1
n = ∞, so the

result follows from the Ratio-Comparison Test.

Second proof: We may assume bn+1

bn
≥ 1 − 1

n for all n ∈ Z+. This is equivalent

to (n − 1)bn ≤ nbn+1 for all n ∈ Z+, i.e., the sequence nbn+1 is increasing and in
particular nbn+1 ≥ b2 > 0. Thus bn+1 ≥ b2

n and the series
∑
n bn+1 diverges by

comparison to the harmonic series. Of course this means
∑
n bn =∞ as well. �

Exercise 2.36. Show that Theorem 2.34 implies Theorem 2.33b).

Remark: We have just seen a proof of (a stronger form of) Theorem 2.33b) which
avoids the Ratio-Comparison Test. Similarly it is not difficult to give a reasonably
short, direct proof of Theorem 2.33a) depending on nothing more elaborate than
basic comparison. In this way one gets an independent proof of the result that the
p-series

∑
n

1
np diverges for p < 1 and converges for p > 1. However we do not get

a new proof of the p = 1 case, i.e., the divergence of the harmonic series (notice
that this was used, not proved, in the proof of Theorem 2.34). Ratio-like tests have
a lot of trouble with the harmonic series!

The merit of the present approach is rather that it puts Raabe’s test into
a larger context rather than just having it be one more test among many. Our
treatment of Raabe’s test is influenced by [Fa03].

17Joseph Ludwig Raabe, 1801-1859
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6.2. Gauss’s Test.

6.3. Kummer’s Test.

6.4. Hypergeometric Series.

7. Absolute Convergence

7.1. Introduction to absolute convergence.

We turn now to the serious study of series with both positive and negative terms.
It turns out that under one relatively mild additional hypothesis, virtually all of
our work on series with non-negative terms can be usefully applied in this case.
In this section we study this wonderful hypothesis: absolute convergence. (In the
next section we get really serious by studying series when we do not have absolute
convergence. As the reader will see, this leads to surprisingly delicate and intricate
considerations: in practice, we very much hope that our series are absolutely con-
vergent!)

A real series
∑
n an is absolutely convergent if

∑
n |an| converges. Since

∑
n |an|

is a series with non-negative terms, to determine absolute convergence we may use
all the tools of the last three sections. A series

∑
n an which converges but for

which
∑
n |an| diverges is said to be nonabsolutely convergent.18

The terminology absolutely convergent suggests that the convergence of the se-
ries

∑
n |an| is somehow “better” than the convergence of the series

∑
n an. This is

indeed the case, although it is not obvious. But the following result already clarifies
matters a great deal.

Proposition 2.35. Every absolutely convergent series is convergent.

Proof. We shall give two proofs of this important result.
First Proof : Consider the three series

∑
n an,

∑
n |an| and

∑
n an + |an|. Our

hypothesis is that
∑
n |an| converges. But we claim that this implies that

∑
n an +

|an| converges as well. Indeed, consider the expression an + |an|: it is equal to
2an = 2|an| when an is non-negative and 0 when an is negative. In particular the
series

∑
n an + |an| has non-negative terms and

∑
n an + |an| ≤

∑
n 2|an| <∞. So∑

n an + |an| converges. By the Three Series Principle,
∑
n an converges.

Second Proof : The above argument is clever – maybe too clever! Let’s try
something a little more fundamental: since

∑
n |an| converges, for every ε > 0

there exists N ∈ Z+ such that for all n ≥ N ,
∑∞
n=N |an| < ε. Therefore

|
∞∑
n=N

an| ≤
∞∑
n=N

|an| < ε,

and
∑
n an converges by the Cauchy criterion. �

18We warn the reader that the more standard terminology is conditionally convergent.
We will later on give a separate definition for “conditionally convergent” and then it will be
a theorem that a real series is conditionally convergent iff it is nonabsolutely convergent. The

reasoning for this – which we admit will seem abstruse at best to our target audience – is that in
functional analysis one studies convergence and absolute convergence of series in a more general
context, such that nonabsolute converge and conditional convergence may indeed differ.
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Theorem 2.36. (N.J. Diepeveen) For an ordered field (F,<), the following are
equivalent:
(i) F is Cauchy-complete: every Cauchy sequence converges.
(ii) Every absolutely convergent series in F is convergent.

Proof. (i) =⇒ (ii): This was done in the Second Proof of Proposition 2.35.
(ii) =⇒ (i): Let {an} be a Cauchy sequence in F . A Cauchy sequence is con-
vergent iff it admits a convergent subsequence, so it is enough to show that {an}
admits a convergent subsequence. Like any sequence in an ordered set, {an} admits
a subsequence which is either constant, strictly increasing or strictly decreasing.
A constant sequence is convergent, so we need not consider this case; moreover,
a strictly decreasing sequence {an} converges iff the strictly increasing sequence
{−an} converges, so we have reduced to the case in which {an} is strictly increas-
ing:

a1 ≤ a2 ≤ . . . ≤ an ≤ . . . .
For n ∈ Z+, put

bn = an+1 − an.
Then bn > 0, and since {an} is Cauchy, bn → 0; thus we can extract a strictly
decreasing subsequence {bnk}. For k ∈ Z+, put

ck = bnk − bnk+1
.

Then ck > 0 for all k and
∞∑
k=1

ck = bn1
.

Since an is Cauchy, there exists for each k a positive integer mk such that

0 < amk+1
− amk < ck.

For k ∈ Z+, put

d2k−1 = amk+1
− amk , d2k = amk+1

− amk − ck.

We have

−ck < d2k < 0 < d2k−1 < ck,

so
∞∑
i=1

|di| =
∞∑
k=1

d2k−1 − d2k =

∞∑
k=1

ck = bn1
.

At last we get to use our hypothesis that absolutely convergent series are convergent:
it follows that

∑∞
i=1 di converges and

∞∑
i=1

di +

∞∑
k=1

ck =

∞∑
k=1

(d2k−1 + d2k + ck) = 2

( ∞∑
k=1

amk+1 − amk

)
.

Since, again, a Cauchy sequence with a convergent subsequence is itself convergent,

lim
n→∞

an = am1
+

∞∑
k=1

(amk+1
− amk) = am1

+
1

2

(
bn1

+

∞∑
i=1

di

)
.

�

For a more leisurely presentation of Theorem 2.36 and related topics, see [CD15].
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Exercise 2.37. Find a sequence {an}∞n=1 of rational numbers such that
∑∞
n=1 |an|

is a rational number but
∑∞
n=1 an is an irrational number.

As an example of how Theorem 2.35 may be combined with the previous tests to
give tests for absolute convergence, we record the following result.

Theorem 2.37. (Ratio & Root Tests for Absolute Convergence) Let
∑
n an be

a real series.
a) Assume an 6= 0 for all n. If there exists 0 ≤ r < 1 such that for all sufficiently
large n, |an+1

an
| ≤ r, then the series

∑
n an is absolutely convergent.

b) Assume an 6= 0 for all n. If there exists r > 1 such that for all sufficiently large
n, |an+1

an
| ≥ r, the series

∑
n an is divergent.

c) If there exists r < 1 such that for all sufficiently large n, |an|
1
n ≤ r, the series∑

n an is absolutely convergent.

d) If there are infinitely many n for which |an|
1
n ≥ 1, then the series diverges.

Proof. Parts a) and c) are immediate: applying Theorem 2.27 (resp. Theorem
2.28) we find that

∑
n |an| is convergent – and the point is that by Theorem 2.35,

this implies that
∑
n an is convergent.

There is something to say in parts b) and d), because in general just because∑
n |an| = ∞ does not imply that

∑
n an diverges. (We will study this subtlety

later on in detail.) But recall that whenever the Ratio or Root tests establish the
divergence of a non-negative series

∑
n bn, they do so by showing that bn 9 0.

Thus under the hypotheses of parts b) and d) we have |an|9 0, hence also an 9 0
so
∑
n an diverges by the Nth Term Test (Theorem 2.7). �

In particular, for a real series
∑
n an define the following quantities:

ρ = lim
n→∞

|an+1

an
| when it exists,

ρ = lim inf
n→∞

|an+1

an
|,

ρ = lim sup
n→∞

|an+1

an
|,

θ = lim
n→∞

|an|
1
n when it exists,

θ = lim sup
n→∞

|an|
1
n ,

and then all previous material on Ratio and Root Tests applies to all real series.

7.2. Cauchy products II: when one series is absolutely convergent.

Theorem 2.38. Let
∑∞
n=0 an = A and

∑∞
n=0 bn = B be two absolutely conver-

gent series, and let cn =
∑n
k=0 akbn−k. Then the Cauchy product series

∑∞
n=0 cn

is absolutely convergent, with sum AB.

Proof. We have proved this result already when an, bn ≥ 0 for all n. We wish,
of course, to reduce to that case. As far as the convergence of the Cauchy product,
this is completely straightforward: we have

∞∑
n=0

|cn| =
∞∑
n=0

|
n∑
k=0

akbn−k| ≤
∞∑
n=0

n∑
k=0

|ak||bn−k| <∞,
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the last inequality following from the fact that
∑∞
n=0

∑n
k=0 |ak||bn−k| is the Cauchy

product of the two non-negative series
∑∞
n=0 |an| and

∑∞
n=0 |bn|, hence it converges.

Therefore
∑
n |cn| converges by comparison, so the Cauchy product series

∑
n cn

converges.
We now wish to show that limN→∞ CN =

∑∞
n=0 cn = AB. Recall the notation

�N =
∑

0≤i,j≤N

aibj = (a0 + . . .+ aN )(b0 + . . .+ bN ) = ANBN .

We have

|CN −AB| ≤ |�N −AB|+ |�N − CN |
= |ANBN −AB|+ |a1bN |+ |a2bN−1|+ |a2bN |+ . . .+ |aNb1|+ . . .+ |aNbN |

≤ |ANBN −AB|+

( ∞∑
n=0

|an|

)∑
n≥N

|bn|

+

( ∞∑
n=0

|bn|

)∑
n≥N

|an|

 .

Fix ε > 0; since ANBN → AB, for sufficiently large N |ANBN −AB| < ε
3 . Put

A =

∞∑
n=0

|an|, B =

∞∑
n=0

|bn|.

By the Cauchy criterion, for sufficiently large N we have
∑
n≥N |bn| <

ε
3A and∑

n≥N |an| <
ε
3B and thus |CN −AB| < ε. �

While the proof of Theorem 2.38 may seem rather long, it is in fact a rather straight-
forward argument: one shows that the difference between the box product and the
partial sums of the Cauchy product becomes negligible as N tends to infinity. In
less space but with a bit more finesse, one can prove the following stronger result,
a theorem of F. Mertens [Me72].19

Theorem 2.39. (Mertens’ Theorem) Let
∑∞
n=0 an = A be an absolutely con-

vegent series and
∑∞
n=0 bn = B be a convergent series. Then the Cauchy product

series
∑∞
n=0 cn converges to AB.

Proof. (Rudin [R, Thm. 3.50]): define (as usual)

AN =

N∑
n=0

an, BN =

N∑
n=0

bn, CN =

N∑
n=0

cn

and also (for the first time)

βn = Bn −B.
Then for all N ∈ N,

CN = a0b0 + (a0b1 + a1b0) + . . .+ (a0bN + . . .+ aNb0)

= a0BN + a1BN−1 + . . .+ aNB0

= a0(B + βN ) + a1(B + βN−1) + . . .+ aN (B + β0)

= ANB + a0βN + a1βN−1 + . . .+ aNβ0 = ANB + γN ,

say, where γN = a0βN + a1βN−1 + . . . + anβ0. Since our goal is to show that
CN → AB and we know that ANB → AB, it suffices to show that γN → 0. Now,

19Franz Carl Joseph Mertens, 1840-1927
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put α =
∑∞
n=0 |an|. Since BN → B, βN → 0, and thus for any ε > 0 we may choose

N0 ∈ N such that for all n ≥ N0 we have |βn| ≤ ε
2α . Put

M = max
0≤n≤N0

|βn|.

By the Cauchy criterion, for all sufficiently large N , M
∑
n≥N−N0

|an| ≤ ε/2. Then

|γN | ≤ |β0aN + . . .+ βN0
aN−N0

|+ |βN0+1aN−N0−1 + . . .+ βNa0|

≤ |β0aN + . . .+ βN0
aN−N0

|+ ε

2
≤M

 ∑
n≥N−N0

|an|

+
ε

2
≤ ε

2
+
ε

2
= ε.

�

8. Non-Absolute Convergence

We say that a real seris
∑
n an is nonabsolutely convergent if the series con-

verges but
∑
n |an| diverges, thus if it is convergent but not absolutely convergent.20

A series which is nonabsolutely convergent is a more delicate creature than any
we have studied thus far. A test which can show that a series is convergent but
nonabsolutely convergent is necessarily subtler than those of the previous section.
In fact the typical undergraduate student of calculus / analysis learns exactly one
such test, which we give in the next section.

8.1. The Alternating Series Test.

Consider the alternating harmonic series
∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− . . . .

Upon taking the absolute value of every term we get the usual harmonic series,
which diverges, so the alternating harmonic series is not absolutely convergent.
However, some computations with partial sums suggests that the alternating har-
monic series is convergent, with sum log 2. By looking more carefully at the partial
sums, we can find a pattern that allows us to show that the series does indeed
converge. (Whether it converges to log 2 is a different matter, of course, which we
will revisit much later on.)

It will be convenient to write an = 1
n , so that the alternating harmonic series

is
∑
n

(−1)n+1

n+1 . We draw the reader’s attention to three properties of this series:

(AST1) The terms alternate in sign.
(AST2) The nth term approaches 0.
(AST3) The sequence of absolute values of the terms is decreasing:

a1 ≥ a2 ≥ . . . ≥ an ≥ . . . .

20One therefore has to distinguish between the phrases “not absolutely convergent” and

“nonabsolutely convergent”: the former allows the possibility that the series is divergent, whereas

the latter does not. In fact our terminology here is not completely standard. We defend ourselves
grammatically: “nonabsolutely” is an adverb, so it must modify “convergent”, i.e., it describes

how the series converges.
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These are the clues from which we will make our case for convergence. Here it is:
consider the process of passing from the first partial sum S1 = 1 to S3 = 1− 1

2 + 1
3 =

5
6 . We have S3 ≤ 1, and this is no accident: since a2 ≥ a3, subtracting a2 and then
adding a3 leaves us no larger than where we started. But indeed this argument is
valid in passing from any S2n−1 to S2n+1:

S2n+1 = S2n−1 − a2n + a2n+1 ≤ S2n+1.

It follows that the sequence of odd-numbered partial sums {S2n−1} is decreasing.
Moreover,

S2n+1 = (a1 − a2) + (a3 − a4) + . . .+ (a2n−1| − |a2n) + a2n−1 ≥ 0.

Therefore all the odd-numbered terms are bounded below by 0. By the Monotone
Sequence Lemma, the sequence {S2n+1} converges to its greatest lower bound, say
Sodd. On the other hand, just the opposite sort of thing happens for the even-
numbered partial sums:

S2n+2 = S2n + a2n+1 − a2n+2 ≥ S2n

and

S2n+2 = a1 − (a2 − a3)− (a4 − a5)− . . .− (a2n − a2n+1|)− a2n+2 ≤ a1.

Therfore the sequence of even-numbered partial sums {S2n} is increasing and
bounded above by a1, so it converges to its least upper bound, say Seven. Thus we
have split up our sequence of partial sums into two complementary subsequences
and found that each of these series converges. By X.X, the full sequence {Sn}
converges iff Sodd = Seven. Now the inequalities

S2 ≤ S4 ≤ . . . ≤ S2n ≤ S2n+1 ≤ S2n−1 ≤ . . . ≤ S3 ≤ S1

show that Seven ≤ Sodd. Moreover, for any n ∈ Z+ we have

Sodd − Seven ≤ S2n+1 − S2n = a2n+1.

Since a2n+1 → 0, we conclude Sodd = Seven = S, i.e., the series converges.

In fact these inequalities give something else: since for all n we have S2n ≤ S2n+2 ≤
S ≤ S2n+1, it follows that

|S − S2n| = S − S2n ≤ S2n+1 − S2n = a2n+1

and similarly

|S − S2n+1| = S2n+1 − S ≤ S2n+1 − S2n+2 = a2n+2.

Thus the error in cutting off the infinite sum
∑∞
n=1(−1)n+1|an| after N terms is in

absolute value at most the absolute value of the next term: aN+1.

Of course in all this we never used that an = 1
n but only that we had a series

satisfying (AST1) (i.e., an alternating series), (AST2) and (AST3). Therefore the
preceding arguments have in fact proved the following more general result, due
originally due to Leibniz.21

21Gottfried Wilhelm von Leibniz, 1646-1716
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Theorem 2.40. (Lebniz’s Alternating Series Test) Let {an}∞n=1 be a sequence
of non-negative real numbers which is decreasing and such that limn→∞ an = 0.
Then:
a) The associated alternating series

∑
n(−1)n+1an converges.

b) For N ∈ Z+, put

(14) EN = |(
∞∑
n=1

(−1)n+1an)− (

N∑
n=1

(−1)n+1an)|,

the “error” obtained by cutting off the infinite sum after N terms. Then we have
the error estimate

EN ≤ aN+1.

Exercise 2.38. Let p ∈ R: Show that the alternating p-series
∑∞
n=1

(−1)n+1

np

is:
(i) divergent if p ≤ 0,
(ii) nonabsolutely convergent if 0 < p ≤ 1, and
(iii) absolutely convergent if p > 1.

Exercise 2.39. Let P (x)
Q(x) be a rational function. Give necessary and sufficient

conditions for
∑
n(−1)n P (x)

Q(x) to be nonabsolutely convergent.

For any convergent series
∑∞
n=1 an = S, we may define EN as in (14) above:

EN = |S −
N∑
n=1

an|.

Then because the series converges to S, limN→∞EN = 0, and conversely: in other
words, to say that the error goes to 0 is a rephrasing of the fact that the partial
sums of the series converge to S. Each of these statements is (in the jargon of
mathematicians working in this area) soft: we assert that a quantity approaches 0
and N →∞, so that in theory, given any ε > 0, we have EN < ε for all suffuciently
large N . But as we have by now seen many times, it is often possible to show that
EN → 0 without coming up with an explicit expression for N in terms of ε. But
this stronger statement is exactly what we have given in Theorem 2.40b): we have
given an explicit upper bound on EN as a function of N . This type of statement
is called a hard statement or an explicit error estimate: such statements tend
to be more difficult to come by than soft statements, but also more useful to have.
Here, as long as we can similarly make explicit how large N has to be in order for
aN to be less than a given ε > 0, we get a completely explicit error estimate and
can use this to actually compute the sum S to arbitrary accuracy.

Example: We compute
∑∞
n=1

(−1)n+1

n to three decimal place accuracy. (Let us
agree that to “compute a number α to k decimal place accuracy means to com-
pute it with error less than 10−k. A little thought shows that this is not quite
enough to guarantee that the first k decimal places of the approximation are equal
to the first k decimal places of α, but we do not want to occupy ourselves with
such issues here.) By Theorem 2.40b), it is enough to find an N ∈ Z+ such that



8. NON-ABSOLUTE CONVERGENCE 79

aN+1 = 1
N+1 <

1
1000 . We may take N = 1000. Therefore

|
∞∑
n=1

(−1)n+1

n
−

1000∑
n=1

(−1)n+1

n
| ≤ 1

1001
.

Using a software package, we find that

1000∑
n=1

(−1)n+1

n
= 0.6926474305598203096672310589 . . . .

Again, later we will show that the exact value of the sum is log 2, which my software
package tells me is22

log 2 = 0.6931471805599453094172321214.

Thus the actual error in cutting off the sum after 1000 terms is

E1000 = 0.0004997500001249997500010625033.

It is important to remember that this and other error estimates only give upper
bounds on the error: the true error could well be much smaller. In this case we
were guaranteed to have an error at most 1

1001 and we see that the true error is
about half of that. Thus the estimate for the error is reasonably accurate.

Note well that although the error estimate of Theorem 2.40b) is very easy to
apply, if an tends to zero rather slowly (as in this example), it is not especially
efficient for computations. For instance, in order to compute the true sum of the
alternating harmonic series to six decimal place accuracy using this method, we
would need to add up the first million terms: that’s a lot of calculation. (Thus
please be assured that this is not the way that a calculator or computer would
compute log 2.)

Example: We compute
∑∞
n=0

(−1)n
n! to six decimal place accuracy. Thus we need to

choose N such that aN+1 = 1
(N+1)! < 10−6, or equivalently such that (N+1)! > 106.

A little calculation shows 9! = 362, 880 and 10! = 3, 628, 800, so that we may take
N = 9 (but not N = 8). Therefore

|
∞∑
n=0

(−1)n

n!
−

9∑
n=0

(−1)n

n!
| < 1

10!
< 10−6.

Using a software package, we find

9∑
n=0

(−1)n

n!
= 0.3678791887125220458553791887.

In this case the exact value of the series is
1

e
== 0.3678794411714423215955237701

so the true error is

E9 = 0.0000002524589202757401445814516374,

which this time is only very slightly less than the guaranteed

1

10!
= 0.0000002755731922398589065255731922.

22Yes, you should be wondering how it is computing this! More on this later.
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8.2. Dirichlet’s Test.

What lies beyond the Alternating Series Test? We present one more result, an
elegant (and useful) test due originally to Dirichlet.23

Lemma 2.41. (Summation by Parts) Let {an} and {bn} be two sequences. Then
for all m ≤ n we have

n∑
k=m

ak(bk+1 − bk) = (an+1bn+1 − ambm)−
n∑

k=m

(ak+1 − ak)bk+1.

Proof.
n∑

k=m

ak(bk+1 − bk) = ambm+1 + . . .+ anbn+1 − (ambm + . . .+ anbn)

= anbn+1 − ambm − ((am+1 − am)bm+1 + . . .+ (an − an−1)bn)

= anbn+1 − ambn −
n−1∑
k=m

(ak+1 − ak)bk+1

= anbn+1 − ambn + (an+1 − an)bn+1 −
n∑

k=m

(ak+1 − ak)bk+1

= an+1bn+1 − ambm −
n∑

k=m

(ak+1 − ak)bk+1. �

Remark: Lemma 2.41 is a discrete analogue of the familiar integration by parts
formula from calculus:∫ b

a

fg′ = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′g.

(This deserves more elaboration than we are able to give at the moment.)

If we take bn = (−1)n+1, then B2n+1 = 1 for all n and B2n = 0 for all n, so {bn} has
bounded partial sums. Applying Dirichlet’s Test with a sequence an which decreases
to 0 and with this sequence {bn}, we find that the series

∑
n anbn =

∑
n(−1)n+1an

converges. We have recovered the Alternating Series Test!

Theorem 2.42. (Dirichlet’s Test) Let
∑∞
n=1 an,

∑∞
n=1 bn be two infinite series.

Suppose that:
(i) The partial sums Bn = b1 + . . .+ bn are bounded.
(ii) The sequence an is decreasing with limn→∞ an = 0.
Then

∑∞
n=1 anbn is convergent.

Proof. Let M ∈ R be such that |bn| ≤ M for all n ∈ Z+. Fix ε > 0, and
choose N > 1 such that aN < ε

2M . Then for all n > m ≥ N , we have
(15)

|
n∑

k=m

akbk| = |
n∑

k=m

ak(Bk −Bk−1)| SBP
= |an+1Bn − amBm−1 −

n∑
k=m

(ak+1 − ak)Bk|

23Johann Peter Gustav Lejeune Dirichlet, 1805-1859
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≤M

(
an+1 + am +

n∑
k=m

(ak+1 − ak)

)

= M (an+1 + am + an+1 − am) = 2Man+1 ≤ 2MaN < ε.

Therefore
∑
n anbn converges by the Cauchy criterion. �

Exercise 2.40. a) Show: Dirichlet’s Test implies the Alternating Series Test.
b) Show: Dirichlet’s Test implies the Almost Alternating Series Test: let {an}
be a sequence decreasing to 0, and for all n ∈ Z+ let bn ∈ {±1} be a sign sequence
which is “almost alternating” in the sense that the sequence of partial sums Bn =
b1 + . . .+ bn is bounded. Then the series

∑
n bnan converges.

Exercise 2.41. Show that Dirichlet’s generalization of the Alternating Series
Test is “as strong as possible” in the following sense: if {bn} is a sequence of
elements, each ±1, such that the sequence of partial sums Bn = b1 + . . . + bn
is unbounded, then there is a sequence an decreasing to zero such that

∑
n anbn

diverges.

Exercise 2.42. a) Use the trigonometric identity24

cosn =
sin(n+ 1

2 )− sin(n− 1
2 )

2 sin( 1
2 )

to show that the sequence Bn = cos 1 + . . .+ cosn is bounded.
b) Apply Dirichlet’s Test to show that the series

∑∞
n=1

cosn
n converges.

c) Show that
∑∞
n=1

cosn
n is not absolutely convergent.

Exercise 2.43. Show:
∑∞
n=1

sinn
n is nonabsolutely convergent.

Remark: Once we know about series of complex numbers and Euler’s formula
eix = cosx+ i sinx, we will be able to give a “trigonometry-free” proof of the pre-
ceding two exercises.

Dirichlet himself applied his test to establish the convergence of a certain class
of series of a mixed algebraic and number-theoretic nature. The analytic proper-
ties of these series were used to prove his celebrated theorem on prime numbers in
arithmetic progressions. To give a sense of how influential this work has become, in
modern terminology Dirichlet studied the analytic properties of Dirichlet series
associated to nontrivial Dirichlet characters. For more information on this work,
the reader may consult (for instance) [DS].

A real sequence {an} has bounded variation if

∞∑
n=1

|an+1 − an| <∞.

Proposition 2.43. If the real sequence {an} has bounded variation, then it is
convergent.

24An instance of the sum-product identities. Yes, I hardly remember them either.



82 2. REAL SERIES

Proof. Fix ε > 0, and choose N ∈ Z+ such that
∑
n≥N |an+1−an| < ε. Then

for all N ≤ m ≤ n we have

|an−am| = |(an−an−1)+. . .+(am+1−am)| ≤
n−1∑
i=m

|ai+1−ai| ≤
∑
n≥N

|an+1−an| < ε.

Therefore the sequence {an} is Cauchy, hence convergent. �

Theorem 2.44. (Dedekind’s Test) Let {an} be a real sequence with bounded
variation, and let

∑∞
n=1 bn be a convergent real series. Then

∑∞
n=1 anbn converges.

Exercise 2.44. Prove Dedekind’s Test.
(Suggestion: Proceed as in the proof of Dirichlet’s Test, using (15).)

Theorem 2.45. (Abel’s Test) Let {an} be a bounded monotone real sequence,
and let

∑∞
n=1 bn be a convergent real series. Then

∑∞
n=1 anbn converges.

Exercise 2.45.
a) Show that a monotone sequence {an} has bounded variation iff it is bounded.
b) Deduce Abel’s Test from Dedekind’s Test.
c) Deduce Abel’s Test from Dirichlet’s Test.
(Suggestion: In the notation of Abel’s Test, suppose that an → a. Replace {an}
with {an − a} to apply Dirichlet’s Test.)

Exercise 2.46.
a) Let {an} and {bn} be real sequences of bounded variation, and let α, β ∈ R.
Show: {αan + βbn} has bounded variation.
b) Show: if

∑
n an is absolutely convergent, then {an} has bounded variation.

c) Show: for every real sequence {an} there are increasing sequences {bn} and {cn}
such that {an} = {bn} − {cn}.
d) Show: for a real sequence {an}, the following are equivalent:
(i) {an} has bounded variation.
(ii) There are bounded increasing sequences {bn} and {cn} such that {an} = {bn}−
{cn}.

8.3. A divergent Cauchy product.

Recall that we showed that if
∑
n an = A and

∑
n bn = B are convergent se-

ries, at least one of which is absolutely convergent, then the Cauchy product series∑
n cn is convergent to AB. Here we give an example – due to Cauchy! – of a

Cauchy product of two nonabsolutely convergent series which fails to converge.

We will take
∑∞
n=0 an =

∑∞
n=0 bn =

∑∞
n=0

(−1)n√
n+1

. (The series is convergent by

the Alternating Series Test.) The nth term in the Cauchy product is

cn =
∑
i+j=n

(−1)i(−1)j
1√
i+ 1

1√
j + 1

.

The first thing to notice is (−1)i(−1)j = (−1)i+j = (−1)n, so cn is equal to (−1)n

times a sum of positive terms. We have i, j ≤ n so 1√
i+1

, 1√
j+1
≥ 1√

n+1
, and thus

each term in cn has absolute value at least ( 1√
n+1

)2 = 1
n+1 . Since we are summing

from i = 0 to n there are n+ 1 terms, all of the same size, we find |cn| ≥ 1 for all
n. Thus the general term of

∑
n cn does not converge to 0, so the series diverges.
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8.4. Decomposition into positive and negative parts.

For a real number r, we define its positive part

r+ = max(r, 0)

and its negative part
r− = −min(r, 0).

Exercise: Show that for any r ∈ R we have
(i) r = r+ − r− and
(ii) |r| = r+ + r−.

For any real series
∑
n an we have a decomposition∑

n

an =
∑
n

a+n −
∑
n

a−n ,

at least if all three series converge. Let us call
∑
n a

+
n and

∑
n a
−
n the positive

part and negative part of
∑
n an. Let us now suppose that

∑
n an converges. By

the Three Series Principle there are two cases:

Case 1: Both
∑
n a

+
n and

∑
n a
−
n converge. Hence

∑
n |an| =

∑
n(a+n + a−n ) con-

verges: i.e.,
∑
n an is absolutely convergent.

Case 2: Both
∑
n a

+
n and

∑
n a
−
n diverge. Hence

∑
n |an| =

∑
n a

+
n + a−n diverges:

indeed, if it converged, then adding and subtracting
∑
n an we would get that

2
∑
n a

+
n and 2

∑
n a
−
n converge, contradiction. Thus:

Proposition 2.46. If a series
∑
n is absolutely convergent, both its positive

and negative parts converge. If a series
∑
n is nonabsolutely convergent, then both

its positive and negative parts diverge.

Exercise 2.47. Let
∑
n an be a real series.

a) Show that if
∑
n a

+
n converges and

∑
n a
−
n diverges then

∑
n an = −∞.

b) Show that if
∑
n a

+
n diverges and

∑
n a
−
n converges then

∑
n an =∞.

Let us reflect for a moment on this state of affairs: in any nonabsolutely convergent
series we have enough of a contribution from the positive terms to make the series
diverge to ∞ and also enough of a contribution from the negative terms to make
the series diverge to −∞. Therefore if the series converges it is because of a subtle
interleaving of the positive and negative terms, or, otherwise put, because lots of
cancellation occurs between positive and negative terms. This suggests that the
ordering of the terms in a nonabsolutely convergent series is rather important, and
indeed in the next section we will see that changing the ordering of the terms of a
nonabsolutely convergent series can have a dramatic effect.

9. Rearrangements and Unordered Summation

9.1. The Prospect of Rearrangement.

In this section we systematically investigate the validity of the “commutative law”
for infinite sums. Namely, the definition we gave for convergence of an infinite series

a1 + a2 + . . .+ an + . . .
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in terms of the limit of the sequence of partial sums An = a1 + . . . + an makes
at least apparent use of the ordering of the terms of the series. Note that this is
somewhat surprising even from the perspective of infinite sequences: the statement
an → L can be expressed as: for all ε > 0, there are only finitely many terms of the
sequence lying outside the interval (L − ε, L + ε), a description which makes clear
that convergence to L will not be affected by any reordering of the terms of the
sequence. However, if we reorder the terms {an} of an infinite series

∑∞
n=1 an, the

corresponding change in the sequence An of partial sums is not simply a reordering,
as one can see by looking at very simple examples. For instance, if we reorder

1

2
+

1

4
+

1

8
+ . . .+

1

2n
+ . . .

as
1

4
+

1

2
+

1

8
+ . . .+

1

2n
+ . . .

Then the first partial sum of the new series is 1
4 , whereas every nonzero partial sum

of the original series is at least 1
2 .

Thus there is some evidence to fuel suspicion that reordering the terms of an infi-
nite series may not be so innocuous an operation as for that of an infinite seuqence.
All of this discussion is mainly justification for our setting up the “rearrangement
problem” carefully, with a precision that might otherwise look merely pedantic.

Namely, the formal notion of rearrangement of a series
∑∞
n=0 an begins with a

permuation σ of N, i.e., a bijective function σ : N→ N. We define the rearrange-
ment of

∑∞
n=0 an by σ to be the series

∑∞
n=0 aσ(n).

9.2. The Rearrangement Theorems of Weierstrass and Riemann.

The most basic questions on rearrangements of series are as follows.

Question 2.47. Let
∑∞
n=0 an = S is a convergent infinite series, and let σ be

a permutation of N. Then:
a) Does the rearranged series

∑∞
n=0 aσ(n) converge?

b) If it does converge, does it converge to S?

As usual, the special case in which all terms are non-negative is easiest, the case
of absolute convergence is not much harder than that, and the case of nonabsolute
convergence is where all the real richness and subtlety lies.

Indeed, suppose that an ≥ 0 for all n. In this case the sum A =
∑∞
n=0 an ∈ [0,∞

is simply the supremum of the set An =
∑k
n=0 ak of finite sums. More gener-

ally, let S = {n1, . . . , nk} be any finite subset of the natural numbers, and put
AS = an1

+ . . .+ ank . Now every finite subset S ⊂ N is contained in {0, . . . , N} for
some N ∈ N, so for all S, AS ≤ AN for some (indeed, for all sufficiently large) N .
This shows that if we define

A′ = sup
S
AS

as S ranges over all finite subsets of N, then A′ ≤ A. On the other hand, for all
N ∈ N, AN = a0 + . . . + aN = A{0,...,N}: in other words, each partial sum AN
arises as AS for a suitable finite subset S. Therefore A ≤ A′ and thus A = A′.
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The point here is that the description
∑∞
n=0 an = supS AS is manifestly unchanged

by rearranging the terms of the series by any permutation σ: taking S 7→ σ(S)
gives a bijection on the set of all finite subsets of N, and thus

∞∑
n=0

an = sup
S
AS = sup

S
Aσ(S) =

∞∑
n=0

aσ(n).

The case of absolutely convergent series follows rather easily from this.

Theorem 2.48. (Weierstrass) Let
∑∞
n=0 an be an absolutely convergent series

with sum A. Then for every permutation σ of N, the rearranged series
∑∞
n=0 aσ(n)

converges to A.

Proof. For N ∈ Z+, define

Nσ = max
0≤k<N

σ−1(k).

In other words, Nσ is the least natural number such that σ({0, 1, . . . , Nσ}) ⊇
{0, 1, . . . , N − 1}. Thus for n > Nσ, σ(n) ≥ N . For all ε > 0, by the Cauchy
criterion for absolute convergence, there is N ∈ N with

∑∞
n=N |an| < ε. Then

∞∑
n=Nσ+1

|aσ(n)| ≤
∞∑
n=N

|an| < ε,

and the rearranged series is absolutely convergent by the Cauchy criterion. Let
A′ =

∑∞
n=0 aσ(n). Then

|A−A′| ≤ |
Nσ∑
n=0

an − aσ(n)|+
∑
n>Nσ

|an|+
∑
n>Nσ

|aσ(n)| < |
Nσ∑
n=0

an − aσ(n)|+ 2ε.

Moreover, each term ak with 0 ≤ k ≤ N appears in both
∑Nσ
n=0 an and

∑Nσ
n=0 aσ(n),

so we may make the very crude estimate

|
Nσ∑
n=0

an − aσ(n)| ≤ 2
∑
n>N

|an| < 2ε

which gives

|A−A′| < 4ε.

Since ε was arbitrary, we conclude A = A′. �

Exercise 2.48. Use the decomposition of
∑
n an into its series of positive parts∑

n a
+
n and negative parts

∑
n a
−
n to give a second proof of Theorem 2.48.

Theorem 2.49. (Riemann Rearrangement Theorem) Let
∑∞
n=0 an be a non-

absolutely convergent series. For any B ∈ [−∞,∞], there exists a permutation σ
of N such that

∑∞
n=0 aσ(n) = B.

Proof.
Step 1: Since

∑
n an is convergent, we have an → 0 and thus that {an} is bounded,

so we may choose M such that |an| ≤ M for all n. We are not going to give an
explicit “formula” for σ; rather, we are going to describe σ by a certain process.
For this it is convenient to imagine that the sequence {an} has been sifted into a
disjoint union of two subsequences, one consisting of the positive terms and one
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consisting of the negative terms (we may assume without loss of generality that
there an 6= 0 for all n). If we like, we may even imagine both of these subseqeunce
ordered so that they are decreasing in absolute value. Thus we have two sequences

p1 ≥ p2 ≥ . . . ≥ pn ≥ . . . ≥ 0,

n1 ≤ n2 ≤ . . . ≤ nn ≤ . . . ≤ 0

so that together {pn, nn} comprise the terms of the series. The key point here is
Proposition 2.46 which tells us that since the convergence is nonabsolute,

∑
n pn =

∞,
∑
n nn = −∞. So we may specify a rearangement as follows: we specify a

choice of a certain number of positive terms – taken in decreasing order – and then
a choice of a certain number of negative terms – taken in order of decreasing ab-
solute value – and then a certain number of positive terms, and so on. As long as
we include a finite, positive number of terms at each step, then in the end we will
have included every term pn and nn eventually, hence we will get a rearrangement.

Step 2 (diverging to∞): to get a rearrangement diverging to∞, we proceed as
follows: we take positive terms p1, p2, . . . in order until we arrive at a partial sum
which is at least M + 1; then we take the first negative term n1. Since |n1| ≤ M ,
the partial sum p1 + . . . + pN1

+ n1 is still at least 1. Then we take at least one
more positive term pN1+1 and possibly further terms until we arrive at a partial
sum which is at least M + 2. Then we take one more negative term n2, and note
that the partial sum is still at least 2. And we continue in this manner: after the
kth step we have used at least k positive terms, at least k negative terms, and all
the partial sums from that point on will be at least k. Therefore every term gets
included eventually and the sequence of partial sums diverges to +∞.

Step 3 (diverging to −∞): An easy adaptation of the argument of Step 2 leads
to a permutation σ such that

∑∞
n=0 aσ(n) = −∞. We leave this case to the reader.

Step 4 (converging to B ∈ R): if anything, the argument is simpler in this case. We
first take positive terms p1, . . . , pN1

, stopping when the partial sum p1 + . . .+ pN1

is greater than B. (To be sure, we take at least one positive term, even if 0 >
B.) Then we take negative terms n1, . . . , nN2 , stopping when the partial sum
p1 + . . .+ pN1 + n1 + . . .+ nN2 is less than B. Then we repeat the process, taking
enough positive terms to get a sum strictly larger than B then enough negative
terms to get a sum strictly less than B, and so forth. Because both the positive
and negative parts diverge, this construction can be completed. Because the gen-
eral term an → 0, a little thought shows that the absolute value of the difference
between the partial sums of the series and B approaches zero. �

Exercise 2.49. Fill in the omitted details in the proof of Theorem 2.49. In
particular:
a) Construct a permutation σ of N such that

∑
n aσ(n) → −∞.

b) Show that the rearranged series of Step 4 does indeed converge to B. (Suggestion:
it may be helpful to think of the rearrangement process as a walk along the real line,
taking a certain number of steps in a positive direction and then a certain number
of steps in a negative direction, and so forth. The key point is that by hypothesis
the step size is approaching zero, so the amount by which we “overshoot” the limit
B at each stage decreases to zero.)
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The fact that the original series
∑
n an converges was not used very strongly in the

proof. The following exercises deduce the same conclusions of Theorem 2.49 under
milder hypotheses.

Exercise 2.50. Let
∑
n an be a real series such that an → 0,

∑
n a

+
n = ∞

and
∑
n a
−
n = −∞. Show that the conclusion of Theorem 2.49 holds: for any

A ∈ [−∞,∞], there exists a permutation σ of N such that
∑∞
n=0 aσ(n) = A.

Exercise 2.51. Let
∑
n an be a real series such that

∑
n a

+
n =∞.

a) Suppose that the sequence {an} is bounded. Show that there exists a permutation
σ of N such that

∑
n aσ(n) =∞.

b) Does the conclusion of part a) hold without the assumption that the sequnece of
terms is bounded?

Theorem 2.49 exposes the dark side of nonabsolutely convergent series: just by
changing the order of the terms, we can make the series diverge to ±∞ or converge
to any given real number! Thus nonabsolute convergence is necessarily of a more
delicate and less satisfactory nature than absolute convergence. With these issues
in mind, we define a series

∑
n an to be unconditionally convergent if it is

convergent and every rearrangement converges to the same sum, and a series to be
conditionally convergent if it is convergent but not unconditionally convergent.
Then much of our last two theorems may be summarized as follows.

Theorem 2.50. (Main Rearrangement Theorem) A convergent real series is
unconditionally convergent iff it is absolutely convergent.

Many texts do not use the term “nonabsolutely convergent” and instead define a se-
ries to be conditionally convergent if it is convergent but not absolutely convergent.
Aside from the fact that this terminology can be confusing to students (especially
calculus students) to whom this rather intricate story of rearrangements has not
been told, it seems correct to make a distinction between the following two a priori
different phenomena:

•
∑
n an converges but

∑
n |an| does not, versus

•
∑
n an converges to A but some rearrangement

∑
n aσ(n) does not.

Now it happens that these two phenomena are equivalent for real series. How-
ever the notion of an infinite series

∑
n an, absolute and unconditional convergence

makes sense in other contexts as well, for instance for series with values in an
infinite-dimensional Banach space or with values in a p-adic field. In the for-
mer case it is a celebrated theorem of Dvoretsky-Rogers [DR50] that there exists a
series which is unconditionally convergent but not absolutely convergent, whereas
in the latter case one can show that every convergent series is unconditionally
convergent whereas there exist nonabsolutely convergent series.

Exercise 2.52. Let
∑∞
n=0 an be any nonabsolutely convergent real series, and

let −∞ ≤ a ≤ A ≤ ∞. Show that there exists a permutation σ of N such that the
set of partial limits of

∑∞
n=0 aσ(n) is the closed interval [a,A].

9.3. The Levi-Agnew Theorem.

(In this section I plan to state and prove a theorem of F.W. Levi [Le46] and –
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later, but independently, R.P. Agnew [Ag55] – characterizing the permutations
σ of N such that: for all convergent real series

∑∞
n=0 an the σ-rearrangeed se-

ries
∑∞
n=0 aσ(n) converges. I also plan to discuss related results: [Ag40], [Se50],

[Gu67], [Pl77], [Sc81], [St86], [GGRR88], [NWW99], [KM04], [FS10], [Wi10].

9.4. Unordered summation.

It is very surprising that the ordering of the terms of a nonabsolutely convergent
series affects both its convergence and its sum – it seems fair to say that this phe-
nomenon was undreamt of by the founders of the theory of infinite series.

Armed now, as we are, with the full understanding of the implications of our defini-
ion of

∑∞
n=0 an as the limit of a sequence of partial sums, it seems reasonable to

ask: is there an alternative definition for the sum of an infinite series, one in which
the ordering of the terms is a priori immaterial?

The answer to this question is yes and is given by the theory of unordered
summation.

To be sure to get a definition of the sum of a series which does not depend on
the ordering of the terms, it is helpful to work in a more general context in which
no ordering is present. Namely, let S be a nonempty set, and define an S-indexed
sequence of real numbers to be a function a• : S → R. The point here is that
we recover the usual definition of a sequence by taking S = N (or S = Z+) but
whereas N and Z+ come equipped with a natural ordering, the “naked set” S does
not.

We wish to define
∑
s∈S as, i.e., the “unordered sum” of the numbers as as s

ranges over all elements of S. Here it is: for every finite subset T = {s1, . . . , sN}
of S, we define aT =

∑
s∈T as = as1 + . . .+ asN . (We also define a∅ = 0.) Finally,

for A ∈ R, we say that the unordered sum
∑
s∈S as converges to A if: for all

ε > 0, there exists a finite subset T0 ⊂ S such that for all finite subsets T0 ⊂ T ⊂ S
we have |aT − A| < ε. If there exists A ∈ R such that

∑
s∈S as = A, we say that∑

s∈S as is convergent or that the S-indexed sequence a• is summable. (When

S = Z≥N we already have a notion of summability, so when we need to make the
distinction we will say unordered summable.)

Notation: because we are often going to be considering various finite subsets T
of a set S, we allow ourselves the following time-saving notation: for two sets A
and B, we denote the fact that A is a finite subset of B by A ⊂f B.

Exercise 2.53. Suppose S is finite. Show that every S-indexed sequence a• :
S → R is summable, with sum aS =

∑
s∈S as.

Exercise 2.54. If S = ∅, there is a unique function a• : ∅ → R, the “empty
function”. Convince yourself that the most reasonable value to assign

∑
s∈∅ as is

0.

Exercise 2.55. Give reasonable definitions for
∑
s∈S as =∞ and

∑
s∈S as =

−∞.

Confusing Remark: We say that we are doing “unordered summation”, but our
sequences are taking values in R, in which the absolute value is derived from the
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order structure. One could also consider unordered summation of S-indexed se-
quences with values in an arbtirary normed abelian group (G, | |).25 A key
feature of R is the positive-negative part decomposition, or equivalently the fact
that for M ∈ R, |M | ≥ A implies M ≥ A or M ≤ −A. In other words, there
are exactly two ways for a real number to be large in absolute value: it can be
very positive or very negative. At a certain point in the theory considerations like
this must be used in order to prove the desired results, but we delay these type of
arguments for as long as possible.

The following result holds without using the positive-negative decomposition.

Theorem 2.51. (Cauchy Criteria for Unordered Summation) Let a• : S → R
be an S-index sequence, and consider the following assertions:
(i) The S-indexed sequence a• is summable.
(ii) For all ε > 0, there exists a finite subset Tε ⊂ S such that for all finite subsets
T, T ′ of S containing Tε,

|
∑
s∈T

as −
∑
s∈T ′

as| < ε.

(iii) For all ε > 0, there exists Tε ⊂f S such that: for all T ⊂f S with T ∩ Tε = ∅,
we have |aT | = |

∑
s∈T as| < ε.

(iv) There exists M ∈ R such that for all T ⊂f S, |aT | ≤M .

Proof. (i) =⇒ (ii) is immediate from the definition.
(ii) =⇒ (i): We may choose, for each n ∈ Z+, a finite subset Tn of S such that
Tn ⊂ Tn+1 for all n and such that for all finite subsets T, T ′ of S containing Tn,
|aT −aT ′ | < ε

2 . It follows that the real sequence {aTn} is Cauchy, hence convergent,

say to A. We claim that a• is summable to A: indeed, for ε > 0, choose n > 2
ε .

Then, for any finite subset T containing Tn we have

|aT −A| ≤ |aT − aTn |+ |aTn −A| <
ε

2
+
ε

2
= ε.

(ii) =⇒ (iii): Fix ε > 0, and choose T0 ⊂f as in the statement of (ii). Now let
T ⊂f S with T ∩ T0 = ∅, and put T ′ = T ∪ T0. Then T ′ is a finite subset of S
containing T0 and we may apply (ii):

|
∑
s∈T

as| = |
∑
s∈T ′

as −
∑
s∈T0

as| < ε.

(iii) =⇒ (ii): Fix ε > 0, and let Tε ⊂f S be such that for all finite subsets T of S
with T ∩ Tε = ∅, |aT | < ε

2 . Then, for any finite subset T ′ of S containing Tε,

|aT ′ − aTε | = |aT ′\Tε | <
ε

2
.

From this and the triangle inequality it follows that if T and T ′ are two finite
subsets containing Tε,

|aT − aT ′ | < ε.

25Moreover, it is not totally insane to do so: such things arise naturally in functional analysis
and number theory.
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(iii) =⇒ (iv): Using (iii), choose T1 ⊂f S such that for all T ′ ⊂f S with T1 ∩T ′ =
∅, |aT ′ | ≤ 1. Then for any T ⊂f S, write T = (T \ T1) ∪ (T ∩ T1), so

|aT | ≤ |
∑

s∈T\T1

as|+ |
∑

s∈T∩T1

as| ≤ 1 +
∑
s∈T1

|as|,

so we may take M = 1 +
∑
s∈T1
|as|. �

Confusing Example: Let G = Zp with its standard norm. Define an : Z+ → G
by an = 1 for all n. Because of the non-Archimedean nature of the norm, we have
for any T ⊂f S |aT | = |#T | ≤ 1. Therefore a• satisfies condition (iv) of Theorem
2.51 above but not condition (iii): given any finite subset T ⊂ Z+, there exists a
finite subset T ′, disjoint from T , such that |aT ′ | = 1: indeed, we may take T ′ = {n},
where n is larger than any element of T and prime to p.

Although we have no reasonable expectation that the reader will be able to
make any sense of the previous example, we offer it as motivation for delaying
the proof of the implication (iv) =⇒ (i) above, which uses the positive-negative
decomposition in R in an essential way.

Theorem 2.52. An S-indexed sequence a• : S → R is summable iff the finite
sums ae uniformly bounded: i.e., there exists M ∈ R such that for all T ⊂f S,
|aT | ≤M .

Proof. We have already shown in Theorem 2.51 above that if a• is summable,
the finite sums are uniformly bounded. Now suppose a• is not summable, so by
Theorem 2.51 there exists ε > 0 with the following property: for any T ⊂f S there
exists T ′ ⊂f S with T ∩ T ′ = ∅ and |aT ′ | ≥ ε. Of course, if we can find such a T ′,
we can also find a T ′′ disjoint from T ∪ T ′ with |aT ′′ | ≥ ε, and so forth: there will
be a sequence {Tn}∞n=1 of pairwise disjoint finite subsets of S such that for all n,
|aTn | ≥ ε. But now decompose Tn = T+

n ∪ Tn−, where T+
n consists of the elements

s such that as ≥ 0 and T−n consists of the elements s such that as < 0. It follows
that

aTn = |aT+
n
| − |aT−n |

hence
ε ≤ |aTn | ≤ |aT+

n
|+ |aT−n |,

from which it follows that max |aT+
n
, aTn−| ≥ ε

2 , so we may define for all n a subset

T ′n ⊂ Tn such that |aT ′n | ≥
ε
2 and the sum aT ′n consists either entirely of non-negative

elements of entirely of negative elements. If we now consider T ′1, . . . , T
′
2n−1, then by

the Pigeonhole Principle there must exist 1 ≤ i1 < . . . < in ≤ 2n− 1 such that all
the terms in each T ′i are non-negative or all the terms in each T ′i are negative. Let
Tn =

⋃n
j=1 T

′
ij

. Then we have a disjoint union and no cancellation, so |Tn| ≥ nε
2 :

the finite sums aT are not uniformly bounded. �

Proposition 2.53. Let a• : S → R be an S-indexed sequence with as ≥ 0 for
all s ∈ S. Then ∑

s∈S
as = sup

T⊂fS
aT .

Proof. Let A = supT⊂fS aT .
We first suppose that A < ∞. By definition of the supremum,, for any ε > 0,

there exists a finite subset T ⊂ S such that A − ε < aT ≤ A. Moreover, for any
finite subset T ′ ⊃ T , we have A− εaT ≤ aT ′ ≤ A, so a• → A.
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Next suppose A =∞. We must show that for any M ∈ R, there exists a subset
TM ⊂f S such that for every finite subset T ⊃ TM , aT ≥ M . But the assumption
A = ∞ implies there exists T ⊂f S such that aT ≥ M , and then non-negativity
gives aT ′ ≥ aT ≥M for all finite subsets T ′ ⊃ T . �

Theorem 2.54. (Absolute Nature of Unordered Summation) Let S be any set
and a• : S → R be an S-indexed sequence. Let |a•| be the S-indexed sequence
s 7→ |as|. Then a• is summable iff |a•| is summable.

Proof. Suppose |a•| is summable. Then for any ε > 0, there exists Tε such
that for all finite subsets T of S disjoint from Tε, we have ||a|T | < ε, and thus

|aT | = |
∑
s∈T

as| ≤ |
∑
s∈T
|as|| = ||a|T | < ε.

Suppose |a•| is not summable. Then by Proposition 2.53, for every M > 0, there
exists T ⊂f S such that |a|T ≥ 2M . But as in the proof of Theorem 2.52, there
must exist a subset T ′ ⊂ T such that (i) aT ′ consists entirely of non-negative terms
or entirely of negative terms and (ii) |aT ′ | ≥ M . Thus the partial sums of a• are
not uniformly bounded, and by Theorem 2.52 a• is not summable. �

Theorem 2.55. For a• : N→ R an ordinary sequence and A ∈ R, the following
are equivalent:
(i) The unordered sum

∑
n∈Z+ an is convergent, with sum A.

(ii) The series
∑∞
n=0 an is unconditionally convergent, with sum A.

Proof. (i) =⇒ (ii): Fix ε > 0. Then there exists Tε ⊂f S such that for every
finite subset T of N containing Tε we have |aT −A| < ε. Put N = maxn∈Tε n. Then
for all n ≥ N , {0, . . . , n} ⊃ Tε so |

∑n
k=0 ak − A| < ε. It follows that the infinite

series
∑∞
n=0 an converges to A in the usual sense. Now for any permutation σ of

N, the unordered sum
∑
n∈Z+ aσ(n) is manifestly the same as the unordered sum∑

n∈Z+ an, so the rearranged series
∑∞
n=0 aσ(n) also converges to A.

(ii) =⇒ (i): We will prove the contrapositive: suppose the unordered sum
∑
n∈N an

is divergent. Then by Theorem 2.52 for every M ≥ 0, there exists T ⊂ S with
|aT =

∑
s∈T as| ≥ M . Indeed, as the proof of that result shows, we can choose T

to be disjoint from any given finite subset. We leave it to you to check that we can
therefore build a rearrangement of the series with unbounded partial sums. �

Exercise 2.56. Fill in the missing details of (ii) =⇒ (i) in the proof of
Theorem 2.55.

Exercise 2.57. Can one prove Theorem 2.55 without appealing to the fact that
|x| ≥M implies x ≥M or x ≤ −M? For instance, does Theorem 2.55 holds for S-
indexed sequences with values in any Banach space? Any complete normed abelian
group?

Comparing Theorems 2.53 and 2.54 we get a second proof of the portion of the Main
Rearrangement Theorem that says that a real series is unconditionally convergent
iff it is absolutely convergent. Recall that our first proof of this depended on the
Riemann Rearrangement Theorem, a more complicated result.

On the other hand, if we allow ourselves to use the previously derived result
that unconditional convergence and absolute convergence coincide, then we can get
an easier proof of (ii) =⇒ (i): if the series

∑
n an is unconditionally convergent,
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then
∑
n |an| <∞, so by Proposition 2.51 the unordered sequence |a•| is summable,

hence by Theorem 2.53 the unordered sequence a• is summable.

To sum up (!), when we apply the very general definition of unordered summa-
bility to the classical case of S = N, we recover precisely the theory of absolute
(= unconditional) convergence. This gives us a clearer perspective on exactly what
the usual, order-dependent notion of convergence is buying us: namely, the theory
of conditionally convergent series. It may perhaps be disappointing that such an
elegant theory did not gain us anything new.

However when we try to generalize the notion of an infinite series in various
ways, the results on unordered summability become very helpful. For instance,
often in nature one encounters biseries

∞∑
n=−∞

an

and double series ∑
m,n∈N

am,n.

We may treat the first case as the unordered sum associated to the Z-indexed se-
quence n 7→ an and the second as the unordered sum associated to the N×N-indexed
sequence (m,n) 7→ am,n and we are done: there is no need to set up separate the-
ories of convergence here. Or, if we prefer, we may choose to shoehorn these more
ambitiously indexed series into conventional N-indexed series: this involves choos-
ing a bijection b from Z (respectively N × N) to N. In both cases such bijections
exist, in fact in great multitude: if S is any countably infinite set, then for any two
bijections b1, b2 : S → N, b2 ◦ b−11 : N → N is a permutation of N. Thus the dis-
crepancy between two chosen bijections corresponds precisely to a rearrangement
of the series. By Theorem 2.54, if the unordered sequence is summable, then the
choice of bijection b is immaterial, as we are getting an unconditionally convergent
series.

The theory of products of infinite series comes out especially cleanly in this un-
ordered setting (which is not surprising, since it corresponds to the case of absolute
convergence, where Cauchy products are easy to deal with).

Exercise 2.58. Let S1 and S2 be two sets, and let a• : S1 → R, b• : S2 → R.
We assume the following nontriviality condition: there exists s1 ∈ S1 and s2 ∈ S2

such that as1 6= 0 and as2 6= 0. We define (a, b)• : S1 × S2 → R by

(a, b)s = (a, b)(s1,s2) = as1bs2 .

a) Show that a• and b• are both summable iff (a, b)• is summable.
b) Assuming the equivalent conditions of part a) hold, show

∑
s∈S1×S2

(a, b)s =

( ∑
s1∈S1

as1

)( ∑
s2∈S2

bs2

)
.

c) When S1 = S2 = N, compare this result with the theory of Cauchy products we
have already developed.
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Exercise 2.59. Let S be an uncountable set,26 and let a• : S → R be an S-
indexed sequence. Show that if a• is summable, then {s ∈ S | as 6= 0} is countable.

Finally we make some remarks about the provenance of unordered summation. It
may be viewed as a small part of two much more general endeavors in turn of the
(20th!) century real analysis. On the one hand, Moore and Smith developed a
general theory of convergence which was meant to include as special cases all the
various limiting processes one encounters in analysis. The key idea is that of a net
in the real numbers, namely a directed set (X,≤) and a function a• : X → R.
One says that the net a• converges to a ∈ R if: for all ε > 0, there exists x0 ∈ X
such that for all x ≥ x0, |x − x0| < ε. Thus this is, in its way, an aggressively
straightforward generalization of the definition of a convergent sequence: we just
replace (N,≤) by an arbitrary directed set. For instance, the notion of Riemann
integrable function can be fit nicely into this context (we save the details for an-
other exposition).

What does this have to do with unordered summation? If S is our arbitrary
set, let XS be the collection of finite subsets T ⊂ S. If we define T1 ≤ T2 to
mean T1 ⊂ T2 then XS becomes a partially ordered set. Moreover it is directed:
for any two finite subsets T1, T2 ⊂ S, we have T1 ≤ T1 ∪ T2 and T2 ≤ T1 ∪ T2.
Finally, to an S-indexed sequence a• : S → R we associate a net a• : XS → R by
T 7→ aT =

∑
s∈T as (note that we are using the same notation for the sequence and

the net, which seems reasonable and agrees with what we have done before). Then
the reader may check that our definition of summability of the S-indexed sequence
a• is precisely that of convergence of the net a• : XS → R. This particular special
case of a net obtained by starting with an arbitrary (unordered!) set S and passing
to the (directed!) set XS of finite subsets of S was given special prominence in a
1940 text of Tukey27 [T]: he called the directed set XS a stack and the function
a• : XS → R a phalanx. But in fact, for reasons that we had better not get into
here, Tukey’s work was well regarded at the time but did not stick, and I doubt
that one contemporary mathematician out of a hundred could define a “phalanx”.28

Note that above we mentioned in passing the connection between unordered sum-
mation and the Riemann integral. This connection was taken up, in a much different
way, by Lebesgue.29 Namely he developed an entirely new theory of integration,
now called Lebesgue integration This has two advantages over the Riemann in-
tegral: (i) in the classical setting there are many more functions which are Lebesgue
integrable than Riemann integrable; for instance, essentially any bounded function
f : [a, b]→ R is Lebesgue integrable, even functions which are discontinuous at ev-
ery point; and (ii) the Lebesgue integral makes sense in the context of real-valued
functions on a measure space (S,A, µ). It is not our business to say what the

26Here we are following our usual convention of allowing individual exercises to assume
knowledge that we do not want to assume in the text itself. Needless to say, there is no need to
attempt this exercise if you do not already know and care about uncountable sts.

27John Wilder Tukey, 1915-2000
28On the other hand, ask a contemporary mathematician – the right kind of mathematician,

to be sure, but for instance any of several people here at the University of Georgia – what a “stack”
is, and she will light up and start rapidly telling you an exciting, if impenetrable, story. At some

point you will probably realize that what she means by a stack is completely different from a stack

in Tukey’s sense, and when I say “completely different” I mean completely different.
29Henri Léon Lebesgue, 1875-1941
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latter is...but, for any set S, there is an especially simple kind of measure, the
counting measure, which associates to any finite subset its cardinality (and as-
sociates to any infinite subset the extended real number ∞). It turns out that
the integral of a function f : S → R with respect to counting measure is nothing
else than the unordered sum

∑
s∈S f(s)! The general case of a Lebesgue integral

– and even the case where S = [a, b] and µ is the “standard Lebesgue measure” –
is significantly more technical and generally delayed to graduate-level courses, but
one can see a nontrivial part of it in the theory of unordered summation. Most
of all, Exercise X.X on products is a very special case of the celebrated Fubini30

Theorem which evaluates double integrals in terms of iterated integrals. Special
cases of this involving the Riemann integral are familiar to students of multivariable
calculus.

10. Power Series I: Power Series as Series

10.1. Convergence of Power Series.

Let {an}∞n=0 be a sequence of real numbers. Then a series of the form
∑∞
n=0 anx

n

is called a power series. Thus, for instance, if we had an = 1 for all n we would
get the geometric series

∑∞
n=0 x

n which converges iff x ∈ (−1, 1) and has sum 1
1−x .

The nth partial sum of a power series is
∑n
k=0 akx

k, a polynomial in x. One
of the major themes of Chapter three will be to try to view power series as “infinite
polynomials”: in particular, we will regard x as a variable and be interested in the
propeties – continuity, differentiability, integrability, and so on – of the function
f(x) =

∑∞
n=0 anx

n defined by a power series.

However, if we want to regard the series
∑∞
n=0 anx

n as a function of x, what is
its domain? The natural domain of a power series is the set of all values of x for
which the series converges. Thus the basic question about power series that we will
answer in this section is the following.

Question 2.56. For a sequence {an}∞n=0 of real numbers, for which values of
x ∈ R does the power series

∑∞
n=0 anx

n converge?

There is one value of x for which the answer is trivial. Namely, if we plug in x = 0
to our general power series, we get

∞∑
n=0

an0n = a0 + a1 · 0 + a2 · 02 = a0.

So every power series converges at least at x = 0.

Example 1: Consider the power series
∑∞
n=0 n!xn. We apply the Ratio Test:

lim
n→∞

(n+ 1)!xn+1

n!xn
= lim
n→∞

(n+ 1)|x|.

The last limit is 0 if x = 0 and otherwise is +∞. Therefore the Ratio Test shows
that (as we already knew!) the series converges absolutely at x = 0 and diverges
at every nonzero x. So it is indeed possible for a power series to converge only at
x = 0. Note that this is disappointing if we are interesteted in f(x) =

∑
n anx

n as

30Guido Fubini, 1879-1943
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a function of x, since in this case it is just the function from {0} to R which sends
0 to a0. There is nothing interesting going on here.

Example 2: consider the power series
∑∞
n=0

xn

n! . We apply the Ratio Test:

lim
n→∞

| x
n+1

(n+ 1)!
|| n!

xn
| = lim

n→∞

|x|
n+ 1

= 0.

So the power series converges for all x ∈ R and defines a function f : R→ R.

Example 3: Fix R ∈ (0,∞) and consider the power series
∑∞
n=0

1
Rnx

n. This is
a geometric series with geometric ratio ρ = x

R , so it converges iff |ρ| = | xR | < 1, i.e.,
iff x ∈ (−R,R).

Example 4: Fix R ∈ (0,∞) and consider the power series
∑∞
n=1

1
nRnx

n. We apply
the Ratio Test:

lim
n→∞

nRn

(n+ 1)Rn+1

|x|n+1

|x|n
= |x| lim

n→∞

n+ 1

n
· 1

R
=
|x|
R
.

Therefore the series converges absolutely when |x| < R and diverges when |x| > R.
We must look separately at the case |x| = R – i.e., when x = ±R. When x = R, the
series is the harmonic series

∑
n

1
n , hence divergent. But when x = −R, the series

is the alternating harmonic series
∑
n

(−1)n
n , hence (nonabsolutely) convergent. So

the power series converges for x ∈ [−R,R).

Example 5: Fix R ∈ (0,∞) and consider the power series
∑∞
n=1

(−1)n
nRn x

n. We

may rewrite this series as
∑∞
n=1

1
nRn (−x)n, i.e., the same as in Example 4 but with

x replaced by −x throughout. Thus the series converges iff −x ∈ [−R,R), i.e., iff
x ∈ (−R,R].

Example 6: Fix R ∈ (0,∞) and consider the power series
∑∞
n=1

1
n2Rnx

n. We
apply the Ratio Test:

lim
n→∞

n2Rn

(n+ 1)2Rn+1

|x|n+1

|x|n
= |x| lim

n→∞

(
n+ 1

n

)2

· 1

R
=
|x|
R
.

So once again the series converges absolutely when |x| < R, diverges when |x| > R,
and we must look separately at x = ±R. This time plugging in x = R gives

∑
n

1
n2

which is a convergent p-series, whereas plugging in x = −R gives
∑
n

(−1)n
n2 : since

the p-series with p = 2 is convergent, the alternating p-series with p = 2 is abso-
lutely convergent. Therefore the series converges (absolutely, in fact) on [−R,R].

Thus the convergence set of a power series can take any of the following forms:

• the single point {0} = [0, 0].
• the entire real line R = (−∞,∞).
• for any R ∈ (0,∞), an open interval (−R,R).
• for any R ∈ (0,∞), a half-open interval [−R,R) or (−R,R]
• for any R ∈ (0,∞), a closed interval [−R,R].

In each case the set of values is an interval containing 0 and with a certain radius,
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i.e., an extended real number R ∈ [0,∞) such that the series definitely converges
for all x ∈ (−R,R) and definitely diverges for all x outside of [−R,R]. Our goal is
to show that this is the case for any power series.

This goal can be approached at various degrees of sophistication. At the calcu-
lus level, it seems that we have already said what we need to: namely, we use the
Ratio Test to see that the convergence set is an interval around 0 of a certain radius
R. Namely, taking a general power series

∑
n anx

n and applying the Ratio Test,
we find

lim
n→∞

|an+1x
n+1|

|anxn|
= |x| lim

n→∞

an+1

an
.

So if ρ = limn→∞
an+1

an
, the Ratio Test tells us that the series converges when

|x|ρ < 1 – i.e., iff |x| < 1
ρ – and diverges when |x|ρ > 1 – i.e., iff |x| > 1

ρ . That

is, the radius of convergence R is precisely the reciprocal of the Ratio Test limit ρ,
with suitable conventions in the extreme cases, i.e., 1

0 =∞, 1
∞ = 0.

So what more is there to say or do? The issue here is that we have assumed
that limn→∞

an+1

an
exists. Although this is usually the case in simple examples of

interest, it is certainly does not happen in general (we ask the reader to revisit §X.X
for examples of this). This we need to take a different approach in the general case.

Lemma 2.57. Let
∑
n anx

n be a power series. Suppose that for some A > 0 we
have

∑
n anA

n is convergent. Then the power series converges absolutely at every
x ∈ (−A,A).

Proof. Let 0 < B < A. It is enough to show that
∑
n anB

n is absolutely
convergent, for then so is

∑
n an(−B)n. Now, since

∑
n anA

n converges, anA
n → 0:

by omitting finitely many terms, we may assume that |anAn| ≤ 1 for all n. Then,
since 0 < B

A < 1, we have∑
n

|anBn| =
∑
n

|anAn|
(
B

A

)n
≤
∑
n

(
B

A

)n
<∞.

�

Theorem 2.58. Let
∑∞
n=0 anx

n be a power series.
a) There exists R ∈ [0,∞] such that:
(i) For all x with |x| < R,

∑
n anx

n converges absolutely and
(ii) For all x with |x| > R,

∑
n anx

n diverges.
b) If R = 0, then the power series converges only at x = 0.
c) If R =∞, the power series converges for all x ∈ R.
d) If 0 < R <∞, the convergence set of the power series is either (−R,R), [−R,R),
(−R,R] or [−R,R].

Proof. a) Let R be the least upper bound of the set of x ≥ 0 such that∑
n anx

n converges. If y is such that |y| < R, then there exists A with |y| <
A < R such that

∑
n anA

n converges, so by Lemma 2.57 the power series converges
absolutely on (−A,A), so in particular it converges absolutely at y. Thus R satisfies
property (i). Similarly, suppose there exists y with |y| > R such that

∑
n any

n

converges. Then there exists A with R < A < |y| such that the power series
converges on (−A,A), contradicting the definition of R.
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We leave the proof of parts b) through d) to the reader as a straightforward exercise.
�

Exercise 2.60. Prove parts) b), c) and d) of Theorem 2.58.

Exercise 2.61. Let
∑∞
n=0 anx

n and
∑∞
n=0 bnx

n be two power series with posi-
tive radii of convergence Ra and Rb. Let R = min(Ra, Rb). Put cn =

∑n
k=0 akbn−k.

Show that the “formal identity”( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

)
=

∞∑
n=0

cnx
n

is valid for all x ∈ (−R,R). (Suggestion: this is really a matter of figuring out
which previously established results on absolute convergence and Cauchy products
to apply.)

The drawback of Theorem 2.58 is that it does not give an explicit description of the
radius of convergence R in terms of the coefficients of the power series, as is the case

when the ratio test limit ρ = limn→∞
|an+1|
|an| exists. In order to get an analogue of

this is in the general case, we need to appeal to the Root Test instead of the Ratio
Test and make use of the limit supremum. The following elegant result is generally
attributed to the eminent turn of the century mathematician Hadamard,31 who
published it in 1888 [Ha88] and included it in his 1892 PhD thesis. This seems
remarkably late in the day for a result which is so closely linked to (Cauchy’s)
root test. It turns out that the result was indeed established by our most usual
suspect: it was first proven by Cauchy in 1821 [Ca21] but apparently had been all
but forgotten.

Theorem 2.59. (Cauchy-Hadamard Formula) Let
∑
n anx

n be a power series
and put

θ = lim sup
n→∞

|an|
1
n .

Then the radius of convergence of the power series is R = 1
θ

: that is, the series

converges absolutely for |x| < R and diverges for |x| > R.

Proof. We have lim supn→∞ |anxn|
1
n = |x| lim supn→∞ |an|

1
n = |x|θ. Put

R = 1
θ
. If |x| < R, choose A such that |x| < A < R and then A′ such that

θ =
1

R
< A′ <

1

A
.

Then for all sufficiently large n, |anxn|
1
n ≤ A′A < 1, so the series converges abso-

lutely by the Root Test. Similarly, if |x| > R, choose A such that R < |x| < A and
then A′ such that

1

A
< A′ <

1

R
= θ.

Then there are infinitely many non-negative integers n such that |anxn|
1
n ≥ A′A >

1, so the series
∑
n anx

n diverges: indeed anx
n 9 0. �

The following result gives a natural criterion for the radius of convergence of a
power series to be 1.

31Jacques Salomon Hadamard, 1865-1963



98 2. REAL SERIES

Corollary 2.60. Let {an}∞n=0 be a sequence of real numbers, and let R be the
radius of convergence of the power series

∑∞
n=0 anx

n.
a) If {an} is bounded, then R ≥ 1.
b) If an 9 0, then R ≤ 1.
c) Thus if {an} is bounded but not convergent to zero, R = 1.

Exercise 2.62. Prove Corollary 2.60.

The following result will be useful in Chapter 3 when we consider power series as
functions and wish to differentiate and integrate them termwise.

Theorem 2.61. Let
∑
n anx

n be a power series with radius of convergence R.
Then, for any k ∈ Z, the radius of convergence of the power series

∑
n→∞ nkanx

n

is also R.

Proof. Since limn→∞
(n+1)k

nk
= limn→∞

(
n+1
n

)k
= 1, by Corollary 2.30 we

have

lim
n→∞

(nk)1/n = lim
n→∞

nk/n = 1.

(Alternately, one can of course compute this limit by the usual methods of calculus:
take logarithms and apply L’Hôpital’s Rule.) Therefore

lim sup
n→∞

(nk|an|)
1
n =

(
lim
n→∞

(nk)
1
n

)(
lim sup
n→∞

|an|
1
n

)
= lim sup

n→∞
|an|

1
n .

The result now follows from Hadamard’s Formula. �

Remark: For the reader who is less than comfortable with limits infimum and supre-
mum, we recommend simply assuming that the Ratio Test limit ρ = limn→∞ |an+1

an
|

exists and proving Theorem 2.61 under that additional assumption using the Ratio
Test. This will be good enough for most of the power series encountered in practice.

Exercise 2.63. By Theorem 2.61, the radii of convergence of
∑
n anx

n and∑
n nanx

n are equal, say both equal to R. Show that the interval of convergence
of
∑
n nanx

n is contained in the interval of convergence of
∑
n anx

n, and give an
example where a containment is proper. In other words, passage from

∑
n anx

n to∑
n nanx

n does not change the radius of convergence, but convergence at one or
both of the endpoints may be lost.

10.2. Recentered Power Series.

10.3. Abel’s Theorem.

Theorem 2.62. (Abel’s Theorem) Let
∑∞
n=0 an be a convergent series. Then

lim
x→1−

∞∑
n=0

anx
n =

∞∑
n=0

an.

Proof. [R, Thm. 8.2] Since
∑
n an converges, the sequence {an} is bounded

so by Corollary 2.60 the radius of convergence of f(x) =
∑
n anx

n is at least one.
As usual, we put A0 = 0, An = a1 + . . . + An and A = limn→∞An =

∑∞
n=0 an.

Then
n∑
n=0

anx
n =

n∑
n=0

(An −An−1)xn = (1− x)

m−1∑
n=0

Anx
n +Amx

m.
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For |x| < 1, we let m→∞ and get

f(x) = (1− x)

∞∑
n=0

Anx
n.

Now fix ε > 0, and choose N such that n ≥ N implies |A−An| < ε
2 . Then, since

(16) (1− x)

∞∑
n=0

xn = 1

for all |x| < 1, we get

|f(x)−A| = |f(x)− 1 ·A| = |(1− x)

∞∑
n=0

(An −A)xn|

= |(1− x)

∞∑
n=0

(An −A)xn| = (1− x)

N∑
n=0

|An −A||x|n +
( ε

2

)
(1− x)

∑
n>N

|x|n.

By (16), for any x ∈ (0, 1), the last term in right hand side of the above equation
is ε

2 . Moreover the limit of the first term of the right hand side as x approaches 1
from the left is zero. We may therefore choose δ > 0 such that for all x > 1 − δ,
|(1− x)

∑∞
n=0(An −A)xn| < ε

2 and thus for such x,

|f(x)−A| ≤ ε

2
+
ε

2
= ε.

�

The rest of this section is an extended exercise in “Abel’s Theorem appreciation”.
First of all, we think it may help to restate the result in a form which is slightly
more general and moreover makes more clear exactly what has been established.

Theorem 2.63. (Abel’s Theorem Mark II) Let f(x) =
∑
n an(x − c)n be a

power series with radius of convergence R > 0, hence convergent at least for all
x ∈ (c−R, c+R).
a) Suppose that the power series converges at x = c + R. Then the function f :
(c−R, c+R]→ R is continuous at x = c+R: limx→(c+R)− f(x) = f(c+R).
b) Suppose that the power series converges at x = c − R. Then the function f :
[c−R, c+R)→ R is continuous at x = c−R: limx→(c−R)+ f(x) = f(c−R).

Exercise 2.64. Prove Theorem 2.63.

Exercise 2.65. Consider f(x) = 1
1−x =

∑∞
n=0 x

n, which converges for all

x ∈ (−1, 1). Show that limx→−1+ f(x) exists and thus f extends to a continuous
function on [−1, 1). Nevertheless f(−1) 6= limx→−1+ f(x). Why does this not
contradict Abel’s Theorem?

In the next chapter it will be a major point of business to study f(x) =
∑
n an(x−

c)n as a function from (c − R, c + R) to R and we will prove that it has many
wonderful properties: e.g. more than being continuous it is in fact smooth, i.e.,
possesses derivatives of all orders at every point. But studying power series “at the
boundary” is a much more delicate affair, and the comparatively modest continuity
assured by Abel’s Theorem is in fact extremely powerful and useful.

As our first application, we round out our treatment of Cauchy products by showing
that the Cauchy product never “wrongly converges”.
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Theorem 2.64. Let
∑∞
n=0 an be a series converging to A and

∑∞
n=0 bn be a

series converging to B. As usual, we define cn =
∑n
k=0 akbn−k and the Cauchy

product series
∑∞
n=0 cn. Suppose that

∑∞
n=0 cn converges to C. Then C = AB.

Proof. Rather remarkably, we “reduce” to the case of power series! Namely,
put f(x) =

∑∞
n=0 anx

n, g(x) =
∑∞
n=0 bnx

n and h(x) =
∑∞
n=0 cnx

n. By assump-
tion, f(x), g(x) and h(x) all converge at x = 1, so by Lemma 2.57 the radii of
convergence of

∑
n anx

n,
∑
n bnx

n and
∑
n cnx

n are all at least one. Now all we
need to do is apply Abel’s Theorem:

C = h(1)
AT
= lim

x→1−
h(x) = lim

x→1−
f(x)g(x)

=

(
lim
x→1−

f(x)

)(
lim
x→1−

g(x)

)
AT
= f(1)g(1) = AB.

�

Abel’s Theorem gives rise to a summability method, or a way to extract numeri-
cal values out of certain divergent series

∑
n an “as though they converged”. Instead

of forming the sequence of partial sums An = a0 + . . . + an and taking the limit,
suppose instead we look at limx→1−

∑∞
n=0 axx

n. We say the series
∑
n an is Abel

summable if this limit exists, in which case we write it as A
∑∞
n=0 an, the Abel

sum of the series. The point of this is that by Abel’s theorem, if a series
∑∞
n=0 an

is actually convergent, say to A, then it is also Abel summable and its Abel sum
is also equal to A. However, there are series which are divergent yet Abel summable.

Example: Consider the series
∑∞
n=0(−1)n. As we saw, the partial sums alter-

nate between 0 and 1 so the series does not diverge. We mentioned earlier that (the
great) L. Euler believed that nevertheless the right number to attach to the series∑∞
n=0(−1)n is 1

2 . Since the two partial limits of the sequence of partial sums are 0
and 1, it seems vaguely plausible to split the difference.

Abel’s Theorem provides a much more convincing argument. The power series∑
n(−1)nxnconverges for all x with |x| < 1, and moreover for all such x we have

∞∑
n=0

(−1)nxn =

∞∑
n=0

(−x)n =
1

1− (−x)
=

1

1 + x
,

and thus

lim
x→1−

∞∑
n=0

(−1)nxn = lim
x→1−

1

1 + x
=

1

2
.

That is, the series
∑
n(−1)n is divergent but Abel summable, with Abel sum 1

2 . So
Euler’s idea was better than we gave him credit for.

Exercise 2.66. Suppose that
∑∞
n=0 an is a series with non-negative terms.

Show that in this case the converse of Abel’s Theorem holds: if limx→1−
∑∞
n=0 anx

n =
L, then

∑∞
n=0 an = L.

We end with one final example of the uses of Abel’s Theorem. Consider the series∑∞
n=0

(−1)n
2n+1 , which is easily seen to be nonabsolutely convergent. Can we by any
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chance evaluate its sum exactly?
Here is a crazy argument: consider the function

f(x) =

∞∑
n=0

(−1)nx2n,

which converges for x ∈ (−1, 1). Actually the series defining f is geometric with
r = −x2, so we have

(17) f(x) =
1

1− (−x2)
=

1

1 + x2
.

Now the antiderivative F of f with F (0) = 0 is F (x) = arctanx. Assuming we can
integrate power series termwise as if they were polynomials (!), we get

(18) arctanx =

∞∑
n=0

(−1)nx2n+1

2n+ 1
.

This latter series converges for x ∈ (−1, 1] and evaluates at x = 1 to the series we
started with. Thus our guess is that

∞∑
n=0

(−1)n

2n+ 1
= F (1) = arctan 1 =

π

4
.

There are at least two gaps in this argument, which we will address in a moment.
But before that we should probably look at some numerics. Namely, summing the
first 104 terms and applying the Alternating Series Error Bound, we find that

∞∑
n=0

(−1)n

2n+ 1
≈ 0.78542316 . . . ,

with an error of at most 1
2·104 . On the other hand, my software package tells me

that
π

4
= 0.7853981633974483096156608458 . . . .

The difference between these two numerical approximations is 0.000249975 . . ., or

about 1
40000 . This is fairly convincing evidence that indeed

∑∞
n=0

(−1)n
2n+1 = π

4 .
So let’s look back at the gaps in the argument. First of all there is this wishful

business about integrating a power series termwise as though it were a polynomial.
I am happy to tell you that such termwise integration is indeed justified for all
power series on the interior of their interval of convergence: this and other such
pleasant facts are discussed in §3.2. But there is another, much more subtle gap in
the above argument (too subtle for many calculus books, in fact: check around).
The power series expansion (17) of 1

1+x2 is valid only for x ∈ (−1, 1): it certainly
is not valid for x = 1 because the power series doesn’t even converge at x = 1. On
the other hand, we want to evaluate the antiderivative F at x = 1. This seems
problematic, but there is an out...Abel’s Theorem. Indeed, the theory of termwise
integration of power series will tell us that (18) holds on (−1, 1) and then we have:

∞∑
n=0

(−1)n

2n+ 1

AT
= lim

x→1−

(−1)nx2n+1

2n+ 1
= lim
x→1−

arctanx = arctan 1.

where the first equality holds by Abel’s Theorem and the last equality holds by
continuity of the arctangent function. And finally, of course, arctan 1 = π

4 . Thus
Abel’s theorem can be used (and should be used!) to justify a number of calculations
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in which we are apparently playing with fire by working at the boundary of the
interval of convergence of a power series.

Exercise 2.67. In §8.1, we showed that the alternating harmonic series con-

verged and alluded to the identity
∑∞
n=1

(−1)n
n+1 = log 2. Try to justify this along the

lines of the example above.



CHAPTER 3

Sequences and Series of Functions

1. Pointwise and Uniform Convergence

All we have to do now is take these lies and make them true somehow. – G. Michael1

1.1. Pointwise convergence: cautionary tales.

Let I be an interval in the real numbers. A sequence of real functions is a
sequence f0, f1, . . . , fn, . . ., with each fn a function from I to R.

For us the following example is all-important: let f(x) =
∑∞
n=0 anx

n be a power
series with radius of convergence R > 0. So f may be viewed as a function
f : (−R,R) → R. Put fn =

∑n
k=0 akx

k, so each fn is a polynomial of degree
at most n; therefore fn makes sense as a function from R to R, but let us restrict
its domain to (−R,R). Then we get a sequence of functions f0, f1, . . . , fn, . . ..

As above, our stated goal is to show that the function f has many desirable prop-
erties: it is continuous and indeed infinitely differentiable, and its derivatives and
antiderivatives can be computed term-by-term. Since the functions fn have all these
properties (and more – each fn is a polynomial), it seems like a reasonable strategy
to define some sense in which the sequence {fn} converges to the function f , in
such a way that this converges process preserves the favorable properties of the fn’s.

The previous description perhaps sounds overly complicated and mysterious, since
in fact there is an evident sense in which the sequence of functions fn converges to
f . Indeed, to say that x lies in the open interval (−R,R) of convergence is to say
that the sequence fn(x) =

∑n
k=0 akx

k converges to f(x).

This leads to the following definition: if {fn}∞n=1 is a sequence of real functions
defined on some interval I and f : I → R is another function, we say fn converges
to f pointwise if for all x ∈ I, fn(x) → f(x). (We also say f is the pointwise
limit of the sequence {fn}.) In particular the sequence of partial sums of a power
series converges pointwise to the power series on the interval I of convergence.

Remark: There is similarly a notion of an infinite series of functions
∑∞
n=0 fn

and of pointwise convergence of this series to some limit function f . Indeed, as in
the case of just one series, we just define Sn = f0 + . . . + fn and say that

∑
n fn

converges pointwise to f if the sequence Sn converges pointwise to f .

1George Michael, 1963–

103
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The great mathematicians of the 17th, 18th and early 19th centuries encountered
many sequences and series of functions (again, especially power series and Taylor
series) and often did not hesitate to assert that the pointwise limit of a sequence of
functions having a certain nice property itself had that nice property.2 The problem
is that statements like this unfortunately need not be true!

Example 1: Define fn = xn : [0, 1]→ R. Clearly fn(0) = 0n = 0, so fn(0)→ 0. For
any 0 < x ≤ 1, the sequence fn(x) = xn is a geometric sequence with geometric
ratio x, so that fn(x) → 0 for 0 < x < 1 and fn(1) → 1. It follows that the
sequence of functions {fn} has a pointwise limit f : [0, 1]→ R, the function which
is 0 for 0 ≤ x < 1 and 1 at x = 1. Unfortunately the limit function is discontinuous
at x = 1, despite the fact that each of the functions fn are continuous (and are
polynomials, so really as nice as a function can be). Therefore the pointwise
limit of a sequence of continuous functions need not be continuous.

Remark: Example 1 was chosen for its simplicity, not to exhibit maximum pathol-
ogy. It is possible to construct a sequence {fn}∞n=1 of polynomial functions converg-
ing pointwise to a function f : [0, 1] → R that has infinitely many discontinuities!
(On the other hand, it turns out that it is not possible for a pointwise limit of
continuous functions to be discontinuous at every point. This is a theorem of R.
Baire. But we had better not talk about this, or we’ll get distracted from our stated
goal of establishing the wonderful properties of power series.)

One can also find assertions in the math papers of old that if fn converges to

f pointwise on an interval [a, b], then
∫ b
a
fndx →

∫ b
a
fdx. To a modern eye, there

are in fact two things to establish here: first that if each fn is Riemann integrable,
then the pointwise limit f must be Riemann integrable. And second, that if f is
Riemann integrable, its integral is the limit of the sequence of integrals of the fn’s.
In fact both of these are false!

Example 2: Define a sequence {fn}∞n=0 with common domain [0, 1] as follows. Let
f0 be the constant function 1. Let f1 be the function which is constantly 1 except
f(0) = f(1) = 0. Let f2 be the function which is equal to f1 except f(1/2) = 0.
Let f3 be the function which is equal to f2 except f(1/3) = f(2/3) = 0. And
so forth. To get from fn to fn+1 we change the value of fn at the finitely many
rational numbers a

n in [0, 1] from 1 to 0. Thus each fn is equal to 1 except at a finite
set of points: in particular it is bounded with only finitely many discontinuities,
so it is Riemann integrable. The functions fn converges pointwise to a function f
which is 1 on every irrational point of [0, 1] and 0 on every rational point of [0, 1].
Since every open interval (a, b) contains both rational and irrational numbers, the
function f is not Riemann integrable: for any partition of [0, 1] its upper sum is
1 and its lower sum is 0. Thus a pointwise limit of Riemann integrable functions
need not be Riemann integrable.

2This is an exaggeration. The precise definition of convergence of real sequences did not come

until the work of Weierstrass in the latter half of the 19th century. Thus mathematicians spoke of

functions fn “approaching” or “getting infinitely close to” a fixed function f . Exactly what they
meant by this – and indeed, whether even they knew exactly what they meant (presumably some

did better than others) is a matter of serious debate among historians of mathematics.
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Example 3: We define a sequence of functions fn : [0, 1]→ R as follows: fn(0) = 0,
and fn(x) = 0 for x ≥ 1

n . On the interval [0, 1
n ] the function forms a “spike”:

f( 1
2n ) = 2n and the graph of f from (0, 0) to ( 1

2n , 2n) is a straight line, as is the

graph of f from ( 1
2n , 2n) to ( 1

n , 0). In particular fn is piecewise linear hence con-
tinuous, hence Riemann integable, and its integral is the area of a triangle with

base 1
n and height 2n:

∫ 1

0
fndx = 1. On the other hand this sequence converges

pointwise to the zero function f . So

lim
n→∞

∫ 1

0

fn = 1 6= 0 =

∫ 1

0

lim
n→∞

fn.

Example 4: Let g : R→ R be a bounded differentiable function such that limn→∞ g(n)
does not exist. (For instance, we may take g(x) = sin(πx2 ).) For n ∈ Z+, define

fn(x) = g(nx)
n . Let M be such that |g(x)| ≤ M for all x ∈ R. Then for all

x ∈ R, |fn(x)| ≤ M
n , so fn conveges pointwise to the function f(x) ≡ 0 and thus

f ′(x) ≡ 0. In particular f ′(1) = 0. On the other hand, for any fixed nonzero x,

f ′n(x) = ng′(nx)
n = g′(nx), so

lim
n→∞

f ′n(1) = lim
n→∞

g′(n) does not exist.

Thus

lim
n→∞

f ′n(1) 6= ( lim
n→∞

fn)′(1).

A common theme in all these examples is the interchange of limit operations:
that is, we have some other limiting process corresponding to the condition of
continuity, integrability, differentiability, integration or differentiation, and we are
wondering whether it changes things to perform the limiting process on each fn
individually and then take the limit versus taking the limit first and then perform
the limiting process on f . As we can see: in general it does matter! This is not
to say that the interchange of limit operations is something to be systematically
avoided. On the contrary, it is an essential part of the subject, and in “natural
circumstances” the interchange of limit operations is probably valid. But we need
to develop theorems to this effect: i.e., under some specific additional hypotheses,
interchange of limit operations is justified.

1.2. Consequences of uniform convergence. It turns out that the key hy-
pothesis in most of our theorems is the notion of uniform convergence.

Let {fn} be a sequence of functions with domain I. We say fn converges uni-

formly to f and write fn
u→ f if for all ε > 0, there exists N ∈ Z+ such that for

all n ≥ N and all x ∈ I, |fn(x)− f(x)| < ε.

How does this definition differ from that of pointwise convergence? Let’s com-
pare: fn → f pointwise if for all x ∈ I and all ε > 0, there exists n ∈ Z+ such that
for all n ≥ N , |fn(x)− f(x)|ε. The only difference is in the order of the quantifiers:
in pointwise convergence we are first given ε and x and then must find an N ∈ Z+:
that is, the N is allowed to depend both on ε and the point x ∈ I. In the defini-
tion of uniform convergence, we are given ε > 0 and must find an N ∈ Z+ which
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works simultaneously (or “uniformly”) for all x ∈ I. Thus uniform convergence is
a stronger condition than pointwise convergence, and in particular if fn converges
to f uniformly, then certainly fn converges to f pointwise.

Exercise 3.1. Show that there is a Cauchy Criterion for uniform convergence,

namely: fn
u→ f on an interval I iff for all ε > 0, there exists N ∈ Z+ such that

for all m,n ≥ N and all x ∈ I, |fm(x)− fn(x)| < ε.

The following result is the most basic one fitting under the general heading “uniform
convegence justifies the exchange of limiting operations.”

Theorem 3.1. Let {fn} be a sequence of functions with common domain I,
and let c be a point of I. Suppose that for all n ∈ Z+, limx→c fn = Ln. Suppose

moreover that fn
u→ f . Then the sequence {Ln} is convergent, limx→c f(x) exists

and we have equality:

lim
n→∞

Ln = lim
n→∞

lim
x→c

fn(x) = lim
x→c

f(x) = lim
x→c

lim
n→∞

fn(x).

Proof. Step 1: We show that the sequence {Ln} is convergent. Since we don’t
yet have a real number to show that it converges to, it is natural to try to use the
Cauchy criterion, hence to try to bound |Lm − Ln|. Now comes the trick: for all
x ∈ I we have

|Lm − Ln| ≤ |Lm − fm(x)|+ |fm(x)− fn(x)|+ |fn(x)− Ln|.

By the Cauchy criterion for uniform convergence, for any ε > 0 there exists N ∈ Z+

such that for all m,n ≥ N and all x ∈ I we have |fm(x) − fn(x)| < ε
3 . Moreover,

the fact that fm(x) → Lm and fn(x) → Ln give us bounds on the first and last
terms: there exists δ > 0 such that if 0 < |x − c| < δ then |Ln − fn(x)| < ε

3
and |Lm − fm(x)| < ε

3 . Combining these three estimates, we find that by taking
x ∈ (c− δ, c+ δ), x 6= c and m,n ≥ N , we have

|Lm − Ln| ≤
ε

3
+
ε

3
+
ε

3
= ε.

So the sequence {Ln} is Cauchy and hence convergent, say to the real number L.
Step 2: We show that limx→c f(x) = L (so in particular the limit exists!). Actually
the argument for this is very similar to that of Step 1:

|f(x)− L| ≤ |f(x)− fn(x)|+ |fn(x)− Ln|+ |Ln − L|.

Since Ln → L and fn(x) → f(x), the first and last term will each be less than ε
3

for sufficiently large n. Since fn(x) → Ln, the middle term will be less than ε
3 for

x sufficiently close to c. Overall we find that by taking x sufficiently close to (but
not equal to) c, we get |f(x)− L| < ε and thus limx→c f(x) = L. �

Corollary 3.2. Let fn be a sequence of continuous functions with common

domain I and suppose that fn
u→ f on I. Then f is continuous on I.

Since Corollary 3.2 is somewhat simpler than Theorem 3.1, as a service to the
student we include a separate proof.

Proof. Let x ∈ I. We need to show that limx→c f(x) = f(c), thus we need to
show that for any ε > 0 there exists δ > 0 such that for all x with |x − c| < δ we
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have |f(x) − f(c)| < ε. The idea – again! – is to trade this one quantity for three
quantities that we have an immediate handle on by writing

|f(x)− f(c)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(c)|+ |fn(c)− f(c)|.
By uniform convergence, there exists n ∈ Z+ such that |f(x) − fn(x)| < ε

3 for
all x ∈ I: in particular |fn(c) − f(c)| = |f(c) − fn(c)| < ε

3 . Further, since fn(x)
is continuous, there exists δ > 0 such that for all x with |x − c| < δ we have
|fn(x)− fn(c)| < ε

3 . Consolidating these estimates, we get

|f(x)− f(c)| < ε

3
+
ε

3
+
ε

3
= ε.

�

Exercise 3.2. Consider again fn(x) = xn on the interval [0, 1]. We saw in
Example 1 above that fn converges pointwise to the discontinuous function f which
is 0 on [0, 1) and 1 at x = 1.
a) Show directly from the definition that the convergence of fn to f is not uniform.
b) Try to pinpoint exactly where the proof of Theorem 3.1 breaks down when applied
to this non-uniformly convergent sequence.

Exercise 3.3. Let fn : [a, b]→ R be a sequence of functions. Show the follow-
ing are equivalent:

(i) fn
u→ f on [a, b].

(ii) fn
u→ f on [a, b) and fn(b)→ f(b).

Theorem 3.3. Let {fn} be a sequence of Riemann integrable functions with

common domain [a, b]. Suppose that fn
u→ f . Then f is Riemann integrable and

lim
n→∞

∫ b

a

fn =

∫ b

a

lim
n→∞

fn =

∫ b

a

f.

Proof. Since we have not covered the Riemann integral in these notes, we are
not in a position to give a full proof of Theorem 3.3. For this see [R, Thm. 7.16] or
my McGill lecture notes. We will content ourselves with the special case in which
each fn is continuous, hence by Theorem 3.1 so is f . All continuous functions are
Riemann integrable, so certainly f is Riemann integrable: what remains to be seen
is that it is permisible to interchange the limit and the integral.

To see this, fix ε > 0, and let N ∈ Z+ be such that for all n ≥ N , f(x)− ε
b−a <

fn(x) ≤ f(x) + ε
b−a . Then

(

∫ n

a

f)− ε =

∫ b

a

(f − ε

b− a
) ≤

∫ b

a

fn ≤
∫ b

a

(f +
ε

b− a
) = (

∫ b

a

f) + ε.

That is, |
∫ b
a
fn −

∫ b
a
f | < ε and therefore

∫ b
a
fn →

∫ b
a
f . �

Exercise 3.4. It follows from Theorem 3.3 that the sequences in Examples 2
and 3 above are not uniformly convergent. Verify this directly.

Corollary 3.4. Let {fn} be a sequence of continuous functions defined on the

interval [a, b] such that
∑∞
n=0 fn

u→ f . For each n, let Fn : [a, b]→ R be the unique
function with F ′n = fn and Fn(a) = 0, and similarly let F : [a, b]→ R be the unique

function with F ′ = f and F (a) = 0. Then
∑∞
n=0 Fn

u→ F .

Exercise 3.5. Prove Corollary 3.4.
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Our next order of business is to discuss differentiation of sequences of functions. But
let us take a look back at Example 4, which was of a bounded function g : R→ R
such that limn→∞ g(x) does not exist and fn(x) = g(nx)

n . Let M be such that

|g(x)| ≤ M for all R. Then for all x ∈ R, |fn(x)| ≤ M
n . Since limn→∞

1
n = 0,

for any ε > 0 there exists N ∈ Z+ such that for all n ≥ N , |fn(x)| ≤ M
n < ε.

Thus fn
u→ 0. In other words, we have the somewhat distressing fact that uniform

convergence of fn to f does not imply that f ′n converges.

Well, don’t panic. What we want is true in practice; we just need suitable hypothe-
ses. We will give a relatively simple result sufficient for our coming applications.
Before stating and proving it, we include the following quick calculus refresher.

Theorem 3.5. (Fundamental Theorem of Calculus) Let f : [a, b] → R be a
continuous function.
(FTCa) We have d

dx

∫ x
a
f(t)dt = f(x).

(FTCb) If F : [a, b]→ R is such that F ′ = f , then
∫ b
a
f = F (b)− F (a).

Theorem 3.6. Let {fn}∞n=1 be a sequence of functions with common domain
[a, b]. We suppose:
(i) Each fn is continuously differentiable, i.e., f ′n exists and is continuous,
(ii) The functions fn converge pointwise on [a, b] to some function f , and
(iii) The functions f ′n converge uniformly on [a, b] to some function g.
Then f is differentiable and f ′ = g, or in other words

( lim
n→∞

fn)′ = lim
n→∞

f ′n.

Proof. Let x ∈ [a, b]. Since f ′n
u→ g on [a, b], certainly f ′n

u→ g on [a, x]. Since
each f ′n is assumed to be continuous, by 3.1 g is also continuous. Now applying
Theorem 3.3 and (FTCb) we have∫ x

a

g = lim
n→∞

∫ x

a

f ′n = lim
n→∞

fn(x)− fn(a) = f(x)− f(a).

Differentiating both sides and applying (FTCa), we get

g = (f(x)− f(a))′ = f ′.

�

Corollary 3.7. Let
∑∞
n=0 fn(x) be a series of functions converging pointwise

to f(x). Suppose that each f ′n is continuously differentiable and
∑∞
n=0 f

′
n(x)

u→ g.
Then f is differentiable and f ′ = g:

(19) (

∞∑
n=0

fn)′ =

∞∑
n=0

f ′n.

Exercise 3.6. Prove Corollary 3.7.

When for a series
∑
n fn it holds that (

∑
n fn)′ =

∑
n f
′
n, we say that the series can

be differentiated termwise or term-by-term. Thus Corollary 3.7 gives a condi-
tion under which a series of functions can be differentiated termwise.

Although Theorem 3.6 (or more precisely, Corollary 3.7) will be sufficient for our
needs, we cannot help but record the following stronger version.
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Theorem 3.8. Let {fn} be differentiable functions on the interval [a, b] such
that {fn(x0)} is convergent for some x0 ∈ [a, b]. If there is g : [a, b]→ R such that

f ′n
u→ g on [a, b], then there is f : [a, b]→ R such that fn

u→ f on [a, b] and f ′ = g.

Proof. [R, pp.152-153]
Step 1: Fix ε > 0, and choose N ∈ Z+ such that m,n ≥ N implies |fm(x0) −
fn(x0)| ε2 and |f ′m(t) − f ′n(t)| < ε

2(b−a) for all t ∈ [a, b]. The latter inequality is

telling us that the derivative of g := fm − fn is small on the entire interval [a, b].
Applying the Mean Value Theorem to g, we get a c ∈ (a, b) such that for all
x, t ∈ [a, b] and all m,n ≥ N ,

(20) |g(x)− g(t)| = |x− t||g′(c)| ≤ |x− t|
(

ε

2(b− a)

)
≤ ε

2
.

It follows that for all x ∈ [a, b],

|fm(x)− fn(x)| = |g(x)| ≤ |g(x)− g(x0)|+ |g(x0)| < ε

2
+
ε

2
= ε.

By the Cauchy criterion, fn is uniformly convergent on [a, b] to some function f .
Step 2: Now fix x ∈ [a, b] and define

ϕn(t) =
fn(t)− fn(x)

t− x
and

ϕ(t) =
f(t)− f(x)

t− x
,

so that for all n ∈ Z+, limx→t ϕn(t) = f ′n(x). Now by (20) we have

|ϕm(t)− ϕn(t)| ≤ ε

2(b− a)

for all m,n ≥ N , so once again by the Cauchy criterion ϕn converges uniformly for

all t 6= x. Since fn
u→ f , we get ϕn

u→ ϕ for all t 6= x. Finally we apply Theorem
3.1 on the interchange of limit operations:

f ′(x) = lim
t→x

ϕ(t) = lim
t→x

lim
n→∞

ϕn(t) = lim
n→∞

lim
t→x

ϕn(t) = lim
n→∞

f ′n(x). �

1.3. A criterion for uniform convergence: the Weierstrass M-test.

We have just seen that uniform convergence of a sequence of functions (and possibly,
of its derivatives) has many pleasant consequences. The next order of business is to
give a useful general criterion for a sequence of functions to be uniformly convergent.

For a function f : I → R, we define

||f || = sup
x∈I
|f(x)|.

In (more) words, ||f || is the least M ∈ [0,∞] such that |f(x)| ≤M for all x ∈ I.

Theorem 3.9. (Weierstrass M-Test) Let {fn}∞n=1 be a sequence of functions
defined on an interval I. Let {Mn}∞n=1 be a non-negative sequence such that ||fn|| ≤
Mn for all n and M =

∑∞
n=1Mn <∞. Then

∑∞
n=1 fn is uniformly convergent.
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Proof. Put Sn(x) =
∑n
k=1 fk(x). Since the series

∑
nMn is convergent, it is

Cauchy: for all ε > 0 there exists N ∈ Z+ such that for all n ≥ N and m ≥ 0 we
have Mn+m −Mn =

∑n+m
k=n+1Mk < ε. But then for all x ∈ I we have

|Sn+m(x)− Sn(x)| = |
n+m∑
k=n+1

fk(x)| ≤
n+m∑
k=n+1

|fk(x)| ≤
n+m∑
n=k+1

||fk|| ≤
n+m∑
k=n+1

Mk < ε.

Therefore the series is uniformly convergent by the Cauchy criterion. �

1.4. Another criterion for uniform convergence: Dini’s Theorem.

There is another criterion for uniform convergence which is sometimes useful, due
originally to Dini.3 To state it we need a little terminology: let fn : I → R be
a sequence of functions. We say that we have an increasing sequence if for all
x ∈ I and all n, fn(x) ≤ fn+1(x).

Warning: An “increasing sequence of functions” is not the same as a “sequence of
increasing functions”! In the former, what is increasing is the values fn(x) for any
fixed x as we increase the index n, whereas the in the latter, what is increasing is
the values fn(x) for any fixed n as we we increase x. For instance, fn(x) = sinx− 1

n
is an increasing sequence of functions but not a sequence of increasing functions.

Evidently we have the allied definition of a decreasing sequence of functions,
that is, a sequence of functions fn : I → R such that for all x ∈ I and all n,
fn+1(x) ≤ fn(x). Note that {fn} is an increasing sequence of functions iff {−fn}
is a decreasing sequence of functions.

In order to prove the desired theorem we need a technical result borrowed (border-
ing on stolen!) from real analysis, a special case of the celebrated Heine-Borel
Theorem. And in order to state the result we need some setup.

Let [a, b] be a closed interval with a ≤ b. A collection {Ii} of intervals covers
[a, b] if each x ∈ [a, b] is contained in Ii for at least on i, or more succinctly if

[a, b] ⊂
⋃
i

Ii.

Lemma 3.10. (Compactness Lemma) Let [a, b] be a closed interval and {Ii} a
collection of intervals covering [a, b]. Assume moreover that either
(i) each Ii is an open interval, or
(ii) Each Ii is contained in [a, b] and is either open or of the form [a, c) for a < c ≤ b
or of the form (d, b] for a ≤ d < b.
Then there exists a finite set of indices i1, . . . , ik such that

[a, b] = Ii1 ∪ . . . ∪ Iik .

Proof. Let us first assume hypothesis (i) that each Ii is open. At the end
we will discuss the minor modifications necessary to deduce the conclusion from
hypothesis (ii).

We define a subset S ⊂ [a, b] as follows: it is the set of all c ∈ [a, b] such that

3Ulisse Dini, 1845-1918
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the closed interval [a, c] can be covered by finitely many of the open intervals {Ii}.
This set is nonempty because a ∈ S: by hypothesis, there is at least one i such that
a ∈ Ii and thus, quite trivially, [a, a] = {a} ⊂ Ii. let C = supS, so a ≤ C ≤ b. If
a = b then we are done already, so assume a < b.
claim: We cannot have C = a. Indeed, choose an interval Ii containing a. Then
Ii, being open, contains [a, a+ ε] for some ε > 0, so C ≥ a+ ε.
claim: C ∈ S. That is, if for every ε > 0 it is possible to cover [a,C− ε] by finitely
many Ii’s, then it is also possible to cover [a,C] by finitely many Ii’s. Indeed, since
the Ii’s cover [a, b], there exitst at least one interval Ii0 containing the point C, and
once again, since Ii0 is open, it must contain [C − δ, C] for some δ > 0. Choosing
ε < δ, we find that by adding if necessary one more interval Ii0 to our finite family,
we can cover [a,C] with finitely many of the intervals Ii.
claim: C = b. For if not, a < C < b and [a,C] can be covered with finitely many
intervals Ii1 ∪ . . . ∪ Iik . But once again, whichever of these intervals contains C
must, being open, contain all points of [C,C + δ] for some δ > 0, contradicting the
fact that C is the largest element of S. So we must have C = b.
Finally, assume (ii). We can easily reduce to a situation in which hypothesis (i)
applies and use what we have just proved. Namely, given a collection {Ii} of
intervals satisfying (ii), we define a new collection {Ji} of intervals as follows: if
Ii is an open subinterval of [a, b], put Ji = Ii. If Ii is of the form [a, c), put
Ji = (a− 1, c). If Ii is of the form (d, b], put Ji = (d, b+ 1). Thus for all i, Ji is an
open interval containing Ii, so since the collection {Ii} covers [a, b], so does {Ji}.
Applying what we just proved, there exist i1, . . . , ik such that [a, b] = Ji1 ∪ . . . Jik .
But since Ji ∩ [a, b] = Ii – or, in words, in expanding from Ii to Ji we have only
added points which lie outside [a, b] so it could not turn a noncovering subcollection
into a covering subcollection – we must have [a, b] = Ii1 ∪ . . . Iin , qed. �

Theorem 3.11. (Dini’s Theorem) Let {fn} be a sequence of functions defined
on a closed interval [a, b]. We suppose that:
(i) Each fn is continuous on [a, b].
(ii) The sequence {fn} is either increasing or decreasing.
(iii) fn converges pointwise to a continuous function f .
Then fn converges to f uniformly on [a, b].

Proof.
Step 1: The sequence {fn} is decreasing iff {−fn} is decreasing, and fn → f point-
wise (resp. uniformly) iff −fn → −f pointwise (resp. uniformly), so without loss of
generality we may assume the sequence is decreasing. Similarly, fn is continuous,
decreasing and converges to f pointwise (resp. uniformly) iff fn − f is decreasing,
continuous and converges to f − f = 0 pointwise (resp. uniformly). So we may as
well assume that {fn} is a decreasing sequence of functions converging pointwise
to the zero function. Note that under these hypotheses we have fn(x) ≥ 0 for all
n ∈ Z+ and all x ∈ [a, b].
Step 2: Fix ε > 0, and let x ∈ [a, b]. Since fn(x) → 0, there exists Nx ∈ Z+

such that 0 ≤ fNx(x) < ε
2 . Since fNx is continuous at x, there is a relatively

open interval Ix containing x such that for all y ∈ Ix, |fNx(y) − fNx(x)| < ε
2 and

thus fNx(y) = |fNx(y)| ≤ |fNx(y) − fNx(x)| + |fNx(x)| < ε. Since the sequence
of functions is decreasing, it follows that for all n ≥ Nx and all y ∈ Ix we have
0 ≤ fn(y) < ε.
Step 3: Applying part (ii) of the Compactness Lemma, we get a finite set {x1, . . . , xk}
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such that [a, b] = Ix1
∪ . . . ∪ Ixk . Let N = max1≤i≤kNxi . Then for all n ≥ N and

all x ∈ [a, b], there exists some i such that x ∈ Ixi and thus 0 ≤ fn(x) < ε. that is,

for all x ∈ [a, b] and all n ≥ N we have |fn(x)− 0| < ε, so fn
u→ 0. �

Example: Our very first example of a sequence of functions, namely fn(x) = xn on
[0, 1], is a pointwise convergent decreasing sequence of continuous functions. How-
ever the limit function f is discontinuous so the convergence cannot be uniform. In
this case all of the hypotheses of Dini’s Theorem are satisfied except the continuity
of the limit function, which is therefore necessary. In this regard Dini’s Theorem
may be regarded as a partial converse of Theorem 3.1: under certain additional
hypotheses, the continuity of the limit function becomes sufficient as well as neces-
sary for uniform convergence.

Remark: I must say that I cannot think of any really snappy application of Dini’s
Theorem. If you find one, please let me know!

2. Power Series II: Power Series as (Wonderful) Functions

Theorem 3.12. (Wonderful Properties of Power Series) Let
∑∞
n=0 anx

n be a
power series with radius of convergence R > 0. Consider f(x) =

∑∞
n=0 anx

n as a
function f : (−R,R)→ R. Then:
a) f is continuous.
b) f is differentiable. Morever, its derivative may be computed termwise:

f ′(x) =

∞∑
n=1

nanx
n−1.

c) Since the power series f ′ has the same radius of convergence R > 0 as f , f is
in fact infinitely differentiable.
d) For all n ∈ N we have f (n)(0) = (n!)an.

Proof.
a) Let 0 < A < R, so f defines a function from [−A,A] to R. We claim that

the series
∑
n anx

n converges to f uniformly on [−A,A]. Indeed, as a function
on [−A,A], we have ||anxn|| = |an|An, and thus

∑
n ||anxn|| =

∑
n |an|An <

∞, because power series converge absolutely on the interior of their interval of
convergence. Thus by the Weierstrass M -test f is the uniform limit of the sequence
Sn(x) =

∑n
k=0 akx

k. But each Sn is a polynomial function, hence continuous and
infinitely differentiable. So by Theorem 3.1 f is continuous on [−A,A]. Since any
x ∈ (−R,R) lies in [−A,A] for some 0 < A < R, f is continuous on (−R,R).
b) According to Corollary 3.7, in order to show that f =

∑
n anx

n =
∑
n fn is

differentiable and the derivative may be compuited termwise, it is enough to check
that (i) each fn is continuously differentiable and (ii)

∑
n f
′
n is uniformly convergent.

But (i) is trivial, since fn = anx
n – of course monomial functions are continuously

differentiable. As for (ii), we compute that
∑
n f
′
n =

∑
n(anx

n) =
∑
n nan−1x

n−1.
By X.X, this power series also has radius of convergence R, hence by the result of
part a) it is uniformly convergent on [−A,A]. Therefore Corollary 3.7 applies to
show f ′(x) =

∑∞
n=0 nanx

n−1.
c) We have just seen that for a power series f convergent on (−R,R), its derivative
f ′ is also given by a power series convergent on (−R,R). So we may continue in
this way: by induction, derivatives of all orders exist.
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d) The formula f (n)(0) = (n!)an is simply what one obtains by repeated termwise
differentiation. We leave this as an exercise to the reader. �

Exercise 3.7. Prove Theorem 3.12d).

Exercise 3.8. Show that if f(x) =
∑∞
n=0 anx

n has radius of convergence R >
0, then F (x) =

∑∞
n=0

an
n+1x

n+1 is an anti-derivative of f .

The following exercise drives home that uniform convergence of a sequence or series
of functions on all of R is a very strong condition, often too much to hope for.

Exercise 3.9. Let
∑
n anx

n be a power series with infinite radius of conver-
gence, hence defining a function f : R→ R. Show that the following are equivalent:
(i) The series

∑
n anx

n is uniformly convergent on R.
(ii) We have an = 0 for all sufficiently large n.

Exercise 3.10. Let f(x) =
∑∞
n=0 anx

n be a power series with an ≥ 0 for all n.
Suppose that the radius of convergence is 1, so that f defines a function on (−1, 1).
Show that the following are equivalent:
(i) f(1) =

∑
n an converges.

(ii) The power series converges uniformly on [0, 1].
(iii) f is bounded on [0, 1).

The fact that for any power series f(x) =
∑
n anx

n with positive radius of conver-

gence we have an = f(n)(0)
n! yields the following important result.

Corollary 3.13. (Uniqueness Theorem) Let f(x) =
∑
n anx

n and g(x) =∑
n bnx

n be two power series with radii of convergence Ra and Rb with 0 < Ra ≤ Rb,
so that both f and g are infinitely differentiable functions on (−Ra, Ra). Suppose
that for some δ with 0 < δ ≤ Ra we have f(x) = g(x) for all x ∈ (−δ, δ). Then
an = bn for all n.

Exercise 3.11. Suppose f(x) =
∑
n anx

n and g(x) =
∑
n bnx

n are two power
series each converging on some open interval (−A,A). Let {xn}∞n=1 be a sequence
of elements of (−A,A)\{0} such that limn→∞ xn = 0. Suppose that f(xn) = g(xn)
for all n ∈ Z+. Show that an = bn for all n.

The upshot of Corollary 3.13 is that the only way that two power series can be
equal as functions – even in some very small interval around zero – is if all of their
coefficients are equal. This is not obvious, since in general

∑∞
n=0 an =

∑∞
n=0 bn

does not imply an = bn for all n. Another way of saying this is that the only power
series a function can be equal to on a small interval around zero is its Taylor series,
which brings us to the next section.

3. Taylor Polynomials and Taylor Theorems

Recall that a function f : I → R is infinitely differentiable if all of its higher
derivatives f ′, f ′′, f ′′′, f (4), . . . exist. When we speak of differentiability of f at a
point x ∈ I, we will tacitly assume that x is not an endpoint of I, although it would
not be catastrophic if it were (we would need to speak of right-hand derivatives at
a left endpoint and left-hand derivatives at a right endpoint). For k ∈ N, we say
that a function f : I → R is Ck if its kth derivative exists and is continuous. (Since
by convention the 0th derivative of f is just f itself, a C0 function is a continuous
function.)
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3.1. Taylor’s Theorem (Without Remainder).

For n ∈ N and c ∈ I (not an endpoint), we say that two functions f, g : I → R
agree to order n at c if

lim
x→c

f(x)− g(x)

(x− c)n
= 0.

Exercise: If 0 ≤ m ≤ n and f and g agree to order n at c, then f and g agree to
order m at c.

Example 0: We claim that two continuous functions f and g agree to order 0
at c iff f(c) = g(c). Indeed, suppose that f and g agree to order 0 at c. Since f
and g are continuous, we have

0 = lim
x→c

f(x)− g(x)

(x− c)0
= lim
x→c

f(x)− g(x) = f(c)− g(c).

The converse, that if f(c) = g(c) then limx→c f(x)− g(x) = 0, is equally clear.

Example 1: We claim that two differentiable functions f and g agree to order
1 at c iff f(c) = g(c) and f ′(c) = g′(c). Indeed, by Exercise X.X, both hypotheses
imply f(c) = g(c), so we may assume that, and then we find

lim
x→c

f(x)− g(x)

x− c
= lim
x→c

f(x)− f(c)

x− c
− g(x)− g(c)

x− c
= f ′(c)− g′(c).

Thus assuming f(c) = g(c), f and g agree to order 1 at c if and only f ′(c) = g′(c).

The following result gives the expected generalization of these two examples. It
is generally attributed to Taylor,4 probably correctly, although special cases were
known to earlier mathematicians. Note that Taylor’s Theorem often refers to
a later result (Theorem 3.15) that we call “Taylor’s Theorem With Remainder”,
even though if I am not mistaken it is Theorem 3.14 and not Theorem 3.15 that
was actually proved by Brook Taylor.

Theorem 3.14. (Taylor) Let n ∈ N and f, g : I → R be two n times differen-
tiable functions. Let c be an interior point of I. The following are equivalent:
(i) We have f(c) = g(c), f ′(c) = g′(c), . . . , f (n)(c) = g(n)(c).
(ii) f and g agree to order n at c.

Proof. Set h(x) = f(x)− g(x). Then (i) holds iff

h(c) = h′(c) = . . . = h(n)(c) = 0

and (ii) holds iff

lim
x→c

h(x)

(x− c)n
= 0.

So we may work with h instead of f and g. We may also assume that n ≥ 2, the
cases n = 0 and n = 1 having been dealt with above.

(i) =⇒ (ii): L = limx→c
h(x)

(x−c)n is of the form 0
0 , so L’Hôpital’s Rule gives

L = lim
x→c

h′(x)

n(x− c)n−1
,

4Brook Taylor, 1685 - 1731
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provided the latter limit exists. By our assumptions, this latter limit is still of the
form 0

0 , so we may apply L’Hôpital’s Rule again. We do so iff n > 2. In general,
we apply L’Hôpital’s Rule n− 1 times, getting

L = lim
x→c

h(n−1)(x)

n!(x− c)
=

1

n!

(
lim
x→c

h(n−1)(x)− h(n−1)(c)
x− c

)
,

provided the latter limit exists. But the expression in parentheses is nothing else
than the derivative of the function h(n−1)(x) at x = c – i.e., it is h(n)(c) = 0 (and,
in particular the limit exists; only now have the n − 1 applications of L’Hôpital’s
Rule been unconditionally justified), so L = 0. Thus (ii) holds.
(ii) =⇒ (i):
claim There is a polynomial P (x) =

∑n
k=0 ak(x − c)k of degree at most n such

that P (c) = h(c), P ′(c) = h′(c), . . . , P (n)(c) = h(n)(c). We will take up this easy –
but important! – fact in the following section. Taking f(x) = h(x), g(x) = P (x),
hypothesis (i) is satisfied, and thus by the already proven implication (i) =⇒ (ii),
we know that h(x) and P (x) agree to order n at x = c:

lim
x→c

h(x)− P (x)

(x− c)n
= 0.

Moreover, by assumption h(x) agrees to order n with the zero function:

lim
x→c

h(x)

(x− c)n
= 0.

Subtracting these limits gives

(21) lim
x→c

P (x)

(x− c)n
= 0.

Now it is easy to see – e.g. by L’Hôpital’s Rule – that (21) can only hold if

a0 = a1 = . . . = an = 0,

i.e., P = 0. Then for all 0 ≤ k ≤ n, h(k)(c) = P (k)(c) = 0: (i) holds. �

Remark: Above we avoided a subtle pitfall: we applied L’Hôpital’s Rule n−1 times

to limx→c
h(x)

(x−c)n , but the final limit we got was still of the form 0
0 – so why not

apply L’Hôpital one more time? The answer is if we do we get that

L = lim
x→c

h(n)(x)

n!
,

assuming this limit exists. But to assume this last limit exists and is equal to h(n)(0)
is to assume that nth derivative of h is continuous at zero, which is slightly more
than we want (or need) to assume.

3.2. Taylor Polynomials.

Recall that we still need to establish the claim made in the proof of Theorem
3.14. This is in fact more important than the rest of Theorem 3.14! So let

P (x) = a0 + a1(x− c) + a2(x− c)2 + . . .+ an(x− c)n

be a polynomial of degree at most n, let f : I → R be a function which is n times
differentiable at c, and let us see whether and in how many ways we may choose
the coefficients a0, . . . , an such that f (k)(c) = P (k)(c) for all 0 ≤ k ≤ n.
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There is much less here than meets the eye. For instance, since
P (c) = a0 + 0 + . . . = a0, clearly we have P (c) = f(c) iff

a0 = f(c).

Moreover, since P ′(x) = a1 + 2a2(x − c) + 3a3(x − c)2 + . . . + nan(x − c)n−1, we
have P ′(c) = a1 and thus P ′(c) = f(c) iff

a1 = f ′(c).

Since P ′′(x) = 2a2 + 3 · 2a3(x− c) + 4 · 3a4(x− c) + . . .+ n(n− 1)anx
n−2, we have

P ′′(c) = 2a2 and thus P ′′(c) = f ′′(c) iff a2 = f ′′(c)
2 . And it proceeds in this way.

(Just) a little thought shows that P (k)(c) = k!ak – after differentiating k times the
term ak(x− c)k becomes the constant term – all higher terms vanish when we plug
in x = c – and since we have applied the power rule k times we pick up altogether
a factor of k · (k − 1) · · · 1 = k!. Therefore we must have

ak =
f (k)(c)

k!
.

In other words, no matter what the values of the derivatives of f at c are, there is
a unique polynomial of degree at most k satisfying them, namely

Tn(x) =

n∑
k=0

f (k)(c)(x− c)k

k!
.

Tn(x) is called the degree n Taylor polynomial for f at c.

Exercise 3.12. Fix c ∈ R. Show that every polynomial P (x) = b0 +b1x+ . . .+
bnx

n can be written in the form a0 + a1(x− c) + a2(x− c)2 + . . .+ an(x− c)n for
unique a0, . . . , an. (Hint: P (x+ c) is also a polynomial.)

For n ∈ N, a function f : I → R vanishes to order n at c if limx→c
f(x)

(x−c)n = 0.

Note that this concept came up prominently in the proof of Theorem 3.14 in the
form: f and g agree to order n at c iff f − g vanishes to order n at c.

Exercise 3.13. Let f be a function which is n times differentiable at x = c,
and let Tn be its degree n Taylor polynomial at x = c. Show that f − Tn vanishes
to order n at x = c. (This is just driving home a key point of the proof of Theorem
3.14 in our new terminology.)

Exercise 3.14. a) Show that for a function f : I → R, the following are
equivalent:
(i) f is differentiable at c.
(ii) We may write f(x) = a0 + a1(x − c) + g(x) for a function g(x) vanishing to
order 1 at c.
b) Show that if the equivalent conditions of part a) are satisfied, then we must have
a0 = f(c), a1 = f ′(c) and thus the expression of a function differentiable at c as
the sum of a linear function and a function vanishing to first order at c is unique.

Exercise 3.15. (D. Piau) Let a, b ∈ Z+, and consider the following function
fa,b : R→ R:

fa,b(x) =

{
xa sin

(
1
xb

)
if x 6= 0

0 if x = 0
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a) Show that fa,b vanishes to order a− 1 at 0 but does not vanish to order a at 0.
b) Show that fa,b is differentiable at x = 0 iff a ≥ 2, in which case f ′a,b(0) = 0.

c) Show that fa,b is twice differentiable at x = 0 iff a ≥ b + 3, in which case
f ′′a,b(0) = 0.

d) Deduce in particular that for any n ≥ 2, fn,n vanishes to order n at x = 0 but
is not twice differentiable – hence not n times differentiable – at x = 0.
e) Exactly how many times differentiable is fa,b?

3.3. Taylor’s Theorem With Remainder.

To state the following theorem, it will be convenient to make a convention: real
numbers a, b, by |[a, b]| we will mean the interval [a, b] if a ≤ b and the interval [b, a]
if b < a. So |[a, b]| is the set of real numbers lying between a and b.

Theorem 3.15. (Taylor’s Theorem With Remainder) Let n ∈ N and f :
[a, b] → R be an n + 1 times differentiable function. Let Tn(x) be the degree n
Taylor polynomial for f at c, and let x ∈ [a, b].
a) There exists z ∈ |[c, x]| such that

(22) f(x) = Tn(x) +
f (n+1)(z)

(n+ 1)!
(x− c)n+1.

b) We have

Rn(x) = |f(x)− Tn(x)| ≤ ||f
(n+1)||

(n+ 1)!
|x− c|n+1,

where ||f (n+1)|| is the supremum of |f (n+1)| on |[c, x]|.

Proof. a) [R, Thm. 5.15] Put

M =
f(x)− Tn(x)

(x− c)n+1
,

so

f(x) = Tn(x) +M(x− c)n+1.

Thus our goal is to show that (n + 1)!M = f (n+1)(z) for some z ∈ |[c, x]|. To see
this, we define an auxiliary function g: for a ≤ t ≤ b, put

g(t) = f(t)− Tn(t)−M(t− c)n+1.

Differentiating n+ 1 times, we get that for all t ∈ (a, b),

g(n+1)(t) = f (n+1)(t)− (n+ 1)!M.

Therefore it is enough to show that there exists z ∈ |[c, x]| such that g(n+1)(z) = 0.
By definition of Tn and g, we have g(k)(c) = 0 for all 0 ≤ k ≤ n. Moreover,
by definition of M we have g(x) = 0. So in particular we have g(c) = g(x) = 0
and Rolle’s Theorem applies to give us z1 ∈ |[c, x]| with g′(z1) = 0 for some
z1 ∈ |[c, x]|. Now we iterate this argument: since g′(c) = g′(z1) = 0, by Rolle’s
Theorem there exists z2 ∈ |[x, z1]| such that (g′)′(z2) = g′′(z2) = 0. Continuing in
this way we get a sequence of points z1, z2, . . . , zn+1 ∈ |[c, x]| such that g(k)(zk) = 0,
so finally that g(n+1)(zn+1) = 0 for some zn+1 ∈ |[c, x]|. Taking z = zn+1 completes
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the proof of part a).
Part b) follows immediately: we have |f (n+1)(z)| ≤ ||f (n+1)||, so

|f(x)− Tn(x)| = |f
(n+1)(z)

(n+ 1)!
(x− c)n+1| ≤ ||f

(n+1)||
(n+ 1)!

|x− c|n+1.

�

Remark: There are in fact several different versions of “Taylor’s Theorem With
Remainder” corresponding to different ways of expressing the remainder Rn(x) =
|f(x)− Tn(x)|. The particular expression derived above is due to Lagrange.5

Exercise 3.16. Show that Theorem 3.15 (Taylor’s Theorem With Remainder)
immediately implies Theorem 3.14 (Taylor’s Theorem) under the additional hypoth-
esis that f (n+1) exists on the interval |[c, x]|.

4. Taylor Series

Let f : I → R be an infinitely differentiable function, and let c ∈ I. We define the
Taylor series of f at c to be

T (x) =

∞∑
n=0

f (n)(c)(x− c)n

n!
.

Thus by definition, T (x) = limn→∞ Tn(x), where Tn is the degree n Taylor poly-
nomial of x at c. In particular T (x) is a power series, so all of our prior work on
power series applies.

Just as with power series, it is no real loss of generality to assume that c = 0,
in which case our series takes the simpler form

T (x) =

∞∑
n=0

f (n)(0)xn

n!
,

since to get from this to the general case one merely has to make the change of
variables x 7→ x−c. It is somewhat traditional to call Taylor series centered around
c = 0 Maclaurin series. But there is no good reason for this – Taylor series were
introduced by Taylor in 1721, whereas Colin Maclaurin’s Theory of fluxions was not
published until 1742 and in this work explicit attribution is made to Taylor’s work.6

Using separate names for Taylor series centered at 0 and Taylor series centered at
an arbitrary point c often suggests – misleadingly! – to students that there is some
conceptual difference between the two cases. So we will not use the term “Maclaurin
series” here.

Exercise 3.17. Define a function f : R → R by f(x) = e
−1

x2 for x 6= 0 and
f(0) = 0. Show that f is infinitely differentiable and in fact f (n)(0) = 0 for all
n ∈ N.

When dealing with Taylor series there are two main issues.

5Joseph-Louis Lagrange, 1736-1813
6For that matter, special cases of the Taylor series concept were well known to Newton and

Gregory in the 17th century and to the Indian mathematician Madhava of Sangamagrama in the

14th century.
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Question 3.16. Let f : I → R be an infinitely differentiable function and

T (x) =
∑∞
n=0

f(n)(0)xn

n! be its Taylor series.
a) For which values of x does T (x) converge?
b) If for x ∈ I, T (x) converges, do we have T (x) = f(x)?

Notice that Question 3.16a) is simply asking for which values of x ∈ R a power se-
ries is convergent, a question to which we worked out a very satisfactory answer in
§X.X. Namely, the set of values x on which a power series converges is an interval
of radius R ∈ [0,∞] centered at 0. More precisely, in theory the value of R is given

by Hadamard’s Formula 1
R = lim supn→∞ |an|

1
n , and in practice we expect to be

able to apply the Ratio Test (or, if necessary, the Root Test) to compute R.
If R = 0 then T (x) only converges at x = 0 and there we certainly have

T (0) = f(0): this is a trivial case. Henceforth we assume that R ∈ (0,∞] so
that f converges (at least) on (−R,R). Fix a number A, 0 < A ≤ R such that
(−A,A) ⊂ I. We may then move on to Question 3.16b): must f(x) = T (x) for all
x ∈ (−A,A)?

In fact the answer is no. Indeed, consider the function f(x) of Exercise 3.17.
f(x) is infinitely differentiable and has f (n)(0) = 0 for all n ∈ N, so its Taylor series

is T (x) =
∑∞
n=0

0xn

n! =
∑∞
n=0 0 = 0, i.e., it converges for all x ∈ R to the zero

function. Of course f(0) = 0 (every function agrees with its Taylor series at x = 0),

but for x 6= 0, f(x) = e
−1

x2 6= 0. Therefore f(x) 6= T (x) in any open interval around
x = 0.

There are plenty of other examples. Indeed, in a sense that we will not try to make
precise here, “most” infinitely differentiable functions f : R → R are not equal to
their Taylor series expansions in any open interval about any point. That’s the bad
news. However, one could interpret this to mean that we are not really interested
in “most” infinitely differentiable functions: the special functions one meets in
calculus, advanced calculus, physics, engineering and analytic number theory are
almost invariably equal to their Taylor series expansions, at least in some small
interval around any given point x = c in the domain.

In any case, if we wish to try to show that a T (x) = f(x) on some interval
(−A,A), we have a tool for this: Taylor’s Theorem With Remainder. Indeed,
since Rn(x) = |f(x)− Tn(x)|, we have

f(x) = T (x) ⇐⇒ f(x) = lim
n→∞

Tn(x)

⇐⇒ lim
n→∞

|f(x)− Tn(x)| = 0 ⇐⇒ lim
n→∞

Rn(x) = 0.

So it comes down to being able to give upper bounds on Rn(x) which tend to zero as
n → ∞. According to Taylor’s Theorem with Remainder, this will hold whenever
we can show that the norm of the nth derivative ||f (n)|| does not grow too rapidly.

Example: We claim that for all x ∈ R, the function f(x) = ex is equal to its
Taylor series expansion at x = 0:

ex =

∞∑
n=0

xn

n!
.
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First we compute the Taylor series expansion. Although there are some tricks for
this, in this case it is really no trouble to figure out exactly what f (n)(0) is for all
non-negative integers n. Indeed, f (0)(0) = f(0) = e0 = 1, and f ′(x) = ex, hence
every derivative of ex is just ex again. We conclude that f (n)(0) = 1 for all n and

thus the Taylor series is
∑∞
n=0

xn

n! , as claimed. Next note that this power series
converges for all real x, as we have already seen: just apply the Ratio Test. Finally,
we use Taylor’s Theorem with Remainder to show that Rn(x) → 0 for each fixed
x ∈ R. Indeed, Theorem 3.15 gives us

Rn(x) ≤ ||f
(n+1)||

(n+ 1)!
|x− c|n+1,

where ||f (n+1)|| is the supremum of the the absolute value of the (n+1)st derivative
on the interval |[0, x]|. But – lucky us – in this case f (n+1)(x) = ex for all n and
the maximum value of ex on this interval is ex if x ≥ 0 and 1 otherwise, so in either
way ||f (n+1)|| ≤ e|x|. So

Rn(x) ≤ e|x|
(

xn+1

(n+ 1)!

)
.

And now we win: the factor inside the parentheses approaches zero with n and is
being multiplied by a quantity which is independent of n, so Rn(x)→ 0. In fact a
moment’s thought shows that Rn(x) → 0 uniformly on any bounded interval, say
on [−A,A], and thus our work on the general properties of uniform convergence of
power series (in particular the M -test) is not needed here: everything comes from
Taylor’s Theorem With Remainder.

Example continued: we use Taylor’s Theorem With Remainder to compute e = e1

accurate to 10 decimal places.

A little thought shows that the work we did for f(x) = ex carries over verbatim
under somewhat more general hypotheses.

Theorem 3.17. Let f(x) : R → R be a smooth function. Suppose that for all
A ∈ [0,∞) there exists a number MA such that for all x ∈ [−A,A] and all n ∈ N,

|f (n)(x)| ≤MA.

Then:

a) The Taylor series T (x) =
∑∞
n=0

f(n)(0)xn

n! converges absolutely for all x ∈ R.
b) For all x ∈ R we have f(x) = T (x): that is, f is equal to its Taylor series
expansion at 0.

Exercise 3.18. Prove Theorem 3.17.

Exercise 3.19. Suppose f : R → R is a smooth function with periodic
derivatives: there exists some k ∈ Z+ such that f = f (k). Show that f satisfies
the hypothesis of Theorem 3.17 and therefore is equal to its Taylor series expansion
at x = 0 (or in fact, about any other point x = c).

Example: Let f(x) = sinx. Then f ′(x) = cosx, f ′′(x) = − sinx, f ′′′(x) = − cosx,
f (4)(x) = sinx = f(x), so f has periodic derivatives. In particular the sequence of
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nth derivatives evaluated at 0 is {0, 1, 0,−1, 0, . . .}. By Exercise X.X, we have

sinx =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!

for all x ∈ R. Similarly, we have

cosx =

∞∑
n=0

(−1)nx2n

(2n)!
.

Exercise 3.20. Let f : R→ R be a smooth function.
a) Suppose f is odd: f(−x) = −f(x) for all x ∈ R. Then the Taylor series
expansion of f is of the form

∑∞
n=0 anx

2n+1, i.e., only odd powers of x appear.
b) Suppose f is even: f(−x) = f(x) for all x ∈ R. Then the Taylor series
expansion of f is of the form

∑∞
n=0 anx

2n, i.e., only even powers of x appear.

Example: Let f(x) = log x. Then f is defined and smooth on (0,∞), so in seeking
a Taylor series expansion we must pick a point other than 0. It is traditional to set
c = 1 instead. Then f(1) = 0, f ′(x) = x−1, f ′′(x) = −x−2, f ′′′(x) = (−1)22!x−3,
and in general f (n)(x) = (−1)n−1(n−1)!x−n. Therefore the Taylor series expansion
about c = 1 is

T (x) =

∞∑
n=1

(−1)n−1(n− 1)!(x− 1)n

n!
=

∞∑
n=1

(−1)n−1

n
(x− 1)n.

This power series is convergent when −1 < x−1 ≤ 1 or 0 < x ≤ 2. We would like to
show that it is actually equal to f(x) on (0, 2). Fix A ∈ (0, 1) and x ∈ [1−A, 1+A].
The functions f (n) are decreasing on this interval, so the maximum value of |f (n+1)|
occurs at 1−A: ||f (n+1)|| = n!(1−A)−n. Therefore, by Theorem 3.15 we have

Rn(x) ≤ ||f
(n+1)||

(n+ 1)!
|x− c|n+1 =

|x− 1|n+1

(1−A)n(n+ 1)
≤ A

n+ 1

(
A

1−A

)n
.

But now when we try to show that Rn(x)→ 0, we are in for a surprise: the quantity
A
n+1

(
A

1−A

)n
tends to 0 as n→∞ iff A

1−A ≤ 1 iff A ≤ 1
2 . Thus we have shown that

log x = T (x) for x ∈ [ 12 ,
3
2 ] only!

In fact f(x) = T (x) for all x ∈ (0, 2), but we need a different argument. Namely,
we know that for all x ∈ (0, 2) we have

1

x
=

1

1− (1− x)
=

∞∑
n=0

(1− x)n.

As always for power series, the convergence is uniform on [1 − A, 1 + A] for any
0 < A < 1, so by Corollary 3.4 we may integrate termwise, getting

log x =

∞∑
n=0

−(1− x)n+1

n+ 1
=

∞∑
n=0

(−1)n(x− 1)n+1

n+ 1
=

∞∑
n=1

(−1)n−1

n
(x− 1)n.

There is a clear moral here: even if we can find an exact expression for f (n) and for
||f (n)||, the error bound given by Theorem 3.15b) may not be good enough to show
that Rn(x)→ 0, even for rather elementary functions. This does not in itself imply
that Tn(x) does not converge to f(x) on its interval of convergence: we may simply
need to use less direct means. As a general rule, we try to exploit the Uniqueness
Theorem for power series, which says that if we can – by any means necessary! –
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express f(x) as a power series
∑
n an(x − c)n convergent in an interval around c

of positive radius, then this power series must be the Taylor series expansion of f ,

i.e., an = f(n)(c)
n! .

Exercise 3.21. Let f(x) = arctanx. Show: f(x) =
∑∞
n=0

(−1)nxn
2n+1 for all

x ∈ (−1, 1]. (For convergence at the right endpoint, use Abel’s Theorem as in
§2.10.)

5. The Binomial Series

Even for familiar, elementary functions, using Taylor’s Theorem to show Rn(x)→ 0
may require nonroutine work. We give a case study: the binomial series.

Let α ∈ R. For x ∈ (−1, 1), we define

f(x) = (1 + x)α.

Case 1: Suppose α ∈ N. Then f is just a polynomial; in particular f is defined and
infinitely differentiable for all real numbers.
Case 2: Suppose α is positive but not an integer. Depending on the value of α, f
may or may not be defined for x < −1 (e.g. it is for α = 2

3 and it is not for α = 3
2 ),

but in any case f is only 〈α〉 times differentiable at x = −1.
Case 3: Suppose α < 0. Then limx→−1+ f(x) =∞.

The upshot of this discussion is that if α is not a positive integer, then f is defined
and infinitely differentiable on (−1,∞) and on no larger interval than this.

For n ∈ Z+, f (n)(x) = (α)(α − 1) · · · (α − (n − 1))(1 + x)α−n, so f (n)(0) =
(α)(α − 1) · · · (α − (n − 1)). Of course we have f (0)(0) = f(0) = 1, so the Taylor
series to f at c = 0 is

T (x) = 1 +

∞∑
n=1

(α)(α− 1) · · · (α− (n− 1))

n!
xn.

If α ∈ N, we recognize the nth Taylor series coefficient as the binomial coefficient(
α
n

)
, and this ought not to be surprising because for α ∈ N, expanding out T (x)

simply gives the binomial theorem:

∀α ∈ N, (1 + x)α =

α∑
n=0

(
α

n

)
xn.

So let’s extend our definition of binomial coefficients: for any α ∈ R, put(
α

0

)
= 1,

∀n ∈ Z+,

(
α

n

)
=

(α)(α− 1) · · · (α− (n− 1))

n!
.

Exercise 3.22. For any α ∈ R, n ∈ Z+, show

(23)

(
α

n

)
=

(
α− 1

n− 1

)
+

(
α− 1

n

)
.
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Finally, we rename the Taylor series to f(x) as the binomial series

B(α, x) =

∞∑
n=0

(
α

n

)
xn.

The binomial series is as old as calculus itself, having been studied by Newton in the
17th century.7 It remains one of the most important and useful of all power series.
For us, our order of business is the usual one when given a Taylor series: first, for
each fixed α we wish to find the interval I on which the series B(α, x) converges.
Second, we would like to show – if possible! – that for all x ∈ I, B(α, x) = (1+x)α.

Theorem 3.18. Let α ∈ R \ N, and consider the binomial series

B(α, x) =

∞∑
n=0

(
α

n

)
xn = 1 +

∞∑
n=1

(
α

n

)
xn.

a) For all such α, the radius of convergence of B(α, x) = 1.
b) For all α > 0, the series B(α, 1) and B(α,−1) are absolutely convergent.
c) If α ∈ (−1, 0), the series B(α, 1) is nonabsolutely convergent.
d) If α ≤ −1, then B(α,−1) and B(α, 1) are divergent.

Proof. a) We apply the Ratio Test:

ρ = lim
n→∞

∣∣∣∣∣
(
α
n+1

)(
α
n

) ∣∣∣∣∣ = lim
n→∞

∣∣∣∣α− nn+ 1

∣∣∣∣ = 1,

so the radius of convergence is 1
ρ = 1.

b) Step 0: Let a > 1 be a real number and m ∈ Z+. Then we have(
a

a− 1

)m
=

(
1 +

1

a− 1

)m
≥ 1 +

m

a− 1
> 1 +

m

a
=
a+m

a
> 0,

where in the first inequality we have just taken the first two terms of the usual
(finite!) binomial expansion. Taking reciprocals, we get(

a− 1

a

)m
<

a

a+m
.

Step 1: Suppose α ∈ (0, 1). Choose an integer m ≥ 2 such that 1
m < α. Then

|
(
α

n

)
| = α(1− α) · · · (n− 1− α)

n!
< 1(1− 1

m
) · · · (n− 1− 1

m
)

1

n!

=
m− 1

m

2m− 1

2m
· · · (n− 1)m− 1

(n− 1)m

1

n
= an

1

n
,

say. Using Step 0, we get

am−1n <
m

2m− 1

2m

3m− 1
· · · (n− 1)m

nm− 1

=
m

m− 1
· · · 2m

2m− 1
· · · (n− 1)m

(n− 1)m− 1

m− 1

nm− 1
≤ 1

an

1

n

7In fact it is older. For an account of the early history of the binomial series, see [Co49].
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It follows that an <
1

n
1
m

, so |
(
α
n

)
| < 1

n1+ 1
m

, so

∑
n

|
(
α

n

)
| ≤

∑
n

1

n1+
1
m

<∞.

This shows that B(α, 1) is absolutely convergent; since |
(
α
n

)
(−1)n| = |

(
α
n

)
|, it also

shows that B(α,−1) is absolutely convergent.
Step 2: Using the identity (23), we find

S(α, x) = 1+

∞∑
n=1

(
α

n

)
xn = 1+

∞∑
n=1

((
α− 1

n− 1

)
+

(
α− 1

n

))
xn = (1+x)S(α−1, x).

Thus for any fixed x, if S(α− 1, x) (absolutely) converges, so does S(α, x). By an
evident induction argument, if S(α, x) (absolutely) converges, so does S(α + n, x)
for all n ∈ N. Since S(α,−1) and S(α, 1) are absolutely convergent for all α ∈ (0, 1),
they are thus absolutely convergent for all non-integers α > 0.
c) If α ∈ (−1, 0) and n ∈ N, then(

α

n+ 1

)
/

(
α

n

)
=
α− n
n+ 1

∈ (−1, 0);

this shows simultaneously that the sequence of terms of B(α, 1) =
∑∞
n=0

(
α
n

)
is

decreasing in absolute value and alternating in sign. Further, write α = β − 1, so
that β ∈ (0, 1). Choose an integer m ≥ 2 such that 1

m < β. Then

|
(
α

n

)
| = (1− β)(2− β) · · · (n− 1− β)

(n− 1)!

n− β
n

= bn
n− β
n

.

Arguing as in Step 1 of part b) shows that bn <
1

n
1
m

, and hence

lim
n→∞

|
(
α

n

)
| = lim

n→∞
bn · lim

n→∞

n− β
n

= 0 · 1 = 0.

Therefore the Alternating Series Test applies to show that S(α, 1) converges.
d) The absolute value of the nth term of both B(α,−1) and B(α, 1) is |

(
α
n

)
|. If

α ≤ −1, then |α− n| ≥ n+ 1 and thus

|
(

α

n+ 1

)
/

(
α

n

)
| = |α− n

n+ 1
| ≥ 1,

and thus
(
α
n

)
6→ 0. By the Nth term test, S(α,−1) and S(α, 1) diverge. �

Exercise 3.23. Show that for α ∈ (−1, 0), the binomial series B(α,−1) di-
verges.

Remark: As the reader has surely noted, the convergence of the binomial series
S(α, x) at x = ±1 is a rather delicate and tricky enterprise. In fact most texts at
this level – even [S] – do not treat it. We have taken Step 1 of part b) from [Ho66].

Remark: There is an extension of the Ratio Test due to J.L. Raabe which sim-
plifies much the of the above analysis, including the preceding exercise.
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Theorem 3.19. Let α ∈ R \ N; let f(x) = (1 + x)α, and consider its Taylor
series at zero, the binomial series

B(α, x) =

∞∑
n=0

(
α

n

)
xn.

a) For all x ∈ (−1, 1), f(x) = B(α, x).
b) If α > −1, f(1) = B(α, 1).
c) If α > 0, f(−1) = B(α,−1).

Proof. [La] Let Tn−1(x) be the (n− 1)st Taylor polynomial for f at 0, so

B(α, x) = lim
n→∞

Tn−1(x)

is the Taylor series expansion of f at zero. As usual, put Rn−1(x) = f(x)−Tn−1(x).
a) By Theorem 3.15b),

Rn−1(x) =

∫ x

0

fn(t)(x− t)n−1dt
(n− 1)!

=
1

(n− 1)!

∫ x

0

α(α−1) · · · (α−n+1)(1+t)α−n(x−t)n−1dt.

By the Mean Value Theorem for Integrals, there is θ ∈ (0, 1) such that

Rn−1(x) =
α(α− 1) · · · (α− n+ 1)

(n− 1)!
(1 + θx)α−n(x− θx)n−1(x− 0).

Put

t =
1− θ

1 + θx
, cn(s) =

(
α− 1

n− 1

)
sn−1.

Then

(1 + s)α−1 =

∞∑
n=1

cn(s)

and

Rn−1(x) = cn(xt)αx(1 + θx)α−1.

Since x ∈ (−1, 1), we have t ∈ (0, 1), so |xt| < 1. It follows that
∑∞
n=1 cn(xt)

converges, so by the nth term test cn(xt)→ 0 as n→∞ and thus Rn−1(x)→ 0.
b) The above argument works verbatim if x = 1 and α > −1.
c) If α > 0, then by Theorem 3.18b), S(α,−1) is convergent. Moreover, α−1 > −1,
so
∑∞
n=1 cn(1) converges and thus cn(1) → 0. But |cn(−1)| = |cn(1)|, so also

cn(−1)→ 0 and thus Rn−1(−1)→ 0. �

6. The Weierstrass Approximation Theorem

6.1. Statement of Weierstrass Approximation.

Theorem 3.20. (Weierstrass Approximation Theorem) Let f : [a, b] → R be
a continuous function and ε > 0 be any positive number. Then there exists a
polynomial P = P (ε) such that for all x ∈ [a, b], |f(x) − P (x)| < ε. In other
words, any continuous function defined on a closed interval is the uniform limit of
a sequence of polynomials.

Exercise 3.24. For each n ∈ Z+, let Pn : R → R be a polynomial function.

Suppose that there is f : R → R such that Pn
u→ f on all of R. Show that the

sequence of functions {Pn} is eventually constant: there exists N ∈ Z+ such that
for all m,n ≥ N , Pn(x) = Pm(x) for all x ∈ R.
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It is interesting to compare Theorem 3.20 with Taylor’s theorem, which gives con-
ditions for a function to be equal to its Taylor series. Note that any such func-
tion must be C∞ (i.e., it must have derivatives of all orders), whereas in the
Weierstrass Approximation Theorem we can get any continuous function. An im-
portant difference is that the Taylor polynomials TN (x) have the property that
TN+1(x) = TN (x) + aN+1x

n, so that in passing from one Taylor polynomial to the
next, we are not changing any of the coefficients from 0 to N but only adding a
higher order term. In contrast, for the sequence of polynomials Pn(x) uniformly
converging to f in Theorem 1, Pn+1(x) is not required to have any simple algebraic
relationship to Pn(x).

Theorem 3.20 was first established by Weierstrass in 1885. To this day it is one
of the most central and celebrated results of mathematical analysis. Many mathe-
maticians have contributed novel proofs and generalizations, notably S.J. Bernstein
[Be12] and M.H. Stone [St37], [St48]. But – more than any result of undergrad-
uate mathematics I can think of except the quadratic reciprocity law – the
passage of time and the advancement of mathematical thought have failed to single
out any one preferred proof. We have decided to follow an argument given by Noam
Elkies.8 This argument is reasonably short and reasonably elementary, although as
above, not definitively more so than certain other proofs. However it unfolds in a
logical way, and every step is of some intrinsic interest. Best of all, at a key stage
we get to apply our knowledge of Newton’s binomial series!

6.2. Piecewise Linear Approximation.

A function f : [a, b]→ R is piecewise linear if it is a continuous function made up
out of finitely many straight line segments. More formally, there exists a partition
P = {a = x0 < x1 . . . < xn = b} such that for 1 ≤ i ≤ n, the restriction of f to
[xi−1, xi] is a linear function. For instance, the absolute value function is piecewise
linear. In fact, the general piecewise can be expressed in terms of absolute values
of linear functions, as follows.

Lemma 3.21. Let f : [a, b] → R be a piecewise linear function. Then there is
n ∈ Z+ and a1, . . . , an,m1, . . . ,mn, b ∈ R such that

f(x) = b+

n∑
i=1

mi|x− aj |.

Proof. We leave this as an elementary exercise. Some hints:
(i) If aj ≤ a, then as functions on [a, b], |x− aj | = x− aj .
(ii) The following identities may be useful:

max(f, g) =
|f + g|

2
+
|f − g|

2

min(f, g) =
|f + g|

2
− |f − g|

2
.

(iii) One may, for instance, go by induction on the number of “corners” of f . �

Now every continuous function f : [a, b] → R may be uniformly approximated by
piecewise linear functions, and moreover this is very easy to prove.

8http://www.math.harvard.edu/∼elkies/M55b.10/index.html
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Proposition 3.22. (Piecewise Linear Approximation) Let f : [a, b] → R be a
continuous function and ε > 0 be any positive number. Then there exists a piecewise
function P such that for all x ∈ [a, b], |f(x)− P (x)| < ε.

Proof. Since every continuous function on [a, b] is uniformly continuous, there
exists a δ > 0 such that whenever |x − y| < δ, |f(x) − f(y)| < ε. Choose n large
enough so that b−a

n < δ, and consider the uniform partition Pn = {a < a+ b−a
n <

. . . < b} of [a, b]. There is a piecewise linear function P such that P (xi) = f(xi) for
all xi in the partition, and is defined in between by “connecting the dots” (more
formally, by linear interpolation). For any i and for all x ∈ [xi−1, xi], we have
f(x) ∈ (f(xi−1) − ε, f(xi−1) + ε). The same is true for P (x) at the endpoints,
and one of the nice properties of a linear function is that it is either increasing or
decreasing, so its values are always in between its values at the endpoints. Thus
for all x in [xi−1, xi] we have P (x) and f(x) both lie in an interval of length 2ε, so
it follows that |P (x)− f(x)| < 2ε for all x ∈ [a, b]. �

6.3. A Very Special Case.

Lemma 3.23. (Elkies) Let f(x) =
∑∞
n=0 anx

n be a power series. We suppose:
(i) The sequence of signs of the coefficients an is eventually constant.
(ii) The radius of convergence is 1.
(iii) limx→1− f(x) = L exists.
Then

∑∞
n=0 an = L, and the convergence of the series to the limit function is

uniform on [0, 1].

Proposition 3.24. For any α > 0, the function f(x) = |x| on [−α, α] can be
uniformly approximated by polynomials.

Proof. Step 1: Suppose that for all ε > 0, there is a polynomial function
P : [−1, 1]→ R such that |P (x)− |x|| < ε for all x ∈ [−1, 1]. Put x = y

α . Then for
all y ∈ [−α, α] we have

|αP (
y

α
)− α| y

α
| = |Q(y)− |y|| < αε,

where Q(y) = αP ( yα ) is a polynomial function of y. Since ε > 0 was arbitrary: if
x 7→ |x| can be uniformly approximated by polynomials on [−1, 1], then it can be
uniformly approximated by polynomials on [−α, α]. So we are reduced to α = 1.

Step 2: Let TN (y) =
∑N
n=0

( 1
2
n

)
yn be the degree N Taylor polynomial for the

function
√

1− y. The radius of convergence is 1, and since

lim
y→1−

T (y) = lim
y→1−

√
1− y = 0,

by Lemma 3.23, TN (y)
u→
√

1− y on [0, 1]. Now for all x ∈ [−1, 1], y = 1 − x2 ∈
[0, 1], so making this substitution we find that on [−1, 1],

TN (1− x2)
u→
√

1− (1− x2) =
√
x2 = |x|.

�

6.4. Proof of the Weierstrass Approximation Theorem.

It will be convenient to first introduce some notation. For a < b ∈ R, let C[a, b]
be the set of all continuous functions f : [a, b] → R, and let P be the set of all
polynomial functions f : [a, b]→ R. Let PL([a, b]) denote the set of piecewise linear
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functions f : [a, b]→ R.

For a subset S ⊂ C[a, b], we define the uniform closure of S to be the set of
all functions f ∈ C[a, b] which are uniform limits of sequences in S: precisely, for

which there is a sequence of functions fn : [a, b]→ R with each fn ∈ S and fn
u→ f .

Lemma 3.25. For any subset S ⊂ C[a, b], we have S = S.

Proof. Simply unpacking the notation is at least half of the battle here. Let

f ∈ S, so that there is a sequence of functions gi ∈ S with gi
u→ f . Similarly, since

each gi ∈ S, there is a sequence of continuous functions fij
u→ gi. Fix k ∈ Z+:

choose n such that ||gn − f || < 1
2k and then j such that ||fnj − gn|| < 1

2k ; then

||fnj − f || ≤ ||fnj − gn||+ ||gn − f || <
1

2k
+

1

2k
=

1

k
.

Thus if we put fk = fnj , then for all k ∈ Z+, ||fk − f || < 1
k and thus fk

u→ f . �

Observe that the Piecewise Linear Approximation Theorem is

PL[a, b] = C[a, b],
whereas the Weierstrass Approximation Theorem is

P = C[a, b].
Finally we can reveal our proof strategy: it is enough to show that every
piecewise linear function can be uniformly approximated by polynomial functions,
for then P ⊃ PL[a, b], so

P = P ⊃ PL[a, b] = C[a, b].
As explained above, the following result completes the proof of Theorem 3.20.

Proposition 3.26. We have P ⊃ PL[a, b].

Proof. Let f ∈ PL[a, b]. By Lemma 3.21, we may write

f(x) = b+

n∑
i=1

mi|x− ai|.

We may assume mi 6= 0 for all i. Choose real numbers A < B such that for all
1 ≤ i ≤ b, if x ∈ [a, b], then x − ai ∈ [A,B]. For each 1 ≤ i ≤ n, by Lemma 3.24
there is a polynomial Pi such that for all x ∈ [A,B], |Pi(x) − |x|| < ε

n|mi| . Let

P : [a, b]→ R by P (x) = b+
∑n
i=1miPi(x− ai). Then P ∈ P and for all x ∈ [a, b],

|f(x)− P (x)| = |
n∑
i=1

mi(Pi(x− ai)− |x− ai|)| ≤
n∑
i=1

|mi|
ε

n|mi|
= ε. �
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