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1. Dedekind Completeness

1.1. Introducing (LUB) and (GLB).

Gather round, my friends: the time has come to tell what makes calculus work.

Recall that we began the course by considering the real numbers as a set endowed
with two binary operations + and · together with a relation <, and satisfying a
longish list of familiar axioms (P0) through (P12), the ordered field axioms. We
then showed that using these axioms we could deduce many other familiar proper-
ties of numbers and prove many other identities and inequalities.

However we did not claim that (P0) through (P12) was a complete list of axioms
for R. On the contrary, we saw that this could not be the case: for instance the
rational numbers Q also satisfy the ordered field axioms but – as we have taken
great pains to point out – most of the “big theorems” of calculus are meaningful
but false when regarded as results applied to the system of rational numbers. So
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there must be some further axiom, or property, of R which is needed to prove the
three Interval Theorems, among others.

Here it is. Among structures F satisfying the ordered field axioms, consider the
following further property:

(P14): Least Upper Bound Axiom (LUB): Let S be a nonempty subset of
F which is bounded above. Then S admits a least upper bound.

This means exactly what it sounds like, but it is so important that we had better
make sure. Recall a subset S of F is bounded above if there exists M ∈ R such
that for all x ∈ S, x ≤ M . (For future reference, a subset S of R is bounded
below if there exists m ∈ F such that for all x ∈ S, m ≤ x.) By a least upper
bound for a subset S of F , we mean an upper bound M which is less than any
other upper bound: thus, M is a least upper bound for S if M is an upper bound
for S and for any upper bound M ′ for S, M ≤ M ′.

There is a widely used synonym for “the least upper bound of S”, namely the
supremum of S. We also introduce the notation lubS = supS for the supremum
of a subset S of an ordered field (when it exists).

The following is a useful alternate characterization of supS: the supremum of
S is an upper bound M for S with the property that for any M ′ < M , M ′ is not
an upper bound for S: explicitly, for all M ′ < M , there exists x ∈ S with M ′ < x.

The definition of the least upper bound of a subset S makes sense for any set
X endowed with an order relation <. Notice that the uniqueness of the supremum
supS is clear: we cannot have two different least upper bounds for a subset, be-
cause one of them will be larger than the other! Rather what is in question is the
existence of least upper bounds, and (LUB) is an assertion about this.

Taking the risk of introducing even more terminology, we say that an ordered field
(F,+, ·, <) is Dedekind complete1 if it satisfies the least upper bound axiom.
Now here is the key fact lying at the foundations of calculus and real analysis.

Theorem 1. a) The ordered field R is Dedekind complete.
b) Conversely, any Dedekind complete ordered field is isomorphic to R.

Part b) of Theorem 1 really means the following: if F is any Dedekind complete
ordered field then there is a bijection f : F → R which preserves the addition,
multiplication and order structures in the following sense: for all x, y ∈ F ,

• f(x+ y) = f(x) + f(y),
• f(xy) = f(x)f(y), and
• If x < y, then f(x) < f(y).

This concept of “isomorphism of structures” comes from a more advanced course –

1It is perhaps more common to say “complete” instead of “Dedekind complete”. I have my
reasons for preferring the lengthier terminology, but I won’t trouble you with them.
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abstract algebra – so it is probably best to let it go for now. One may take part
b) to mean that there is essentially only one Dedekind complete ordered field: R.

The proof of Theorem 1 involves constructing the real numbers in a mathemati-
cally rigorous way. This is something of a production, and although in some sense
every serious student of mathematics should see a construction of R at some point
of her career, this sense is similar to the one in which every serious student of com-
puter science should build at least one working computer from scratch: in practice,
one can probably get away with relying on the fact that many other people have
performed this task in the past. Spivak does give a construction of R and a proof
of Theorem 1 in the “Epilogue” of his text. And indeed, if we treat this material
at all it will be at the very end of the course.

After discussing least upper bounds, it is only natural to consider the “dual” con-
cept of greatest lower bounds. Again, this means exactly what it sounds like but it
is so important that we spell it out explicitly: if S is a subset of an ordered field F ,
then a greatest lower bound for S, or an infimum of S, is an element m ∈ F
which is a lower bound for S – i.e., m ≤ x for all x ∈ S – and is such that if m′

is any lower bound for S then m′ ≤ m. Equivalently, m = inf S iff m is a lower
bound for S and for any m′ > m there exists x ∈ S with x < m′. Now consider:

(P14′): Greatest Lower Bound Axiom (GLB): Let S be a nonempty subset
of F which is bounded below. Then S admits a greatest lower bound, or infimum.

Example 1.1: In any ordered field F , we may consider the subset

SF = {x ∈ F | x2 < 2}.
Then SF is nonempty and bounded: indeed 0 ∈ SF and if x ∈ SF , then |x| ≤ 2. Of
course in the previous inequality we could do better: for instance, if |x| > 3

2 , then

x2 > 9
4 > 2, so also −3

2 is a lower bound for SF and 3
2 is an upper bound for SF .

Of course we could do better still...
Indeed the bounded set SF will have an infimum and a supremum if and only

if there are best possible inequalities x ∈ S =⇒ m ≤ x ≤ M , i.e., for which no
improvement on either m or M is possible. Whether such best possible inequalities
exist depends on the ordered field F . Indeed, it is clear that if M = supSF exists,
then it must be a positive element of F with M2 = 2: or in other words, what in
precalculus mathematics one cavalierly writes as M =

√
2. similarly, if m = inf SF

exists, then it must be a negative element of F with m2 = 2, or what we usually
write as −

√
2. But here’s the point: how do we know that our ordered field F

contains such an element
√
2?

The answer of course is that depending on F such an element may or may not
exist. As we saw at the beginning of the course, there is no rational number x with
x2 = 2, so if F = Q then our set SQ has neither an infimum nor a supremum. Thus
Q does not satisfy (LUB) or (GLB). On the other hand, we certainly believe that
there is a real number whose square is 2. But...why do we believe this? As we
have seen, the existence of a real square root of every non-negative real number is a
consequence of the Intermediate Value Theorem...which is of course a theorem that
we have exalted but not yet proved. A more fundamental answer is that we believe
that

√
2 exists in R because of the Dedekind completeness of R, i.e., according to

Theorem 1 every nonempty bounded above subset of R has a supremum, so in
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particular SR has a supremum, which must be
√
2.

An interesting feature of this example is that we can see that inf SR exists, even
though we have not as yet addressed the issue of whether R satisfies (GLB). In
general, inf SF exists iff there is an element y < 0 in F with y2 = 2. But okay: if
in F we have a positive element x with x2 = 2, we necessarily must also have a
negative element y with y2 = 2: namely, y = −x.

This turns out to be a very general phenomenon.

Theorem 2. Let F be an ordered field.
a) Then F satisfies (LUB) iff it satisfies (GLB).
b) In particular R satisfies both (LUB) and (GLB) and is (up to isomorphism) the
only ordered field with this property.

Proof. a) I know two ways of showing that (LUB) ⇐⇒ (GLB). Both of these
arguments is very nice in its own way, and I don’t want to have to choose between
them. So I will show you both, in the following way: I will use the first argument to
show that (LUB) =⇒ (GLB) and the second argument to show that (GLB) =⇒
(LUB). (In Exercise 1.2 below, you are asked to do things the other way around.)
(LUB) =⇒ (GLB): Let S ⊂ F be nonempty and bounded below by m. Consider

−S = {−x | x ∈ S}.
Then −S is nonempty and bounded above by −m. By (LUB), it has a least upper
bound sup(−S). We claim that in fact − sup(−S) is a greatest lower bound for S,
or more symbolically:

inf S = − sup−S.

You are asked to check this in Exercise 1.2 below.
(GLB) =⇒ (LUB): Let S be nonempty and bounded above by M . Consider

U(S) = {x ∈ F | x is an upper bound for S.}.
Then U(S) is nonempty: indeed M ∈ U(S). Also U(S) is bounded below: indeed
any s ∈ S (there is at least one such s, since S ̸= ∅!) is a lower bound for U(S). By
(GLB) U(S) has a greatest lower bound inf U(S). We claim that in fact inf U(S) is
a least upper bound for S, or more succinctly,

supS = inf U(S).
Once again, Exercise 1.2 asks you to check this.
b) By Theorem 1a), R satisfies (LUB), and thus by part a) it satisfies (GLB). By
Theorem 1b) R is the only ordered field satisfying (LUB), so certainly it is the only
ordered field satifying (LUB) and (GLB). �

Exercise 1.2: a) Fill in the details of the proof of Theorem 2a).
b) Let F be an ordered field, and let S be a subset of F . Suppose that inf S exists.
Show that sup−S exists and

sup−S = − inf S.

c) Use part b) to give a second proof that (GLB) =⇒ (LUB).
d) Let F be an ordered field, and let S be a subset of F . Define

L(S) = {x ∈ F | x is a lower bound for S.}.
Suppose that supL(S) exists. Show that inf S exists and

inf S = supL(S).
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e) Use part d) to give a second proof that (LUB) =⇒ (GLB).

The technique which was used to prove (LUB) =⇒ (GLB) is very familiar: we
multiply everything in sight by −1. It seems likely that by now we have used this
type of argument more than any other single trick or technique. When this has
come up we have usually used the phrase “and similarly one can show...” Perhaps
this stalwart ally deserves better. Henceforth, when we wish to multiply by −1 to
convert ≤ to ≥, max to min, sup to inf and so forth, we will say by reflection.
This seems more appealing and also more specific than “similarly...”!

In view of Theorem 2 it is reasonable to use the term Dedekind completeness
to refer to either or both of (LUB), (GLB), and we shall do so.

Theorem 3. A Dedekind complete ordered field is Archimedean.

Proof. We will prove the contrapositive: let F be a non-Archimedean ordered field:
thus there exists x ∈ F such that n ≤ x for all n ∈ Z+. Then the subset Z+ of F
is bounded above by x, so in particular it is nonempty and bounded above. So, if
F were Dedekind complete then supZ+ would exist.

But we claim that in no ordered field F does Z+ have a supremum. Indeed,
suppose that M = supZ+. It follows that for all n ∈ Z+, n ≤ M . But then it
is equally true that for all n ∈ Z+, n + 1 ≤ M , or equivalently, for all n ∈ Z+,
n ≤ M−1, soM−1 is a smaller upper bound for Z+ than supZ+: contradiction! �
1.2. Calisthenics With Sup and Inf.

The material and presentation of this section is partly based on [A, §1.3.13].

convention: Whenever supS appears in the conclusion of a result, the state-
ment should be understood as including the assertion that supS exists, i.e., that
S is nonempty and bounded above. Similarly for inf S: when it appears in the
conclusion of a result then an implicit part of the conclusion is the assertion that
inf S exists, i.e., that S is nonempty and bounded below.2

Proposition 4. Let S be a nonempty subset of R.
a) Suppose S is bounded above. Then for every ϵ > 0, there exists x ∈ S such that
supS − ϵ < x ≤ supS.
b) Conversely, suppose M ∈ R is an upper bound for S such that for all ϵ > 0,
there exists x ∈ S with M − ϵ < x ≤ M . Then M = supS.
c) Suppose S is bounded below. Then for every ϵ > 0, there exists x ∈ S such that
inf S ≤ x < inf S + ϵ.
d) Conversely, suppose m ∈ R is a lower bound for S such that for all ϵ > 0, there
exists x ∈ S with m ≤ x ≤ m+ ϵ. Then m = inf S.

Proof. a) Fix ϵ > 0. Since supS is the least upper bound of S and supS−ϵ < supS,
there exists y ∈ S with supS − ϵ < y. It follows that

supS − ϵ < min(y, supS) ≤ supS,

so we may take x = min(y, supS).
b) By hypothesis, M is an upper bound for S and nothing smaller than M is an

2Notice that a similar convention governs the use of limx→c f(x), so this is nothing new.
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upper bound for S, so indeed M = supS.
c),d) These follow from parts a) and b) by reflection. �

Exercise 1.3: Let a, b ∈ R. Suppose that for all ϵ > 0, a ≤ b+ ϵ. Show that a ≤ b.

Proposition 5. Let X,Y be nonempty subsets of R, and define

X + Y = {x+ y | x ∈ X, y ∈ Y }.

a) Suppose X and Y are bounded above. Then

sup(X + Y ) = supX + supY.

b) Suppose X and Y are bounded below. Then

inf(X + Y ) = infX + inf Y.

Proof. a) Let x ∈ X, y ∈ Y . Then x ≤ supX and x ≤ supY , so x + y ≤
supX + supY , and thus sup(X + Y ) ≤ supX + supY . Now fix ϵ > 0. By
Proposition 4 there are x ∈ X and y ∈ Y with supX − ϵ

2 < x, supY − ϵ
2 < y, so

supX + supY ≤ x+ y + ϵ.

Since this folds for all ϵ > 0, by Exercise 1.3 supX + supY ≤ sup(X + Y ).
b) This follows from part a) by reflection. �

Let X,Y be subsets of R. We write X ≤ Y if for all x ∈ X and all y ∈ Y , x ≤ y.
(In a similar way we define X < Y,X ≥ Y , X > Y .)

Exercise 1.4: Let X,Y be subsets of R. Give necessary and sufficient conditions for
X ≤ Y and Y ≤ X both to hold. (Hint: in the case in which X and Y are both
nonempty, X = Y is necessary but not sufficient!)

Proposition 6. Let X,Y be nonempty subsets of R with X ≤ Y . Then

supX ≤ inf Y.

Proof. Seeking a contradiction, we suppose that inf Y < supX. Put

ϵ =
supX − inf Y

2
.

By Proposition 4 there are x ∈ X, y ∈ Y with supX − ϵ < x and y < inf Y + ϵ.
Since X ≤ Y this gives

supX − ϵ < x ≤ y < inf Y + ϵ

and thus

supX − inf Y < 2ϵ = supX − inf Y,

a contradiction. �

Proposition 7. Let X,Y be nonempty subsets of R with X ⊆ Y . Then:
a) If Y is bounded above, then supX ≤ supY .
b) If Y is bounded below, then inf Y ≤ infX.

Exercise 1.5: Prove Proposition 7.



MATH 2400 LECTURE NOTES: COMPLETENESS 7

1.3. The Extended Real Numbers.

As exciting and useful as this whole business with sup and inf is, there is one
slightly annoying point: supS and inf S are not defined for every subset of R.
Rather, for supS to be defined, S must be nonempty and bounded above, and for
inf S to be defined, S must be nonempty and bounded below.

Is there some way around this? There is. It involves bending the rules a bit, but
in a very natural and useful way. Consider the subset N of R. It is not bounded
above, so it does not have a least upper bound in R. Because N contains arbitrar-
ily large elements of R, it is not completely unreasonable to say that its elements
approach infinity and thus to set supN = +∞. In other words, we are suggesting
the following definition:

• If S ⊂ R is unbounded above, then we will say supS = +∞.

Surely we also want to make the following definition (“by reflection”!):

• If S ⊂ R is unbounded below, then we will say inf S = −∞.

These definitions come with a warning: ±∞ are not real numbers! They
are just symbols suggestively standing for a certain type of behavior of a subset of
R, in a similar (but, in fact, simpler) way as when we write limx→c f(x) = ±∞ and
mean that the function has a certain type of behavior near the point c.

To give a name to what we have done, we define the extended real numbers
[−∞,∞] = R ∪ {±∞} to be the real numbers together with these two formal
symbols −∞ and ∞. This extension is primarily order-theoretic: that is, we may
extend the ≤ relation to the extended real numbers in the obvious way:

∀x ∈ R,−∞ < x < ∞.

Conversely much of the point of the extended real numbers is to give the real
numbers, as an ordered set, the pleasant properties of a closed, bounded interval
[a, b]: namely we have a largest and smallest element.

The extended real numbers [−∞,∞] are not a field. In fact, we cannot even
define the operations of + and · unrestrictedly on them. However, it is useful to
define some of these operations:

∀x ∈ R, −∞+ x = −∞, x+∞ = ∞.

∀x ∈ (0,∞), x · ∞ = ∞, x · (−∞) = −∞.

∀x ∈ (−∞, 0), x · ∞ = −∞, x · (−∞) = ∞.

∞ ·∞ = ∞, ∞ · (−∞) = −∞, (−∞) · (−∞) = ∞.

1

∞
=

1

−∞
= 0.

None of these definitions are really surprising, are they? If you think about it,
they correspond to facts you have learned about manipulating infinite limits, e.g.
if limx→c f(x) = ∞ and limx→c g(x) = 17, then limx→c f(x)+ g(x) = ∞. However,



8 PETE L. CLARK

certain other operations with the extended real numbers are not defined, for similar
reasons. In particular we do not define

∞−∞,

0 · ∞,

±∞
±∞

.

Why not? Well, again we might think in terms of associated limits. The above are
indeterminate forms: if I tell you that limx→c f(x) = ∞ and limx→c g(x) = −∞,
then what can you tell me about limx→c f(x) + g(x)? Answer: nothing, unless you
know what specific functions f and g are. As a simple example, suppose

f(x) =
1

(x− c)2
+ 2011, g(x) =

−1

(x− c)2
.

Then limx→c f(x) = ∞, limx→c g(x) = −∞, but

lim
x→c

f(x) + g(x) = lim
x→c

2011 = 2011.

So ∞ − ∞ cannot have a universal definition independent of the chosen func-
tions.3 In a similar way, when evaluating limits 0 · ∞ is an indeterminate form:
if limx→c f(x) = 0 and limx→c g(x) = ∞, then limx→c f(x)g(x) depends on how
fast f approaches zero compared to how fast g approaches infinity. Again, consider
something like f(x) = (x− c)2, g(x) = 2011

(x−c)2 . And similarly for ∞
∞ .

These are good reasons. However, there are also more purely algebraic reasons:
there is no way to define the above expressions in such a way to make the field
axioms work out. For instance, let a ∈ R. Then a+∞ = ∞. If therefore we were
allowed to substract ∞ from ∞ we would deduce a = ∞ − ∞, and thus ∞ − ∞
could be any real number: that’s not a well-defined operation.

Remark: Sometimes above we have alluded to the existence of ordered fields F
which do not satisfy the Archimedean axiom, i.e., for which there exist elements x
such that x > n for all n ∈ Z+. In speaking about elements like x we sometimes
call them infinitely large. This is a totally different use of “infinity” than the ex-
tended real numbers above. Indeed, no ordered field F can have a largest element
x, because it follows easily from the field axioms that for any x ∈ F , x+1 > x. The
moral: although we call ±∞ “extended real numbers”, one should not think of them
as being elements of a number system at all, but rather limiting cases of such things.

One of the merits of this extended definition of supS and inf S is that it works
nicely with calculations: in particular, all of the “calisthenics” of the previous sec-
tion have nice analogues for unbounded sets. We leave it to the reader to investigate
this phenomenon on her own. In particular though, let’s look back at Proposition
7: it says that, under conditions ensuring that the sets are nonempty and bounded
above / below, that if X ⊂ Y ⊂ R, then

supX ≤ supY,

inf Y ≤ infX.

3In the unlikely event you think that perhaps ∞−∞ = 2011 always, try constructing another
example...or wait until next semester and ask me again.



MATH 2400 LECTURE NOTES: COMPLETENESS 9

This definition could have motivated our definition of sup and inf for unbounded
sets, as follows: for n ∈ Z and X ⊂ R, put

Xn = {x ∈ X | x ≤ n}, Xn = {x ∈ X | x ≥ n}.
The idea here is that in defining Xn we are cutting it off at n in order to force it
to be bounded above, but in increasingly generous ways. We have

X0 ⊂ X1 ⊂ . . . ⊂ X

and also

X =
∞∪

n=0

Xn;

in other words, every element of X is a subset of Xn for some n (this is precisely the
Archimedean property). Applying Proposition 7, we get that for every nonempty
subset X of R,

supX0 ≤ supX1 ≤ supX2 ≤ . . . supXn ≤ . . . .

Suppose moreover that X is bounded above. Then some N ∈ Z+ is an upper
bound for X, i.e., X = XN = XN+1 = . . ., so the sequence supXn is eventually
constant, and in particular limn→∞ supXn = supX. On the other hand, if X
is bounded above, then the sequence supXn is not eventually constant; in fact it
takes increasingly large values, and thus

lim
n→∞

supXn = ∞.

Thus if we take as our definition for supX, limn→∞ supXn, then for X which is
unbounded above, we get supX = limn→∞ supXn = ∞. By reflection, a similar
discussion holds for infX.

There is, however, one last piece of business to attend to: we said we wanted
supS and inf S to be defined for all subsets of R: what if S = ∅? There is an
answer for this as well, but many people find it confusing and counterintuitive at
first, so let me approach it again using Proposition 7. For each n ∈ Z, consider
the set Pn = {n}: i.e., Pn has a single element, the integer n. Certainly then
inf Pn = supPn = n. So what? Well, I claim we can use these sets Pn along with
Proposition 7 to see what inf ∅ and sup∅ should be. Namely, to define these quan-
tities in such a way as to obey Proposition 7, then for all n ∈ Z, because ∅ ⊂ {n},
we must have

sup∅ ≤ sup{n} = n

and
inf ∅ ≥ inf{n} = n.

There is exactly one extended real number which is less than or equal to every
integer: −∞. Similarly, there is exactly one extended real number which is greater
than or equal to every integer: ∞. Therefore the inexorable conclusion is

sup∅ = −∞, inf ∅ = ∞.

Other reasonable thought leads to this conclusion: for instance, in class I had a lot
of success with the “pushing” conception of suprema and infima. Namely, if your
set S is bounded above, then you start out to the right of every element of your
set – i.e., at some upper bound of S – and keep pushing to the left until you can’t
push any farther without passing by some element of S. What happens if you try
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this with ∅? Well, every real number is an upper bound for ∅, so start anywhere
and push to the left: you can keep pushing as far as you want, because you will
never hit an element of the set. Thus you can push all the way to −∞, so to speak.
Similarly for infima, by reflection.

2. Intervals and the Intermediate Value Theorem

2.1. Convex subsets of R.

We say that a subset S of R is convex if for all x < y ∈ S, the entire interval
[x, y] lies in S. In other words, a convex set is one that whenever two points are in
it, all in between points are also in it.

Example 2.1: The empty set ∅ is convex. For any x ∈ R, the singleton set {x} is
convex. In both cases the definition applies vacuously : until we have two distinct
points of S, there is nothing to check!

Example 2.2: We claim any interval is convex. This is immediate – or it would
be, if we didn’t have so many different kinds of intervals to write down and check.
One needs to see that the definition applies to invervals of all of the following forms:

(a, b), [a, b), (a, b], [a, b], (−∞, b), (−∞, b], (a,∞), [a,∞), (−∞,∞).

All these verifications are trivial appeals to things like the transitivity of ≤ and ≥.

Are there any nonempty convex sets other than intervals? (Just to be sure, we
count {x} = [x, x] as an interval.4) A little thought suggests that the answer should
be no. But more thought shows that if so we had better use the Dedekind com-
pleteness of R, because if we work over Q with all of the corresponding definitions
then there are nonempty convex sets which are not intervals, e.g.

S = {x ∈ Q | x2 < 2}.
This has a familiar theme: replacing Q by R we would get an interval, namely
(−

√
2,
√
2), but once again ±

√
2 ̸∈ Q. When one looks carefully at the definitions

it is no trouble to check that working solely in the rational numbers S is a convex
set but is not an interval.

Remark: Perhaps the above example seems legalistic, or maybe even a little silly.
It really isn’t: one may surmise that contemplation of such examples led Dedekind
to his construction of the real numbers via Dedekind cuts. This construction
may be discussed at the end of this course. Most contemporary analysts prefer
a rival construction of R due to Cauchy using Cauchy sequences. I agree that
Cauchy’s construction is simpler. However, both are important in later mathemat-
ics: Cauchy’s construction works in the context of a general metric space (and,
with certain modifications, in a general uniform space) to construct an associ-
ated complete space. Dedekind’s construction works in the context of a general
linearly ordered set to construct an associated Dedekind-complete ordered set.

Theorem 8. Any nonempty convex subset D of R is an interval.

4However, we do not wish to say whether the empty set is an interval. Throughout these notes
the reader may notice minor linguistic contortions to ensure that this issue never arises.
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Proof. We have already seen the most important insight for the proof: we must
use the Dedekind-completeness of R in our argument. With this in mind the only
remaining challenge is one of organization: we are given a nonempty convex subset
D of R and we want to show it is an interval, but as above an interval can have any
one of nine basic shapes. It may be quite tedious to argue that one of nine things
must occur!

So we just need to set things up a bit carefully: here goes: let a ∈ [−∞,∞) be
the infimum of D, and let b ∈ (−∞,∞] be the supremum of D. Let I = (a, b), and
let I be the closure of I, i.e., if a is finite, we include a; if b is finite, we include b.
Step 1: We claim that I ⊂ D ⊂ I. Let x ∈ I.

Case 1: Suppose I = (a, b) with a, b ∈ R. Let z ∈ (a, b). Then, since z > a =
infD, there exists c ∈ D with c < z. Similarly, since z < b = supD, then there
exists d ∈ D with z < d. Since D is convex, z ∈ D. Now suppose z ∈ D. We must
have infD = a ≤ z ≤ b = supD.

Case 2: Suppose I = (−∞, b), and let z ∈ I. Since D is unbounded below, there
exists a ∈ D with a < z. Moreover, since z < supD, there exists b ∈ D such
that z < b. Since D is convex, z ∈ D. Next, let z ∈ D. We wish to show that
z ∈ I = (−∞, b]; in other words, we want z ≤ b. But since z ∈ D and b = supD,
this is immediate. Thus I ⊂ D ⊂ I.

Case 3: Suppose I = (a,∞). This is similar to Case 2 and is left to the reader.
Case 4: Suppose I = (−∞,∞) = R. Let z ∈ R. Since D is unbounded below,

there exists a ∈ D with a < z, and since D is unbounded above there exists b ∈ D
with z < b. Since D is convex, z ∈ D. Thus I = D = I = R.
Step 2: We claim that any subset D which contains I and is contained in I is an
interval. Indeed I and I are both intervals, and the only case in which there is any
subset D strictly in between them is I = (a, b) with a, b ∈ R – in this case D could
also be [a, b) or (a, b], and both are intervals. �

Recall that a function f : D → R satisfies the Intermediate Value Property
(IVP) if for all [a, b] ⊂ D, for all L in between f(a) and f(b) is of the form f(c)
for some c ∈ (a, b). As you may well have noticed, the IVP is closely related to the
notion of a convex subset. The following result clarifies this connection.

Theorem 9. For f : D ⊂ R → R, the following are equivalent:
(i) For all [a, b] ⊂ D, f([a, b]) is a convex subset of R.
(ii) f satisfies the Intermediate Value Property.
(iii) For any interval I ⊂ D, f(I) is an interval.

Proof. (i) =⇒ (ii): For all [a, b] ⊂ D, f([a, b]) is a convex subset containing f(a)
and f(b), hence it contains all numbers in between f(a) and f(b).
(ii) =⇒ (iii): Suppose that f satisfies IVP, and let I ⊂ D be an interval. We
want to show that f(I) is an interval. By Theorem 8 it suffices to show that f(I)
is convex. Assume not: then there exists a < b ∈ I and some L in between f(a)
and f(b) such that L ̸= f(c) for any c ∈ I. In particular L ̸= f(c) for any c ∈ [a, b],
contradicting the Intermediate Value Property.
(iii) =⇒ (i): This is immediate: [a, b] is an interval, so by assumption f([a, b]) is
an interval, hence a convex subset. �

2.2. The (Strong) Intermediate Value Theorem.
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Theorem 10. (Strong Intermediate Value Theorem) If f : I → R is continuous,
then f satisfies the Intermediate Value Property. In particular, f(I) is an interval.

Proof. Step 1: We make the following claim: if f : [a, b] → R is continuous,
f(a) < 0 and f(b) > 0, then there exists c ∈ (a, b) such that f(c) = 0.
proof of claim: Let S = {x ∈ [a, b] | f(x) < 0}. Since a ∈ S, S is nonempty.
Moreover S is bounded above by b. Therefore S has a least upper bound c = supS.
It is easy to see that we must have f(c) = 0. Indeed, if f(c) < 0, then – as we have
seen several times – there exists δ > 0 such that f(x) < 0 for all x ∈ (c− δ, c+ δ),
and thus there are elements of S larger than c, contradicting c = supS. Similarly,
if f(c) > 0, then there exists δ > 0 such that f(x) > 0 for all x ∈ (c− δ, c+ δ), in
which case any element of (c− δ, c) gives a smaller upper bound for S than c. By
the process of elimination we must have f(c) = 0!
Step 2: We will show that f satisfies the Intermediate Value Property: for all
[a, b] ⊂ I, and any L in between f(a) and f(b), we must find c ∈ (a, b) such that
f(c) = L. If f(a) = f(b) there is nothing to show. If f(a) > f(b), then we may
replace f by −f (this is still a continuous function), so it is enough to treat the case
f(a) < L < f(b). Now consider the function g(x) = f(x)−L. Since f is continuous,
so is g; moreover g(a) = f(a)− L < 0 and g(b) = f(b)− L > 0. Therefore by Step
1 there exists c ∈ (a, b) such that 0 = g(c) = f(c)− L, i.e., such that f(c) = L.
Step 3: Finally, since f : I → R satisfies the Intermediate Value Property, by
Theorem 9 it maps every subinterval of I to an interval of R. In particular f(I)
itself is an interval in R. �
Remark: Theorem 10 is in fact a mild improvement of the Intermediate Value
Theorem we stated earlier in these notes. This version of IVT applies to continuous
functions with domain any interval, not just an interval of the form [a, b], and
includes a result that we previously called the Interval Image Theorem.

2.3. The Intermediate Value Theorem Implies Dedekind Completeness.

Theorem 11. Let F be an ordered field such that every continuous function f :
F → F satisfies the Intermediate Value Property. Then F is Dedekind complete.

Proof. We will prove the contrapositive: suppose F is not Dedekind complete, and
let S ⊂ F be nonempty and bounded above but without a least upper bound in F .
Let U(S) be the set of upper bounds of S. We define a function f : F → F by:
• f(x) = −1, if x /∈ U(S),
• f(x) = 1, x ∈ U(S).
Then f is continuous on F – indeed, a point of discontinuity would occur only at
the least upper bound of S, which is assumed not to exist. Moreover f takes the
value −1 – at any element s ∈ S, which cannot be an upper bound for S because
then it would be the maximum element of S – and the value 1 at any upper bound
for S (we have assumed that S is bounded above so such elements exist), but it
never takes the value zero, so f does not satisfy IVP. �
Exercise 2.3: Show in detail that the function f : F → F constructed in the proof
of Theorem 11 is continuous at every element of F .

3. The Monotone Jump Theorem

Theorem 12. (Monotone Jump) Let f : I → R be weakly monotone, and let c ∈ I.
a) Suppose c is an interior point of I. Then limx→c− f(x) and limx→c+ f(x) both
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exist, and

lim
x→c−

f(x) ≤ f(c) ≤ lim
x→c+

f(x).

b) Suppose c is the left endpoint of I. Then limx→c+ f(x) exists and is greater than
or equal to f(c).
c) Suppose c is the right endpoint of I. Then limx→c− f(x) exists and is less than
or equal to f(c).

Proof. a) Step 0: As usual, we may f is weakly increasing. We define

L = {f(x) | x ∈ I, x < c}, R = {f(x) | x ∈ I, x > c}.

Since f is weakly increasing, L is bounded above by f(c) and U is bounded below
by f(c). Therefore we may define

l = supL, r = inf R.

Step 1: For all x < c, f(x) ≤ f(c), f(c) is an upper bound for L, so l ≤ f(c). For
all c < x, f(c) ≤ f(x), so f(c) is a lower bound for R, so f(c) ≤ r. Thus

(1) l ≤ f(c) ≤ r.

Step 2: We claim limx→c− f(x) = l. To see this, let ϵ > 0. Since l is the least upper
bound of L and l − ϵ < l, l − ϵ is not an upper bound for L: there exists x0 < c
such that f(x0) > l− ϵ. Since f is weakly increasing, for all x0 < x < c we have

l− ϵ < f(x0) ≤ f(x) ≤ l < l+ ϵ.

Thus we may take δ = c− x0.
Step 3: We claim limx→c+ f(x) = r: this is shown as above and is left to the reader.
Step 4: Substituting the results of Steps 2 and 3 into (1) gives the desired result.
b) and c): The arguments at an endpoint are routine modifications of those of part
a) above and are left to the reader as an opportunity to check her understanding. �

Theorem 13. For a weakly monotone function f : I → R, TFAE:
(i) f(I) is an interval.
(ii) f is continuous.

Proof. As usual, it is no loss of generality to assume f is weakly increasing.
(i) =⇒ (ii): If f is not continuous on all of I, then by the Monotone Jump
Theorem f(I) fails to be convex. In more detail: suppose f is discontinuous at c.
If c is an interior point then either limx→c− f(x) < f(c) or f(c) < limx→c+ f(x).
In the former case, choose any b ∈ I, b < c. Then f(I) contains f(b) < f(c) but
not the in-between point limx→c− f(x). In the latter case, choose any d ∈ I, c < d.
Then f(I) contains f(c) < f(d) but not the in-between point limx→c+ f(x). Similar
arguments hold if c is the left or right endpoint of I: these are left to the reader.
Thus in all cases f(I) is not convex hence is not an interval.
(ii) =⇒ (i): This follows immediately from Theorem 10. �

With Theorems 10 and 13 in hand, we get an especially snappy proof of the Con-
tinuous Inverse Function Theorem. Let f : I → R be continuous and injective. By
Theorem 10, f(I) = J is an interval. Moreover f : I → J is a bijection, with inverse
function f−1 : J → I. Since f is monotone, so is f−1. Moreover f−1(J) = I is an
interval, so by Theorem 13, f−1 is continuous!
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4. Real Induction

Theorem 14. (Principle of Real Induction) Let a < b be real numbers, let S ⊂
[a, b], and suppose:
(RI1) a ∈ S,
(RI2) for all x ∈ S, if x ̸= b there exists y > x such that [x, y] ⊂ S.
(RI3) For all x ∈ R, if [a, x) ∈ S, then x ∈ S.
Then S = [a, b].

Proof. Seeking a contradiction we suppose not: S′ = [a, b] \ S is nonempty. It is
bounded below by a, so has a (finite!) greatest lower bound inf S′. However:
Case 1: inf S′ = a. Then by (RI1), a ∈ S, so by (RI2), there exists y > a such that
[a, y] ⊂ S, and thus y is a greater lower bound for S′ then a = inf S′: contradiction.
Case 2: a < inf S′ ∈ S. If inf S′ = b, then S = [a, b]. Otherwise, by (RI2) there
exists y > inf S′ such that [inf S′, y′] ⊂ S, contradicting the definition of inf S′.
Case 3: a < inf S′ ∈ S′. Then [a, inf S′) ⊂ S, so by (RI3) inf S′ ∈ S: contradiction!

�

Example 4.1: Let us reprove the Intermediate Value Theorem. Recall that the key
special case of IVT, from which the full theorem easily follows, is this: if f : [a, b] →
R is continuous, f(a) < 0 and f(b) > 0, then there exists c ∈ (a, b) with f(c) = 0.
We prove this by real induction, as follows. Let S = {x ∈ [a, b] | f(x) ≥ 0}. We
know that S is proper in [a, b], so applying real induction shows that one of (RI1),
(RI2) and (RI3) must fail. We have a ∈ S – so (RI1) holds – and if a continuous
function is non-negative on [a, c), then it is also non-negative at c: (RI3). So (RI2)
must fail: there exists y ∈ (a, b] such that f(y) ≥ 0 but there is no ϵ > 0 such that
f is non-negative on [y, y + ϵ). This implies f(y) = 0.

Example 4.1, redux: In class I handled the proof of IVT by Real Induction dif-
ferently, and in a way which I think gives a better first example of the method
(most Real Induction proofs are not by contradiction). This strategy follows [Ka07].
Namely, IVT is equivalent to: let f : [a, b] → R be continuous and nowhere zero. If
f(a) > 0, then f(b) > 0. We prove this by Real Induction. Let

S = {x ∈ [a, b] | f(x) > 0}.
Then f(b) > 0 iff b ∈ S. We will show S = [a, b] by real induction, which suffices.
(RI1) By hypothesis, f(a) > 0, so a ∈ S.
(RI2) Let x ∈ S, x < b, so f(x) > 0. Since f is continuous at x, there exists δ > 0
such that f is positive on [x, x+ δ], and thus [x, x+ δ] ⊂ S.
(RI3) Let x ∈ (a, b] be such that [a, x) ⊂ S, i.e., f is positive on [a, x). We claim
that f(x) > 0. Indeed, since f(x) ̸= 0, the only other possibility is f(x) < 0,
but if so, then by continuity there would exist δ > 0 such that f is negative on
[x−δ, x], i.e., f is both positive and negative at each point of [x−δ, x]: contradiction!

The following result shows that Real Induction does not only uses the Dedekind
completeness of R but actually carries the full force of it.

Theorem 15. In an ordered field F , the following are equivalent:
(i) F is Dedekind complete: every nonempty bounded above subset has a supremum.
(ii) F satisfies the Principle of Real Induction: for all a < b ∈ F , a subset S ⊂ [a, b]
satisfying (RI1) through (RI3) above must be all of [a, b].
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Proof. (i) =⇒ (ii): This is simply a restatement of Theorem 14.
(ii) =⇒ (i): Let T ⊂ F be nonempty and bounded below by a ∈ F . We will show
that T has an infimum. For this, let S be the set of lower bounds m of T with
a ≤ m. Let b be any element of T . Then S ⊂ [a, b].
Step 1: Observe that b ∈ S ⇐⇒ b = inf T . In general the infimum could be
smaller, so our strategy is not exactly to use real induction to prove S = [a, b].
Nevertheless we claim that S satisfies (RI1) and (RI3).
(RI1): Since a is a lower bound of T with a ≤ a, we have a ∈ S.
(RI3): Suppose x ∈ (a, b] and [a, x) ⊂ S, so every y ∈ [a, x) is a lower bound for T .
Then x is a lower bound for T : if not, there exists t ∈ T such that t < x; taking
any y ∈ (t, x), we get that y is not a lower bound for T either, a contradiction.
Step 2: Since F satisfies the Principle of Real Induction, by Step 1 S = [a, b] iff S
satisfies (RI2). If S = [a, b], then the element b ∈ is a lower bound for T , so it must
be the infimum of T . Now suppose that S ̸= [a, b], so by Step 1 S does not satisfy
(RI2): there exists x ∈ S, x < b such that for any y > x, there exists z ∈ (x, y) such
that z /∈ S, i.e., z is not a lower bound for T . In other words x is a lower bound
for T and no element larger than x is a lower bound for T ...so x = inf T . �

Remark: Like Dedekind completeness, the notion of “Real Induction” depends only
on the ordering relation < and not on the field operations + and ·. In fact, given
an arbitrary ordered set (F,<) – i.e., we need not have operations + or · at all – it
makes sense to speak of Dedekind completeness and also of whether the Principle
of Real Induction holds. In a recent note [Cl11], I proved that Theorem 15 holds in
this general context: an ordered set F is Dedekind complete iff the only it satisfies
a “Principle of Ordered Induction”.

5. The Extreme Value Theorem

Theorem 16. (Extreme Value Theorem)
Let f : [a, b] → R be continuous. Then:
a) f is bounded.
b) f attains a minimum and maximum value.

Proof. a) Let S = {x ∈ [a, b] | f : [a, x] → R is bounded}.
(RI1): Evidently a ∈ S.
(RI2): Suppose x ∈ S, so that f is bounded on [a, x]. But then f is continuous
at x, so is bounded near x: for instance, there exists δ > 0 such that for all
y ∈ [x− δ, x+ δ], |f(y)| ≤ |f(x)|+1. So f is bounded on [a, x] and also on [x, x+ δ]
and thus on [a, x+ δ].
(RI3): Suppose that x ∈ (a, b] and [a, x) ⊂ S. Now beware:5 this does not say
that f is bounded on [a, x): rather it says that for all a ≤ y < x, f is bounded on
[a, y]. These are really different statements: for instance, f(x) = 1

x−2 is bounded

on [0, y] for all y < 2 but it is not bounded on [0, 2). But, as usual, the key feature
of this counterexample is a lack of continuity: this f is not continuous at 2. Having
said this, it becomes clear that we can proceed almost exactly as we did above:
since f is continuous at x, there exists 0 < δ < x − a such that f is bounded on

5I am embarrassed to admit that the previous version of my lecture notes fell into exactly this
trap. These notes were taken from a piece I wrote last year after giving a talk for math graduate

students at UGA. They have never been formally published, but they are available on the web and
have been read by several (dozen?) people, none of whom pointed out this mistake. Oh, well...
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[x− δ, x]. But since a < x− δ < x we know also that f is bounded on [a, x− δ], so
f is bounded on [a, x].
b) Let m = inf f([a, b]) and M = sup f([a, b]). By part a) we have

−∞ < m ≤ M < ∞.

We want to show that there exist xm, xM ∈ [a, b] such that f(xm) = m, f(xM ) = M ,
i.e., that the infimum and supremum are actually attained as values of f . Suppose
that there does not exist x ∈ [a, b] with f(x) = m: then f(x) > m for all x ∈ [a, b]
and the function gm : [a, b] → R by gm(x) = 1

f(x)−m is defined and continuous. By

the result of part a), gm is bounded, but this is absurd: by definition of the infimum,
f(x)−m takes values less than 1

n for any n ∈ Z+ and thus gm takes values greater
than n for any n ∈ Z+ and is accordingly unbounded. So indeed there must exist
xm ∈ [a, b] such that f(xm) = m. Similarly, assuming that f(x) < M for all x ∈
[a, b] gives rise to an unbounded continuous function gM : [a, b] → R, x 7→ 1

M−f(x) ,

contradicting part a). So there exists xM ∈ [a, b] with f(xM ) = M . �
As with the Intermediate Value Theorem, one can show that Dedekind completeness
is not just sufficient but necessary in order for the Extreme Value Theorem to hold.

Theorem 17.
Let F be an ordered field which is not Dedekind complete, and let a < b ∈ F .
a) There is a continuous function f : [a, b] → F which is unbounded.
b) There is a bounded continuous function f : [a, b] → F which does not attain
either a minimum or a maximum value.

Exercise 5.1: Prove Theorem 17. (Note: this is is a challenging exercise. In fact,
I have not myself written out a complete proof of Theorem 17, which is not a
standard result. I do hope it is actually true...)

6. Uniform Continuity

6.1. The Definition; Key Examples.

noindent Let I be an interval and f : I → R. Then f is uniformly continu-
ous on I if for every ϵ > 0, there exists a δ > 0 such that for all x1, x2 ∈ I, if
|x1 − x2| < δ then |f(x1)− f(x2)| < ϵ.

In order to show what the difference is between uniform continuty on I and “mere”
continuity on I – i.e., continuity at every point of I – let us rephrase the standard
ϵ-δ definition of continuity using the notation above. Namely:

A function f : I → R is continuous on I if for every ϵ > 0 and every x1 ∈ I, there
exists δ > 0 such that for all x2 ∈ I, if |x1 − x2| < δ then |f(x1)− f(x2)| < ϵ.

These two definitions are eerily (and let’s admit it: confusingly, at first) similar:
they use all the same words and symbols. The only difference is in the ordering
of the quantifiers: in the definition of continuity, player two gets to hear the value
of ϵ and also the value of x1 before choosing her value of δ. In the definition of
uniform continuity, player two only gets to hear the value of ϵ: thus, her choice of
δ must work simultaneously – or, in the lingo of this subject, uniformly – across
all values of x1 ∈ I. That’s the only difference. Of course, switching the order of
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quantifiers in general makes a big diffference in the meaning and truth of mathe-
matical statements, and this is no exception. Let’s look at some simple examples.

Example 6.1: Let f : R → R by f(x) = mx + b, m ̸= 0. We claim that f is
uniformly continuous on R. In fact the argument that we gave for continuity
long ago shows this, because for every ϵ > 0 we took δ = ϵ

|m| . Although we used

this δ to show that f is continuous at some arbitrary point c ∈ R, evidently the
choice of δ does not depend on the point c: it works uniformly across all values of
c. Thus f is uniformly continuous on R.

Example 6.2: Let f : R → R by f(x) = x2. This time I claim that our usual
proof did not show uniform continuity. Let’s see it in action. To show that f is
continuous at c, we factored x2 − c into (x − c)(x + c) and saw that to get some
control on the other factor x+ c we needed to restrict x to some bounded interval
around c, say [c−1, c+1]. On this interval |x+c| ≤ |x|+ |c| ≤ |c|+1+ |c| ≤ 2|c|+1.
So by taking δ = min(1, ϵ

2|c|+1 ) we found that if |x− c| < δ then

|f(x)− f(c)| = |x− c||x+ c| ≤ ϵ

2|c|+ 1
· (2|c|+ 1) = ϵ.

But the above choice of δ depends on c. So it doesn’t show that f is uniformly
continuous on R. In fact the function f(x) = x2 is not uniformly continuous on R.
For instance, take ϵ = 1. If it were uniformly continuous, there would have to be
some δ > 0 such that for all x1, x2 ∈ R with |x1 − x2| < δ, |x2

1 − x2
2| < ϵ. But this

is not possible: take any δ > 0. Then for any x ∈ R, x and x + δ
2 are less than δ

apart, and |x2 − (x + δ
2 )

2| = |xδ + δ2

4 |. But if I get to choose x after you choose

δ, this expression can be made arbitrarily large. In particular, if x = 1
δ , then it is

strictly greater than 1. So f is not uniformly continuous on R.

Remark: In fact a polynomial function f : R → R is uniformly continuous on
R if and only if it has degree at most one. The reasoning is similar to the above.

So that’s sad: uniform continuity is apparently quite rare. But wait! What if
the domain is a closed, bounded interval I? For instance, by restricting f(x) = x2

to any such interval, it is uniformly continuous. Indeed, we may as well assume
I = [−M,M ], because any I is contained in such an interval, and uniform conti-
nuity on [−M,M ] implies uniform continuity on I. Now we need only use the fact
that we are assuming |c| ≤ M to remove the dependence of δ on c: since |c| ≤ M
we have ϵ

2|c|+1 ) ≥
1

2M+1 , so for ϵ > 0 we may take δ = min(1, 1
2M+1 ). This shows

that f(x) = x2 is uniformly continuous on [−M,M ].

It turns out that one can always recover uniform continuity from continuity by
restricting to a closed bounded interval: this is the last of our Interval Theorems.

6.2. The Uniform Continuity Theorem.

Let f : I → R. For ϵ, δ > 0, let us say that f is (ϵ, δ)-UC on I if for all x1, x2 ∈ I,
|x1 − x2| < δ =⇒ |f(x1)− f(x2)| < ϵ. This is a sort of halfway unpacking of the
definition of uniform continuity. More precisely, f : I → R is uniformly continuous
iff for all ϵ > 0, there exists δ > 0 such that f is (ϵ, δ)-UC on I.
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The following small technical argument will be applied twice in the proof of the
Uniform Continuity Theorem, so advance treatment of this argument should make
the proof of the Uniform Continuity Theorem more palatable.

Lemma 18. (Covering Lemma) Let a < b < c < d be real numbers, and let
f : [a, d] → R. Suppose that for real numbers ϵ1, δ1, δ2 > 0,
• f is (ϵ, δ1)-UC on [a, c] and
• f is (ϵ, δ2)-UC on [b, d].
Then f is (ϵ,min(δ1, δ2, c− b))-UC on [a, b].

Proof. Suppose x1 < x2 ∈ I are such that |x1 − x2| < δ. Then it cannot be the
case that both x1 < b and c < x2: if so, x2 − x1 > c − b ≥ δ. Thus we must
have either that b ≤ x1 < x2 or x1 < x2 ≤ c. If b ≤ x1 < x2, then x1, x2 ∈ [b, d]
and |x1 − x2| < δ ≤ δ2, so |f(x1) − f(x2)| < ϵ. Similarly, if x1 < x2 ≤ c, then
x1, x2 ∈ [a, c] and |x1 − x2| < δ ≤ δ1, so |f(x1)− f(x2)| < ϵ. �

Theorem 19. (Uniform Continuity Theorem) Let f : [a, b] → R be continuous.
Then f is uniformly continuous on [a, b].

Proof. For ϵ > 0, let S(ϵ) be the set of x ∈ [a, b] such that there exists δ > 0 such
that f is (ϵ, δ)-UC on [a, x]. To show that f is uniformly continuous on [a, b], it
suffices to show that S(ϵ) = [a, b] for all ϵ > 0. We will show this by Real Induction.
(RI1): Trivially a ∈ S(ϵ): f is (ϵ, δ)-UC on [a, a] for all δ > 0!
(RI2): Suppose x ∈ S(ϵ), so there exists δ1 > 0 such that f is (ϵ, δ1)-UC on
[a, x]. Moreover, since f is continuous at x, there exists δ2 > 0 such that for all
c ∈ [x, x+δ2], |f(c)−f(x)| < ϵ

2 . Why ϵ
2? Because then for all c1, c2 ∈ [x−δ2, x+δ2],

|f(c1)− f(c2)| = |f(c1)− f(x)+ f(x)− f(c2)| ≤ |f(c1)− f(x)|+ |f(c2)− f(x)| < ϵ.

In other words, f is (ϵ, δ2)-UC on [x−δ2, x+δ2]. We apply the Patching Lemma to
f with a < x− δ2 < x < x+ δ2 to conclude that f is (ϵ,min(δ, δ2, x− (x− δ2))) =
(ϵ,min(δ1, δ2))-UC on [a, x+ δ2]. It follows that [x, x+ δ2] ⊂ S(ϵ).
(RI3): Suppose [a, x) ⊂ S(ϵ). As above, since f is continuous at x, there exists
δ1 > 0 such that f is (ϵ, δ1)-UC on [x−δ1, x]. Since x− δ1

2 < x, by hypothesis there

exists δ2 such that f is (ϵ, δ2)-UC on [a, x− δ1
2 ]. We apply the Patching Lemma to f

with a < x−δ1 < x− δ1
2 < x to conclude that f is (ϵ,min(δ1, δ2, x− δ1

2 −(x−δ1))) =

(ϵ,min( δ12 , δ2))-UC on [a, x]. Thus x ∈ S(ϵ). �

7. The Bolzano-Weierstrass Theorem

Let S ⊂ R. We say that x ∈ R is a limit point of S if for every δ > 0, there
exists s ∈ S with 0 < |s−x| < δ. Equivalently, x is a limit point of S if every open
interval I containing x also contains an element s of S which is not equal to x.

Proposition 20. For S ⊂ R and x ∈ R, the following are equivalent:
(i) Every open interval I containing x also contains infinitely many points of S.
(ii) x is a limit point of S.

Example 7.1: If S = R, then every x ∈ R is a limit point. More generally, if S ⊂ R
is dense – i.e., if every nonempty open interval I contains an element of S – then
every point of R is a limit point of S. In particular this holds when S = Q and
when S = R \Q. Note that these examples show that a limit point x of S may or
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may not be an element of S: both cases can occur.

Example 7.2: If S ⊂ T and x is a limit point of S, then x is a limit point of
T .

Nonexample 7.3: No finite subset S of R has a limit point.

Nonexample 7.4: The subset Z has no limit points: indeed, for any x ∈ R, take
I = (x−1, x+1). Then I is bounded so contains only finitely many integers. More
generally, let S be a subset such that for all M > 0, S ∩ [−M,M ] is finite. Then S
has no limit points.

In fact this is the most general possible nonexample: if for some M > 0 S ∩
[−M,M ] is infinite, then S must have a limit point. In other words:

Theorem 21. (Bolzano-Weierstrass) Every infinite subset A of a closed bounded
interval [a, b] has a limit point.

Proof. Let S be the set of x ∈ [a, b] such that if A∩ [a, x] is infinite, then A∩ [a, x]
has a limit point. It suffices to show that S = [a, b]: then A = A ∩ [a, b] is infinite
and thus has a limit point. We will use Real Induction.

(RI1): Since A∩[a, a] ⊂ {a} is finite, the “induction hypothesis” holds vacuously.
(RI2): suppose x ∈ S. If A ∩ [a, x] is infinite, then by hypothesis A ∩ [a, x] has a
limit point and hence so does [a, b]. So we may assume A∩[a, x] is finite. Now either
there exists δ > 0 such that A ∩ [a, x + δ] is finite – which verifies our induction
hypothesis – or every interval [x, x + δ] contains infinitely many points of A, in
which case x is a limit point of A. (RI3): Suppose [a, x) ⊂ S. Then, if there exists
some y < x such that A ∩ [a, y] is infinite, then by hypothesis A ∩ [a, y] has a limit
point and thus so does A. So we may assume that A ∩ [a, y] is finite for all y < x.
As above, this means either that A∩ [a, x] is finite, or that every interval (x− δ, x)
intersects A, in which case x is a limit point of A. �
Remark: Theorem 21 is the “set version” of Bolzano-Weierstrass. There is a more
common “sequence version” of Bolzano-Weierstrass: every bounded sequence
admits a convergent subsequence. Sadly, we have not yet spoken of sequences,
their convergence, and subsequences, but we will: this will be a major theme of the
second half of the course. Once we acquire enough vocabulary to understand the
above boldfaced statement, we will see almost immediately that it is equivalent to
Theorem 21 above. We can (and will!) then use the Bolzano-Weierstrass Theorem
for sequences to give new proofs of the Extreme Value Theorem and the Uniform
Continuity Theorem which are quicker, cleaner and more conceptual.
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