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Abstract. We show how one can phrase the cut improvement problem for graphs as a sparse recovery prob-4
lem, whence one can use algorithms originally developed for use in compressive sensing (such as5
SubspacePursuit or CoSaMP) to solve it. We show that this approach to cut improvement is fast,6
both in theory and practice and moreover enjoys statistical guarantees of success when applied to7
graphs drawn from probabilistic models such as the Stochastic Block Model. Using this new cut8
improvement approach, which we call ClusterPursuit, as an algorithmic primitive we then propose9
new methods for local clustering and semi-supervised clustering, which enjoy similar guarantees of10
success and speed. Finally, we verify the promise of our approach with extensive numerical bench-11
marking.12
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1. Introduction. Finding clusters is a problem of primary interest when analyzing graphs.16

This is because vertices which are in the same cluster can reasonably be assumed to have17

some latent similarity. Thus, clustering can be used to find communities in social networks18

[24, 48, 53] or deduce political affiliation from a network of blogs [5]. Moreover, even data19

sets which are not presented as graphs can profitably be studied by first creating an auxiliary20

graph (eg. a K- or ε-nearest-neighbors graph) and then applying graph clustering techniques.21

This has been successfully applied to image segmentation [43, 37], image classification [30]22

and natural language processing [19].23

24

We shall informally think of a cluster as a subset of vertices, C ⊂ V with many edges25

between vertices in C, and few edges to the rest of the graph, Cc. See Figure 1 for a few26

examples. While some graphs may allow a neat partitioning into disjoint clusters (for example27

the OptDigits graph in Figure 1), for many graphs this is not the case. Some graphs may28

contain background vertices, that is, vertices which do not belong to any cluster (see the29

College Football graph in Figure 1). Alternatively, graphs may exhibit clusters at multiple30

scales (See the Senate Co-voting graph in Figure 1). In many cases, one has certain a priori31

information that could be used to improve clustering. For example in the OptDigits graph,32

we may know that some small subset, Γ ⊂ V , all represent images of ones. It is reasonable to33

assume that algorithms which incorporate this additional information (usually referred to as34
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2 M.-J. LAI AND D. MCKENZIE

Figure 1: Left: the College Football graph of [24]. Vertices represents colleges fielding (Amer-
ican) football teams in the 2000 season. Vertices are connected if the respective teams played
each other during the regular season. Clusters correspond to the various conferences in which
teams play. Note that there are five schools, denoted in black, which are “independents” ie
they are not affiliated with any conference. These can be thought of as background vertices.
Middle: Senate co-voting for the 97th Congress, created using data from [32]. Vertices repre-
sent Senators and are connected if the respective Senators cast the same vote on a majority of
bills. The two large clusters correspond to the two major American political parties. Notice
how the blue cluster can be visually subdivided into two sub-clusters. Right: The OptDigits
dataset consists of 5620 grayscale images of handwritten digits 0–9 of size 8× 8. We discuss
how to turn this into a graph in §10. Note that as there are ten digits, we expect this graph
to have ten disjoint clusters.

semi-supervised algorithms) will perform better than ones which do not. With this in mind,35

it is convenient to appeal to the following taxonomy of clustering algorithms:36

1. Global clustering algorithms assign every vertex to one of k clusters, where the clusters37

may or may not be disjoint. Algorithms for this problem may be unsupervised (for38

example SpectralClustering [43, 40] or GenLouvain [18]) or semisupervised (for39

example the auction dynamics approach of [30], or the regional force based methods40

of [54]). This is appropriate for graphs such as the OptDigits graph of Figure 1, where41

one expects a clear partition of the vertices into clusters.42

2. Local clustering algorithms1 take as input a small set of “seed vertices”, Γ ⊂ V and43

return a good cluster containing Γ. Algorithms for local clustering are not confounded44

by background vertices, as they are not required to assign them to a cluster. One45

can further sub-divide local clustering algorithms into strongly and weakly local clus-46

tering algorithms. Strongly local algorithms, for Nibble [45, 46], PPR-Grow [1] or47

CapacityReleasingDiffusion [52], are characterized by having run time proportional48

to the size of the cluster found. This is advantageous when the cluster in question has49

much fewer vertices than the graph as a whole. Weakly local algorithms are character-50

ized as having run time proportional to the size of G. In practice they are frequently51

faster than strongly local algorithms when finding large or moderately large clusters.52

1Also known as cluster extraction algorithms in the statistics literature
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CLUSTER PURSUIT 3

We note that both kinds of local clustering algorithms may take as input a scale pa-53

rameter, which dictates the size of the output cluster returned. This is useful when54

the graph at hand contains clusters at multiple scales, such as the Senate co-voting55

graph of Figure 1.56

3. Cut improvement algorithms(cf. [1], [41], [50]) take as input a cut, or subset Ω ⊂ V ,57

which one can think of as an approximation to a cluster C, and refine it to produce a58

better approximation. Often cut improvement algorithms are run on the output of a59

local clustering algorithm to improve the quality of the output.60

61

The central contribution of this paper is a new cut improvement algorithm which we call62

ClusterPursuit, that phrases the cut improvement problem as a sparse recovery problem.63

We pair this with a simple local clustering algorithm which we call Random Walk Thresholding64

or RWThresh to obtain a two-stage weakly local clustering algorithm that we shall refer to as65

CP+RWT. One can iterate this algorithm to find all clusters in a graph; we call this procedure66

iterated CP+RWT or ICP+RWT. After presenting some mathematical preliminaries and outlining67

the assumptions we place on generative models of graphs in §2, we derive the ClusterPursuit68

algorithm in §3 and prove that, given a cut Ω satisfying |C14Ω|/|C1| = O(1) ClusterPursuit69

returns C#
1 satisfying |C1 4 C#

1 |/|C1| = o(1). Here, C1 denotes the smallest cluster in the70

graph. In §4 we discuss the RWThresh algorithm, and show that given a small set of seed71

vertices, Γ ⊂ C1, it is capable of finding an Ω satisfying |C1 4 Ω|/|C1| = O(1). This leads72

naturally to guarantees of success for the two-stage local clustering algorithm CP+RWT, which73

we present in §5. In §6 we briefly discuss ICP+RWT while in §7 we show that CP+RWT and74

ICP+RWT enjoy a computational complexity of O(ndmax log(n)) where dmax is the largest vertex75

degree in the graph. In §8 we survey the literature and compare our work with relevant76

recent work in the area, while in §9 we show that a popular generative model of graphs with77

communities, namely the stochastic block model, satisfies the assumptions outlined in §2.78

Finally, we complement theoretical insight with experimental results in §10. In the interest of79

reproducibility, we make our code available at: danielmckenzie.github.io.80

2. Preliminaries.81

2.1. Graph Notation and Definitions. We restrict our attention to finite, simple, undi-82

rected graphs G = (V,E), possibly with non-negative edge weights. We identify the vertex83

set V with the integers [n] := {1, . . . , n} and denote an edge between vertices i and j as84

{i, j} ∈ E. The (possibly weighted) adjacency matrix of G will be denoted as A. By di85

we mean the degree of the i-th vertex, computed as di =
∑

j Aij . For any S ⊂ V define86

vol(S) =
∑

i∈S di. For quantities such as di (and later λi) that are indexed by i ∈ [n], let87

dmax := maxi di and similarly dmin := mini di. Denote by D the diagonal matrix whose (i, i)88

entry is di. By “cluster” we shall mean a subset of vertices, C ⊂ V , that is well-connected89

but sparsely connected to the rest of the graph. If a graph has clusters we shall refer to them90

as C1, . . . , Ck. We define na := |Ca| and assume that the clusters are ordered by size, so that91

n1 ≤ n2 ≤ . . . ,≤ nk. We reserve the letters a and b for indexing clusters, while i and j will92

index vertices.93

This manuscript is for review purposes only.

danielmckenzie.github.io


4 M.-J. LAI AND D. MCKENZIE

Definition 2.1 (Laplacians of graphs). The normalized, random walk Laplacian is defined as94

L = I − D−1A. We shall simply refer to it as the Laplacian. The normalized, symmetric95

Laplacian is: Lsym := I −D−1/2AD−1/2.96

Recall the following elementary result in spectral graph theory (see [49], for example, for97

a proof):98

Theorem 2.2. Let C1, . . . , Ck denote the connected components of a graph G. Then the99

cluster indicator vectors 1C1 , . . . ,1Ck
form a basis for the kernel of L.100

Suppose that G has clusters C1, . . . , Ck. By definition, clusters have few edges between101

them, and so it is useful to write G as the union of two edge-disjoint subgraphs, defined102

as follows: let Gin = (V,Ein) have only edges between vertices in the same cluster, while103

Gout = (V,Eout) consist only of edges between vertices in different clusters. We emphasize104

that this is a theoretical construction, as in practice we of course cannot ascertain whether two105

vertices are in the same cluster without first solving the clustering problem, which is precisely106

what we are trying to do. Denote by Ain and Lin (resp. Aout and Lout) the adjacency107

matrix and Laplacian of Gin (resp. Gout). Similarly, din
i (resp. dout

i ) shall denote the degree108

of the vertex i in the graph Gin (resp. Gout). For future reference we define the random109

walk transition matrices P = AD−1 and N := D−1/2AD−1/2. We note that the spectra of110

P,N,A,L are related:111

Lemma 2.3. For any matrix B with real eigenvalues let λi(B) denote the i-th smallest112

eigenvalue, counted with multiplicity. Then λi(L) = λi(L
sym) while λn−i(N) = λn−i(P ) =113

1− λi(L)114

Proof. Observe that L = D−1/2LsymD1/2, hence L and Lsym have the same spectrum.115

Similarly P = D1/2 (I − Lsym)D−1/2 hence P and N = I − Lsym have the same spectrum.116

Thus if λ is the i-th smallest eigenvalue of Lsym it is the i-th largest (and hence the (n− i)-th117

smallest) eigenvalue of I − Lsym.118

For any S ⊂ V , we denote by GS the induced sub-graph with vertices S and edges all119

{i, j} ∈ E with i, j ∈ S. By AGS
(resp. LGS

) we mean the adjacency matrix (resp. Laplacian)120

of the graph GS . Note that LGS
is not a submatrix of L! For any S ⊂ [n] we define an indicator121

vector 1S ∈ Rn by (1S)i = 1 if i ∈ S and (1S)i = 0 otherwise. |S| will always denote the122

cardinality of S. For any matrix B, by BS we mean the submatrix of B consisting of the123

columns bi for all i ∈ S.124

2.2. Compressive Sensing. Recall for any x ∈ Rn, ‖x‖0 := |supp(x)| = |{i : xi 6= 0}| is125

the sparsity of x. If ‖x‖0 � n we say that x is sparse. Candés, Donoho and their collaborators126

in [20, 9] pioneered the study of compressive sensing, which offers theoretical analysis and127

algorithmic tools for finding sparse solutions to linear systems Φx = b, for example by solving128

the minimization problem:129

(2.1) argmin‖Φx− y‖2 subject to ‖x‖0 ≤ s,130

where Φ ∈ Rm×n is referred to as the sensing matrix. Typically, it is assumed that m ≤ n131

although this will not be the case in this paper. There are many algorithms available to solve132
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CLUSTER PURSUIT 5

Algorithm 2.1 SubspacePursuit, as presented in [17]

Input variables: measurement matrix Φ, measurement vector y, sparsity parameter s and
number of iterations J .

Initialization:
(1) S(0) = Ls(Φ>y).
(2) x(0) = arg minz∈RN {‖y − Φz‖2 : supp(z) ⊂ S(0)}
(3) r(0) = y − Φx(0)

for j = 1 : J do
(1) Ŝ(j) = S(j−1) ∪ Ls

(
Φ>r(j−1)

)
(2) u = arg min

z∈RN

{‖y − Φz‖2 : supp(z) ⊂ Ŝ(j)}

(3) S(j) = Ls(u) and x(j) = Hs(u)
(4) r(j) = y − Φx(j)

end for

Problem (2.1), but the one we shall focus on is the SubspacePursuit algorithm introduced133

in [17]. Here Ls(·) and Hs(·) are thresholding operators:134

Ls(v) := {i ∈ [n] : vi among s largest-in-magnitude entries in v}135

Hs(v)i :=

{
vi if i ∈ Ls(v)
0 otherwise.

136
137

In quantifying whether (2.1) has a unique solution, the following constant is often used (see138

[21])139

Definition 2.4. The s Restricted Isometry Constant (s-RIC) of Φ ∈ Rm×n, written δs(Φ),140

is defined to be the smallest value of δ > 0 such that, for all x ∈ Rn with ‖x‖0 ≤ s, we have:141

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22.142

If δs(Φ) < 1 we often say that Φ has the Restricted Isometry Property (RIP).143

One of the reasons for the remarkable usefulness of compressive sensing is its robustness to144

error, both additive (i.e. in y) and multiplicative (i.e. in Φ). More precisely, suppose that a145

signal ŷ = Φ̂x∗ is acquired, but that we do not know the sensing matrix Φ̂ exactly. Instead,146

we have access only to Φ = Φ̂ + M , for some small perturbation M . Suppose further that147

there is some noise in the measurement process, so that the signal we actually receive is148

y = ŷ + e. Can one hope to approximate a sparse vector x∗ from y, given only Φ? This149

question is answered in the affirmative way by several authors, starting with the work of [29].150

For SubspacePursuit, we have the following result (cf. [33]):151

Theorem 2.5. Let x∗, y ŷ, Φ and Φ̂ be as above and suppose that ‖x∗‖0 ≤ s. For any152

t ∈ [n], let δt := δt(Φ). Define the following constants:153

εy := ‖e‖2/‖ŷ‖2 and εsΦ = ‖M‖(s)2 /‖Φ̂‖(s)2154
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6 M.-J. LAI AND D. MCKENZIE

where for any matrix B, ‖B‖(s)2 := max{‖BS‖2 : S ⊂ [n] and |S| = s}. Define further:155

ρ =

√
2δ2

3s(1 + δ2
3s)

1− δ2
3s

and τ =
(
√

2 + 2)δ3s√
1− δ2

3s

(1− δ3s)(1− ρ) +
2
√

2 + 1

(1− δ3s)(1− ρ)
156

Assume δ3s ≤ 0.4859 and let x(m) be the output of SubspacePursuit applied to Problem (2.1)157

after m iterations. Then:158

‖x∗ − x(m)‖2
‖x∗‖2

≤ ρm + τ

√
1 + δs

1− εsΦ
(εsΦ + εy).159

Proof. This is Corollary 1 in [33]. Note that our convention on hats is different to theirs160

— our Φ is their Φ̂, hence our ρ is their ρ̂ and so on.161

Next it is easy to obtain bounds on the quantity ‖B‖(s)2 := maxS⊂[n]
|S|=s

‖BS‖2:162

Lemma 2.6. For any matrix B and any 2 ≤ s ≤ n we have that σs−1(B) ≤ ‖B‖(s)2 ≤163

σmax(B) = ‖B‖2, where σj(B) denotes the j-th smallest singular value of B.164

Proof. Observe that, for any matrix B,165

‖B‖(s)2 = max
S⊂[n]
|S|=s

‖BS‖2 = max
S⊂[n]
|S|=s

σmax(BS),166

where σmax(BS) denotes the maximum singular value of BS . Because σmax(BS) = σs(BS), by167

the interlacing theorem for singular values (cf. [47]) σs−1(B) ≤ σmax(BS) ≤ σmax(B).168

2.3. The Data Model. For conceptual clarity, we shall take an asymptotic viewpoint,169

and consider graphs G ∈ Gn as n → ∞. Note that the graphs under consideration may be170

weighted or unweighted. We say that a graph property P holds almost surely for Gn if the171

probability of a G drawn from Gn not having P is o(1).172

Assumptions 2.7. Suppose that there exist εi = o(1) as n→∞ for i = 1, 2, 3 such that for173

all G ∈ Gn:174

(A1) V = C1 ∪ . . .∪Ck where the Ca are disjoint, planted clusters and k is O(1) as n→∞.175

(A2) For all a ∈ [k] we have that λ2(LGCa
) ≥ 1− ε1 and λna(LGCa

) ≤ 1 + ε1 almost surely.176

(A3) Letting ri := dout
i /din

i , ri ≤ ε2 for all i ∈ [n] almost surely.177

(A4) If din
av := E[din

i ] then din
max ≤ (1 + ε3)din

av and din
min ≥ (1− ε3)din

av almost surely.178

Note that we can think of (A1)–(A4) as “regularity” requirements for graphs; as they179

insist that degrees do not vary too wildly, and that the eigenvalues are well behaved. In180

§9 we verify that a common model of unweighted graphs with clusters—the stochastic block181

model—satisfies these assumptions, so they are certainly not too restrictive. It seems probable182

(and indeed supported by the numerical evidence of §10) that reasonable models of random183

weighted graphs satisfy these properties too, although we leave this for future work.184
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3. The ClusterPursuit Algorithm. The motivation for our algorithm is the following185

observation. Suppose for a moment that one had access to Lin. Suppose further that one is186

given a cut Ω “near” a cluster of interest, Ca, which we shall take quantitatively to mean that187

|Ca4Ω| = ε|Ca|, where 4 denotes the symmetric difference, i.e C4Ω = (C\Ω)∪ (Ω\C) and188

ε ∈ (0, 1). Letting U = Ca \ Ω and W = Ω \ Ca one observes that:189

1Ω = 1Ca + 1W − 1U190

=⇒ Lin1Ω = Lin1Ca + Lin (1W − 1U )191

=⇒ Lin1Ω = 0 + Lin (1W − 1U ) (by Theorem 2.2)192

=⇒ yin = Lin (1W − 1U ) (if yin := Lin1Ω)193194

Solving the linear system yin = Linx is unlikely to yield x = 1W − 1U , as Lin has a large195

kernel (Theorem 2.2). However, Theorem 3.2 will show that one may recover 1W − 1U as the196

solution to the sparse recovery problem:197

(3.1) arg min
x∈Rn

{
‖Linx− yin‖2 : ‖x‖0 ≤ s

}
198

where s ≈ |Ca 4 Ω|. Of course, one will not in practice have access to Lin, only L. Thus one199

needs to consider a perturbed version of (3.1):200

(3.2) arg min
x∈Rn

{‖Lx− y‖2 : ‖x‖0 ≤ s}201

where y = L1Ω. Theorem 3.4 will show that the solution x# to the minimization problem202

(3.2) found by SubspacePursuit is a good enough approximation to 1U − 1W , hence one203

may infer U and W from the signed support of x#. Clearly, if one knows Ω, U and W one204

may reconstruct Ca as Ca = (Ω \W ) ∪ U . This is the essence of ClusterPursuit, which we205

present as Algorithm 3.1.206

Algorithm 3.1 ClusterPursuit

Input: Adjacency matrix A, initial cut Ω, estimate s ≈ |Ω4 Ca| and R ∈ [0, 1).
(1) Compute L = I −D−1A and y = L1Ω.
(2) Let x# be the solution to

(3.3) argmin{‖Lx− y‖2 : ‖x‖0 ≤ s}

obtained after m = O(log(n)) iterations of SubspacePursuit.

(3) Let U# = {i : x#
i < −R} and W# = {i : x#

i > R}.
Output: C#

a =
(
Ω \W#

)
∪ U#.

Remark 3.1. ClusterPursuit requires as an input an estimate of |Ω4 Ca|, which might207

not always be available. This is less of an issue than it might first appear as:208
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8 M.-J. LAI AND D. MCKENZIE

1. Theorem 3.4 will show that as long as |Ω4Ca| ≤ s ≤ 0.13|Ca| ClusterPursuit works209

well.210

2. If no knowledge of |Ω 4 Ca| is available, one may run ClusterPursuit for various211

values of s and keep the returned cluster with lowest conductance.212

3. Alternatively, one could consider the Lasso form of problem (3.3):213

(3.4) argmin {‖Lx− y‖2 + λ‖x‖1} = argmin {‖Lx− y‖2 + λ‖x‖0}214

as the sparse solution is the cluster indicator 1U − 1W which satisfies ‖x‖0 = ‖x‖1.215

We do not analyze this further here.216

Theorem 3.2. 1W − 1U is the unique solution to Problem (3.1), for any graph G with217

clusters C1, . . . , Ck, as long as |Ca 4 Ω| ≤ s < n1/2.218

Proof. One can easily verify that 1W − 1U is a solution to (3.1), thus it remains to show219

that it is the unique one. So, suppose that v satisfies Linv = yin and that v 6= 1W − 1U .220

Because yin = Lin1Ω:221

Linv − Lin1Ω = 0 =⇒ v − 1Ω ∈ ker(Lin) =⇒ v − 1Ω =

k∑
b=1

αb1Cb
( by Theorem 2.2)222

=⇒ v =

k∑
b=1

αb1Cb\Ω +
k∑
b=1

(αb + 1)1Cb∩Ω223

224

Now if αa = −1 and αb = 0 for all b 6= a then v = 1W − 1U , which we are assuming is not225

the case. Hence either αa 6= −1, in which case ‖v‖0 ≥ |Ca ∩ Ω| ≥ |Ca| − |Ca 4 Ω| > na/2, or226

αb 6= 0 for b 6= a in which case ‖v‖0 ≥ |Cb \ Ω| ≥ |Cb| − |Ca 4 Ω| > nb/2 as we are assuming227

that |Ca 4 Ω| < n1/2 and n1 = minb nb. By assumption, s < n1/2 hence in either case v is228

infeasible for Problem (3.1), as it does not satisfy the constraint ‖v‖0 ≤ s.229

Henceforth, we shall focus on recovering the smallest cluster, C1. We do this to avoid a230

technical complication in the estimation of δγna(L) for a > 1 (see Theorem 3.3 and Remark231

A.3). We note that as long as na ≈ n1 this is not really an issue, and the proof of Theorem232

3.4 will extend to this case, albeit with a tighter bound on ε.233

234

Let us now quantify the size of the perturbation in moving from (3.1) to (3.2). Define235

M := L − Lin and e := y − yin. Recall from Theorem 2.5, that the three key parameters in236

perturbed compressive sensing are the restricted isometry constant of L and:237

(3.5) εy =
‖e‖2
‖yin‖2

and εsL =
‖M‖(s)2

‖Lin‖(s)2

238

as well as two secondary quantities, ρ and τ . We prove the following:239

Theorem 3.3. Suppose that Gn satisfies (A1)–(A4) and that |Ω4 C1| ≤ 0.13n1. Then for240

any γ ∈ (0, 1) the following hold almost surely:241

1. εy = o(1) and εγn1

L = o(1).242
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CLUSTER PURSUIT 9

2. δγn1(L) ≤ γ + o(1).243

3. If δ3s(L) ≤ 0.45 then ρ ≤ 0.8751 and τ ≤ 55.8490 for any s ∈ (0, n1/3).244

Proof. Part (3) follows by direct computation. For parts (1) and (2) see Appendix A.245

We now prove the main result of this section:246

Theorem 3.4. Suppose that A is the adjacency matrix of G ∼ Gn satisfying assumptions
(A1)–(A4), and that Ω satisfies |C1 4 Ω| = εn1 with ε ≤ 0.13. If C# is the output of
ClusterPursuit when given inputs A, Ω, εn1 ≤ s ≤ 0.13n1 and R = 0.5 then:∣∣∣C1 4 C#

1

∣∣∣
|C1|

= o(1) almost surely.

Remark 3.5. s ≤ 0.13n1 is a conservative upper bound on s for which the guarantees from247

§2.2 will hold. If one has no further information on |C1 4 Ω| we recommend using this as248

the default value of s. Empirically (see §10.1) we still observe excellent performance when249

s > 0.13n1.250

Proof. Recall x# is the solution obtained bym = O(log(n)) iterations of SubspacePursuit251

on Problem 3.2, which we are regarding as a perturbation of Problem 3.1. Clearly, 0.13n1 <252

n1/2, hence by Theorem 3.2 1W −1U is the unique solution to (3.1). By Theorem 3.3 part (2)253

we get δs(L) ≤ 0.13 + o(1) < 0.15 almost surely, for large enough n1. Similarly δ3s(L) ≤ 0.45,254

again almost surely for n1 large enough. It follows from Theorem 3.3 part (3) that ρ ≤ 0.8751255

and τ ≤ 55.8490. We now appeal to Theorem 2.5 to obtain:256

‖(1U − 1W )− x#‖2
‖1U − 1W ‖2

≤ ρm + τ

√
1 + δs

1− εsΦ
(εsΦ + εy).257

The second term on the right-hand side is o(1) by Theorem 3.3. As long as m ≥ logρ(1/n) =258

O(log(n)), we obtain that ρm = 1/n = o(1) too. Thus:259

(3.6)
‖(1U − 1W )− x#‖2
‖1U − 1W ‖2

≤ o(1) =⇒ ‖(1U − 1W )− x#‖2 ≤ o (‖1U − 1W ‖2) = o(
√
n1)260

As ‖1U−1W ‖2 =
√
|U |+ |W | = √εn1. In Lemma 3.6 below we show that, because 1U−1W is261

a difference of binary vectors, equation (3.6) implies that |U 4U#| = o(n1) and |W 4W#| =262

o(n1), and hence |C1 4 C#
1 | = o(n1), as required.263

Lemma 3.6. Consider disjoint T1, T2 ⊂ [n] and any v ∈ Rn. Define T#
1 = {i : vi > 0.5}

and T#
2 = {i : vi < −0.5}. If ‖ (1T1 − 1T2)− v‖2 ≤ D then:

|T1 4 T#
1 |+ |T2 4 T#

2 | ≤ 4D2.

Proof. Let T3 := [n] \ (T1 ∪ T2) and write v = v(1) + v(2) + v(3) where v(i) denotes the
part of v supported on Ti. Observe that:

D2 ≥ ‖(1T1 − 1T2)− v‖22 = ‖1T1 − v(1)‖22 + ‖ − 1T2 + v(2)‖22 + ‖v(3)‖2
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10 M.-J. LAI AND D. MCKENZIE

One can easily verify that:

‖1T1 − v(1)‖22 = ‖1
T1∩T#

1
− v(1)|

T1∩T#
1
‖2 + ‖1

T1\T#
1
− v

(1)

T1\T#
1

‖22 ≥ (0.5)2|T1 \ T#
1 |

Similarly, ‖ − 1T2 + v(2)‖22 ≥ (0.5)2|T2 \ T#
2 |, and:

‖v(3)‖22 ≥ ‖v(3)|
T#
1 \T1
‖2 + ‖v(3)|

T#
2 \T2
‖2 ≥ (0.5)2|T#

1 \ T1|+ (0.5)2|T#
2 \ T2|

Putting this all together we get that:

D2 ≥ (0.5)2
(
|T1 \ T#

1 |+ |T2 \ T#
2 |+ |T

#
1 \ T1|+ |T#

2 \ T2|
)

= 0.25
(
|T1 4 T#

1 |+ |T2 4 T#
2 |
)

4. The RWThresh algorithm. Here, we introduce a simple, diffusion-based local cluster-264

ing algorithm which we call RWThresh (see Algorithm 4.1). We note that RWThresh is some-265

what similar to other more sophisticated diffusion-based local clustering algorithms, such as266

PPR-Grow, HK-Grow and CapacityReleasingDiffusion. We do not claim that RWThresh267

outperforms similar existing algorithms; its main utility lies in the fact that it reliably (and268

provably) produces approximate cuts, Ω, that are of a high enough quality to be used as an269

initialization for ClusterPursuit.270

Algorithm 4.1 RWThresh

Input: Adjacency matrix A, a thresholding parameter ε ∈ (0, 1), seed vertices Γ ⊂ C1,n̂1 ≈
n1 and depth of random walk t.
(1) Compute P = AD−1 and let v(0) = D1Γ.
(2) Compute v(t) = P tv(0)

(3) Define Ω = L̃(1+ε)n̂1
(v(t)).

Output: Ω = Ω ∪ Γ.

Here L̃t(·) is a thresholding operator, similar to Lt(·), but that returns the indices of the t271

largest, not largest-in-magnitude, components of a vector. To motivate RWThresh we observe272

the following. If Gn satisfies assumptions (A1)–(A4) then:273

1. GC1 is sufficiently densely connected that after t steps the random walk has a fairly274

large probability of visiting every i ∈ C1.275

2. C1 is sufficiently weakly connected to V \C1 that the probability of the random walk276

leaving C1 after t steps is fairly small.277

Hence Algorithm, 4.1 which runs a short random walk starting on Γ and takes Ω to be the278

set of vertices most likely to be visited, should produce an Ω which is close to our intuitive279

notion of a good cluster. Let us quantify this as Theorem 4.1.280

Theorem 4.1. Let G ∼ Gn satisfy Assumptions (A1)–(A4) and let A denote the adjacency281

matrix of G. Let Ω denote the output of RWThresh with inputs A, any ε ∈ (0, 1), any t = O(1),282

n̂1 = n1 and Γ ⊂ C1 with |Γ| = gε2t−1
3 n1 for any constant g ∈ (0, 1), where ε3 is as in283

Assumption (A4)). Then |Ω4 C1| ≤ (ε+ o(1))n1 almost surely.284

Proof. The proof is left to Appendix B.285
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We note that there are many local clustering algorithms, for example the PPR-Grow and286

CapacityReleasingDiffusion algorithms discussed in §8, that require only |Γ| = O(1).287

However, these algorithms tend to return small clusters, typically of size |C| = O(1). If288

ε3 = O(1/ log(n)), as it is in the numerical experiments of §10.1, then Theorem 4.1 requires289

that |Γ| = O(n1/polylog(n1)), which seems to be a reasonable assumption when finding a290

cluster of size O(n). In practice, we find it suffices to take |Γ| = 0.01n1 or |Γ| = 0.02n1.291

5. Using ClusterPursuit for local clustering. As mentioned earlier, using RWThresh to292

quickly generate a rough approximation to C1, namely Ω, and then using ClusterPursuit to293

then refine this cut leads to a (weakly) local clustering algorithm. Here we verify that this294

approach, presented below as algorithm 5.1, works well for our model of graph.295

Algorithm 5.1 CP+RWT

Input: Adjacency matrix A and seed vertices Γ ⊂ C1. Parameters ε ∈ (0, 0.13), s ≈ εn1,
R ∈ [0, 1), n̂1 ≈ n1, t ∈ Z+

(1) Let Ω = RWThresh(A, ε,Γ, n̂1, t)

(2) Let C#
1 = ClusterPursuit(A, s,R)

Output: C#
1

Theorem 5.1. Let G ∼ Gn satisfy Assumptions (A1)–(A4) and let A denote the adjacency

matrix of G. Let C#
1 denote the output of CP+RWT with inputs A, ε ∈ (0, 0.13), R = 0.5,

n̂1 = n1, any t = O(1), any s satisfying ε < s ≤ 0.13n1 and Γ ⊂ C1 with |Γ| = gε2t−1
3 n1 for

any constant g ∈ (0, 1), where ε3 is as in Assumption (A4). Then:∣∣∣C1 4 C#
1

∣∣∣
|C1|

= o(1)

almost surely, for large enough n1.296

Proof. By Theorem 4.1, the call to RWThresh in Step (1) of CP+RWT almost surely returns297

an Ω satisfying |Ω4C1| ≤ (ε+ o(1))n1 for input parameters with the given values. For large298

enough n1, we have that (ε+ o(1))n1 ≤ s ≤ 0.13n1, hence the call to ClusterPursuit in Step299

(2) of CP+RWT returns C#
1 with

∣∣∣C1 4 C#
1

∣∣∣ /|C1| = o(1) by Theorem 3.4, again almost surely.300

Remark 5.2. In practice (see §10) we find it generally suffices to take t = 3. If C1 is301

densely connected, one might consider a smaller value of t, and conversely one might choose302

a larger value (say t = 5) if C1 is sparsely connected.303

6. Using ClusterPursuit for semi-supervised clustering. In the (global) semi-supervised304

clustering problem, one is given a small set of seed vertices Γa ⊂ Ca in each cluster, usu-305

ally referred to in this context as “labeled data”. The goal here is to find a partition into306

disjoint sets: V = C#
1 ∪ C

#
2 ∪ . . . ∪ C

#
k that closely resembles the ground truth partition307

V = C1 ∪ C2 ∪ . . . ∪ Ck. An iterated version of CP+RWT, which we call ICP+RWT, can be used308

to solve this problem. ICP+RWT is presented as algorithm 6.1. Note that in the second line309

of the for loop we use the shorthand G(a+1) = G(a) \ C#
a to denote the graph formed from310
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12 M.-J. LAI AND D. MCKENZIE

G(a) by removing the vertices C#
a . We do not analyze the theoretical performance of ICP+RWT311

here2 but we provide numerical evidence that ICP+RWT is competitive with state-of-the-art312

semi-supervised graph clustering algorithms in §10.3.313

Algorithm 6.1 ICP+RWT

Input: Adjacency matrix A, labeled data Γa ⊂ Ca for a = 1, . . . , k. Parameters ε ∈ (0, 1),
R ∈ [0, 1), n̂a ≈ na and sa ≈ εna for a = 1, . . . , k, and t ∈ Z+

Initialize: G(1) = G and A(1) = A.
for a = 1, . . . k do

Let C#
a = CP+RWT(A(a),Γa, ε, R, sa, n̂a, t)

Let G(a+1) = G(a) \ C#
a and let A(a+1) be the adjacency matrix of G(a+1).

end for
Output: C#

1 , . . . , C
#
k

7. Computational Complexity. In this section we discuss the run times of the algorithms314

introduced in this paper. Let Tm denote the cost of a matrix-vector multiply with A, L or P315

(they are all of the same magnitude).316

Theorem 7.1. RWThresh requires O(n log(n) + tTm) operations, where t is the depth of the317

random walk.318

Proof. Computing v(t) requires t matrix-vector multiplies and hence requires O(tTm) op-319

erations. Sorting v(t) in order to find Ω requires O(n log(n)) operations.320

Let us now analyze the complexity of ClusterPursuit321

Theorem 7.2. ClusterPursuit requires O (Tm log(n)) operations.322

Remark 7.3. Note that if A is stored as a sparse matrix then Tm = O(ndmax) in which323

case the run time of ClusterPursuit becomes O(ndmax log(n)).324

Proof. The run time of ClusterPursuit is dominated by the cost of the call to SubspacePursuit
(see Algorithm 2.1) in step (3) which costs m times the cost of each iteration. We now bound
the cost of each iteration. The cost of the j-th iteration is dominated by the cost of solving
the least squares problem:

arg min
z∈Rn

{
‖Lz− y‖2 : supp(x) ⊂ Ŝj

}
.

(step (4) in the “for” loop of Algorithm 2.1). Because of the support condition, and because325

|Ŝj | = 2s ≤ 0.26n1, this is equivalent to the least squares problem:326

(7.1) arg min
z∈R2s

{∥∥LŜjz− y
∥∥

2

}
327

We recommend using an iterative method, such as conjugate gradient (in our implementation328

we use MATLAB’s lsqr operation). Fortunately, as pointed out in [39], the matrix in question,329

2There is a minor technical difficulty: one needs to show that if G is drawn from a model satisfying
assumptions (A1)–(A4) then each G(a) is also drawn from a model satisfying assumptions (A1)–(A4).
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LŜj is extremely well conditioned. This is because δ2s(L) ≤ δ3s(L) ≤ 0.45, as shown in the330

proof of Theorem 3.4. By [39], specifically Proposition 3.1 and the discussion of §5, this331

implies that the condition number is small:332

κ(L>
ŜjLŜj

) :=
λmax(L>

Ŝj
LŜj

)

λmin(L>
Ŝj
LŜj

)
≤ 1 + δ2s

1− δ2s
≤ 2.64333

The upshot of this is that it only requires a constant number of iterations of conjugate gra-334

dient to approximate the solution to the least-squares Problem (7.1) to within an acceptable335

tolerance. Indeed, Corollary 5.3 of [39] argues that three iterations suffices. We play it safe336

by performing ten iterations. The cost of each iteration of conjugate gradient is equal to (a337

constant times) the cost of a matrix vector multiply by LŜj
or L>

Ŝj
, which is Tm. Hence the338

total cost of step (3) of ClusterPursuit is O(mTm) = O(log(n)Tm) because we are taking339

m = O(log(n)).340

As a direct consequence of Theorems 7.1 and 7.2, we get that CP+RWT runs in time341

O((ndmax log(n)). If the number of clusters, k, is O(1), we get that ICP+RWT also runs in342

time O((ndmax log(n)).343

8. Comparison with Existing Literature. ClusterPursuit can naturally be compared344

with other cut improvement algorithms such as FlowImprove [2], LocalFlow [41] and SimpleLocal345

[50]. We note that the performance guarantees for these three algorithms are of a different346

flavor to ours. Specifically, and translating into the notation of this paper, they bound the347

conductance of the improved cut, C#
1 , by some function of the original cut, Ω. In contrast,348

our performance guarantees for ClusterPursuit are of a more statistical nature. In terms349

of run-time, LocalFlow and SimpleLocal are strongly local, so have run times O(vol(Ω)α)350

for α ≥ 1. While this is certainly better than ClusterPursuit for finding small clusters, ie351

when |Ω| = O(1), these run times become less attractive for even moderate sized clusters, eg352

|C1| = O(
√
n). In §10 we demonstrate that ClusterPursuit is several orders of magnitude353

faster than FlowImprove and SimpleLocal in the regime |C1| = O(n).354

355

The idea of combining a fast, diffusion based clustering algorithm with a refinement pro-356

cedure to create a local clustering algorithm is not new. See, for example, the algorithms357

LEMON [27, 35], LOSP and LOSP++ [34], LBSA [44], and FlowSeed [51]. We compare CP+RWT to a358

selection of these algorithm in §10. We note that there exist many diffusion-based local clus-359

tering algorithms that may find better approximations to C1 than RWThresh. See for example,360

PPR-Grow [6], HK-Grow [31] or CapacityReleasingDiffusion [52]. We emphasize that the361

main advantage of RWThresh is that it rapidly and provably finds good enough initial cuts, Ω,362

to be fed into ClusterPursuit. We show in §10 that the combination CP+RWT typically out-363

performs these diffusion-only approaches, particularly for large, sparsely connected clusters.364

365

The analysis of CP+RWT contained in §3–5 can be compared to the recent works [52] and366

[26]. In both the performance of a local clustering algorithm on graphs drawn from a certain367

probabilistic model is studied. In both papers, the model is more general in one sense: there368

is no restriction on the structure of V \ C1, but more restrictive in other senses: the ratio369
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14 M.-J. LAI AND D. MCKENZIE

dout/din must be at most O(1/ log2(n1)) in [52] while the results in [26] are most meaningful370

when n1 = O(1) and dout = O(1). In contrast, our results tackle the regime where n1 = O(n)371

and dout/din can be bounded by an arbitrarily slowly decaying function of n1.372

373

Finally, we mention several recent works that combine notions of sparsity and local clus-374

tering. In particular, we mention the works of Fountoulakis, Gleich, Mahoney et al [25, 22, 26]375

which introduce and study the `1 regularized page rank problem. The algorithms LOSP and376

LOSP++ also set up and solve a sparse recovery problem, although with an additional non-377

negativity requirement. However, to the best of the authors’ knowledge, ClusterPursuit is378

the first algorithm that explicitly phrases the problem of improving a cut, Ω, as the problem379

of finding a sparse change to the indicator vector 1Ω.380

9. Which Probabilistic Models Satisfy our Assumptions?. First, we verify that a well-381

studied model of graphs with clusters, namely the stochastic block model, satisfies Assump-382

tions (A1)–(A4) of §2.3. We first remind the reader of the simpler Erdős - Rènyi model:383

Definition 9.1. We say G = (V,E) is drawn from the Erdős - Rènyi model on n vertices384

with parameter p (and write G ∼ ER(n, p)) if V = [n] and P[{i, j} ∈ E] = p for i, j ∈ V , with385

all such probabilities being independent.386

Definition 9.2 ([28, 3]). Let n = (n1, . . . , nk) be a vector of positive integers, and let P be387

a k × k symmetric matrix with entries Pab ∈ [0, 1] for all a, b. We say a graph G = (V,E)388

is drawn from the Stochastic Block Model (written G ∼ SBM(n, P )) if there exists a partition389

V = C1 ∪ C2 . . . ∪ Ck with |Ca| = na such that any vertices i ∈ Ca and j ∈ Cb are connected390

by an edge with probability Pab, and all edges are inserted independently.391

Note that if G ∼ SBM(n, P ) then each GCa ∼ ER(na, Paa). Without loss of generality,392

we shall assume that n1 ≤ n2 ≤ . . . ≤ nk. In an appendix, we shall prove the following:393

Theorem 9.3. Suppose that n1 = O(n) → ∞, Paa = ω log(n)/na for any ω → ∞ and394

Pab = (β + o(1)) log(n)/n for any a 6= b where β ≥ 0 is a constant. Then SBM(n, P ) satisfies395

assumptions (A1)–(A4).396

Proof. See Appendix C.397

As a consequence of this theorem we have that, given a small fraction of vertices in C1,398

CP+RWT will reliably return a C#
1 with |C1 4 C1| = o(n1). We experimentally confirm this399

in §10 for ω ∼ log(n). In this regime we have that dmax = O(log2(n)) with high probability,400

hence the run time of CP+RWT is O(n log3(n)) by Theorem 7.2.401

402

It is interesting to contrast this result with what is known for the global clustering problem403

for the stochastic block model. There are several unsupervised algorithms, see for example[4]404

and [38], that return a partition V = C#
1 ∪ C

#
2 ∪ . . . ∪ C

#
k such that C#

a = Ca with high405

probability. However these approaches either have impractically high run times [38] or are406

tricky to implement in practice [4]. In contrast, CP+RWT has a low run time, in theory and407

in practice, and can be implemented in a few lines of code. In addition, the “one cluster408

at a time” nature of CP+RWT affords an additional flexibility that may be useful in certain409

circumstances.410

This manuscript is for review purposes only.



CLUSTER PURSUIT 15

411

On the other hand, we have had less success with using CP+RWT for certain random geo-412

metric graphs arising as K-NN graphs of point clouds in Rd. We note that CP+RWT is most413

effective when the adjacency matrix of the K-NN graph is sparse but has its non-zero en-414

tries uniformly distributed. In contrast, for certain artificial data sets, for example points415

drawn from a thickened line or sphere embedded in a high dimensional space, this adjacency416

matrix tends to exhibit a banded structure—at least when nearest neighbors are determined417

using the Euclidean metric. Experimentally, we have observed that CP+RWT performs poorly418

on these data sets. However, this problem is to a large extent particular to the use of the419

Euclidean metric. In particular, when a data-driven metric such as those detailed in [36] is420

used to construct the K-NN graph, CP+RWT performs much better. Moreover, even when using421

the Euclidean metric CP+RWT still performs extremely well on real data sets, such as MNIST,422

COIL and Optdigits, which are frequently thought of as consisting of data points drawn from423

a low-dimensional manifold embedded in a high dimensional space (see §10.3).424

10. Numerical Experiments. We compare the algorithms ClusterPursuit, CP+RWT and425

ICP+RWT to the state of the art on the various problems they are designed to solve. Specifically,426

in §10.1 we compare the performance of ClusterPursuit on the cut improvement task to427

two baseline algorithms, namely FlowImprove and SimpleLocal, for graphs drawn from the428

stochastic block model. We also compare CP+RWT to the local clustering algorithms HK-Grow,429

PPR-Grow and LBSA for the same data.3. In §10.2 we repeat this experiment for social networks.430

We take care to choose our data sets and performance measures to allow for easy comparison431

with similar work in [52]. In §10.3 we test the performance of ICP+RWT on two data sets432

commonly studied in the machine learning community—MNIST and OptDigits. We provide433

a detailed description of the implementation of all algorithms considered in the supplementary434

material.435

10.1. Synthetic Data Sets. We consider graphs drawn from SBM(n(i), P (i)) for two436

different sets of parameters. The first set: n(1) = (n1, 1.5n1, 2.5n1, 5n1) and P (1) with437

Paa = log2(n)/2 and Pab = 5 log(n)/n for all a 6= b is designed to satisfy the conditions438

of Theorem 9.3 while presenting a challenge to existing clustering algorithms. The second set:439

n(2) = (n1, 10n1) and P (2) =
[

2 log2(n)/n log(n)/n
log(n)/n log(n)/n

]
goes beyond the assumptions of Theorem440

9.3 and is essentially the planted cluster model studied in [26] and elsewhere. For both sets441

of parameters we perform two experiments. In the first we test the performance of the three442

cut improvement algorithms when initialized with an Ω “close” to C1. This Ω is found using443

RWThresh. In the second we compare the performance of CP+RWT with the performance of the444

local clustering algorithms mentioned above. For both experiments we report both run time445

and accuracy, as measured by the Jaccard Index in Figure 2 and in Figure 3, respectively.446

10.2. Social Networks. The well-known facebook100 dataset consists of anonymized447

Facebook friendship networks at 100 American universities, and was first introduced and448

studied in [48]. Certain demographic markers (year of entry, residence etc.) were also collected449

3While there are certainly other worthy local clustering algorithms that deserve to be included, such as
CapacityReleasingDiffusion [52] and FlowSeed [51], we stick to algorithms with a freely available MATLAB
implementation
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Figure 2: Top row, left to right: Stylized representation of the adjacency matrix of graphs
drawn from SBM(n(1), P (1)), Jaccard index for results of cut improvement (SimpleLocal and
FlowImprove always have the same Jaccard index) and(log. of) run time for the three cut
improvement algorithms. Note that ClusterPursuit is at least an order of magnitude faster
than the other two, even though FlowImprove is implemented in C. Bottom row, left to right:
Jaccard index for local clustering (The poor performance of the other methods is not an

implementation issue. Rather, it is a consequence of the small gap between P
(1)
aa and P

(1)
ab ).

(Log. of) run time for local clustering. Box plot of Jaccard index for CP+RWT.

in an anonymized format. One can think of vertices sharing the same marker as defining a450

ground truth cluster, although some of these clusters are extremely noisy. We focus on four451

clusters identified in [52] as having good (ie low) or moderately good conductance scores,452

namely Johns Hopkins class of 2009, Rice University dorm 203, Simmons College class of453

2009 and Colgate University class of 2006. The details of these clusters are displayed in Table454

1. For ease of comparison with the results of [52] we report accuracy using precision and recall455

scores. We remind the reader that, in the notation of this paper, precision = |C1 ∩C#
1 |/|C

#
1 |456

and recall = |C1 ∩ C#
1 |/|C1|. It is desirable to have both of these values as close to 1 as457

possible. For all four experiments we take Γ to be selected uniformly and at random from458

C1, with |Γ| = 0.02n1. We average over fifty independent trials. There results are shown in459

Figure 4.460

10.3. Machine Learning Benchmarks. We consider two venerable benchmark data sets:461

462

OptDigits. This data set consists of grayscale images of handwritten digits 0–9 of size463

8×8. There are n = 5620 images and the clusters are fairly well balanced with approximately464

560 images of each digit.465
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Figure 3: Top row, left to right: Stylized representation of the adjacency matrix of
graphs drawn from SBM(n(2), P (2)), Jaccard index for results of cut improvement (again,
SimpleLocal and FlowImprove always have the same Jaccard index). (log. of) Run time
for the three cut improvement algorithms. Bottom row, left to right: Jaccard index for local
clustering (Again, the poor performance of the benchmark methods is a consequence of the
challenging SBM parameters chosen). (Log. of) run time for local clustering. Box plot of
Jaccard index for CP+RWT.

School Cluster Size of graph Size of Cluster Conductance
Johns Hopkins Class of 2009 5180 910 0.21

Rice Dorm. 203 4087 406 0.47
Simmons Class of 2009 1518 289 0.11
Colgate Class of 2006 3482 557 0.49

Table 1: Basic properties of the four social networks studied.

MNIST. This data set also consists of grayscale images of the handwritten digits 0–9466

although here there are n = 70 000 images, all of size 28× 28. There are approximately 7 000467

images of each digit.468

469

For each data set we form a k-NN graph using the procedure presented in [30] and described470

in detail in the supplementary material. The labeled data, Γa, was sampled uniformly at471

random from Ca, and each is of size g|Ca|. The accuracy of the classification given by ICP+RWT,472

for increasing g, is presented in Table 2. All results are averaged over twenty independent473

trials.474
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Figure 4: Precision and Recall for various local clustering algorithms on the social networks
described in Table 1. Clockwise from top left: Johns Hopkins, Rice, Colgate and Simmons.
Note that CP+RWT consistently achieves high precision without sacrificing recall.

Data Set
% Labeled Data

0.5 1 1.5 2 2.5

MNIST 96.41% 97.32% 97.44% 97.52% 97.50%
OptDigits 91.88% 95.47% 97.16% 98.06% 98.08%

Table 2: Classification accuracy, as a function of amount of labeled data, for ICP+RWT on two
well-studied benchmark data sets.

Method Labeled Accuracy

TVRF [54] 600 96.8%
ICP+RWT 700 97.32%

Multi-Class MBO with Auction Dynamics [30] 700 97.43%
ICP+RWT 1050 97.44%

Ladder Networks [42] 1000 99.16%

Table 3: Comparing ICP+RWT to other, state-of-the-art, semi-supervised methods on MNIST.
TVRF and Multi-Class MBO are graph-based, and have similar run times to ICP+RWT. The
Ladder Network approach uses a deep neural network and hence requires training (∼ 2 hours
on a GPU) before it can be used for classification.
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A. Restricted Isometry Property for Laplacians. In this section, we prove parts (1) and603

(2) of Theorem 3.3. We proceed via a series of lemmas.604

A.1. Restricted Isometry Property for Lin.605

Lemma A.1. Let G be any connected graph on n0 vertices, and let s < n0. Let λi := λi(L)606

denote the i-th smallest eigenvalue of L. Then:607

δs(L) ≤ max{1− λ2
2

(
dmin

dmax
− dmax

dmin

s

n0

)
, λ2

max − 1}.608

Proof. Recall that the s-Restricted Isometry Constant δs(L) is the smallest δ such that,609

for any v with ‖v‖0 ≤ s and ‖v‖2 = 1: (1 − δ) ≤ ‖Lv‖22 ≤ (1 + δ). The RHS bound is610

straightforward since611

‖Lv‖2 ≤ ‖L‖2‖v‖2 = λmax 1 = λmax.612

The LHS bound requires some work. Recall that L = I−D−1A. This matrix is not symmetric,613

but Lsym = I −D−1/2AD−1/2 is. By Lemma 2.3 L and Lsym have the same eigenvalues. Let614

w1, . . . ,wn0 be an orthonormal eigenbasis for Lsym. These eigenvectors are well studied (see,615

for example, [11]) and in particular w1 = 1√
vol(G)

D1/21 where 1 is the all-ones vector. Observe616

that:617

Lv = D−1/2
(
D1/2LD−1/2

)
D1/2v = D−1/2LsymD1/2v = D−1/2Lsymz,618

where z := D1/2v. It follows that:619

(A.1) ‖Lv‖2 = ‖D−1/2Lsymz‖2 ≥
1√
dmax

‖Lsymz‖2.620
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Express z in terms of the orthonormal basis {w1, . . . ,wn}, namely z =
∑n0

i=1 αiwi. Then:621

‖Lsymz‖22 = ‖
n0∑
i=1

αiλiwi‖22 = ‖
n0∑
i=2

αiλiwi‖22 ≥ λ2
2

(
n0∑
i=2

α2
i

)
622

623

and
∑n0

i=2 α
2
i = ‖z‖22 − α2

1. We now bound ‖z‖2 and α1.624

‖z‖22 = ‖D1/2v‖22 ≥
(√

dmin

)2
‖v‖22 = dmin625

while:626

α1 = 〈z,w1〉 = 〈D1/2v,
1√

vol(G)
D1/21〉 =

1√
vol(G)

〈v, D1〉 ≤ dmax√
vol(G)

〈v,1〉.627

We now use the assumptions on v. Specifically 〈v,1〉 ≤ ‖v‖1 ≤
√
s‖v‖2 =

√
s and so628

α1 ≤ dmax

√
s√

vol(G)
≤ dmax

√
s√

dminn0
=

dmax√
dmin

√
s

√
n0
.629

Returning to equation (A.1):630

‖Lv‖22 ≥
1

dmax
‖Lsymz‖22 ≥

1

dmax
λ2

2

(
dmin −

d2
max

dmin

s

n0

)
= λ2

2

(
dmin

dmax
− dmax

dmin

s

n0

)
.631

These yield the desired estimate.632

Theorem A.2. Let G ∼ Gn with Gn satisfying (A2) and (A4). Then for any γ ∈ (0, 1), we633

have that δγna(Lin) ≤ na
n1
γ + o(1).634

Proof. Firstly, observe that Lin is block diagonal with blocks LGCb
. For any block diagonal635

matrix we have that δs(L
in) = maxb δs(LGCb

). By Lemma A.1 we have that:636

(A.2) δs(LGCb
) ≤ max

b
{1− λ2(LGCb

)2

(
din

min

din
max

− din
max

din
min

s

nb

)
, λmax(LGCb

)2 − 1}.637

From assumption (A4) we get that:638

din
min

din
max

=
1− ε3
1 + ε3

= 1− o(1) and
din

max

din
min

=
1 + ε3
1− ε3

= 1 + o(1).639

From assumption (A2) we get that:640

λ2(LGCb
)2 ≥ (1− ε1)2 = 1− 2ε1 + ε21 = 1− o(1)641

and similarly λmax(LGCb
)2 − 1 = o(1). Plugging this in to (A.2) with s = γna gives:642

δγna(LGCb
) ≤ max

{
γna
nb

+ o(1), o(1)

}
≤ γna

n1
+ o(1) =⇒ δγna(Lin) ≤ γna

n1
+ o(1).643
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Remark A.3. We note that the RIP is only meaningful for δγna < 1. Hence the above644

theorem is only meaningful for γ < n1
na
− o(1). To avoid this complicating technicality, we645

henceforth assume that a = 1, i.e. that the target cluster is C1.646

A.2. Bounding the size of the Perturbation.647

Theorem A.4. Suppose that G ∼ Gn with Gn satisfying (A3). If L denotes the Laplacian648

of G and M := L− Lin then ‖M‖2 ≤ o(1).649

Proof. Letting δij denote the Kronecker delta symbol, observe that650

Lij := δij −
1

di
Aij = δij −

1

din
i + dout

i

(
Ain
ij +Aout

ij

)
.651

Earlier we defined ri = dout
i /din

i . We now use the following easily verifiable identity:652

1

din
i + dout

i

=
1

din
i

− 1

din
i

(
ri

ri + 1

)
.653

Thus:654

Lij = δij −
(

1

din
i

− 1

din
i

(
ri

ri + 1

))(
Ain
ij +Aout

ij

)
655

=

(
δij −

1

din
i

Ain
ij

)
− 1

din
i

Aout
ij +

1

din
i

(
ri

ri + 1

)(
Ain
ij +Aout

ij

)
656

= Lin
ij −

1

din
i

(
1− ri

ri + 1

)
Aout
ij +

1

din
i

(
ri

ri + 1

)
Ain
ij657

= Lin
ij −

1

din
i

(
1

ri + 1

)
Aout
ij +

1

din
i

(
ri

ri + 1

)
Ain
ij .658

659

That is, Mij = − 1
dini

(
1

ri+1

)
Aout
ij + 1

dini

(
ri
ri+1

)
Ain
ij . To bound the spectral norm we use Gersh-660

gorin’s disks, noting that Mii = 0 for all i:661

‖M‖2 = max
i
{|µi| : µi eigenvalue of M} ≤ max

i

∑
j

|Mij |662

= max
i

1

din
i

(
1

ri + 1

)∑
j

Aout
ij +

1

din
i

(
ri

ri + 1

)∑
j

Ain
ij663

= max
i

{
1

din
i

(
1

ri + 1

)
(dout
i ) +

1

din
i

(
ri

ri + 1

)
(din
i )

}
664

= max
i

{(
ri

ri + 1

)
+

(
ri

ri + 1

)}
≤ 2 max

i
ri ≤ 2ε2 = o(1)665

666

by (A3).667

Theorem A.5. Suppose that G ∼ Gn with Gn satisfying (A1)–(A4). If L denotes the Lapla-668

cian of G and |C14Ω| = εn1 with ε ≤ 0.13 then εy = o(1) and εγn1

L = o(1) for any γ ∈ (0, 1).669

670
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Proof. Recall that εy =
‖e‖2
‖yin‖2

and εγn1

L =
‖M‖(γn1)

2

‖Lin‖(γn1)
2

. Using the bound on the restricted671

isometry constant of Lin from Theorem A.2 we have:672

‖yin‖22 = ‖Lin (1W − 1U ) ‖22 ≥
(
1− δεn1(Lin)

)
‖1W − 1U‖22673

≥ (ε− o(1)) |C1 4 Ω| = (ε2 − o(1))n1674675

Thus ‖yin + zin‖2 ≥
√
ε2 − o(1)

√
n1. On the other hand:

‖e‖2 = ‖y − yin‖2 = ‖L1Ω − Lin1Ω‖2 = ‖M1Ω‖2 ≤ ‖M‖2‖1Ω‖2 ≤ o(1)
√

(1 + ε)n1

Thus:

εy =
‖e‖2
‖yin‖2

≤
o(1)

√
(1 + ε)

√
n1√

(ε2 − o(1))
√
n1

= o(1)

as ε is a constant, i.e. independent of n1. The bound on εγn1

L is easier. By Lemma 2.6 and
Property 3:

‖Lin‖(γn1)
2 ≥ σγn1−1(Lin) = λγn1−1(Lin) ≥ λk+1(Lin)

as long as γn1 ≥ k + 3, which is certainly the case for large enough n1. Because λ1(LGC1
) =

. . . = λ1(LGCk
) = 0 and the spectrum of Lin is the union of the spectra of the LGCa

, it follows
that:

λk+1

(
Lin
)

=
k

min
a=1

λ2(LGCa
) ≥ 1− ε1 = 1− o(1)

by (A1). By Theorem A.4 and Lemma 2.6 ‖M‖(γn1)
2 ≤ ‖M‖2 = o(1). It follows that:

εγn1

L =
‖M‖(γn1)

2

‖Lin‖(γn1)
2

=
o(1)

1− o(1)
= o(1).

A.3. Restricted Isometry Property for L. Finally, we extend from δs(L
in) to δs(L) using676

the following result of Herman and Strohmer (cf. [29]):677

Theorem A.6. Suppose that Φ = Φ̂ + M . Let δ̂s and δs denote the s restricted isometry678

constants of Φ̂ and Φ respectively. Then:679

δs ≤ (1 + δ̂s) (1 + εsΦ)2 − 1.680

Corollary A.7. Let L denote the Laplacian of G ∼ Gn satisfying (A1)–(A4). Then we have681

δγn1(L) ≤ γ + o(1) for any γ ∈ (0, 1).682

Proof. By Theorem A.6 we have that:

δγn1(L) ≤ (1 + δγn1(Lin))(1 + εγn1

L )2 − 1.

Substituting the values of δγn1(Lin) and εγn1

L from Theorems A.2 and A.5 yields the claim.683
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B. Proof of Theorem 4.1. Before proving this theorem we prove the a series of lemmas.684

We first note that Assumptions (A3) and (A4) easily allow us to bound vol(S), which will be685

required in the proof of Theorem 4.1:686

Lemma B.1. Suppose that Gn satisfies (A3) and (A4). For any S ⊂ V define volin(S) =687 ∑
i d

in
i . Then for any G ∈ Gn we have that:688

(1) (1− ε3)|S|dinav ≤ volin(S) ≤ (1 + ε3)|S|dinav; and (2) volin(S) ≤ vol(S) ≤ (1 + ε2)volin(S).689

Proof. For part (1), observe that:690

volin(S) =
∑
i∈S

din
i ≥ |S|din

min ≥ |S|(1− ε3)din
av,691

where the final inequality is from (A4). The bound volin(S) ≤ (1 + ε3)|S|din
av follows similarly.

For part (2) we note that by assumption (A3) di = din
i + dout

i ≤ din
i + ε2d

in
i = (1 + ε2)din

i .
Hence:

vol(S) =
∑
i∈S

di ≤
∑
i∈S

(1 + ε2)din
i = (1 + ε2)volin(S)

while the lower bound follows simply from the fact that di ≥ din
i .692

Lemma B.2. Let G ∈ Gn satisfies Assumptions (A1)–(A4). If NGC1
:= D

−1/2
GC1

AGC1
D
−1/2
GC1

and U,Γ ⊂ C1 then:∣∣∣∣〈D1/2
GC1

1U , N
t
GC1

D
1/2
GC1

1Γ〉 −
volin(U)volin(Γ)

volin(GC1)

∣∣∣∣ ≤ εt1√volin(U)volin(Γ)

Proof. From the proof of Lemma 2 in [14] (note that they use MGC1
instead of NGC1

) we
get that:∣∣∣∣〈D1/2

GC1
1U , N

t
GC1

D
1/2
GC1

1Γ〉 −
volin(U)volin(Γ)

volin(GC1)

∣∣∣∣ ≤ λn1−1(NGC1
)t
√

volin(U)volin(Γ)

By Lemma 2.3 and (A2) we get that λn1−1(NGC1
) = 1− λ2(LGC1

) ≤ ε1.693

Proof of Theorem 4.1. As in §3, let U = C1 \Ω and W = Ω \C1. Let |U | = un1, in which694

case |W | = (ε+u)n1. We shall prove that u = o(1). By definition, Ω is the set of the (1+ ε)n1695

largest entries in v(t) := P tD1Γ. Because U is not in Ω, but W is, we must have v
(t)
i ≤ v

(t)
j696

for every i ∈ U and j ∈W . We sum first over j ∈W and then sum over i ∈ U to obtain:697

v
(t)
i ≤ v

(t)
j =⇒ (ε+ u)n1v

(t)
i ≤

∑
j∈W

v
(t)
j =⇒ (ε+ u)n1

∑
i∈U

v
(t)
i ≤ un1

∑
j∈W

v
(t)
j .698

It follows that:699

(B.1)
∑
i∈U

v
(t)
i ≤

u

ε+ u

∑
j∈W

v
(t)
j ≤

∑
j∈W

v
(t)
j .700
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Looking ahead, we shall show that if inequality (B.1) holds then u = o(1).701

702

We first show that the term on the left-hand side of inequality B.1, i.e. the sum over the
vertices in C1 that were missed by Ω, is necessarily quite large. We do this by relating P to
P in, the random walk transition matrix for the graph Gin. Note that Gin is a disjoint union
of the graphs GCa . For every i ∈ [n], define qi := din

i /di. Observe that 1/di = qi/d
in
i and thus

D−1 = D−1
in Q where Q is the diagonal matrix with (i, i)-th entry qi. Now:

P = AD−1 =
(
Ain +Aout

)
D−1 = Ain

(
D−1

in Q
)

+AoutD−1 = P inQ+AoutD−1.

Observe that P , P inQ and AoutD−1 all have non-negative entries. It follows that for any
non-negative vector x: Px and P inQx are also non-negative and Px ≥ P inQx, where the
inequality should be interpreted componentwise. One can the extend the inequality by iterated
multiplication:

P tx ≥
(
P inQ

)t
x ≥ qtmin

(
P in
)t
x

and again the inequality should be interpreted componentwise. Now:703 ∑
i∈U

v
(t)
i = 〈1U ,v(t)〉 = 〈1U , P tD1Γ〉 ≥ 〈1U , qtmin

(
P in
)t
D1Γ〉704

= qtmin〈1U ,
(
P in
)t
Din1Γ〉 = qtmin〈1U ,

(
PGC1

)t
DGC1

1Γ〉,705
706

where the final line follows as U,Γ ⊂ C1.707

Our goal now is to bound the quantity 〈1U ,
(
PGC1

)t
DGC1

1Γ〉. One can rearrange the708

iterated matrix product slightly:709 (
PGC1

)t
=
(
AGC1

D−1
GC1

)t
= AGC1

D−1
GC1

AGC1
D−1
GC1

. . . AGC1
D−1
GC1

710

= D
1/2
GC1

(
D
−1/2
GC1

AGC1
D
−1/2
GC1

)(
D
−1/2
GC1

AGC1
D
−1/2
GC1

)
. . .
(
D
−1/2
GC1

AGC1
D
−1/2
GC1

)
D
−1/2
GC1

711

= D
1/2
GC1

N t
GC1

D
−1/2
GC1

,712
713

Hence, we have714

〈1U ,
(
PGC1

)t
DGC1

1Γ〉 = 〈1U ,
(
D

1/2
GC1

N t
GC1

D
−1/2
GC1

)
DGC1

1Γ〉715

= 〈D1/2
GC1

1U , N
t
GC1

D
1/2
GC1

1Γ〉 ≥
volin(U)volin(Γ)

volin(GC1)
− εt1

√
volin(U)volin(Γ),716

717

where the final inequality follows from Lemma B.2. Returning to (20):718

(B.2)
∑
i∈U

v
(t)
i ≥ q

t
min

(
volin(U)volin(Γ)

volin(GC1)
− εt1

√
volin(U)volin(Γ)

)
.719

We now consider the right hand side of (B.1), i.e. the sum over W . Because W ⊂ V \ C1 we
have that: ∑

j∈W
v

(t)
j ≤

∑
j∈V \C1

|v(t)
j | = ‖v

(t)
V \C1
‖1
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Thus it remains to bound ‖v(t)
V \C1
‖1. Observe that:

v
(t)
V \C1

= AinD−1v
(t−1)
V \C1

+
(
AoutD−1v(t−1)

)
V \C1

.

Clearly ∥∥∥∥(AoutD−1v(t−1)
)
V \C1

∥∥∥∥
1

≤
∥∥∥AoutD−1v(t−1)

∥∥∥
1

and so ‖v(t)
V \C1
‖1 ≤

‖AinD−1v
(t−1)
V \C1
‖1 + ‖AoutD−1v(t−1)‖1 ≤ ‖AinD−1‖1‖v(t−1)

V \C1
‖1 + ‖AoutD−1‖1‖v(t−1)‖1

Moreover: ‖AinD−1‖1 = maxj
∑

i

Ain
ij

dj
= maxj

dinj
dj
≤ 1 and similarly ‖AoutD−1‖1 =

maxj
doutj

dj
≤ maxj rj ≤ ε2 by assumption (A2). Thus ‖v(t)

V \C1
‖1 ≤ 1‖v(t−1)

V \C1
‖1 + ε2‖v(t−1)‖1.

Solving this recursion relation we obtain:

‖v(t)
V \C1
‖1 ≤ ε2

t−1∑
s=0

‖v(s)‖1 + ‖v(0)
V \C1
‖1

Because v(0) = D1Γ and Γ ⊂ C1, it follows that ‖v(0)
V \C1
‖1 = 0 and ‖v(0)‖1 = vol(Γ). Because720

‖P‖1 = 1 it follows that ‖v(s)‖1 = ‖v(0)‖1 = vol(Γ) for all s. Thus:721

(B.3)
∑
j∈W

v
(t)
j ≤ ‖v

(t)
V \C1
‖1 ≤ tε2vol(Γ) ≤ tε2(1 + ε2)volin(Γ),722

where the final inequality follows from Lemma B.1. Now let us put this all together. Returning723

to (B.1) with (B.2) and (B.3) in hand:724

qtmin

(
volin(U)volin(Γ)

volin(GC1)
− εt1

√
volin(U)volin(Γ)

)
≤ tε2(1 + ε2)volin(Γ)(B.4)725

=⇒qtmin

(
volin(U)

volin(GC1)
− εt1

√
volin(U)

volin(Γ)

)
≤ tε2(1 + ε2).(B.5)726

727

From Lemma B.1 and the assumptions on |U | and |Γ|:728

volin(U)

volin(GC1)
≥ (1− ε3)din

av|U |
(1 + ε3)din

av|C1|
=

(1− ε3)un1

(1 + ε3)n1
=

1− ε3
1 + ε3

u729

volin(U)

volin(Γ)
≤ (1 + ε3)din

av|U |
(1− ε3)din

av|Γ|
≤ (1 + ε3)

(1− ε3)

u

gε2t−1
1

730

731

Finally because qi = 1− ri it follows that qmin ≥ 1− ε2. Putting this all into equation (B.5):

(1− ε2)t

(
1− ε3
1 + ε3

u− ε1/21

√
(1 + ε3)

(1− ε3)

u

g

)
≤ tε2(1 + ε2)
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At this stage it is illuminating to use the assumption that ε1, ε2, ε3 = o(1). Observe that:

1− o(1)

1 + o(1)
= 1− o(1),

1 + o(1)

1− o(1)
= 1 + o(1), and (1− o(1))t = 1− o(1)

where the final equality follows as t is constant with respect to n. Hence:

(1− o(1))u− o(
√
u) ≤ o(1) =⇒ u ≤ o(1) + o(u).

This is only possible if u = o(1). It follows that |C14Ω| = |U |+|W | = (ε+2u)n1 = (ε+o(1))n1732

as stated.733

C. Showing the SBM satisfies our assumptions. Let us verify that SBM(n, P ) satisfies734

the assumptions (A1)–(A4), under the hypotheses of Theorem 9.3. Recall that our assumption735

is Pab = (β+o(1)) log(n)/n for a 6= b, and that Paa = ω log(n)/na for a = 1, . . . , k. As we also736

assume that n1 = O(n)→∞, and n1 is the size of the smallest cluster, we get that k = O(1),737

i.e. (A1) holds.738

Theorem C.1 (see [7, 8]). Let G ∼ ER(n, q) with q = (β + o(1)) log(n)/n. There exist a739

function η(β) satisfying 0 < η(β) < 1 and limβ→∞ η(β) = 0 such that740

dmax(G) = (1 + η(β))β log n+ o(1) ≤ 2β log(n) + o(1) a.s.741

Theorem C.2 (see [23], Theorem 3.4 (ii)). If G ∼ ER(na, p) with pa = ω log(n)/na where742

ω →∞, then dmin(G) = (1− o(1))ω log(n) and dmax(G) = (1 + o(1))ω log(n) a.s.743

Theorem C.3. Suppose that G ∼ ER(na, p) with p = ω log(n)/na where ω →∞. Then we744

have almost surely |λi(L)− 1| = O(ω−1/2) = o(1) for all i > 1.745

Proof. Theorem 4 in [15] shows that

|λi(Lsym)− 1| ≤

√
6 log(2na)

ω log(n)
.

By Lemma 2.3 Lsym and L have the same spectrum. The result follows as log(n) ≥ log(na)746

As each GCa ∼ ER(na, p), it follows from Theorem C.3 that:747

Corollary C.4. SBM(n, P ) with parameters as in Theorem 9.3 satisfies assumption (A2)748

with ε1 = O(ω−1/2).749

We now discuss the remaining two assumptions. Let Gin and Gout be as in §2. If G ∼750

SBM(n, P ) then Gin consists of k disjoint Erdős - Rènyi graphs, GCa ∼ ER(na, p). The graph751

Gout is not an Erdős - Rènyi graph, as there is zero probability of it containing an edge between752

two vertices in the same cluster (because we have removed them). However, we can profitably753

think of Gout as a subgraph of some G̃out ∼ ER(n, q). In particular, any upper bounds on the754

degrees of vertices in G̃out are automatically bounds on the degrees in Gout. Thus, we have755

the following corollaries of Theorems C.2 and C.1:756

Corollary C.5. If G ∼ SBM(n, P ) with parameters as in Theorem 9.3 then doutmax(G) ≤757

2β log n+ o(1) a.s.758
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Proof. Consider Gout as a subgraph of G̃out ∼ ER(n, q) and apply Theorem C.1759

Corollary C.6. If G ∼ SBM(n, P ) with parameters as in Theorem 9.3, then dinmin(G) ≥760

(1− o(1))ω log(n) and dinmax(G) ≤ (1 + o(1))ω log(n) a.s.761

Proof. If i ∈ Ca then din
i = di(GCa), where GCa ∼ ER(na, p). Clearly:762

din
max(G) = max

i
din
i = max

a
dmax(GCa)763

By Theorem C.2, dmax(Ga) = (1+o(1))ω log(n) a.s. Note that the dmax(GCa) are independent764

random variables, and since we are taking a maximum over k = O(1) of them, it follows that765

maxa dmax(GCa) ≤ (1 + o(1))ω log(n) a.s. too. The proof for din
min(G) is similar.766

Corollary C.7. SBM(n, P ) with parameters as in Theorem 9.3 satisfies assumption (A3)767

with ε2 = O(ω−1).768

Proof. First of all, it is clear that for any i, dout
i /din

i ≤ dout
max/d

in
min. From Corollaries C.5769

and C.6 we have:770

dout
max

din
min

≤ 2β log n+ o(1)

(1− o(1))ω log(n)
=

2β + o(1)

(1− o(1))ω
= O(ω−1).771

772

Corollary C.8. SBM(n, P ) with parameters as in Theorem 9.3 satisfies assumption (A4).773

Proof. Observe that din
av = ω log(n). The result then follows from Corollary C.6.774
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