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1 Introduction

By sacrificing the orthonormality and allowing redundant representations, tight wavelet

frames become much easier to construct than orthonormal wavelets. Furthermore, two

remarkable properties of tight wavelet frames are: (1) they have the same computational

complexity as orthonormal wavelets, and, (2) they can be applied to image processing

in exactly the same way as orthonormal wavelets. The theory of wavelet frames and

wavelets has been developed in parallel. The expositions by Coifman and Meyer [24] and

Daubechies [11] give necessary and sufficient conditions on an L2-function, so that its

integer translates and dilations form a frame. In [20], Hernández and Weiss give a new

set of necessary and sufficient conditions which make the integer translates and dilations

of an L2 function an orthonormal basis. (See also [14].) A similar set of necessary and

sufficient conditions for tight wavelet frames was given by Han in [17]. Independently,

such conditions were obtained by Ron and Shen in [29]. In addition, Ron and Shen for-

mulated the so-called unitary extension principle (UEP) which allows them to construct

many examples of B-spline and box spline wavelet frames (cf. [29, 30, 31, 32]) and to

construct compactly supported tight wavelet frames of any smoothness based on any

dilation matrix in [16]. In addition, Benedetto and Li [4] developed a theory of frames

parallel to the orthonormal wavelets and used their frames for signal processing. It is

worthwhile to point out that the number of B-spline and box spline wavelet frame gener-

ators constructed in [31, 32] depends on the smoothness of the B-splines and box splines.

The smoother the tight wavelet frame, the bigger is the number of tight wavelet frame

generators. This problem was resolved by Chui and He [8, 9] and Petukhov [26]. Chui and

He showed that the number of tight wavelet frame generators is 2 for B-splines of any

smoothness (cf. [26] for another proof), 7 for box splines on a three direction mesh and

15 for box splines on a four direction mesh. See [27] for constructing symmetric tight

wavelet frames. In order to increase the order of vanishing moments of tight wavelet

frames, the notion of vanishing moment recovery functions was introduced in [10] and,

in parallel, the mixed extension principle was introduced in [13] for the construction of

many examples of bi-frames in the univariate setting.

In this paper, we shall provide another method of constructing compactly supported

tight wavelet frames in the multivariate setting. We first consider the unitary extension

principle (UEP) and relate it to the problem of decomposing a nonnegative trigonomet-

ric polynomial into a finite sum of squares (SOS) of absolute values of trigonometric

polynomials. That is, let P (ω) be the trigonometric polynomial mask associated with a
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refinable function and suppose that P satisfies the sub-QMF condition

∑

j∈{0,1}dπ

|P (ω + j)|2 ≤ 1,

under the standard dilation matrix 2Id×d, where Id×d is the identity matrix in Rd. If we

can find the decomposition

1 −
∑

j∈{0,1}dπ

|P (ω + j)|2 =

N∑

k=1

|P̃k(2ω)|2, (1.1)

where each P̃` is a trigonometric polynomial, then we shall show how to construct a

set of finitely many tight wavelet frame generators based on this decomposition. Several

necessary and sufficient conditions for nonnegative trigonometric (or Laurent) polynomi-

als to be sos will be discussed. When our method is applied to the Laurent polynomials

associated with multivariate box splines, we can show that the nonnegative Laurent poly-

nomials can be indeed decomposed as in (1.1). Many examples of tight wavelet frames

associated with box splines on three and four directional meshes will be presented. The

number of tight wavelet frame generators is less than the number obtained by using the

Kronecker product method given in [9]. This demonstrates an advantage of our method.

Since the number of vanishing moments plays a significant role in the application of

wavelet frames, we shall also discuss a method for the construction of tight wavelet frames

with rational masks and maximum vanishing moments. Moreover, the construction of

compactly supported bi-frames will be considered. An explicit formula for the masks of

bi-frames will be given. The formula yields bi-frames based on bivariate and trivariate

box splines.

The paper is organized as follows. We start with a preliminary section which describes

the well-known sufficient condition for tight wavelet frames, i.e., the oblique extension

principle (OEP) which includes the UEP as a special case. In Section 3, we give an

explicit formula for masks of tight wavelet frames which are derived from any given

refinable function φ whose mask is a Quadrature Mirror Filter (QMF). Let us point out

that there are many constructive methods available in the literature for those refinable

functions φ. (See [23] for several methods besides the trivial tensor product of univariate

scaling functions.) Since the masks associated with certain refinable functions satisfy

the so-called sub-QMF condition, we give another method for constructing tight wavelet

frames from those refinable functions. The precise construction depends on whether a

multivariate positive Laurent polynomial can be written as a sum of squares of absolute

values of Laurent polynomials. We discuss some necessary and sufficient conditions of
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this algebraic property in Section 4. In Section 5, we mainly focus on the construction

of tight wavelet frames by using bivariate box splines on three and four directional

meshes. From there, we can easily conclude that the construction can be generalized to

computing tight wavelet frames by using any given multivariate box spline. In order to

increase the order of vanishing moments for tight frames, we show in Section 6 how to

construct tight frames whose masks are rational functions which correspond to ARMA

filters. In Section 7, we present a constructive method for bi-frames. Using box spline

functions in the bivariate and trivariate setting, we give an explicit formula for the masks

of these bi-frames.

2 Preliminaries

Let us first recall some notation. For f, g ∈ L2(R
d), we denote the inner product by

〈f, g〉 =

∫

Rd

f(y)g(y)dy

and the Fourier transform by

f̂(ω) =

∫

R
d

f(y)e−iωydy.

Given a function ψ ∈ L2(R
d), we let

ψj,k(y) = 2jd/2ψ(2jy − k).

Let Ψ be a finite subset of L2(R
d) and

Λ(Ψ) := {ψj,k; ψ ∈ Ψ, j ∈ Z, k ∈ Zd}

where Z is the set of all integers.

Definition 2.1 We say Λ(Ψ) is a frame if there exist two positive numbers A and B

such that

A‖f‖2
L2(Rd) ≤

∑

g∈Λ(Ψ)

|〈f, g〉|2 ≤ B‖f‖2
L2(Rd)

for all f ∈ L2(R
d). Λ(Ψ) is a tight frame if it is a frame with A = B. In this case, after

a renormalization of the g’s in Ψ, we have

∑

g∈Λ(Ψ)

|〈f, g〉|2 = ‖f‖2
L2(Rd)

for all f ∈ L2(R
d).
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It is known (cf. [11]) that when Λ(Ψ) is a tight frame, any f ∈ L2(R
d) can be

represented as

f =
1

A

∑

g∈Λ(Ψ)

〈f, g〉g.

Let φ ∈ L2(R
d) be a compactly supported refinable function, i.e.,

φ̂(ω) = P (ω/2)φ̂(ω/2)

where P (ω) is a trigonometric polynomial. Let S(ω) be another trigonometric polynomial

such that S(ω) ≥ 0 and S(0) = 1. We look for Qi (trigonometric polynomial or rational

function) such that

S(2ω)P (ω)P (ω+ `) +

r∑

i=0

Qi(ω)Qi(ω + `) =

{
S(ω), if ` = 0,
0, ` ∈ {0, 1}dπ\{0}. (2.1)

The conditions (2.1) are called Oblique Extension Principle (OEP) in [13]. S(ω) is called

the vanishing moment recovery function in [10]. The OEP describes a less restrictive

condition than the unitary extension principle (UEP) in [29].

With these Qi’s we can define wavelet frame generators ψ(i), defined in terms of their

Fourier transforms, by

ψ̂(i)(ω) = Qi(ω/2)φ̂(ω/2), i = 1, . . . , r. (2.2)

Then, if φ is continuous and Lip α, with α > 0, and the OEP is satisfied, the family

Ψ = {ψ(i), i = 1, . . . , r} generates a tight frame, i.e., Λ(Ψ) is a tight wavelet frame. (See

[13] and [10] for different proofs.)

For convenience, we rewrite (2.1) in an equivalent matrix form as follows:

Lemma 2.2 Let P = (P (ω + `); ` ∈ {0, 1}dπ)T be a vector of size 2d × 1 and Q =

(Qi(ω+`); ` ∈ {0, 1}dπ, i = 1, · · · , r, ) be a matrix of size 2d×r. Then (2.1) is equivalent

to

QQ∗ = diag(S(ω + `); ` ∈ {0, 1}dπ) − S(2ω)PP∗, (2.3)

where P∗ denotes the complex conjugate transpose of the column vector P.

Proof: This can be verified directly.

For example, when d = 2, r = 4 and ω = (ξ, η), we have

Q =




Q1(ξ, η) Q1(ξ + π, η) Q1(ξ, η + π) Q1(ξ + π, η + π)
Q2(ξ, η) Q2(ξ + π, η) Q2(ξ, η + π) Q2(ξ + π, η + π)
Q3(ξ, η) Q3(ξ + π, η) Q3(ξ, η + π) Q3(ξ + π, η + π)
Q4(ξ, η) Q4(ξ + π, η) Q4(ξ, η + π) Q4(ξ + π, η + π)




T

,
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P = (P (ξ, η), P (ξ + π, η), P (ξ, η + π), P (ξ + π, η + π))T , and

QQ∗ =




S(ξ, η)
S(ξ + π, η)

S(ξ, η + π)
S(ξ + π, η + π)


− S(2ξ, 2η)PP∗.

For another example, when S ≡ 1, (2.3) is simply

QQ∗ = I2d×2d −PP∗. (2.4)

Our construction of tight wavelet frames is mainly based on the matrix form (2.3) or

(2.4).

3 Frame Construction: QMF and sub-QMF cases

In this section we first consider those refinable functions φ whose mask P satisfies the

QMF condition ∑

`∈{0,1}dπ

|P (ω + `)|2 = 1, ω ∈ R, (3.1)

along with P (0) = 1. For simplicity, we further restrict to the case when S(ω) ≡ 1. Let

M = 2−d/2(eim·(ω+`)) `∈{0,1}dπ
m∈{0,1}d

(3.2)

be the polyphase matrix, where ` denotes the row index and m denotes the column

index of M. Clearly, M is a unitary matrix. Up to the normalization factor 2−d/2, the

polyphase components of the trigonometric polynomial P are defined by the column

vector

P̂ := (P̂m(2ω); m ∈ {0, 1}d)T = M∗P,

where each P̂m is a trigonometric polynomial. Hence, we obtain the polyphase decom-

position of P by inspecting the first row of the identity P = MP̂ , which gives

P (ω) = 2−d/2
∑

m∈{0,1}d

eim·ωP̂m(2ω). (3.3)

Our first result applies to masks P which satisfy the QMF condition (3.1).

Theorem 3.1 Suppose that a trigonometric polynomial P satisfies the QMF condition

(3.1). Define Q1, . . . , Q2d by

Q := (Qi(ω + `)) `∈{0,1}dπ

i=1,...,2d

= M(I2d×2d − P̂P̂∗). (3.4)

Then P and Qi, i = 1, . . . , 2d satisfy (2.1) with S(ω) ≡ 1.
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Proof: The QMF condition leads to the identity P̂∗P̂ = P∗P = 1. Hence, it follows

that

QQ∗ = I2d×2d −MP̂P̂∗M∗ = I2d×2d − PP∗,

which is (2.4). Note that both M and P = MP̂ in (3.4) have the desired form, and so

does Q. This completes the proof.

This shows that, for refinable functions φ whose mask P satisfies (3.1), we can eas-

ily construct tight wavelet frames associated with φ. We remark that there are many

constructive methods available for finding refinable functions φ whose masks satisfy the

QMF condition (3.1). See [23] for a survey on several constructive methods for QMF

filters.

Since the matrix Q in (3.4) has 2d columns, for convenience, we make use of the

notation

Q = (Qm(ω + `)) `∈{0,1}dπ

m∈{0,1}d

.

We now examine the vanishing moment property.

Corollary 3.2 Qm(0) = 0 for all m ∈ {0, 1}d.

Proof: Since Q = M−PP̂∗, the entries in the first row of Q give

Qm(ω) = 2−d/2eim·ω − P (ω)P̂m(2ω), m ∈ {0, 1}d. (3.5)

Since P (0) = 1 holds, the QMF condition implies P(0) = e1, the first canonical unit

vector in R2d

. Hence, P̂m(0) = 2−d/2 and Qm(0) = 0 for all m ∈ {0, 1}d.

Next, we note that the tight frame generators ψ(m), which are defined by their Fourier

transform

ψ̂(m)(ω) = Qm

(ω
2

)
φ̂
(ω

2

)
, m ∈ {0, 1}d,

are linearly dependent. We have the following result.

Corollary 3.3
∑

m∈{0,1}d

P̂m(2ω)Qm(ω) ≡ 0.

Proof: By (3.1), we have P̂∗P̂ =
∑

m∈{0,1}d |P̂m(2ω)|2 ≡ 1. Now, (3.3) and (3.5) give

∑

m∈{0,1}d

P̂m(2ω)Qm(ω) =
∑

m∈{0,1}d

2−d/2eim·ωP̂m(2ω) − P (ω)
∑

m∈{0,1}d

|P̂m(2ω)|2

= P (ω) − P (ω) = 0.

This completes the proof.
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We remark that, in general, the mask P of a scaling function does not satisfy the

QMF condition. Instead, it may satisfy the following sub-QMF condition

∑

`∈{0,1}dπ

|P (ω + `)|2 ≤ 1. (3.6)

We now explain how to construct tight frames associated with the standard dilation ma-

trix 2Id×d for such scaling functions φ. As before, we let P̂ = (P̂m(2ω); m ∈ {0, 1}d)T =

M∗P, where M is the polyphase matrix in (3.2) and P = (P (ω + `); ` ∈ {0, 1}dπ).

Then (3.6) is equivalent to

P̂∗P̂ =
∑

m∈{0,1}d

|P̂m(2ω)|2 ≤ 1. (3.7)

Theorem 3.4 Suppose that P satisfies the sub-QMF condition (3.6). Suppose that there

exist Laurent polynomials P̃1, . . . , P̃N such that

∑

m∈{0,1}d

|P̂m(ω)|2 +
N∑

i=1

|P̃i(ω)|2 = 1. (3.8)

Then there exist 2d +N compactly supported tight frame generators with wavelet masks

Qm, m = 1, . . . , 2d+N , such that P , Qm, m = 1, . . . , 2d+N , satisfy (2.1) with S(ω) ≡ 1.

Proof: We define the combined column vector P̃ = (P̂m(2ω);m ∈ {0, 1}d, P̃i(2ω); , 1 ≤
i ≤ N)T of size (2d +N) and the matrix

Q̃ := I(2d+N)×(2d+N) − P̃P̃∗.

Note that all entries of P̃ and Q̃ are π-periodic. Identity (3.8) implies that Q̃Q̃∗ = Q̃,

and this gives

P̃P̃∗ + Q̃Q̃∗ = I(2d+N)×(2d+N).

Restricting to the first principle 2d × 2d blocks in the above matrices, we have

P̂P̂∗ + Q̂Q̂∗ = I2d×2d , (3.9)

where P̂ = M∗P was already defined before and Q̂ denotes the first 2d × (2d +N) block

matrix of Q̃. By (3.3), we have P = MP̂, and (3.9) yields

PP∗ + MQ̂(MQ̂)∗ = I2d×2d,

which is (2.4). Thus we let

Q = MQ̂.
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Then the first row [Q1, . . . , Q2d+N ] of Q gives the desired trigonometric functions for

compactly supported tight wavelet frame generators. The form Q = [Qi(ω+ `)] is inher-

ited from M, since the entries of Q̂ are π-periodic. This completes the proof.

We shall use the constructive scheme above to find compactly supported tight wavelet

frames based on multivariate box splines, in particular, bivariate box splines on three

and four directional meshes. This will be done in Section 5, after we discuss the existence

of P̃j’s for completing (3.8) in the next section.

It is well-known that the tight frames constructed above with S(ω) ≡ 1 may not

have more than 1 vanishing moment. Thus, we will also employ certain trigonometric

polynomials S in Section 6, in order to increase the order of vanishing moments.

4 Sufficient and Necessary Conditions for Nonneg-

ative Laurent Polynomials to Be SOS

In this section we discuss the problem if (3.8) holds for every Laurent polynomial P

satisfying (3.6). In other words, when a Laurent polynomial 1 −
∑

k∈{0,1}dπ

|P (ω + k)|2 is

nonnegative, we want to know if there exist Laurent polynomials P̃j such that

1 −
∑

`∈{0,1}dπ

|P (ω + `)|2 =
∑

j

|P̃j(2ω)|2.

In terms of the polyphase components P̂m of P , the above equation can be equivalently

written as

1 −
∑

m∈{0,1}d

|P̂m(ω)|2 =
∑

j

|P̃j(ω)|2.

This problem is related to a well-known problem in modern real algebra: If a real

polynomial p(x) is positive at every point in Rd, must p then be a finite sum of polynomial

squares? The answer to this question is “no”, as conjectured by Minkowski and confirmed

by Hilbert in 1888 (cf. [21]). This is related to the 17th of Hilbert’s famous 23 problems

(cf. [33]). It poses the question if any real positive polynomial can be written as a finite

sum of squares of rational functions. The problem was settled (cf. [1, 28]). Similarly, in

the setting of Laurent polynomials, (3.8) holds for rational Laurent polynomials in Rd.

That is, if P satisfies (3.6), there exists a finite number of rational Laurent polynomials

P̃i such that (3.8) holds. We refer to [2] for a constructive algorithm for finding these

P̃i’s in R2.

Since we are interested in compactly supported tight frames, we need to find Laurent

polynomials P̃i to satisfy (3.8). Thus, we look for some sufficient and necessary conditions
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on 1 −
∑

k∈{0,1}dπ |P (ω + k)|2 such that (3.8) holds. For simplicity, let P stand for a

nonnegative Laurent polynomial. We will find some conditions on P to ensure that P

can be written as a sum of squares of Laurent polynomials with real coefficients, in short,

P is sos. We begin with the following elementary formula.

Lemma 4.1 For any ω ∈ [0, 2π], we have

1 ± cosω =
1

2
|1 ± eiω|2. (4.1)

With the above formula, we have the following simple sufficient condition (cf. [3]).

Theorem 4.2 Suppose that a Laurent polynomial P (ω) =
∑

k cke
ikω, with real coeffi-

cients ck, is nonnegative for all ω ∈ [0, 2π]d. If

c0 ≥
∑

k 6=0

|ck|, (4.2)

then P is sos.

Proof: Since P (ω) is real, we have

P (ω) =
1

2
(P (ω) + P (ω)) = c0 +

∑

k 6=0

ck
2

(eikω + e−ikω).

Writing c̃0 = c0 −
∑

k 6=0

|ck| ≥ 0, we use Lemma 4.1 to get

P (ω) = c̃0 +
∑

k 6=0

(|ck| + ck cos(kω))

= c̃0 +
∑

k 6=0

|ck|(1 + sign(ck) cos(kω))

= c̃0 +
∑

k 6=0

|ck|
2

|1 + sign(ck)e
ikω|2.

Since P is a Laurent polynomial, only finitely many ck’s can be nonzero. Thus, the

summation is finite and P is sos.

However, the condition (4.2) is not necessary as we can see from the following exam-

ple.

Example 4.3 Consider

P (ω) = 62 + 20(eiω1 + e−iω1) +
23

2
(eiω2 + e−iω2) +

23

2
(ei(ω1+ω2) + e−i(ω1+ω2)).
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Clearly, the condition (4.2) does not hold. However, it is easy to check that

P (ω) = 21(1 − sinω1 sinω2) + (1 − sinω1 sinω2)
2

+17(1 + cosω1) + 19(1 + cosω1)(1 + cosω2) + (1 + cosω1)
2(1 + cosω2)

+(1 + cosω1)(1 + cosω2)
2 + (1 + cosω1)(1 + cosω2)(1 − cosω1 cosω2).

Note that

1 − cosω1 cosω2 =
1

4
|1 − ei(ω1+ω2)|2 +

1

4
|1 − ei(ω1−ω2)|2 (4.3)

and

1 − sinω1 sinω2 =
1

4
|1 + ei(ω1+ω2)|2 +

1

4
|1 − ei(ω1−ω2)|2. (4.4)

Based on (4.1), we know that P is sos. This shows that the condition (4.2) is not

necessary.

Next we give a complete characterization on positive Laurent polynomials to be sos.

Theorem 4.4 Let P (ω) =
∑

k∈[−n,n]d∩Zd

cke
ikω be a Laurent polynomial of coordinate de-

gree n which is positive for all ω ∈ Rd and whose coefficients ck are real. Then P is

sos of real polynomials in eiω of coordinate degree ≤ n, if and only if there exists a real,

symmetric, positive semi-definite matrix P such that

P (ω) = x∗Px, (4.5)

where x = (eikω; k ∈ [0, n]d ∩ Zd) is a column vector of size (n+ 1)d.

Proof: Suppose that there exists a real, symmetric, positive semi-definite matrix P such

that (4.5) holds. Then there exists a real matrix L and a diagonal matrix

D = diag (d1, · · · , dr, 0, · · · , 0)

such that P = LDLT with di > 0, i = 1, · · · , r, where r is the rank of P. Let pi,

i = 1, . . . , r, denote the first r components of x∗L. Then

P (ω) = x∗Px =
r∑

i=1

dr|pi|2.

That is, P (ω) is sos of finitely many polynomials with real coefficients.

On the other hand, if P (ω) =
∑r

i=1 |pi|2 for some real polynomials pi of coordinate

degree ≤ n, then [p∗1, · · · , p∗r] = x∗L for some real matrix L. Thus, we have

P (ω) = x∗LLT x
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and, hence, P = LLT defines the real, symmetric and positive semi-definite matrix in

(4.5). This completes the proof.

Unfortunately, finding such a real, symmetric and positive semi-definite matrix P is

not easy. One of the reasons is that the size of the matrix P grows quickly as the number

of variables and the degree of the Laurent polynomial increase.

We shall use positive definite functions to derive another necessary and sufficient

condition (cf. [35]). We begin with two definitions.

Definition 4.5 Let D be a point set in Rd. A function K(x, y) defined on D ×D is a

positive definite kernel (PDK) if, for every set {x1, x2, · · · , xn} ⊂ D, the matrix

(K(xi, xj))i,j=1,··· ,n

is positive semi-definite. When K(x, y) = f(x − y), then f is called a positive definite

function.

Definition 4.6 Let H be a Hilbert space of functions defined on D with an inner product

〈·, ·〉H. If for any x ∈ D, there is an element Kx ∈ H such that

f(x) = 〈f,Kx〉H , ∀f ∈ H,

then H is called a reproducing kernel Hilbert space. The function K on D ×D, defined

by

K(x, y) = 〈Ky, Kx〉H ,

is called the reproducing kernel.

It is known that for any PDK functionK defined onD×D, there exists a reproducing

kernel Hilbert space H consisting of functions defined on D whose reproducing kernel is

K (cf. [36], p. 19). In fact, H is the completion of the linear span of {K(y, x), y ∈ D}
under the semi-norm ‖∑i ciK(yi, ·)‖ := (

∑
i |ci|2)1/2 which is defined for finite linear

combinations. Then H is the desired reproducing kernel Hilbert space with reproducing

kernel K. If K is a polynomial, then H is of finite dimension. Furthermore, let {φi; i =

1, . . . , N = (dim(H))} be an orthonormal basis for H . Then

K(x, y) =

N∑

i=1

ci(y)φi(x)

with

ci(y) = 〈K(·, y), φi〉 = 〈φi, K(·, y)〉 = φi(y), ∀i = 1, · · · , N.

Therefore, K(x, x) =

N∑

i=1

|φi(x)|2. That is, K(x, x) is an sos. This leads to the following
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Theorem 4.7 Let P (x) be a positive Laurent polynomial for x = eiω ∈ D, where D :=

{eiω, ω ∈ [0, 2π]d}. If there exists a PDK K(x, y) such that K(x, x) = P (x), then P is

an sos. The converse is also true. That is, if P (x) is a sum of squares of polynomials

with real coefficients, then there exists a PDK K(x, y) such that K(x, x) = P (x).

Proof: Based on the discussion above, we only need to prove the converse. Writing

P (x) =
∑n

i=1 |φi(x)|2 with polynomials φi whose coefficients are real, we define

K(x, y) =
n∑

i=1

φi(x)φi(y).

Then it is easy to check that K(x, y) is a PDK. This completes the proof.

Our next step is to characterize which functions are PDK. We have

Theorem 4.8 Suppose that K(x, y) is a continuous function defined on D × D with

D = [−π, π]d. Let

K(x, y) =
∑

j,k

K̂(j, k)e−ijxeiky

be the Fourier series expansion of K(x, y). Then K(x, y) is PDK if and only if the matrix

[K̂(j, k)] is positive semi-definite.

Proof: Since K(x, y) is continuous, the positive semi-definiteness of K is equivalent to

∫

D

∫

D

K(x, y)f(x)f(y)dxdy ≥ 0

for any continuous functions f . It follows that

∑

j,k

K̂(j, k)

∫

D

∫

D

f(x)f(y)e−ijxeikydxdy = (2π)2d
∑

j,k

K̂(j, k)f̂(j)f̂(k) ≥ 0,

where f̂(j) denotes the Fourier coefficients of f . Hence, the matrix [K̂(j, k)] is positive

semi-definite.

There are several other simple properties of PDK functions (cf. [34]).

1. If fi(x, y), i = 1, · · · , N are PDK functions, so is the sum
N∑

i=1

cifi(x, y) for any

positive constants ci.

2. If fi(x, y), i = 1, 2, · · · , are PDK functions and they are convergent to f(x, y), then

the limit function is a PDK function.

3. If f1(x, y) and f2(x, y) are PDK functions on D ×D,

12



then their product F (x1, x2; y1, y2) := f1(x1, y1)f2(x2, y2) is a PDK function on D2×D2.

Example 4.9 Let

B(ω) = 1 +
1

2
(cos(ω1) + cos(ω2)).

It is easy to see that B(ω) is a positive Laurent polynomial. With x1 = exp(iω1) and

x2 = exp(iω2), we write

B(ω) = 1 +
1

4
(x1 + 1/x1 + x2 + 1/x2).

Let

K(x, y) =
1

2
+

1

4
(x1/y1 + x2/y2 + x1 + 1/y1 + x2 + 1/y2).

Then we can verify that K(x, x) = B(ω) and K(x, y) is PDK since the matrix consisting

of its Fourier coefficients 


1/2 1/4 1/4
1/4 1/4 0
1/4 0 1/4




is positive semi-definite. On the other hand, if

K(x, y) = 1 +
1

4
(x1 + 1/y1 + x2 + 1/y2)

then the matrix of nonzero Fourier coefficients



1 1/4 1/4

1/4 0 0
1/4 0 0





is not positive semi-definite, although K(x, x) = B(ω).

Given a positive Laurent polynomial P (x), we can conclude from Example 4.9 that

the problem of finding a PDK function K(x, y) such that K(x, x) = P (x) is not easy.

Finally let us mention that the above study is further continued in [15]. There a new

and constructive proof of Dritschel’s Theorem is presented: If a multivariate Laurent

polynomial P (x) with x = eiω is strictly positive for all |x| = 1, then P (x) is an sos.

However in our situation, the corresponding Laurent polynomial is nonnegative. A new

sufficient condition for nonnegative Laurent polynomials to be sos is given in [15].
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5 Frame Construction: Multivariate Box Spline Case

Multivariate box splines are a very important class of refinable functions. It is interesting

to know how to construct compactly supported tight frames based on multivariate box

splines. There are several methods available in the literature to compute tight wavelet

frames using box splines, e.g., [31, 9] as mentioned in Section 1. We shall employ the

constructive procedure discussed in Section 3 in order to present our new method. One

of the advantages is that the number of tight wavelet frame generators is smaller than

that in [9] for many examples we present here.

Let us first recall the definition of box splines. Let D be a set of non zero vectors in

Rd (allowing multiples of the same vector) which span Rd. The box spline φD associated

with the direction set D is the function whose Fourier transform is defined by

φ̂D(ω) =
∏

ξ∈D

1 − e−iξ·ω

iξ · ω .

It is well-known that the box spline φD is a piecewise polynomial function of degree

≤ #D − d, where #D denotes the cardinality of D. For more properties of box splines,

see [6, 5]. In particular, for d = 2 and e1 = (1, 0)T , e2 = (0, 1)T , and

D = {e1, . . . , e1︸ ︷︷ ︸
`

, e2, . . . , e2︸ ︷︷ ︸
m

, e1 + e2, . . . , e1 + e2︸ ︷︷ ︸
n

},

the bivariate box spline φ`,m,n based on this direction set D is called 3-direction box

spline. Its Fourier transform is

φ̂`,m,n(ξ, η) =

(
1 − e−iξ

iξ

)`(
1 − e−iη

iη

)m(
1 − e−i(ξ+η)

i(ξ + η)

)n

.

Similarly, the box spline φ`mnk based on the four directional mesh is defined in terms of

its Fourier transform by

φ̂`,m,n,k(ξ, η) = φ̂`,m,n(ξ, η)

(
1 − e−i(ξ−η)

i(ξ − η)

)k

.

(For computation of 3-directional and 4-directional box splines, see [22].)

Let us note that the mask of any multivariate box spline φD, with D ⊂ Zd and

the standard dilation matrix 2Id×d, satisfies (3.6). Indeed, we infer from the identity

φ̂D(ω) = PD(ω
2
)φ̂D(ω

2
) that

PD(ω) =
∏

ξ∈D

1 + e−iξ·ω

2
.

This is, indeed, a trigonometric polynomial and |PD(ω)|2 =
∏

ξ∈D(cos ξ·ω
2

)2. Moreover,

we have the following result.
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Lemma 5.1 Suppose that a given direction set D ⊂ Zd contains all of the standard unit

vectors ei of Rd, i = 1, . . . , d. Then PD satisfies (3.6).

Proof: Since |PD(ω)|2 ≤∏d
i=1 cos2 ωi

2
, with ω = (ω1, . . . , ωs)

T ∈ Rd, we have

∑

`∈{0,1}dπ

|PD(ω + `)|2 ≤
d∏

i=1

(cos2 ωi

2
+ sin2 ωi

2
) = 1.

This completes the proof.

To show that the constructive steps in the proof of Theorem 3.4 can be applied to

construct tight frames using box splines, we begin with the following examples (cf. [25]).

Example 5.2 Consider the three directional box spline φ1,1,1. It is easy to see that

1 −
∑

`∈{0,1}2π

|P1,1,1(ω + `)|2 =
3

8
− 1

8
cos(2ω1) −

1

8
cos(2ω2) −

1

8
cos(2ω1 + 2ω2).

Thus, we let

P̃1(ω) =

√
6

8
(1 − eiω1), and P̃2(ω) =

√
2

8
(2 − eiω2 − ei(ω1+ω2)).

Clearly, we have
∑

`∈{0,1}2π

|P1,1,1(ω + `)|2 +

2∑

i=1

|P̃i(2ω)|2 = 1.

Thus, we can apply the constructive steps in the proof of Theorem 3.4 to get 6 tight

frame masks Qi, i = 1, · · · , 6. We have implemented the constructive steps in a symbolic

algebra software Maple and found these Qi’s. We note that the constructive procedure

in [9] yields 7 tight frame generators.

Example 5.3 Consider the box spline φ2,2,1. We find that

1 −
∑

`∈{0,1}2π

|P2,2,1(ω + `)|2 =

19

32
− 7

32
cos(2ω1) −

7

32
cos(2ω2) −

1

64
cos(2ω1 − 2ω2) −

9

64
cos(2ω1 + 2ω2).

Let

P̃1(ω) =

√
21

12
−

√
102 + 2

√
21

48
eiω1 +

√
102 − 2

√
21

48
eiω2

P̃2(ω) = −
√

42 + 2
√

51

48
+

√
42

24
eiω2 −

√
42 − 2

√
51

48
ei(ω1+ω2).
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It is easy to check that

∑

`∈{0,1}2π

|P2,2,1(ω + `)|2 +
2∑

i=1

|P̃i(2ω)|2 = 1.

Hence, the constructive steps in the proof of Theorem 3.4 yield 6 tight frame masks and

thus, 6 tight frame generators. We note that using the constructive procedure in [9], one

will get 7 tight frame generators.

Example 5.4 For the box spline φ2,2,2, we have

1 −
∑

`∈{0,1}2π

|P2,2,2(ω + `)|2

= (339 − 106(cos(2ω1) + cos(2ω2) + cos(2ω1 + 2ω2))

−(cos(4ω1) + cos(4ω2) + cos(4(ω1 + ω2))

−6(cos(4ω1 + 2ω2) + cos(2ω1 + 4ω2) + cos(2ω1 − 2ω2))/512

=

3∑

i=1

|P̃i(2ω)|2,

where

P̃1(ω) =

√
14

96
+

√
14

16
eiω1 +

√
14

16
eiω2 − 173

1344

√
14ei(ω1+ω2) − 3

448

√
14e2i(ω1+ω2);

P̃2(ω) =
1

5376
(

√
713608 + 42

√
178402 +

√
713608 − 42

√
178402)

− 1

2854432
(

√
713608 + 42

√
178402 −

√
713608 − 42

√
178402)

√
178402 ei2ω2

− 1

40281744384

(
14112(

√
713608 − 42

√
178402 −

√
713608 + 42

√
178402)

+ 42
√

178402(

√
713608 − 42

√
178402 +

√
713608 + 42

√
178402)

)

×
√

178402 ei(ω1+ω2)

P̃3(ω) =
1

5376
(

√
713608 + 42

√
178402 −

√
713608 − 42

√
178402)

− 1

2854432
(

√
713608 + 42

√
178402 +

√
713608 − 42

√
178402)

√
178402e2iω1

+
1

40281744384

(
14112(

√
713608 − 42

√
178402 +

√
713608 + 42

√
178402)

+ 42
√

178402(

√
713608 − 42

√
178402 −

√
713608 + 42

√
178402)

)
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×
√

178402 ei(ω1+ω2).

Thus, we only need 7 frame generators for φ2,2,2.

Example 5.5 For the box spline φ1,1,1,1, we have

1 −
∑

`∈{0,1}2π

|P1,1,1,1(ω + `)|2

=
5

8
− 1

8
(ei2ω1 + e−i2ω1) − 1

8
(e2iω2 + e−2iω2)

− 1

32
(e2i(ω1+ω2) + e−2i(ω1+ω2)) − 1

32
(e2i(ω1−ω2) + e−2i(ω1−ω2))

=
2∑

i=1

|P̃i(2ω)|2,

where P̃1(ω) =
√

6
8

(1 − ei(ω1−ω2) and

P̃2(ω) = −1

4
+

√
6

8
+

1

4
(eiω1 + eiω2) − 2 +

√
6

8
ei(ω1+ω2).

Hence, the constructive steps in the proof of Theorem 3.4 yield 6 tight frame masks

and hence, 6 tight frame generators. For this particular example, the construction in [9]

requires 15 generators.

Example 5.6 For the box spline φ2,2,1,1, we have

1 −
∑

`∈{0,1}2π

|P2,2,1,1(ω + `)|2 =

4∑

i=1

|P̃i(2ω)|2,

where P̃1(ω) =

√
1886

224
(1 − e2iω1),

P̃2(ω) = −3
√

14

64
+

√
40531922

25472
+

3
√

14

32
eiω2 −

(
3
√

14

64
+

√
40531922

25472

)
e2iω2

P̃3(ω) =
7
√

2

64
+

7
√

2

64
e2iω2 −

√
2

224
ei(2ω1+ω2) − 3

√
2

14
ei(ω1+ω2),

and

P̃4(ω) =

√
398

112
+

√
398

112
e2iω1 − 3135

√
398

178304
e2iω1 − 7

√
398

25472
ei(ω1+2ω2).

Hence, we will have 8 tight frame generators. For this particular example, the construc-

tion in [9] requires 15 generators.
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We refer to [25] for the detailed computation of these tight frame generators in the

above examples and for their applications in image processing. We have the following

general result for three and four directional box splines.

Lemma 5.7 For P`,m,n there exist P̃1, . . . , P̃N with N = 9 such that (3.8) holds. That

is,

1 −
∑

j∈{0,1}2π

|P`,m,n(ω + j)|2 =

9∑

i=1

|P̃i(2ω)|2 (5.1)

for some trigonometric polynomials P̃i. Similarly, for P`,m,n,r there exists a collection of

at most 22 additional Laurent polynomials P̃i such that (3.8) holds. That is,

1 −
∑

j∈{0,1}2π

|P`,m,n,r(ω + j)|2 =

22∑

i=1

|P̃i(2ω)|2 (5.2)

for some trigonometric polynomials P̃i.

Proof: We first consider box splines on the three directional mesh. Let

P`,m,n(ω) =

(
1 + eiω1

2

)`(
1 + eiω2

2

)m(
1 + ei(ω1+ω2)

2

)n

, `,m, n ≥ 1,

be the mask associated with the box spline φ`,m,n. For convenience, we use 2ω instead

of ω, i.e., |P`,m,n(2ω)|2 = cos2`(ω1) cos2m(ω2) cos2n(ω1 + ω2) and

∑

j∈{0,1}2π

|P`,m,n(2ω + j)|2

= cos2n(ω1 + ω2)
(
cos2`(ω1) cos2m(ω2) + sin2`(ω1) sin2m(ω2)

)

+ sin2n(ω1 + ω2)
(
sin2`(ω1) cos2m(ω2) + cos2`(ω1) sin2m(ω2)

)
.

Note that

cos2`(ω1) cos2m(ω2) + sin2`(ω1) sin2m(ω2)

=

(
1 + cos(2ω1)

2

)`(
1 + cos(2ω2)

2

)m

+

(
1 − cos(2ω1)

2

)`(
1 − cos(2ω1)

2

)m

=
2

2`+m

∑

0≤j≤`/2

∑

0≤k≤m/2

(
`

2j

)(
m

2k

)
cos2j(2ω1) cos2k(2ω2)

+
2

2`+m

∑

0≤2j+1≤`

∑

0≤2k+1≤m

(
`

2j + 1

)(
m

2k + 1

)
cos2j(2ω1) cos2k(2ω2) cos(2ω1) cos(2ω2).
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Similarly we have

sin2`(ω1) cos2m(ω2) + cos2`(ω1) sin2m(ω2)

=
2

2`+m

∑

0≤j≤`/2

∑

0≤k≤m/2

(
`

2j

)(
m

2k

)
cos2j(2ω1) cos2k(2ω2)

− 2

2`+m

∑

0≤2j+1≤`

∑

0≤2k+1≤m

(
`

2j + 1

)(
m

2k + 1

)
cos2j(2ω1) cos2k(2ω2) cos(2ω1) cos(2ω2).

Next we can see

cos2n(ω1 +ω2)+sin2n(ω1 +ω2) =
2

2n

∑

0≤2i≤n

(
n

2i

)
cos2i(2ω1 +2ω2) =: f(4ω1 +4ω2) (5.3)

and

cos2n(ω1 + ω2) − sin2n(ω1 + ω2) =
2

2n

∑

0≤2i+1≤n

(
n

2i+ 1

)
cos2i(2ω1 + 2ω2) cos(2ω1 + 2ω2) =: g(4ω1 + 4ω2) cos(2ω1 + 2ω2)

where f and g are univariate trigonometric polynomials. Note that 0 ≤ f ≤ 1 and

0 ≤ g ≤ 1. Hence,

∑

j∈{0,1}2π

|P`,m,n(2ω + j)|2

=
2

2`+m

∑

0≤j≤`/2

∑

0≤k≤m/2

(
`

2j

)(
m

2k

)
cos2j(2ω1) cos2k(2ω2)×

(cos2n(ω1 + ω2) + sin2n(ω1 + ω2))

+
2

2`+m

∑

0≤2j+1≤`

∑

0≤2k+1≤m

(
`

2j + 1

)(
m

2k + 1

)
cos2j(2ω1) cos2k(2ω2)×

cos(2ω1) cos(2ω2)(cos2n(ω1 + ω2) − sin2n(ω1 + ω2))

=
2

2`+m

∑

0≤j≤`/2

∑

0≤k≤m/2

(
`

2j

)(
m

2k

)
cos2j(2ω1) cos2k(2ω2)f(4ω1 + 4ω2)

+
2

2`+m

∑

0≤2j+1≤`

∑

0≤2k+1≤m

(
`

2j + 1

)(
m

2k + 1

)
cos2j(2ω1) cos2k(2ω2)×

cos(2ω1) cos(2ω2) cos(2ω1 + 2ω2)g(4ω1 + 4ω2).

We are ready to show (5.1). Indeed,

1 −
∑

j∈{0,1}2π

|P`,m,n(2ω + j)|2
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= 1 − 2

2`+m

∑

0≤2j≤`

∑

0≤2k≤m

(
`

2j

)(
m

2k

)
cos2j(2ω1) cos2k(2ω2)f(4ω1 + 4ω2)

− 2

2`+m

∑

0≤2j+1≤`

∑

0≤2k+1≤m

(
`

2j + 1

)(
m

2k + 1

)
cos2j(2ω1) cos2k(2ω2)×

cos(2ω1) cos(2ω2) cos(2ω1 + 2ω2)g(4ω1 + 4ω2)

= 1 − 2

2`+m

∑

0≤j≤`/2

∑

0≤k≤m/2

(
`

2j

)(
m

2k

)
cos2j(2ω1) cos2k(2ω2)

− 2

2`+m

∑

0≤2j+1≤`

∑

0≤2k+1≤m

(
`

2j + 1

)(
m

2k + 1

)
cos2j(2ω1) cos2k(2ω2)

+
2

2`+m

∑

0≤2j≤`

∑

0≤2k≤m

(
`

2j

)(
m

2k

)
cos2j(2ω1) cos2k(2ω2)(1 − f(4ω1 + 4ω2))

+
2

2`+m

∑

0≤2j+1≤`

∑

0≤2k+1≤m

(
`

2j + 1

)(
m

2k + 1

)
cos2j(2ω1) cos2k(2ω2)×

(1 − cos(2ω1) cos(2ω2) cos(2ω1 + 2ω2)g(4ω1 + 4ω2)).

Note that

1 =
2

2`+m

∑

0≤2j≤`

∑

0≤2k≤m

(
`

2j

)(
m

2k

)
+

2

2`+m

∑

0≤2j+1≤`

∑

0≤2k+1≤m

(
`

2j + 1

)(
m

2k + 1

)
.

It follows that

1 − 2

2`+m

∑

0≤j≤`/2

∑

0≤k≤m/2

(
`

2j

)(
m

2k

)
cos2j(2ω1) cos2k(2ω2)

− 2

2`+m

∑

0≤2j+1≤`

∑

0≤2k+1≤m

(
`

2j + 1

)(
m

2k + 1

)
cos2j(2ω1) cos2k(2ω2)

=
2

2`+m

∑

0≤j≤`/2

∑

0≤k≤m/2

(
`

2j

)(
m

2k

)
(1 − cos2j(2ω1) cos2k(2ω2))

+
2

2`+m

∑

0≤2j+1≤`

∑

0≤2k+1≤m

(
`

2j + 1

)(
m

2k + 1

)
(1 − cos2j(2ω1) cos2k(2ω2))

=
2

2`+m

∑

0≤j≤`/2

∑

0≤k≤m/2

(
`

2j

)(
m

2k

)
(1 − cos2j(2ω1) + cos2j(2ω1)(1 − cos2k(2ω2)))

+
2

2`+m

∑

0≤2j+1≤`

∑

0≤2k+1≤m

(
`

2j + 1

)(
m

2k + 1

)
×

(1 − cos2j(2ω1) + cos2j(2ω1)(1 − cos2k(2ω2))).

It is easy to see that

2

2`+m

∑

0≤j≤`/2

∑

0≤k≤m/2

(
`

2j

)(
m

2k

)
(1 − cos2j(2ω1))
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is a trigonometric polynomial f1(4ω1) and is nonnegative. By using Fejér-Riesz factor-

ization, there exists a trigonometric polynomial p̃1 such that

2

2`+m

∑

0≤j≤`/2

∑

0≤k≤m/2

(
`

2j

)(
m

2k

)
(1 − cos2j(2ω1)) = |p̃1(4ω1)|2.

Similarly, we have

2

2`+m

∑

0≤j≤`/2

∑

0≤k≤m/2

(
`

2j

)(
m

2k

)
cos2j(2ω1)(1 − cos2k(2ω2)) = |p̃2,1(4ω1)|2|p̃2,2(4ω2)|2,

2

2`+m

∑

0≤2j+1≤`

∑

0≤2k+1≤m

(
`

2j + 1

)(
m

2k + 1

)
(1 − cos2j(2ω1)) = |p̃3(4ω1)|2,

and

2

2`+m

∑

0≤2j+1≤`

∑

0≤2k+1≤m

(
`

2j + 1

)(
m

2k + 1

)
cos2j(2ω1)(1−cos2k(2ω2)) = |p̃4,1(4ω1)|2|p̃4,2(4ω2)|2.

Next we consider the expression

2

2`+m

∑

0≤2j≤`

∑

0≤2k≤m

(
`

2j

)(
m

2k

)
cos2j(2ω1) cos2k(2ω2)(1 − f(4ω1 + 4ω2))

=
2

2`+m

∑

0≤2j≤`

(
`

2j

)
cos2j(2ω1)

∑

0≤2k≤m

(
m

2k

)
cos2k(2ω2)(1 − f(4ω1 + 4ω2))

= |p̃5,1(4ω1)|2|p̃5,2(4ω2)|2|p̃5,3(4ω1 + 4ω2)|2,

where the last step makes use of 1 − f(4ω1 + 4ω2) ≥ 0. Finally, we have

2

2`+m

∑

0≤2j+1≤`

∑

0≤2k+1≤m

(
`

2j + 1

)(
m

2k + 1

)
cos2j(2ω1) cos2k(2ω2)×

(1 − cos(2ω1) cos(2ω2) cos(2ω1 + 2ω2)g(4ω1 + 4ω2))

=
2

2`+m

∑

0≤2j+1≤`

(
`

2j + 1

)
cos2j(2ω1)

∑

0≤2k+1≤m

(
m

2k + 1

)
cos2k(2ω2)(1 − g(4ω1 + 4ω2))

+
2

2`+m

∑

0≤2j+1≤`

(
`

2j + 1

)
cos2j(2ω1)

∑

0≤2k+1≤m

(
m

2k + 1

)
cos2k(2ω2)g(4ω1 + 4ω2)×

(1 − cos(2ω1) cos(2ω2) cos(2ω1 + 2ω2)).

Note that

1 − cos(2ω1) cos(2ω2) cos(2ω1 + 2ω2) =
3

4
− cos(4ω1 + 4ω2)

4
− cos(4ω1)

4
− cos(4ω2)

4
.
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By Fejér-Riesz factorization again, we have

2

2`+m

∑

0≤2j+1≤`

(
`

2j + 1

)
cos2j(2ω1)

∑

0≤2k+1≤m

(
m

2k + 1

)
cos2k(2ω2)(1 − g(4ω1 + 4ω2))

= |p̃6,1(4ω1)|2|p̃6,2(4ω2)|2|p̃6,3(4ω1 + 4ω2)|2

and

2

2`+m

∑

0≤2j+1≤`

(
`

2j + 1

)
cos2j(2ω1)

∑

0≤2k+1≤m

(
m

2k + 1

)
cos2k(2ω2)g(4ω1 + 4ω2)×

(1 − cos(2ω1) cos(2ω2) cos(2ω1 + 2ω2))

=
2

2`+m

∑

0≤2j+1≤`

cos2j

(
`

2j + 1

)
(2ω1)

∑

0≤2k+1≤m

(
m

2k + 1

)
cos2k(2ω2)×

g(4ω1 + 4ω2)
1 − cos(4ω1 + 4ω2)

4

+
2

2`+m

∑

0≤2j+1≤`

(
`

2j + 1

)
cos2j(2ω1)

∑

0≤2k+1≤m

(
m

2k + 1

)
cos2k(2ω2)×

g(4ω1 + 4ω2)
1 − cos(4ω1)

4

+
2

2`+m

∑

0≤2j+1≤`

(
`

2j + 1

)
cos2j(2ω1)

∑

0≤2k+1≤m

(
m

2k + 1

)
cos2k(2ω2)×

g(4ω1 + 4ω2)
1 − cos(4ω2)

4
= |p̃7,1(4ω1)|2|p̃7,2(4ω2)|2|p̃7,3(4ω1 + 4ω2)|2 + |p̃8,1(4ω1)|2|p̃8,2(4ω2)|2|p̃8,3(4ω1 + 4ω2)|2

+|p̃9,1(4ω1)|2|p̃9,2(4ω2)|2|p̃9,3(4ω1 + 4ω2)|2.

Therefore, we have established the result for box splines on a three direction mesh.

Next we consider the mask associated with box splines on a four direction mesh. We

shall use the same ideas as above to obtain the desired result. Let

P`,m,n,r(ω) =

(
1 + eiω1

2

)`(
1 + eiω2

2

)m(
1 + ei(ω1+ω2)

2

)n(
1 + ei(ω1−ω2)

2

)r

be the mask associated with the box spline function φ`,m,n,r. For convenience, we use

2ω instead of ω, i.e., |P`,m,n,r(2ω)|2 = cos2`(ω1) cos2m(ω2) cos2n(ω1 + ω2) cos2r(ω1 − ω2).

Thus,

∑

j∈{0,1}2π

|P`,m,n,r(2ω + j)|2

= cos2n(ω1 + ω2) cos2r(ω1 − ω2)
(
cos2`(ω1) cos2m(ω2) + sin2`(ω1) sin2m(ω2)

)

+ sin2n(ω1 + ω2) sin2r(ω1 − ω2)
(
sin2`(ω1) cos2m(ω2) + cos2`(ω1) sin2m(ω2)

)
.
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As in the discussion of the three-directional box spline, we have

cos2n(ω1 + ω2) cos2r(ω1 − ω2) + sin2n(ω1 + ω2) sin2r(ω1 − ω2)

=
2

2n+r

∑

0≤2i+1≤n

∑

0≤2q+1≤r

(
n

2i+ 1

)(
r

2q + 1

)
×

cos2i(2ω1 + 2ω2) cos2q(2ω1 − 2ω2) cos(2ω1 + 2ω2) cos(2ω1 − 2ω2)

+
2

2n+r

∑

0≤2i≤n

∑

0≤2q≤r

(
n

2i

)(
r

2q

)
cos2i(2ω1 + 2ω2) cos2q(2ω1 − 2ω2)

= : f1(4ω1, 4ω2) cos(2ω1 + 2ω2) cos(2ω1 − 2ω2) + f2(4ω1, 4ω2);

the last expression plays the same role as the function f(4ω1 + 4ω2) in (5.3). Similarly,

we have

cos2n(ω1 + ω2) cos2r(ω1 − ω2) − sin2n(ω1 + ω2) sin2r(ω1 − ω2)

=
2

2n+r

∑

0≤2i≤n

∑

0≤2q+1≤r

(
n

2i

)(
r

2q + 1

)
cos2i(2ω1 + 2ω2) cos2q(2ω1 − 2ω2) cos(2ω1 − 2ω2)

+
2

2n+r

∑

0≤2i+1≤n

∑

0≤2q≤r

(
n

2i+ 1

)(
r

2q

)
cos2i(2ω1 + 2ω2) cos2q(2ω1 − 2ω2) cos(2ω1 + 2ω2)

= : g1(4ω1, 4ω2) cos(2ω1 − 2ω2) + g2(4ω1, 4ω2) cos(2ω1 + 2ω2).

By the observation that

f1(4ω1, 4ω2)

=
2

2n+r

∑

0≤2i+1≤n

(
n

2i+ 1

)
cos2i(2ω1 + 2ω2)

∑

0≤2q+1≤r

(
r

2q + 1

)
cos2q(2ω1 − 2ω2) ≥ 0,

and by Fejér-Riesz factorization, we can find a trigonometric polynomial p̂1 such that

f1(4ω1, 4ω2) = |p̂1(4ω1, 4ω2)|2. Thus, using the same arguments as for the Laurent poly-

nomials associated with box splines on the three direction mesh, we have

1 − f1(4ω1, 4ω2) cos(2ω1 + 2ω2) cos(2ω1 − 2ω2) − f2(4ω1, 4ω2)

= 1 − f1(4ω1, 4ω2) − f2(4ω1, 4ω2)

+f1(4ω1, 4ω2)(1 − cos(2ω1 + 2ω2) cos(2ω1 − 2ω2))

=
2

2n+r

∑

0≤2i≤n

∑

0≤2q≤r

(
n

2i

)(
r

2q

)
(1 − cos2i(2ω1 + 2ω2) cos2q(2ω1 − 2ω2))

+
2

2n+r

∑

0≤2i+1≤n

∑

0≤2q+1≤r

(
n

2i+ 1

)(
r

2q + 1

)
(1 − cos2i(2ω1 + 2ω2) cos2q(2ω1 − 2ω2))
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+f1(4ω1, 4ω2)(1 − 1

2
cos(4ω1) −

1

2
cos(4ω2))

= |p̂2,1(4ω1, 4ω2)|2 + |p̂2,2(4ω1, 4ω2)|2 + |p̂2,3(4ω1, 4ω2)|2 + |p̂2,4(4ω1, 4ω2)|2

+|p̂2,5(4ω1, 4ω2)|2 + |p̂2,6(4ω1, 4ω2)|2 + |p̂1(4ω1, 4ω2)|2
(∣∣∣∣

1 − ei4ω1

√
2

∣∣∣∣
2

+

∣∣∣∣
1 − ei4ω2

√
2

∣∣∣∣
2
)

for some trigonometric polynomials p̂2,i, i = 1, · · · , 6. Similarly,

1 − cos(2ω1) cos(2ω2)(g1(4ω1, 4ω2) cos(2ω1 − 2ω2) + g2(4ω1, 4ω2) cos(2ω1 + 2ω2))

= 1 − g1(4ω1, 4ω2) − g2(4ω1, 4ω2)

+g1(4ω1, 4ω2)(1 − cos(2ω1) cos(2ω2) cos(2ω1 − 2ω2))

+g2(4ω1, 4ω2)(1 − cos(2ω1) cos(2ω2) cos(2ω1 + 2ω2))

=
2

2n+r

∑

0≤2i≤n

∑

0≤2q+1≤r

(
n

2i

)(
r

2q + 1

)
×

(1 − cos2i(2ω1 + 2ω2) + cos2i(2ω1 + 2ω2)(1 − cos2q(2ω1 − 2ω2)))

+
2

2n+r

∑

0≤2i+1≤n

∑

0≤2q≤r

(
n

2i+ 1

)(
r

2q

)
×

(1 − cos2i(2ω1 + 2ω2) + cos2i(2ω1 + 2ω2)(1 − cos2q(2ω1 − 2ω2)))

+g1(4ω1, 4ω2)(
3

4
− cos(4ω1 + 4ω2)

4
− cos(4ω1)

4
− cos(4ω2)

4
)

+g2(4ω1, 4ω2)(
3

4
− cos(4ω1 + 4ω2)

4
− cos(4ω1)

4
− cos(4ω2)

4
).

Note that

2

2n+r

∑

0≤2i≤n

∑

0≤2q+1≤r

(
n

2i

)(
r

2q + 1

)
×

(1 − cos2i(2ω1 + 2ω2) + cos2i(2ω1 + 2ω2)(1 − cos2q(2ω1 − 2ω2)))

= |p̂3,1(4ω1, 4ω2)|2 + |p̂3,2(4ω1, 4ω2)|2

and

g1(4ω1, 4ω2)(
3

4
− cos(4ω1 + 4ω2)

4
− cos(4ω1)

4
− cos(4ω2)

4
)

= |p̂3,3(4ω1, 4ω2)|2 + |p̂3,4(4ω1, 4ω2)|2 + |p̂3,5(4ω1, 4ω2)|2.

The other two terms are similar. Thus, we have

1 − cos(2ω1) cos(2ω2)(g1(4ω1, 4ω2) cos(2ω1 − 2ω2) + g2(4ω1, 4ω2) cos(2ω1 + 2ω2))
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=

10∑

j=1

|p̂3,j(4ω1, 4ω2)|2

for some 10 trigonometric polynomials p̃3,j.

Now we apply the same procedure as that for box splines on a three direction mesh

with the replacement of f(4ω1, 4ω2) by the term involving f1 and f2 in (5.3) and the

replacement of g(4ω1, 4ω2) by the term having g1 and g2. Indeed,

1 −
∑

j∈{0,1}2π

|P`,m,n,r(2ω + j)|2

= |p̃1(4ω1)|2 + |p̃2,1(4ω1)|2|p̃2,2(4ω2)|2 + |p̃3(4ω1)|2 + |p̃4,1(4ω1)|2|p̃4,2(4ω2)|2

+|p̃5,1(4ω1)|2|p̃5,2(4ω2)|2
(

8∑

j=1

|p̂2,j(4ω1, 4ω2)|2
)

+|p̃6,1(4ω1)|2|p̃6,2(4ω2)|2
10∑

j=1

|p̂3,j(4ω1, 4ω2)|2,

where

p̂2,7 = p̂1(4ω1, 4ω2)|
1 − ei4ω1

√
2

and p̂2,8 = p̂1(4ω1, 4ω2)
1 − ei4ω2

√
2

.

Therefore, we have established (3.8) with N = 22 for the case of box splines on the four

direction mesh. This completes the proof.

By combining Lemma 5.7 and Theorem 3.4, we obtain the following result.

Theorem 5.8 For each 3-direction (or 4-direction ) box spline, there exists a set of

compactly supported frame generators Ψ = {ψ(i), i = 1, . . . , N} with N ≤ 13 (or 26)

generating a tight wavelet frame.

We first note that the number of tight wavelet framelets is fixed for box splines of

any smoothness. The numbers of tight wavelet framelets for box splines on three and

four directional meshes in Lemma 5.7 are not as good as those found in [9], although

many examples from above show that the actual number may be smaller. We also note

that the order of vanishing moments of the tight wavelet frames constructed above is 1.

The next section provides a method in order to increase this order.

6 Frame Construction: Maximum Vanishing Mo-

ments

We now consider how to increase the order of vanishing moments. Based on the develop-

ments in [13, 10], we will use rational trigonometric functions S to do so. But we must
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first explain the maximum vanishing moments in the multivariate setting. Recall that

φ̂(0) = 1. Thus, P (0) = 1 and, in general, P (`) = 0 for all ` ∈ {0, 1}dπ\{0}. Let us

assume that P has the following zero property:

P (ω + `) = O(|ω|m), ` ∈ {0, 1}dπ\{0}, (6.1)

where m is a positive integer. For example, for bivariate box splines φj,k,`, the definition

of P

Pj,k,l(ω) =

(
1 + eiξ

2

)j (
1 + eiη

2

)k (
1 + ei(ξ+η)

2

)l

,

with ω = (ξ, η), reveals that Pj,k,l(`+ ω) = O(|ω|m), where m = min{j + k, j + l, k + l}
and ` ∈ {0, 1}2π\{0}. Let ψ(i), i = 1, . . . , r be tight wavelet frame generators defined in

terms of their Fourier transform

ψ̂(i)(ω) = Qi(ω/2)φ̂(ω/2).

Then we say that ψ(i), i = 1, . . . , r, have maximum vanishing moments, if

Qi(ω) = O(|ω|m), i = 1, . . . , r.

In this section, we consider a special case, where S(ω) is a rational trigonometric

function satisfying the following properties

S(0) = 1; (6.2)

∑

`∈{0,1}dπ

|P (ω + `)|2S(2ω)

S(ω + `)
= 1; (6.3)

1/S(ω) =

n∑

k=1

sk(ω)sk(ω) (6.4)

for some rational Laurent polynomials sk.

We remark that the existence of S satisfying (6.2) and (6.3) is trivial. For example,

let

Fφ(x) :=

∫

Rd

φ(x+ y)φ(y)dy

be the autocorrelation function associated with φ and

Bφ(ω) :=
∑

k∈Zd

Fφ(k)eikω.
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Then it is easy to show that

∑

`∈{0,1}dπ

|P (ω + `)|2Bφ(ω + `) = Bφ(2ω) (6.5)

(cf. [7] when d = 1). Moreover, the identities

∫

Rd

φ(x)dx = 1 and
∑

k∈Zd

φ(x− k) = 1

give Bφ(0) = 1. If we let S be the rational trigonometric function S = 1/Bφ, then S

satisfies (6.2) and (6.3).

We next remark that for many bivariate box spline function φj,k,l, Bφj,k,l
can be

written as a sum of squares of trigonometric polynomials. That is, S = 1/Bφ also

satisfies (6.4) for these φ. See some examples below after we present our main result of

this section.

Theorem 6.1 Suppose that S satisfies (6.2)-(6.4). Then there exist 2dn tight wavelet

frame generators which have maximum vanishing moments.

Proof: For matrices and vectors, whose row (or column) size is 2dn, we make use of the

notation (k, `) ∈ {1, . . . , n} × {0, 1}d =: J in order to denote a row (or column) index.

Let P̃ =
(√

S(2ω)P (ω + `π)sk(ω + `π); (k, `) ∈ J
)T

be a vector of size 2dn × 1. By

(6.3) and (6.4), we obtain that P̃∗P̃ = 1 and, therefore,

(I2dn×2dn − P̃P̃∗)2 = I2dn×2dn − P̃P̃∗.

Moreover, let R = (δλ,`S(ω+`π)sk(ω+`π)); λ ∈ {0, 1}d, (k, `) ∈ J) be a block diagonal

matrix of size 2d × 2dn with diagonal blocks of size 1 × n. Again, (6.3) and (6.4) give

RR∗ = diag(S(ω + `π); ` ∈ {0, 1}d), RP̃ =
√
S(2ω)P,

where P = (P (ω + λ); λ ∈ {0, 1}dπ).

Then we define

Q = R(I2dn×2dn − P̃P̃∗)(M⊗ In×n), (6.6)

where M is the polyphase matrix in (3.2) and M⊗ In×n = 2−d/2(eiλ(ω+`π)δk,j; (k, `) ∈
J, (j, λ) ∈ J) is the Kronecker product. The matrix Q satisfies (2.3); that is, we have

QQ∗ = RR∗ −RP̃P̃∗R∗

= diag(S(ω + `); ` ∈ {0, 1}dπ) − S(2ω)PP∗.
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Let Q(k,`), (k, `) ∈ J , denote the entries of the first row of Q. Simple computations

give

R(M⊗ In×n) = 2−d/2
(
ei`(ω+λ)S(ω + λ)sk(ω + λ)

)
λ∈{0,1}dπ
(k,`)∈J

and

P̃∗(M⊗ In×n) = 2−d/2
√
S(2ω)




∑

λ∈{0,1}dπ

P (ω + λ)sk(ω + λ)ei`(ω+λ)




(k,`)∈J

.

Note that the last expression is a row vector whose entries are π periodic. Hence, the

matrix Q has the required form Q = (Q(k,`)(·+λ); λ ∈ {0, 1}dπ, (k, `) ∈ J) as in Lemma

2.2. Moreover, we obtain that

Q(k,`)(ω) = 2−d/2ei`ωS(ω)sk(ω) − 2−d/2S(2ω)P (ω)
∑

λ∈{0,1}dπ

P (ω + λ)sk(ω + λ)ei`(ω+λ).

This sum has the order O(|ω|m) near ω = 0, since S(ω) − S(2ω)|P (ω)|2 = O(|ω|2m) by

(6.3) and the remaining summands with λ 6= 0 contain a factor P (ω + λ) = O(|ω|m).

Therefore, the wavelet frame generators ψ(i) associated with Qi, i = 1, · · · , 2dn, have

the maximum number of vanishing moments. This completes the proof.

We should note that although the tight wavelet frame generators are not compactly

supported, the filters Qm are rational functions. Hence the computational methods for

ARMA filters apply.

Next we present some examples of refinable functions for which (6.4) is satisfied.

Example 6.2 For the bivariate box spline function φ1,1,1, it can be easily shown that

B1,1,1(ω) =
1

4
+

1

12

∣∣1 + eiξ + ei(ξ+η)
∣∣2 .

Note that B1,1,1(ω) is the sum of squares (sos) of two Laurent polynomials of low degree.

On the other hand, it is impossible to write B1,1,1 as a modulus square of a single Laurent

polynomial of coordinate degree 1. Indeed, this would imply that there exists a real 4×4

matrix B = (bjk)1≤j,k≤4, of rank 1, such that

B1,1,1(ω) =
1

2
+

1

12
(eiξ + e−iξ + eiη + e−iη + ei(ξ+η) + e−i(ξ+η))

=
[
1, e−ξ, e−iη, e−i(ξ+η)

]
B




1
eξ

eη

ei(ξ+η)


 .
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This would result in 5 linear constraints for the entries of B, namely

b11 + b22 + b33 + b44 = 1/2,

b12 + b34 = 1/12

b13 + b24 = 1/12

b14 = 1/12, b23 = 0.

Because b23 = 0, b14 = 1/12 and B has rank 1, then either b13 = 0 or the second row is

a zero vector. Similarly, since b32 = 0 and b41 = 1/12, either b42 = 0 or the last row is a

zero vector. All these four cases lead to b11 +b22 +b33 +b44 = 1/4 which is a contradiction

to the first linear constraint.

Example 6.3 Let us consider the box spline φ1,1,1,1 which is a C1 quadratic spline

function on the four directional mesh. Based on the algorithm in [22], we have

B1,1,1,1(ω) =
1

480

(
280 + 118eiξ + 118e−iξ + 118eiη + 118e−iη

+44ei(ξ+η) + 44e−i(ξ+η) + 44ei(ξ−η) + 44e−i(ξ−η)

+6e2iξ + 6e2iη + 6e−2iξ + 6e−2iη + ei(ξ+2η) + ei(ξ−2η)

+ei(2ξ+η) + ei(2ξ−η) + e−i(ξ+2η) + e−i(ξ−2η)e−i(2ξ+η) + e−i(2ξ−η)).

In terms of cos ξ and cos η, neglecting the common factor, the right-hand side can be

written as

140 + 118(cos ξ + cos η) + 44(cos(ξ + η) + cos(ξ − η))

+6(cos 2ξ + cos 2η) + cos(2ξ + η) + cos(ξ + 2η) + cos(2ξ − η) + cos(ξ − 2η))

= 88(1 + cos ξ)(1 + cos η) + 2(1 + cos 2ξ)(1 + cos η) + 2(1 + cos ξ)(1 + cos 2η)

+4(1 + cos ξ)(3 + 2(1 + cos ξ)) + 4(1 + cos η)(3 + 2(1 + cos η)).

Note that 1 + cos ξ = 1
2
|1 + eiξ|2, and similar relations hold for the remaining terms.

Thus, B1,1,1,1 is a sos of several Laurent polynomials.

Example 6.4 We also find that B2,2,1 is an sos of several Laurent polynomials. Using

the algorithm in [22], the expression for B2,2,1 is

B2,2,1(ω) =
1

10080
[e−2iξ, e−iξ, 1, eiξ, e2iξ]




0 1 31 47 5
1 178 1144 814 47
31 1144 3194 1144 31
47 814 1144 178 1
5 47 31 1 0







e−2iη

e−iη

1
eiη

e2iη



.
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In fact, it can be directly verified that

10080B2,2,1(ω)

= 990 − 103564

113
+

∣∣∣∣
√

226 +
324√
226

eiω1 +
√

226ei(ω1+ω2)

∣∣∣∣
2

+5(1 + cos(2ω1 + 2ω2)) + 29(1 + cos(2ω1) + 29(1 + cos(2ω2)

+356(1 + cos(ω1))(1 + cos(ω2))

+2(1 + cos(2ω1))(1 + cos(ω2)) + 2(1 + cos(ω1)(1 + cos(2ω2))

+92(1 + cos(ω1))(1 + cos(ω1 + ω2)) + 92(1 + cos(ω2))(1 + cos(ω1 + ω2))

which can be easily seen to be an sos of 10 Laurent polynomials. We leave the verification

to the interested reader. Clearly, the symbol Bj,k,0 which is associated with the tensor

product of B-splines φj,k,0 is a sos of Laurent polynomials by the Riesz theorem. Based

on these facts, we conjecture that Bjkl(ω) is sos of finitely many Laurent polynomials

for any bivariate box spline φjkl.

7 Frame Construction: Compactly Supported Bi-

Frames

In this section, we construct compactly supported bi-frames. For refinable functions φ

and φdual, let P and P dual denote the symbols of the respective refinement masks. (We

use the superscript dual in order to point to duality of the respective frames; we do not

impose duality between the translates of φ and φdual.) Moreover, let ψj and ψdual
j be

functions associated with φ and φdual defined by

ψ̂j(ω) = Qj(ω/2)φ̂(ω/2) and ψ̂dual
j (ω) = Qdual

j (ω/2)φ̂dual(ω/2), (7.1)

where Qj , Q
dual
j , j = 1, · · · , r, are two families of masks. Let Λ(Ψ) and Λ(Ψdual) be the

corresponding families of shifts and dilates:

Λ(Ψ) := {2jd/2ψi(2
jx− k); j ∈ Z, k ∈ Zd, i = 1, . . . , r},

Λ(Ψdual) := {2jd/2ψdual
i (2jx− k); j ∈ Z, k ∈ Zd, i = 1, . . . , r}. (7.2)

Definition 7.1 The two families Λ(Ψ) and Λ(Ψdual) are called bi-frames if they are

Bessel families and the duality relation

〈f, g〉 =
n∑

i=1

∑

j∈Z

k∈Zd

〈f, ψi;j,k〉〈ψdual
i;j,k , g〉 (7.3)

holds for all f, g ∈ L2(R
d). The functions ψi and ψdual

i are called bi-framelets or bi-frame

generators.
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The concept of bi-frames was first introduced in [30]. See several examples of bi-

frames in [10, 13, 32]. We shall present another method to construct bi-frames. Let us

begin with the following well-known result called the mixed oblique extension principle

(cf. Proposition 5.2 in [13] and Theorem 2.2 in [12]).

Theorem 7.2 Let S(ω) be a 2π periodic function which is essentially bounded and con-

tinuous at the origin with S(0) = 1. Suppose that φ and φdual are compactly supported

refinable functions. Suppose that there are Qi, Q
dual
i , i = 1, · · · , r, satisfying

S(2ω)P (ω)P dual(ω + `) +
r∑

i=0

Qi(ω)Qdual
i (ω + `) =

{
S(ω), if ` = 0
0 otherwise

(7.4)

for ` ∈ {0, 1}dπ. Suppose that Qi(ω) and Qdual
i (ω) have a zero at ω = 0. Let ψi and ψdual

i

be the functions defined by their Fourier transform in (7.1). Then the two families Λ(Φ)

and Λ(Φdual) are bi-frames.

Also, similar to Lemma 2.2, we have

Lemma 7.3 Let P = (P (ω + `); ` ∈ {0, 1}dπ) be a vector of size 2d × 1, Q = (Qi(ω +

`); ` ∈ {0, 1}dπ, i = 1, . . . , r) be a matrix of size 2d × r, and Pdual, Qdual be given

analogously. Then (7.4) is equivalent to

Q(Qdual)∗ = diag(S(ω + `); ` ∈ {0, 1}dπ) − S(2ω)P(Pdual)∗. (7.5)

Proof: This can be verified directly.

We first consider the case where S(ω) ≡ 1. We will construct compactly supported

bi-frames for those masks P and P dual which satisfy
∑

`∈{0,1}dπ

P (ω + `)P dual(ω + `) = 1 (7.6)

and P (0) = 1 = P dual(0). Let P and Pdual be given as in Lemma 7.3. Recall the unitary

matrix M defined in (3.2). Then we have

Theorem 7.4 Define

Q := (Qi(ω + `)) `∈{0,1}dπ

i=1,...,2d

= (I2d×2d − P(Pdual)∗)M

and

Qdual := (Qdual
i (ω + `)) `∈{0,1}dπ

i=1,...,2d

= (I2d×2d − PdualP∗)M.

Then P,Pdual,Q, and Qdual satisfy (7.5), with S(ω) ≡ 1. Let ψi and ψdual
i be defined by

(7.1), with these Qi’s and Qdual
i ’s. Then {ψi, i = 1, · · · , 2d} and {ψdual

i , i = 1, · · · , 2d}
are bi-framelets.
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Proof: It is trivial to verify that

Q(Qdual)∗ = I2d×2d − P(Pdual)∗

which is (7.5) with S(ω) = 1. Since both M and P have the desired form, and since

(Pdual)∗M is a row vector whose entries are π periodic, the matrix Q has the desired

form as well. Analogous statements hold for Qdual.

Next we need to verify the vanishing moment conditions for Qi and Qdual
i . Let

(P̂m(2ω);m ∈ {0, 1}d) = M∗P be the polyphase components of P . Then

Qdual
m (ω) = 2−d/2eim·ω − P dual(ω)P̂m(2ω)

and P̂m(0) = 2−d/2. Note that P dual(0) = 1. Therefore, Qdual
m (0) = 0 for m ∈ {0, 1}d.

Analogous statements show that Qm(0) = 0 for m ∈ {0, 1}d. Using Theorem 7.2, we

conclude that ψi and ψdual
i defined above, using these Qm’s and Qdual

m ’s, are bi-framelets.

This completes the proof.

We have the following examples of bi-frame generators based on bivariate and trivari-

ate box splines.

Example 7.5 For the mask P`,m,n, associated with the bivariate box spline φ`,m,n on

the three direction mesh, many dual masks P dual
`,m,n were given in [18] satisfying (7.6) with

d = 2. Then the formulae for Q and Qdual given in Theorem 7.4 provide an explicit

representation of bi-framelets or bi-frame generators.

Example 7.6 For the mask P`,m,n,p,q of the trivariate box spline φ`,m,n,p,q, many dual

masks P dual
`,m,n,p,q were given in [19] satisfying (7.6) with d = 3. Once again, the formulae

for Q and Qdual given in Theorem 7.4 provide an explicit representation of bi-framelets

or bi-frame generators for trivariate box spline functions.

Next we consider a general refinable function φ. Let P be the mask associated with

φ. Note that P (0) = 1. Assume that P (`) = 0 for ` ∈ {0, 1}πd\{0}. To ensure (7.6)

for any given mask P , we may use the celebrated Hilbert Nullstellensatz. Indeed, we let

Pm(2ω) be the polyphase components of P , i.e.,

(Pm(2ω); m ∈ {0, 1}d) = M∗(P (ω + `); ` ∈ {0, 1}d).

Similarly, for the dual mask Pdual, let P dual
m (2ω) be the polyphase components of Pdual.

Then (7.6) is equivalent to
∑

m∈{0,1}d

Pm(ω)P dual
m (ω) = 1.

By the Hilbert Nullstellensatz, we have
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Lemma 7.7 Let P be the mask of a refinable function φ. Write P̂m(z) := Pm(ω) in

terms of z = eiω := (eiω1 , . . . , eiωd) ∈ Cd for m ∈ {0, 1}d. If the Laurent polynomials

P̂m have no common zero in (C\{0})d, then there exist Laurent polynomials Q̂m(z) such

that ∑

m∈{0,1}d

P̂m(z)Q̂m(z) = 1. (7.7)

Thus, we let P dual(ω) = 2−d/2
∑

m∈{0,1}d eim·ωQ̂m(ei2ω). Then P and P dual satisfy

(7.6). In order to apply our Theorem 7.4, we only need to make sure that P dual(0) = 1.

Using the fact P (0) = 1 and the assumption P (`) = 0 for ` ∈ {0, 1}dπ\{0}, we conclude

from (7.6) that P dual(0) = 1. Hence, we obtain the following

Theorem 7.8 Given a mask P , suppose that P (0) = 1 and P (`) = 0 for ` ∈
{0, 1}dπ\{0}. Let Pm(ω), m ∈ {0, 1}d, be the polyphase components of P . Writing

P̂m(z) := Pm(ω) in terms of z = eiω, suppose that the Laurent polynomials P̂m have no

common zero in z ∈ Cd\{0}. Then there exists a pair of bi-frames {ψi; i = 1, · · · , 2d}
and {ψdual

i ; i = 1, · · · , 2d} associated with P .

We remark that the computation of P dual satisfying (7.7) is not easy in general.
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