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Abstract

We give a new constructive method for finding compactly supported pre-
wavelets in L2 spaces in the multivariate setting. This method works for any
dimensional space. When this method is generalized to the Sobolev space setting,
it produces a pre-Riesz basis for Hs(IRd) which can be useful for applications.
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1 Introduction

In the last fifteen years, there are many methods available to construct pre-
wavelets in L2 space in the literature. We refer the reader to [Riemenschneider
and Shen’92], [de Boor, Ron, and DeVore’93], [Chui, Stöckler, and Ward’92], [Jia
and Micchelli’92], [Kotyczka and Oswald’95], [Lorentz and Oswald’97], [Hong and
Wu’99], [Floater and Quak’99], [Buhmann, Davydov, and Goodman’01], [Yu, Shu,
and Zhu’00], and [Han and Shen’04]. These generate an active and healthy re-
search atmosphere to promote the theory of wavelets and their applications in
various areas such as geometric design (cf. [Han and Shen’04]). Several construc-
tions mentioned above have a restriction on the dimension, i.e., d ≤ 3. Some of
them are ad hoc methods which work only for piecewise linear splines. Although
the construction given in [de Boor, Ron, and DeVore’93] is a simple and general
method, there are two kinds of conditions to check if the constructed functions
span a L2 stable basis. When applying to box spline functions, one condition re-
quires that the direction set of a box spline satisfy a ”parity” property which
excludes the continuous piecewise linear box spline. The other one is similar to the
one in [Riemenschneider and Shen’92] which works for d ≤ 3 only. In [Jia and Mic-
chelli’92], a general method is given to obtain compactly supported prewavelets
in the multivariate setting. However, the method failed to be constructive due to
the fact that it uses the well-known Quillen-Suslin theorem. The construction of
pre-wavelets in Sobolev spaces was attempted. The results have been negative so
far. Indeed, in [Lorentz and Oswald’97], the nonexistence of compactly supported
box spline prewavelets in Sobolev spaces was proved. In a recent paper [Jia, Zhou,
Wang’03], the researchers constructed such wavelet functions whose derivatives
generate a Riesz basis in L2 norm instead of the prewavelets under a Sobolev
norm. Although their Riesz wavelets have very short support, the orthogonalities
among translations and/or among dilations are lost.

In this paper, I shall provide a new constructive method which yields com-
pactly supported prewavelets in L2(IR

d) for any d ≥ 1. A simple condition on the
mask of refinable functions is given to ensure that the functions obtained from our
constructive method generate a L2 stable basis. The new construction improves
the existing ones in various senses which will be detailed later. The method has an
immediate generalization in the Sobolev setting. Thus I formula the constructive
procedure in Sobolev spaces. However the construction produces only a pre-Riesz
basis in Hs(IRd) for s > 0 if one refinable function is used to generate a multireso-
lution approximation of Hs(IRd). This will give another reason for the nonexistence
of prewavelets in Sobolev space as mentioned above. However, such a pre-Riesz
basis can be modified to get a Riesz basis for the Sobolev space by sacrificing
the compactly supportedness of prewavelets. Nevertheless, a pre-Riesz basis can
be useful on its own if the function to be approximated satisfies an additional
property.

Next let us introduce some necessary notation and definitions to explain the
concept for prewavelets. Let s be a nonnegative real number. When s is an integer,
we set

Hs(IRd) = {f, f (k) ∈ L2(IR
d), 0 ≤ k ≤ s}
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to be the usual Sobolev space which is equipped with the following inner product

〈f, g〉s :=
1

(2π)d

∫

IRd
(1 + |ω|2)sf̂(ω)ĝ(ω)dω,

where f̂ denotes the usual Fourier transform of f . We shall use ‖f‖s :=
√
〈f, f〉s

to denote the norm for Hs(IRd). When s is not an integer, we may simply let

Hs(IRd) := {f, 〈f, f〉s <∞}

be the standard Sobolev space. Certainly, when s is an integer, we may use the
following equivalent form of inner product

〈f, g〉s ≡
∑

|α|≤s

∫

IRd
Dαf(x)Dαg(x)dx,

where α ∈ ZZd
+ is a multi-integer, Dα is a standard partial derivative with order

α, and |α| is the sum of all components of α. For any sequence {ck, k ∈ ZZd}, c is
square summable if

∑

m∈ZZd

|cm|2 <∞. In this case, let

‖{ck, k ∈ ZZd}‖2 := (
∑

m∈ZZd

|cm|2)1/2.

We now need the definition of multi-resolution approximation of Hs(IRd). It
is a nonstationary multiresolution analysis (cf. [Cohen and Dyn’97] for its basic
properties).

Definition 1.1. A multi-resolution approximation (MRA) of Hs(IRd) is a se-
quence of subspaces Vj, j ∈ ZZ of Hs(IRd) such that

(i) Vj ⊂ Vj+1;

(ii)
∞⋃

j=−∞

Vj is dense in Hs(IRd);

(iii)
∞⋂

j=−∞

Vj = {0};

(iv) for every j ∈ ZZ, there is a function φj ∈ Vj such that the integer translates,

φj(2
jx−m),m ∈ ZZd form a Riesz basis for Vj = span{2jd/2φj(2

jx−m),m ∈
ZZd}, i.e., there exist two positive numbers αj and βj such that

αj‖{cm,m ∈ ZZd}‖2
2 ≤ ‖

∑

m∈ZZd

cm2jd/2φj(2
jx−m)‖2

2 ≤ βj‖{cm,m ∈ ZZd}‖2
2,

for all square summable sequence {cm,m ∈ ZZd}.
It is easy to see the following

αj = min
ω∈[0,2π]d

∑

m∈ZZd

(1 + 22j(ω + 2mπ)2)s|φ̂j(ω + 2mπ)|2 (1)
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and
βj = max

ω∈[0,2π]d

∑

m∈ZZd

(1 + 22j(ω + 2mπ)2)s|φ̂j(ω + 2mπ)|2. (2)

Let {φj , j ∈ ZZ} be a sequence of refinable functions, i.e., φj =
∑

k∈ZZ cj,kφj+1(·−k)
for some coefficients cj,k for all j ∈ ZZ. We say {φj , j ∈ ZZ} generates a multi-
resolution approximation (MRA) for a Sobolev space Hs(IRd) if letting Vj :=
closureHs(IRd){φj(2

jx−m), m ∈ ZZd} for j ∈ ZZ, then the sequence {Vj , j ∈ ZZ}
is an MRA of Hs(IRd).

Definition 1.2. A collection ψj,k, k = 2, · · · , 2d of functions in Hs(IRd) satisfying
the following five properties are called prewavelets:

1◦ the closure Wj,k of the linear span of integer translates of ψj,k is orthogonal
to the closure Vj of the linear span of integer translates of φj;

2◦ Wj,k is orthogonal each other among k = 2, · · · , 2d,

3◦ Vj+1 is the direct sum Vj and Wj,k, k = 2, · · · , 2d;

4◦ the integer translates of ψj,k form a Riesz basis for Wj,k;

5◦ the collection {ψj,k(2
jx − m),m ∈ ZZd, j ∈ ZZ, k = 2, · · · , 2d} form a Riesz

basis for Hs(IRd). That is, the collection is linearly independent, the linear
combinations of the elements in the collection are dense in Hs(IRd), and there
exist two positive constants A and B such that

A
∑

j∈ZZ

2d∑

k=2

∑

m∈ZZd

|cj,k,m|2 ≤ ‖
∑

j∈ZZ

2d∑

k=2

∑

m∈ZZd

cj,k,m2jd/2ψj,k(2
j · −m)‖2

s

≤ B
∑

j∈ZZ

2d∑

k=2

∑

m∈ZZd

|cj,k,m|2

for all square-summable sequence {cj,k,m, j ∈ ZZ, k = 2, · · · , 2d,m ∈ ZZd}.
In the remaining of the paper, we shall also use the following definition of pre-

Riesz basis (cf. [Bastin and Boigelot’98]). It is also called Bessel system (cf. [Ron
and Shen’97]).

Definition 1.3. The collection {ψj,k, j, k ∈ ZZ} in Hs(IRd) is a pre-Riesz basis if
the collection is a basis for Hs(IRd) satisfying 1◦ −−4◦ and there exists a positive
constant B such that

‖
∑

j∈ZZ

2d∑

k=2

∑

m∈ZZd

cj,k,m2jd/2ψj,k(2
j · −m)‖2

s ≤ B
∑

j∈ZZ

2d∑

k=2

∑

m∈ZZd

|cj,k,m|2

for any square-summable sequence {cj,k,m, j ∈ ZZ, k = 2, · · · , 2d,m ∈ ZZd}.
Let us point out that a pre-Riesz basis for Hs(IRd) can be useful. First for any
square-summable sequence {cj,k,m, j ∈ ZZ,m ∈ ZZd, k = 2, · · · , 2d},

f =
∑

j∈ZZ

2d∑

k=2

∑

m∈ZZd

cj,k,m2jd/2ψj,k(2
j · −m)
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is in Hs(IRd) by (6◦).
Secondly, we can use a pre-Riesz basis to approximate functions f ∈ Hs(IRd)

in the following sense. Since it is a basis, any f ∈ Hs(IRd) can be written as a
linear combination of 2jd/2ψj,k(2

j · −m) with coefficients cj,k,m. If the coefficient
sequence {cj,k,m, j ∈ ZZ,m ∈ ZZd, k = 2, · · · , 2d} of f is square-summable, then we
can use the pre-Riesz basis like a Riesz basis to approximate f . More precisely, we
have

‖f −
N∑

j=−N

2d∑

k=2

∑

m∈ZZd

|m|≤M

cj,k,m2jd/2ψj,k(2
j · −m)‖2

s

≤ B
∑

|j|>N

2d∑

k=2

∑

m∈ZZd

|m|>M

|cj,k,m|2 −→ 0

as N → +∞ and M → +∞.
Thirdly, coefficients cj,k,m of a function f ∈ Hs(IRs) can be computed by solving

the following discrete convolution equation

〈f, 2jd/2ψj,k(2
j · −m)〉s =

∑

n∈ZZd

cj,k,n〈2jd/2ψj,k(2
j · −n), 2jd/2ψj,k(2

j · −m)〉s

=
∑

n∈ZZd

cj,k,n〈2jd/2ψj,k(2
j ·), 2jd/2ψj,k(2

j · −m+ n)〉s

for m ∈ ZZd by the orthogonality between levels Vj and among groups Wj,k due to
1◦, 2◦, and 3◦ above. The solution of the discrete convolution equation is guaranteed
by 4◦.

Fourthly, we can use a pre-Riesz basis for data compression like any prewavelets
and wavelets. More precisely, suppose that we have an approximation IPjf of
f ∈ Hs(IRd) in Vj . Then we decompose it in several (finitely many) levels:

IPjf = IPj−1f +
2d∑

k=2

∑

m∈ZZd

cj−1,k,m2(j−1)d/2ψj−1,k(2
j−1 · −m)

= · · ·

= IPj−`f +
∑̀

n=1

2d∑

k=2

∑

m∈ZZd

cj−n,k,m2(j−n)d/2ψj−n,k(2
j−n · −m).

We threshold small coefficients off from the collection {cj−n,k,m, n = 1, · · · , `, k =
2, · · · , 2d, k ∈ ZZs}. That is, for a small number ε > 0, if |cj−n,k,m| ≤ ε, we set it to
be zero. Heuristically, since ψj,k,m behaviors like a wave, if f is a smooth function
and does not have many waves or variations, then many of the coefficients are
small. Hence, by thresholding them to be zero, we have a new representation of
IPjf with less number of nonzero coefficients than that in IPjf .

Finally, suppose that we use Vj to approximate the solution of the following
partial differential equation (PDE) (a Cauchy problem and in the weak formula-
tion)

〈u, v〉s = 〈f, v〉0, ∀v ∈ Hs(IRd)
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with appropriate boundary conditions at infinity which are not included here just
for simplicity, where 〈·, ·〉s is the bilinear form associated with the PDE. Let Af,j ∈
Vj be an approximation of u in Vj satisfying

〈Af,j , 2
jd/2φ(2j · −m)〉s = 〈f, 2jd/2φ(2j · −m)〉,

for all m ∈ ZZd. Suppose that Af,j0 has been computed for an integer j0. To
compute a better approximation Af,j0+1 in Vj0+1, we may use the integer translates

of the functions ψj0,k, k = 2, · · · , 2d to find Bf,j0 ∈ ⊕2d

k=2Wj0,k such that Af,j0 +
Bf,j0 = Af,j0+1, even though integer translates of ψj,k’s form a pre-Riesz basis
for Hs(IRd) satisfying 1◦ − −4◦ and 6◦. By 3◦, we know that Bf,j0 can be stably

computed. Indeed, letting Bf,j0 =
∑2d

k=2

∑
m∈ZZd cj0,k,m2j0d/2ψj0,k(2

j0 · −m), the
coefficients cj0,k,m are the solution of the discrete convolution equations

∑

n∈ZZd

cj0,k,n〈2j0d/2ψj0,k(2
j0 ·), 2j0d/2ψj0,k(2

j0 ·−m+n)〉s = 〈f, 2j0d/2ψj0,k(2
j0 ·−m)〉0

(3)
for k = 2, · · · , 2d since

〈f, 2j0d/2ψj0,k(2
j0 · −m)〉 = 〈Af,j0+1, 2

j0d/2ψj0,k(2
j0 · −m)〉s

= 〈Af,j0 , 2
j0d/2ψj0,k(2

j0 · −m)〉s + 〈Bf,j0, 2
j0d/2ψj0,k(2

j0 · −m)〉s
=

∑

n∈ZZd

cj0,k,n〈2j0d/2ψj0,k(2
j0 ·), 2j0d/2ψj0,k(2

j0 · −m+ n)〉s

by the orthogonalities ψj0,k ⊥ Af,j and ψj0,k ⊥ ψj0,k′ for k′ 6= k, k′ = 2, · · · , 2d and

〈f, 2j0d/2φj0(2
j0 · −m)〉 = 〈Af,j0+1, 2

j0d/2φj0(2
j0 · −m)〉s

= 〈Af,j0 , 2
j0d/2φj0(2

j0 · −m)〉s

which is already valid by the computation of Af,j0.
With our pre-Riesz basis, we solve several subsystems (3) to get Bf,j0 and

add to the previous solution Af,j0 to obtain Af,j0+1. This is completely different
than the finite element method which solves a whole new system of equations in
Vj0+1 and throws off the previous solution Af,j0 completely. This method is also
different than a multi-grid method where the solution Af,j0 is used to get a good
initial guess for solving Af,j0+1 iteratively. Certainly, we can continue applying
this method to get a multi-level method. However, since the ψj,k are only a pre-
Riesz basis, the Riesz constants are deteriorate as j → +∞. The accuracy of the
computation in (3) will lose eventually as j → +∞. Nevertheless, in practice, we
are only interested in Af,j0+j for some small integer j, e.g., j = 1 or j = 2. For
example, with the given computer resource, we can compute Af,j0, but not Af,j0+1.
Since the subsystems in (3) have the same size of the linear system as that of Af,j0,
we solve (3) and add the sub-solutions together to get Af,j0+1.

These account for the usefulness of the pre-Riesz bases. The rest of the paper
is organized as follows. We first need a necessary and sufficient condition for the
orthogonality between two subspaces of Vj+1 in any Sobolev space. Such orthogonal
conditions can be found in, e.g., [Lorentz and Oswald’97]. For convenience, we
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include a short proof. In §3, we suppose that φj generate an MRA for a Sobolev
space. We then compute 2d compactly supported functions in Vj+1 which are
orthogonal to Vj under a condition on φ. Among them, we show that there are
2d − 1 of them which are linearly independent under another condition. These two
conditions will be detailed later. Then we use a technique like the Gram-Schmidt
orthonormalization procedure to obtain the desired orthogonality amongWj,k. The
construction yields prewavelets in L2(IR

d) or a pre-Riesz basis forHs(IRd). In §4 we
shall use multivariate box splines to verify that many box spline functions satisfy
these two conditions. Two examples of B-spline prewavelets and one example of
box spline prewavelets are given to illustrate the constructive procedure. In §5 we
continue to analyse the Riesz bound property. When s > 0, we show that using
one refinable function φ, the functions so constructed do not satisfy the Riesz
bound condition. This explains another reason for the nonexistence of compactly
supported prewavelets. We shall explain how to modify one scaling function into
nonstationary scaling functions so that the functions so constructed in Section 3
are indeed prewavelets. Also in this section, we show many box spline functions
can be used to construct pre-Riesz bases for Sobolev spaces and an example of
orthogonal decomposition in H1(IR2) will be demonstrated.

2 Preliminaries

In this paper, we assume that there exists a sequence of functions φj which generate
an MRA of Hs(IRd). Suppose that all φj are compactly supported and the mask
Pj are defined by

φ̂j(2ω) = Pj(z)φ̂j+1(ω),

where φ̂j denotes the Fourier transform of φj and similar for φ̂j+1. Here z =
exp(iω). Note that Pj(z) is a Laurent polynomial for each j ∈ ZZ.

We are looking for compactly supported functions ψj,k, k = 2, · · · , 2d in Vj+1

such that

Vj+1 = Vj

⊕ 2d⊕

k=2

Wj,k,

where Wj,k is the closure of the linear span of integer translates of ψj,k(2
jx −

m),m ∈ ZZd; that is,

Wj,k := closureHs(IRd){ψj,k(2
jx−m), m ∈ ZZd}

such that φj(·−m), ψj,k(·−m),m ∈ ZZd, k = 2, · · · , 2d form a stable basis for Vj+1.
To do so, we first introduce a Laurent polynomial

Φs
j(z) :=

∑

m∈ZZd

〈2dj/2φj(2
jx), 2dj/2φj(2

jx−m)〉szm.

This function Φs
j may be called the generalized Euler-Frobenius polynomial since

when s = 0, j = 0, and φj is a B-spline function, Φs
j is the well-known Euler-

Frobenius polynomial. When Φs
j is independent of j, we shall denote it by Φs.

When s = 0, we let Φ = Φ0.
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Next we need a necessary and sufficient condition for the orthogonality. Writing

2dj/2gj,k(2
jx) =

∑

m∈ZZd

cj,k,m2d(j+1)/2φj+1(2
j+1x−m) ∈ Vj+1,

and

Gj,k(z) =
1

2d/2

∑

m∈ZZd

cj,k,mz
m,

the Fourier transforms of gj,k and φj+1 are related by

ĝj,k(2ω) = Gj,k(z)φ̂j+1(ω).

Let
Gj,k = closureHs(IRd){gj,k(2

jx−m), m ∈ ZZd}
be the closure of the linear span of integer translates of gj,k.

In this paper we introduce a special operator E which maps any Laurent poly-
nomial f into such a Laurent polynomial which contains all the even index terms
of f . For example, when d = 2 and z = (z1, z2),

E(f(z)) =
1

4
(f(z1, z2) + f(−z1, z2) + f(z1,−z2) + f(−z1,−z2)).

Then we have the following

Theorem 2.1. Gj,k is orthogonal to Gj,k′ for k′ 6= k if and only if

E(Gj,k(z)Gj,k′(z)Φs
j+1(z)) = 0. (4)

Proof: The orthogonality condition Gj,k ⊥ Gj,k′ if and only if

〈2dj/2gj,k(2
jx), 2dj/2gj,k′(2jx−m)〉s = 0, ∀m ∈ ZZd.

These are equivalent to the following one condition

∑

m∈ZZd

〈2dj/2gj,k(2
jx), 2dj/2gj,k′(2jx−m)〉sz2m = 0, ∀z ∈ T d,

where T d denotes the torus in Cd. Expanding the left-hand side of the above
equation, we have

∑

m∈ZZd

∑

`∈ZZd

∑

n∈ZZd

cj,k,`cj,k′,n×

〈2d(j+1)/2φj+1(2
j+1x− `), 2d(j+1)/2φj+1(2

j+1x− 2m− n)〉sz2m

=
∑

m∈ZZd

∑

`∈ZZd

∑

n∈ZZd

cj,k,`cj,k′,n

〈2d(j+1)/2φj+1(2
j+1x), 2d(j+1)/2φj+1(2

j+1x− 2m− n+ `)〉sz2m. (5)

On the other hand, we have

Gj,k(z)Gj,k′(z)Φs
j+1(z) =

∑

m∈ZZd

∑

`∈ZZd

∑

n∈ZZd

cj,k,`cj,k′,n×
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〈2d(j+1)/2φj+1(2
j+1x), 2d(j+1)/2φj+1(2

j+1x−m)〉szm+`−n.

Thus, applying the operator E, we have

E(Gj,k(z)Gj,k′(z)Φs
j+1(z))

=
∑

`,m,n∈ZZd

m+`−n=2i,i∈ZZd

cj,k,`cj,k′,n×

〈2d(j+1)/2φj+1(2
j+1x), 2d(j+1)/2φj+1(2

j+1x−m)〉sz2i

=
∑

i∈ZZd

∑

`∈ZZd

∑

n∈ZZd

cj,k,`cj,k′,n×

〈2d(j+1)/2φj+1(2
j+1x), 2d(j+1)/2φj+1(2

j+1x− 2i− n+ `)〉sz2i. (6)

Comparing with (5) and (6), we conclude that (4) is necessary and sufficient.
This completes the proof.

3 Our Constructive Procedure

We divide the construction of compactly supported pre-wavelets into two steps.
The first step is to construct compactly supported gj,k ∈ Vj+1, k = 1, · · · , 2d such
that the closure Gj,k of the linear span of integer translates gj,k is orthogonal to Vj

for each k. The second step is to use a technique like Gram-Schmidt orthonormal
procedure to orthogonalize these gj,k’s. Such a procedure is standard in the liter-
ature on constructive theory of wavelets and has been used by many researchers
in their papers, e.g., in [Jia and Micchelli’92].

To be more precise, we let {n1, · · · , n2d} = {0, 1}d with nk ∈ ZZ2d

and gj,k ∈
Vj+1 satisfy

gj,k(2
jx−m) ⊥ Vj , m ∈ ZZd

and

2d(j+1)/2φj+1(2
j+1x− nk)

=
∑

m∈ZZd

(
aj,k,m2dj/2φj(2

jx−m) + bj,k,m2dj/2gj,k(2
jx−m)

)

for each k ∈ {1, · · · , 2d}. That is, we want to have Gj,k is orthogonal to Vj and

Vj+1 = Vj
⊕(

Gj,1 + · · · + Gj,2d

)
. In terms of Fourier transform, the above equation

can be rewritten as
1

2d/2
einkω/2j+1

φ̂j+1(
ω

2j+1
) = Aj,k(

ω

2j
)φ̂j(

ω

2j
) +Bj,k(

ω

2j
)ĝj,k(

ω

2j
)

= Aj,k(
ω

2j
)Pj(z

1/2j

)φ̂j+1(
ω

2j+1
) +Bj,k(

ω

2j
)Gj,k(z

1

2j )φ̂j+1(
ω

2j+1
),

where Aj,k(ω) =
∑

m∈ZZd

2jd/2aj,k,me
imω and Bj,k(ω) =

∑

m∈ZZd

2jd/2bj,k,me
imω. It fol-

lows that

Aj,k(2ω)Pj(z) +Bj,k(2ω)Gj,k(z) =
einkω

2d/2
, (7)

for k = 1, · · · , 2d. Using Theorem 2.1, the solution of Aj,k, Bj,k and Gj,k can be
easily found as shown in the following.
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Lemma 3.1. Suppose that E(Pj(z)Pj(z)Φ
s
j+1(z)) 6= 0 for all z ∈ T d. Let

Aj,k(2ω) : =
E(einkωPj(z)Φ

s
j+1(z))

E(Pj(z)Pj(z)Φ
s
j+1(z))

,

Bj,k(2ω) : =
1

E(Pj(ω)Pj(z)Φs
j+1(z))

,

Gj,k(z) : =
1

2d/2
E(Pj(z)Pj(z)Φ

s
j+1(z))e

inkω − 1

2d/2
E(einkωPj(z)Φ

s
j+1(z))Pj(z).

Then Gj,k is orthogonal to Vj for all k = 1, · · · , 2d and

Vj+1 = Vj

⊕(
Gj,1 + · · · + Gj,2d

)
.

Proof: Using the assumption of Theorem 3.1, we know that Aj,k, Bj,k are well-
definited. It is clear that (7) is satisfied. Thus, Vj+1 are the direct sum of Vj and
Gj,k, k = 1, · · · , 2d. To see Gj,k is orthogonal to Vj , we use Theorem 2.1 to see
E(Gj,k(z)Pj(z)Φ

s
j+1(z)) = 0. Since Bj,k(2ω) 6= 0 and

E(Bj,k(2ω)Gj,k(z)Pj(z)Φ
s
j+1(z)) = Bj,k(2ω)E(Gj,k(z)Pj(z)Φ

s
j+1(z)),

we may consider

E(Bj,k(2ω)Gj,k(z)Pj(z)Φ
s
j+1(z))

= E((einkω −Aj,k(2ω)Pj(z))Pj(z)Φ
s
j+1(z)) = 0

by the construction of Aj,k. This completes the proof.
To know more about E(Pj(ω)Pj(ω)Φs

j+1(z)), we have the following result.
When s = 0, the result is known (cf. [Chui, Stöckler and Ward’92]).

Lemma 3.2. For any nonnegative number s, we have

E(Pj(z)Pj(z)Φ
s
j+1(z)) = 2−dΦs

j(z
2).

Proof: We first follow the ideas in [Chui’92, p. 47] to get

Φs
j(z) =

∑

m∈ZZd

〈2jd/2φj(2
j ·), 2jd/2φj(2

j · −m)〉seimω

=
∑

m∈ZZd

(1 + 22j |ω + 2mπ|2)s|φ̂j(ω + 2mπ)|2

by using the Poisson summation formula. It follows that

Pj(z)Pj(z)Φ
s
j+1(z)

=
∑

m∈ZZd

Pj(z)Pj(z)(1 + 22j+2|ω + 2mπ|2)s|φ̂j+1(ω + 2mπ)|2

=
∑

m∈ZZd

(1 + 22j+2|ω + 2mπ|2)s|Pj(z)φ̂j+1(ω + 2mπ)|2
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=
∑

m∈ZZd

(1 + 22j |2ω + 4mπ|2)s|φ̂j(2ω + 4mπ)|2.

Furthermore, we have

E(Pj(z)Pj(z)Φ
s
j+1(z))

= 2−d
∑

n∈{0,1}d

∑

m∈ZZd

(1 + 22j |2ω + 2nπ + 4mπ|2)s|φ̂j(2ω + 2nπ + 4mπ)|2

= 2−d
∑

m∈ZZd

(1 + 22j |2ω + 2mπ|2)s|φ̂j(2ω + 2mπ)|2

= 2−dΦs
j(z

2)

by using the Poisson summation formula again. This completes the proof.
Thus, to ensure the condition in Theorem 3.1, we only check if Φs

j(z
2) 6= 0.

Next we show that gj,k, k = 1, · · · , 2d are linearly dependent in the sense of (9),
but 2d − 1 of them are linearly independent if Pj satisfies another condition. Let
us write Pj in its polyphase form, i.e.,

Pj(z) =
2d∑

k=1

einkωPj,k(z
2), (8)

where nk, k = 1, · · · , 2d denote the multi-integers in the collection {0, 1}d.

Theorem 3.3. Suppose that Φs
j(z

2) 6= 0. Suppose that there exists an integer k

such that Pj,k(z
2) 6= 0 for all z on the torus T d. For simplicity, let us assume that

Pj,1(z
2) 6= 0 for all z on T d. Then the integer translates of gj,k, k = 2, · · · , 2d form

a Riesz basis for Vj+1 	 Vj . Hence it follows that there exist a non-zero square
summable sequence {fj,k,m, k = 2, · · · , 2d,m ∈ ZZd} such that

gj,1(x) =
∑

m∈ZZd

2d∑

k=2

fj,k,mgj,k(x−m). (9)

Proof: To show that integer translates of gj,k, k = 2, · · · , 2d form a Riesz basis for
Vj+1	Vj, we will show that integer translates of φj together with integer translates
of gj,k, k = 2, · · · , 2d form a Riesz basis for Vj+1. Recall that integer translates of
φj+1 form a Riesz basis for Vj+1. By using Lemma 3.4 below we need to show that
the following matrix is nonsingular:




Pj((−1)n`z)

E(Pj(z)Pj(z)Φ
s
j+1(z))e

in2(ω+n`π) − E(ein2(ω+n`π)Pj(z)Φ
s
j+1(z))Pj((−1)n`z)

...

E(Pj(z)Pj(z)Φ
s
j+1(z))e

in
2d (ω+n`π) − E(ein2d (ω+n`π)Pj(z)Φ

s
j+1(z))Pj((−1)n`z)




`=1,···,2d

.

Let us simplify the above matrix by row reductions. We first multiply

E(ein`(ω+n`π)Pj(z)Φ
s
j+1(z))
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to the first row and add the resulting first row to the `th row for ` = 2, · · · , 2d.
Next we simply factor E(Pj(z)Pj(z)Φ

s
j+1(z)) out of each row from the second row

to the last row. After the row reductions and factorization, the resulting matrix is




Pj((−1)n`z)

ein2(ω+n`π)

...

ein2d (ω+n`π)




`=1,···,2d

. (10)

Thus we need to verify that the above new matrix is nonsingular. Using the
polyphase form (8) of Pj(z), we use row reductions to simplify the new matrix
again by multiplying −Pj,k(z

2) to the kth row and adding it to the first row for
k = 2, · · · , 2d and then factoring the nonzero factor Pj,1(z

2) from the first row.
The new matrix is simplified to




1

ein2(ω+n`π)

...

ein2d (ω+n`π)




`=1,···,2d

which apparently is not singular.
By Lemma 3.1., we have Gj,k is orthogonal to Vj for k = 2, · · · , 2d. That is,

〈gj,k(· −m), φj(· −m)〉s = 0

for all m ∈ ZZd, k = 2, · · · , 2d. Thus, the integer translates of gj,k, k = 2, · · · , 2d

form a Riesz basis for Vj+1 	 Vj.
Since integer translates of gj,1 are in Vj+1 	 Vj, gj,1 is linearly dependent on

gj,k, k = 2, · · · , 2d. Thus we complete the proof.
The fact that gj,1 is linearly dependent on gj,k, k = 2, · · · , 2d in the sense of (9)

has a computational proof of independent interest. In terms of Fourier transform,
the linear dependence (9) is

ĝj,1(ω) =
2d∑

k=2

Fj,k(z)ĝj,k(ω),

where Fj,k is the discrete Fourier transform of the sequence of fj,k,m’s. We claim
that Fj,k = −Pj,k/Pj,1. Indeed, using the dilation relations, the linear dependence
can be rewritten as

Gj,1(z)φ̂j+1(ω) =
2d∑

k=2

Fj,k(z
2)Gj,k(z)φ̂j+1(ω).

By the formula for Gj,k in Theorem 3.1, we have

E(Pj(z)Pj(z)Φ
s
j+1(z))e

in1ω − E(ein1ωPj(z)Φ
s
j+1(z))Pj(z)

=
2d∑

k=2

Fj,k(z
2)
(
E(Pj(z)Pj(z)Φ

s
j+1(z))e

inkω − E(einkωPj(z)Φ
s
j+1(z))Pj(z)

)
.



13

Putting in Fj,k = −Pj,k/Pj,1 in the above equation, we can verify that the above
equation is equivalent to the following

∑

k∈{0,1}d

E(Pj(z)Pj(z)Φ
s
j+1(z))e

inkωPj,k(z
2)

=
∑

k∈{0,1}d

Pj,k(z
2)E(einkωPj(z)Φ

s
j+1(z))Pj(z).

Now it is easy to see that the above equation is valid. This shows that gj,k, k =
1, · · · , 2d are linearly dependent in the sense of (9).

The following lemma was used in the proof of Theorem 3.3. Similar results in
the L2 setting may be found in [Jia and Micchelli’92]. A detail proof is included
here since a part of its proof will be needed later.

Lemma 3.4. Suppose that integer translates of φj+1 form a Riesz basis for Vj+1.
Let h1, · · · , h2d be compactly supported functions in Vj+1, i.e.,

ĥk(2ω) = Hk(z)φ̂j+1(ω)

for k = 1, · · · , 2d. Then integer translates of hk, k = 1, · · · , 2d form a Riesz basis for
Vj+1 if and only if the matrix [Hk((−1)n`z)]1≤k,`≤2d is nonsingular for all z ∈ T d

Proof: It is easy to see that the linear span of integer translates of {hk, k =
1, · · · , 2d} is a subspace of Vj+1. For any function f in Vj+1, we can write f(x) =∑

`∈ZZd f`φj+1(2x − `) for a square summable sequence {f`, ` ∈ ZZd}. Let us show

that there exist square summable coefficients ck,`, ` ∈ ZZd, k = 1, · · · , 2d such that

f(x) =
2d∑

k=1

∑

`∈ZZd

ck,`hk(x− `).

Indeed, in terms of Fourier transform, we have

F (z)φ̂j+1(ω) = 2d
2d∑

k=1

Ck(z
2)ĥk(2ω),

where F (z) stands for the discrete Fourier transform of sequence {f`, ` ∈ ZZd} and
Ck(z) is the discrete Fourier transform of a sequence {ck,`, ` ∈ ZZd}. That is, we
have

F (z) = 2
2d∑

k=1

Hk(z)Ck(z
2) or F ((−1)n`z) = 2

2d∑

k=1

Hk((−1)n`z)Ck(z2), ` = 1, · · · , 2d.

Since [Hk((−1)n`z)]1≤k,`≤2d is nonsingular, the above system of equations has a
unique solution [C1(z

2), · · · , C2d(z2)]. Thus, the linear span of integer translates of
hk, k = 1, · · · , 2d is Vj+1.
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Next, in order to see that integer translates of {hk, k = 1, · · · , 2d} form a Riesz
basis for Vj+1 we need to show that there exist two positive constants Aj and Bj

such that

Aj

2d∑

k=1

‖Ck(z)‖2
2 ≤ ‖

2d∑

k=1

Ck(z)ĥk(ω)‖2
s ≤ Bj

2d∑

k=1

‖Ck(z)‖2
2, (11)

for two positive constants Aj and Bj , where ‖Ck(z)‖2
2 =

1

(2π)d

∫

[0,2π]d
|Ck(z)|2dz.

The middle term in the above inequalities gives

‖
2d∑

k=1

Ck(z)ĥk(ω)‖2
s = ‖

2d∑

k=1

Ck(z)Ĥk(e
iω/2)φ̂j+1(ω/2)‖2

s

=

∫

IRd
(1 + ω2)s|

2d∑

k=1

Ck(z)Ĥk(e
iω/2)φ̂j+1(ω/2)|2 dω.

It follows that

‖
2d∑

k=1

Ck(z)ĥk(ω)‖2
s =

2d∑

`=1

∫

[0,2π]d
|

2d∑

k=1

Ck(z)Ĥk(ei(ω/2+n`π)|2R`(ω) dω (12)

where

R`(ω) =
∑

n∈ZZd

(1 + (ω + 2(2n + n`)π)2)s|φ̂j+1(ω/2 + (2n+ n`)π)|2.

It is clear that

R`(ω) ≥
∑

n∈ZZd

(1 + (ω/2 + (2n + n`)π)2)s|φ̂j+1(ω/2 + (2n + n`)π)|2 ≥ αj+1

since integer translates of φj+1 form a Riesz basis for Vj+1. It follows that

‖
2d∑

k=1

Ck(z)ĥk(ω)‖2
s ≥

2d∑

`=1

∫

[0,2π]d
αj+1|

2d∑

k=1

Ck(z)Ĥk(ei(ω/2+n`π)|2dω

= αj+1

∫

[0,2π]d
C(z)TH(ω)TH(ω)C(z)dω,

where C(z) = (C1(z), · · · , C2d(z))T is a vector of length 2d and

H(ω) =




H1(e
i(ω/2+n`π))

...

H2d(ei(ω/2+n`π))




T

`=1,···,2d

.

That is, H(2ω) = [Hk((−1)`z)]1≤k,`≤2d . Since H(ω) is nonsingular, H(ω)TH(ω) is
positive definite and hence there is a positive number λ1 > 0 such that

C(z)TH(ω)TH(ω)C(z) ≥ λ1C(z)T C(z)
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and equivalently,

‖
2d∑

k=1

Ck(z)ĥk(ω)‖2
s ≥ αj+1λ1

∫

[0,2π]d
C(z)T C(z)dω

which gives the first inequality in (11) with Aj = αj+1λ1 using (1). The second
inequality in (11) can be shown in the similar way by noticing

R`(ω) ≤
∑

n∈ZZd

(4 + (ω + 2(2n + n`)π)2)s|φ̂j+1(ω/2 + (2n + n`)π)|2 ≤ 4sβj+1

and H(ω) is a matrix with trigonometric polynomial entries and hence, the largest
eigenvalue λ2d of H(ω)TH(ω) is bounded above. Thus using (2), Bj = 4sβj+1λ2d .

The necessary part is trivial. Indeed, if H(ω) is singular for some ω = ω0, there
exists a nonzero vector C0 such that H(ω0)C0 = 0. Thus we can choose Ck(z)
such that Ck(z) = C0 when z = eiω0 and Ck(z) ≈ 0 for other z which is not in a
neighborhood of z = eiω0 . Then from (12), we can see that the first inequality in
(11) can not hold for any fixed positive number Aj . This completes the proof.

The second step is to use a technique like the well-known Gram-Schmidt or-
thonormalization to construct ψj,k from gj,k such that ψj,k are orthogonal among
each other. It is a standard technique (cf. e.g., [Jia and Micchelli’92] for the L2

setting.) For completeness, we outline this technique in the Sobolev space setting
here. For convenience, let

Wj,k := closureHs(IRs){ψj,k(2
jx−m),m ∈ ZZd}, k = 2, · · · , 2d.

We first choose ψj,2 = gj,2. Let

ψj,3(2
jx) =

∑

m∈ZZd

(c1,j,mψj,2(2
jx−m) + c2,j,mgj,3(2

jx−m))

for some coefficients c1,j,m and c2,j,m. To define these coefficients, we write them
in terms of Fourier transform

ψ̂j,3(2ω) = C1(z
2)ψ̂j,2(2ω) + C2(z

2)ĝj,3(2ω)

= (C1(z
2)Gj,2(z) + C2(z

2)Gj,3(z))φ̂j+1(ω),

where C1 and C2 are discrete Fourier transform of sequences c1,j,m’s and c2,j,m’s.
For convenience, we let Qj,2(z) = Gj,2(z) and

Qj,3(z) = C1(z
2)Gj,2(z) + C2(z

2)Gj,3(z).

In order to have Wj,3 ⊥Wj,2, the orthogonal condition (2.1) implies that

C1(z
2)E(Gj,2(z)Gj,2(z)Φ

s
j+1) + C2(z

2)E(Gj,3(z)Gj,2(z)Φ
s
j+1(z)) = 0. (13)

By choosing

C1(z
2) = E(Gj,3(z)Gj,2(z)Φ

s
j+1(z)),

C2(z
2) = −E(Gj,2(z)Gj,2(z)Φ

s
j+1(z)),
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we know that the the equation (13) holds and Wj,3 is perpendicular to Wj,2. We
continue this procedure above. To be more precise, let us show how to construct
ψj,4. That is, let

ψj,4(2
jx) =

∑

m∈ZZd

(d1,j,mψj,2(2
jx−m)+ d2,j,mψj,3(2

jx−m))+ d3,j,mgj,4(2
jx−m)).

In terms of Fourier transform, we have

ψ̂j,4(2ω) = D1(z
2)ψ̂j,2(ω) +D2(z

2)ψ̂j,3(ω) +D3(z
2)ĝj,4(ω)

= (D1(z
2)Qj,2(z) +D2(z

2)Qj,3(z) +D3(z
2)Gj,4(z)))φ̂j+1(ω).

In order to have Wj,4 ⊥ Wj,2 and Wj,4 ⊥ Wj,3, we have the following two
equations with three unknowns:

D1(z
2)E(Qj,2(z)Qj,2(z)Φ

s
j+1(z)) +D3(z

2)E(Gj,4(z)Qj,2(z)Φ
s
j+1(z)) = 0

D2(z
2)E(Qj,3(z)Qj,3(z)Φ

s
j+1(z)) +D3(z

2)E(Gj,4(z)Qj,3(z)Φ
s
j+1(z)) = 0(14)

which is an upper triangular homogeneous linear system. It can be solved easily.
A solution may be given below. Let

D1(z
2) = E(Qj,3(z)Qj,3(z)Φ

s
j+1(z))E(Gj,4(z)Qj,2(z)Φ

s
j+1(z))

D2(z
2) = E(Qj,2(z)Qj,2(z)Φ

s
j+1(z))E(Gj,4(z)Qj,3(z)Φ

s
j+1(z))

D3(z
2) = −E(Qj,2(z)Qj,2(z)Φ

s
j+1)(z))E(Qj,3(z)Qj,3(z)Φ

s
j+1(z)).

With these Laurent polynomials D1,D2,D3, the two equations in (14) are
satisfied simultaneously. Thus we obtain the desired function ψj,4. Repeating the
above constructive steps when d > 2, we find ψj,k, k = 2, · · · , 2d. It is easy to see
that ψj,k’s are compactly support when φj are compactly supported and s is an
integer. The above construction shows that the integer translates of ψj,k form a
Riesz basis for Wj,k for k = 2, · · · , 2d and Wj,k’s are mutually orthogonal.

Let us write
ψ̂j,k(2ω) = Hj,k(z)φ̂j+1(ω)

for k = 2, · · · , 2d. As in the proof of Lemma 3.4., let

Hj(ω) = [Hj,k(e
i(ω+n`π))] 2≤k≤2d

1≤`≤2d

.

Since ψj,k are orthogonal each other, the matrix Hj(ω)THj(ω) is a diagonal matrix
with entries

2d∑

`=1

|Hj,k(e
i(ω+n`π))|2, k = 2, · · · , 2d. (15)

Let λj,1 and λj,2d−1 be the smallest and largest eigenvalues of Hj(ω)THj(ω). That
is,

λj,1 = min
k=2,···,2d

min
ω∈[0,2π]d

2d∑

`=1

|Hj,k(e
i(ω+n`π))|2
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and

λj,2d−1 = max
k=2,···,2d

max
ω∈[0,2π]d

2d∑

`=1

|Hj,k(e
i(ω+n`π))|2.

The construction above shows that λj,1 > 0 and λj,2d−1 <∞. Let

Ãj = λj,1αj+1 and B̃j = λj,2d−1βj+1. (16)

Hence, Ãj > 0 and B̃j <∞.
Before we continue to pursue compactly supported prewavelets, let us pause

and make an observation. Using proof of Lemma 3.4, we can show that φj(·),
φj+1(2 · −nk), k = 2, · · · , 2d and their integer translates form a Riesz basis for
Vj+1 since the associated H(ω) is the matrix in (10) which is nonsingular as in the
proof of Theorem 3.3 under the assumption that Pj,1(z) 6= 0. Therefore the above
Gram-Schmidt procedure can be applied to this set of functions. If we start with
φj and then construct ψj,k, k = 2, · · · , 2d, then all ψj,k will be orthogonal to each
other and orthogonal to Vj . Hence we have

Proposition 3.5. Suppose that Pj,1(z) 6= 0 for all z on the torus T d. There there
exist a set of functions ψj,k which are a linear combination of φj and φj+1(2 ·
−nk), k = 2, · · · , 2d such that integer translates of ψj,k form a Riesz basis for
Vj+1 	 Vj.

This observation was made during the review process by one of reviewers. This
provides a simpler method to construct prewavelets by skipping our first computa-
tional step completely. However, all ψj,k will contain some integer translates of φj

which may not be good for some applications, e.g., image decomposition. Indeed,
highpass parts from these ψj,k may mix with some aliasing terms of the lowpass
part from φj .

We now resume our discussion on constructing compactly supported wavelets.
Let us study the Riesz bounds for the integer translates of ψj,k for all j ∈ ZZ and
k = 2, · · · , 2d. That is, we need to have Ãj bounded from below and B̃j is bounded
from the above.

If we normalize ψj,k by letting ψ∗
j,k = ψj,k/

√
B̃j, then the collection {ψ∗

j,k, k =

2, · · · , 2d, j ∈ ZZ} forms a pre-Riesz basis for Hs(IRd). Indeed, using the assump-
tions (i), (ii), (iii) of the MRA and the orthogonal decomposition constructed
above, we have

Hs(IRd) =
∞⊕

j=−∞

2d⊕

k=2

Wj,k.

For every f ∈ Hs(IRd) given in the following form

f =
∑

j∈ZZ

∑

k=2,···,2d

∑

m∈ZZd

cj,k,m2jd/2ψ∗
j,k(2

jx−m),

we have

‖
∑

j∈ZZ

∑

k=2,···,2d

∑

m∈ZZd

cj,k,m2jd/2ψ∗
j,k(2

jx−m)‖2
s
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=
∑

j∈ZZ

∑

k=2,···,2d

‖
∑

m∈ZZd

cj,k,m2jd/2ψ∗
j,k(2

jx−m)‖2
s

=
∑

j∈ZZ

∑

k=2,···,2d

∫

IRd
(1 + ω2)s|

∑

m∈ZZd

cj,k,me
−imω/2j 1

2jd/2
ψ̂∗

j,k(
ω

2j
)|2dω

=

∫

[0,2π]d
|Cj,k(e

iω)|2
∑

m∈ZZd

(1 + 22j(ω + 2mπ)2)s|ψ̂∗
jk(ω + 2mπ)|2dω

≤
∑

j∈ZZ

∑

k=2,···,2d

∑

m∈ZZd

|cj,k,m|2

because of the orthogonality and the Riesz upper bounds for Wj,k, k = 2, · · · , 2d.
Next we note that the collection {2jd/2ψ∗

j,k(2
j · −m), j ∈ ZZ, k = 2, · · · , 2d,m ∈

ZZd} has a property of the linear independence in the following sense that if

∑

j∈ZZ

∑

k=2,···,2d

∑

m∈ZZd

cj,k,m2jd/2ψ∗
j,k(2

jx−m) = 0 (17)

and
∑

j∈ZZ

∑

k=2,···,2d

∑

m∈ZZd

|cj,k,m|2 < ∞, then cj,k,m = 0 for all j, k and m. Indeed, by

(17) and the orthogonality of Wj,k, we know that

2d∑

k=2

∑

m∈ZZd

cj,k,m2jd/2ψ∗
j,k(2

jx−m) = 0.

Then we use Theorem 3.3 to conclude that cj,k,m = 0.
Thus, the collection {2jd/2ψ∗

j,k(2
jx−m), j ∈ ZZ, k = 2, · · · , 2d,m ∈ ZZd} forms

a pre-Riesz basis for Hs(IRd).
On the other hand, for every f ∈ Hs(IRd), we have

‖f‖2
s =

∑

j∈ZZ

∑

k=2,···,2d

‖
∑

m∈ZZd

cj,k,m2jd/2ψ∗
j,k(2

j · −m)‖2
s

≥
∑

j∈ZZ

∑

k=2,···,2d

Ãj/B̃j

∑

m∈ZZd

|cj,k,m|2.

Hence, under the assumption that Ãj/B̃j is bounded away from zero for j ∈ ZZ,
i.e., Ãj/B̃j ≥ A > 0 for all j ∈ ZZ, we have

‖f‖2
s = ‖

∑

j∈ZZ

∑

k=2,···,2d

‖
∑

m∈ZZd

cj,k,m2jd/2ψ∗
j,k(2

jx−m)‖2
s

≥ A
∑

j∈ZZ

∑

k=2,···,2d

∑

m∈ZZd

|cj,k,m|2.

Then the collection {2jd/2ψ∗
j,k(2

j · −m), j ∈ ZZ, k = 2, · · · , 2d,m ∈ ZZd} is a
Riesz basis. This completes the proof of the following

Theorem 3.6. Suppose that a sequence {φj , j ∈ ZZd} generates an MRA for
Sobolev space Hs(IRd). Suppose that φj are compactly supported. Let Φs

j be
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the generalized Euler-Frobenius polynomial associated with φj. Denote φ̂j(2ω) =

Pj(z)φ̂j+1(ω). Write Pj in the polyphase form

Pj(z) =
2d∑

`=1

ein`ωPj,`(z
2).

Suppose that for an integer ` between 1 and 2d, Pj,`(z) 6= 0 for z ∈ T d and

E(Pj(z)Pj(z)Φ
s
j+1(z)) 6= 0, ∀z ∈ T d.

Then there exist functions ψj,k, k = 2, · · · , 2d such that the closure Wj,k of the
linear span of integer translates ψj,k(2

jx − m),m ∈ ZZd is orthogonal to Vj for
k = 2, · · · , 2d, Vj+1 = Vj

⊕
Wj with

Wj := Wj,2 ⊕ · · · ⊕Wj,2d

and the integer translates of ψj,k’s form a Riesz basis for Wj . All of them forms a
pre-Riesz basis for Hs(IRd) after a normalization. Furthermore, if the Riesz bound
condition Ãj/B̃j ≥ A for all j ∈ ZZ, where Ãj and B̃j defined in (16), then
the functions ψ∗

j,k are prewavelets. When s is an integer and φj are compactly
supported, ψ∗

j,k are compactly supported.

4 Pre-Wavelets in L2(IR
d)

Let us first consider s = 0 and the standard L2(IR
d). We usually choose φj = φ

for all j. It follows that Pj is independent of j and so is Φ0
j . Hence, Gj,k’s as

constructed in Theorem 3.1 are independent of j. From (16) we can see that Ãj

and B̃j are independent of j and hence, Ãj/B̃j is a constant. This demonstrates
that the ψ∗

j,k constructed above are indeed prewavelets for L2(IR
d). Thus we have

Theorem 4.1. If a refinable function φ generates an MRA for L2(IR
d). If Φ(z) 6= 0

for all z = eiω and one of the polyphase of the mask P (ω) of φ is not zero for all
eiω. Then the functions ψj,k constructed in the previous section are prewavelets
for L2(IR

d) satisfying the conditions 1◦ −−5◦.

The construction of prewavelets in L2(IR
d) improves the constructions given in

[Riemenschneider and Shen’92], [Buhmann, Davydov, and Goodman’01], and [Han
and Shen’04] in the sense that our method works for any dimension d ≥ 1. From
Lemma 3.1. we can see that our construction of prewavelets is straightforward while
the method in [Jia and Micchelli’92] requires the well-known Quillen-Suslin theo-
rem which has an algorithmic proof based on Gröbner basis approach. Our method
is a systematic treatment of the construction of prewavelets while the methods in
[Kotyczka and Oswald’95], [Hong and Wu’99], and [Floater and Quak’99] are ad
hoc one which works only for piecewise linear spline functions. In the following, we
shall show that many box spline functions satisfy the two conditions in Theorem
3.4. Thus, our method improve the construction in [Chui, Stöckler, and Ward’92],
and [Yu, Shu, and Zhu’00] in the sense that our method is a general method. Also,
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our method provides an explicit condition for the stability of the integer transla-
tions of ψj,k which will be shown to include one of the stability conditions in [de
Boor, Ron, and DeVore’93] and is simpler to use than the other stability condition
in [de Boor, Ron, and DeVore’93].

Next we show how to use box splines to construct prewavelets in L2(IR
d) since

multivariate box splines are a very important class of refinable functions. Let
us recall the definition of box splines. Let D be a set of nonzero vectors in IRd

(counting multiple of a same vector) which span IRd. The box spline φD associates
with the direction set D is the function whose Fourier transform is defined by

φ̂D(ω) =
∏

y∈D

1 − e−iξ·ω

iy · ω .

It is well-known that box spline φD is a piecewise polynomial function of degree
≤ #D − d, where #D denotes the cardinality of D. For more properties of box
splines, see [Chui’88] and [de Boor, Hölig, and Riemenschneider’93]. In particular,
for d = 2, e1 = (1, 0)T , e2 = (0, 1)T , and

D = {e1, . . . , e1︸ ︷︷ ︸
`

, e2, . . . , e2︸ ︷︷ ︸
m

, e1 + e2, . . . , e1 + e2︸ ︷︷ ︸
n

},

the box spline φ`mn based on such direction set D is called 3-direction box spline
whose Fourier transform is

φ̂`mn(ω1, ω2) =

(
1 − e−iω1

iω1

)`(
1 − e−iω2

iω2

)m(
1 − e−i(ω1+ω2)

i(ω1 + ω2)

)n

.

(For computation of the Bézier coefficients of 3-direction box splines, see [Lai’92].)
It is well-known that box spline φD generates a bona fide MRA of L2(IR

d)
(cf. [Riemenschneider and Shen’91]) when the direction set D is unimodular, i.e.,
the determinant of any d directions which span IRd is 1 or −1 (cf. [de Boor,
Höllig, and Riememschneider’93]). The unimodularity also implies Φ(ω) > 0 by
the result in [Dahmen and Micchelli’83]. Let PD be the mask associated with φD,
i.e., φ̂D(2ω) = PD(z)φ̂D(ω).

Next let us check that first polyphase component of PD(z) is not zero, equiva-
lently, E(PD(ω)) 6= 0. We look at some examples first.

Example 4.2. Consider φ1,1,1. Since P1,1,1(z) = (1 + z1)(1 + z2)(1 + z1z2)/8,
we have E(P1,1,1(z)) = (1 + z2

1z
2
2)/8 which is zero when, e.g., z1 =

√
−1 and

z2 = ±1. However, if we let D = {e1, e2,−e1 − e2}, then D is unimodular and
PD(z) = (1+ z1)(1+ z2)(1+1/(z1z2))/8. In this case, E(PD(z)) = 1/4. Therefore,
we can apply the procedure in §3 to construct compactly supported pre-wavelets
in L2(IR

2) as shown at the end of this section.

This motivates us the following

Theorem 4.3. Consider the linear box spline in IRd. That is, let

D = {e1, · · · , ed,−(e1 + · · · + ed)},
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where ei denotes the standard unit vector in IRd which is 1 in the ith component

while zero in the rest of the components for i = 1, · · · , d. Then E(PD(z)) =
1

2d
.

Proof: It is easy to see that PD(z) =
d∏

i=1

(
1 + zi

2

)(
1 + 1/(z1 · · · zd

2

)
. Then we

can see that the even index term E(PD(z)) is only the constant term which is
2/2d+1 = 1/2d. This completes the proof.

Example 4.4. Consider φ2,2,1. Since P2,2,1(z) = (1 + z1)
2(1 + z2)

2(1 + z1z2)/32,
it is easy to check that

E(P2,2,1(z)) =
1

32
(5z2

1z
2
2 + z2

1 + z2
2 + 1).

Since

32|E(P2,2,1(z)| = |5 + (z1z2)
−2 + (z1)

−2 + (z2)
−2|

> 5 − |(z1z2)−2| − |(z1)−2| − |(z2)−2| = 2,

we know that E(P2,2,1(z) 6= 0 for z = (z1, z2) with |z1| = |z2| = 1.

Example 4.5. Consider φ2,2,2. Similar to the examples above, we have

E(P2,2,2(z)) =
1

64x2y2
(10x2y2 + x2 + y2 + 1 + y4x2 + x4y4 + x4y2).

We can easily see that E(P2,2,2(z)) 6= 0.

Example 4.6. Consider φ3,3,3. Similar to the examples above, we have

E(P3,3,3(z)) =
4(14x2y2 + 3 + 3y4x2 + 3x4y4 + 3x4y2 + 3x2 + 3y2)

83x2y2

Note that

14x2y2 + 3 + 3y4x2 + 3x4y4 + 3x4y2 + 3x2 + 3y2)

83x2y2

= 14 + 6 cos(2ω + 2η) + 6 cos(2ω) + 6 cos(2η)
= 2 + 6(1 + cos(2ω))(1 + cos(2η)) + 3(1 + cos(2ω + 2η) + 1 − cos(2ω − 2η))
> 0.

This shows that E(P3,3,3(z)) 6= 0.

The following theorem is motivated by one of the stability conditions from [de
Boor, DeVore, and Ron’93].

Theorem 4.7. Let D be a direction set which is unimodular. Suppose that D
satisfies the so-called the ”parity” condition: D can be partitioned into pairs such
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that each pair (y1, y2) satisfies y1 = −y2. Then φD satisfies E(φD(z)) 6= 0 for
z ∈ T d.

Proof: Because of the parity property, D = D1 ∪D2 such that #(D1) = #(D2)
and for each direction y1 ∈ D1, there is a direction d2 ∈ D2 with y1 = −y2. Let us
write

PD1
(z) =

∑

j∈{0,1}d

eijωPj(z
2)

in polyphase form. Then since PD(z) = PD1
(z)PD1

(1/z), we have

E(PD(z)) =
∑

j∈{0,1}d

|Pj(z
2)|2.

Suppose that E(PD(z)) = 0 for some z. Then it follows that Pj(z
2) = 0 for all

j ∈ {0, 1}d and hence, PD1
((−1)jz) = 0 for all j ∈ {0, 1}d. That is, in the abused

notation, we have PD1
(ω + jπ) = 0’s. It follows that

0 =
∑

j∈{0,1}d

|PD1
(ω + jπ)|2

∑

m∈ZZd

|φ̂D1
(ω + jπ + 2mπ)|2

=
∑

m∈ZZd

|φ̂D1
(2ω + 2mπ)|2. (18)

However, since D is unimodular, D1 is unimodular by the definition. That is, the
right-hand side of the equation (18) is not zero and hence, we obtain a contradic-
tion.

Next we consider the construction of prewavelets based on tensor products of
box splines.

Theorem 4.8. Suppose that the both masks PD1
and PD2

associated with box
spline φD1

and φD2
, respectively satisfy the two conditions in Theorem 3.4. Then

the mask PD1
(ω)PD2

(η) of the tensor product of the box spline φD1
(x)φD2

(y)
satisfies the two conditions too.

Proof: We note that

E(PD1
(ω)PD2

(η)) = E(P1(ω))E(P2(η)) and ΦD1∪D2
(z1, z2) = ΦD1

(z1)ΦD2
(z2).

The result follows. That is, if we can use the method in §3 to construct compactly
supported prewavelets in L2(IR

d) spaces based on box splines φD1
and φD2

, then we
can construct prewavelets based on their tensor product φD1

(x)φD2
(y) in L2(IR

2d).

Finally we present some concrete examples of compactly-supported B-spline
prewavelets in L2(IR) and box spline prewavelets in L2(IR

2).
Fix an integer N > 0. The N-th order B-spline φ(N) is the function whose

Fourier transform is φ̂(N)(ω) =

(
1 − e−iω

iω

)N

. Let us write

φ̂(N)(2ω) = P (N)(z)φ̂(N)(ω)

with P (N)(z) =

(
1 + z

2

)N

.
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It is clear that

P (N)(z) − P (N)(−z) =

(
1 + z

2

)N

−
(

1 − z

2

)N

6= 0

for any z = eiω, ω ∈ [0, 2π]. It follows that the polyphase P1(z
2) associated with

φ(N) is never zero. Next by Lemma 3.2, we know

E(P (N)(z)P (N)(z)Φ(z)) =
1

2
Φ(z2).

By Poisson summation formula,

Φ(z) =
∑

m∈ZZ

〈φ(N)(·), φ(N)(· −m)〉zm

=
∑

m∈ZZ

|φ̂(N)(ω + 2mπ)|2

which is never zero (cf. [Schoenberg’73]). This shows thatE(P (N)(z)P (N)(z)Φ(z)) 6=
0. That is, the two conditions in Theorem 3.3 are satisfied. Hence, the above dis-
cussion verifies that all B-spline functions can be used to construct prewavelets
for L2(IR). We now present two examples of prewavelets in L2(IR) as follows. Note
that our prewavelets have a larger support than those constructed in [Chui and
Wang’92]. The purpose of the examples is to show the detail of our constructive
procedure.

Example 4.9. Consider linear B-spline φ(2) with P (2)(z) = (1 + z)2/4. It is easy
to see that

Φ(z) =
1

6
z−1 +

4

6
+

1

6
z.

Indeed, by using the symmetric property of B-splines, i.e., φ(2)(x) = φ(2)(2 − x)
for linear B-spline φ(2),

Φ(z) =
∑

m∈ZZ

〈φ(2), φ(2)(· −m)〉0zm

=
∑

m∈ZZ

〈φ(2), φ(2)(2 +m− ·)〉0zm

=
∑

m∈ZZ

φ(4)(2 +m)zm.

Thus, we know E(P (2)(z)P (2)(1/z)Φ(z)) = 1
2Φ(z2) by Lemma 3.2 and

E(zP (2)(1/z)Φ(z))P (2)(z) =
1

24z2
(10z2 + z4 + 1).

Thus, using the formulas in Theorem 3.1, we have

G(z) =
1

96z2
(z6 − 6z5 + 11z4 − 12z3 + 11z2 − 6z + 1)

That is, the prewavelet associated with linear B-spline φ := φ(2) is

ψ(x) =
1

96
(φ(2x+ 2) − 6φ(2x + 1) + 11φ(2x) − 12φ(2x − 1)
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+11φ(2x − 2) − 6φ(2x− 3) + φ(2x− 4)).

We can easily verify that

∫ ∞

−∞
φ(x−m)ψ(x)dx = 0

for all integer m ∈ ZZ.

Example 4.10. Consider cubic B-spline φ(4) with P (4)(z) = (1 + z)4/16. Using
the same argument in Example 4.9, we have

Φ(z) =
1

5040z3
+

1

42z2
+

397

1680z
+

151

315
+

397

1680
z +

1

42
z2 +

1

5040
z3.

Thus, E(P (2)(z)P (2)(1/z)Φ(z)) = 1
2Φ(z2) which is

E(zP (4)(1/z)Φ(z))

=
1

80640z6
(18482z4 + z10 + 18482z6 + 1677z2 + 1 + 1677z8)

Hence, by using the formula in Theorem 3.1, G(z) =
∑8

k=−6 gkz
k with coefficients

gk as follows:

g−6 =
−1

1290240
, g−5 =

31

322560
, g−4 =

−187

143360

g−3 =
1081

161280
, g−2 =

−1903

86016
, g−1 =

17953

322560
,

g0 =
−131051

1290240
, g1 =

1441

11520
, g2 =

−131051

1290240

g3 =
17953

322560
, g4 =

−1903

86016
, g5 =

1081

161280
,

g6 =
−187

143360
, g7 =

31

322560
, g8 =

−1

1290240
.

That is, the prewavelet associated with cubic B-spline φ := φ(4) is

ψ(x) =
1

1290240
(φ(2x+ 6) − 124φ(2x + 5) + 1683φ(2x + 4)

−8648φ(2x + 3) + 28545φ(2x + 2) − 71812φ(2x + 1) + 131051φ(2x))

−161392φ(2x − 1) + 131051φ(2x − 2) − 71812φ(2x − 3) + 28545φ(2x − 4)

−8648φ(2x − 5) + 1683φ(2x − 6) − 124φ(2x − 7) + φ(2x− 8)).
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We can easily verify that ψ is orthogonal to the integer translates of φ using the
computer program MAPLE.

Next we present an example of box spline prewavelets in L2(IR
2). Note that

our prewavelets have a larger support than those constructed in [Kotyczka and
Oswald’95], [Hong and Wu’00] and [Jia and Micchelli’92]. The purpose of this
example is to show the detail of our constructive procedure.

Example 4.11. We consider box spline B̃1,1,1 = φD based on D = {e1, e2,−(e1 +
e2)} and construct compactly supported pre-wavelets in L2(IR

2). Clearly,

P (z) =
1 + z1

2

1 + z2
2

1 + 1/(z1z2)

2
.

and Φs(z) =
1

2
+

1

12
(z1 + z2 + 1/z1 + 1/z2 + z1z2 + 1/(z1z2)). It is easy to verify

that E(P (z)P (z)Φs(z)) = 1
4Φs(z2). Using a computer algebra program Maple, we

obtain the Laurent polynomials for G1, · · · , G4 and Q2, Q3, Q4. They are as follows:

768G1(z1, z2) =




z−3
1

z−2
1

z−1
1

1
z1
z2
1

z3
1




T 


−1 −1 −1 −1 0 0 0
−1 14 −2 14 −1 0 0
−1 −2 −19 −19 −2 −1 0
−1 14 −19 60 −19 14 −1
0 −1 −2 −19 −19 −2 −1
0 0 −1 14 −2 14 −1
0 0 0 −1 −1 −1 −1







z−3
2

z−2
2

z−1
2

1
z2
z2
2

z3
2




,

768G2(z1, z2) =




z−1
1

1
z1
z2
1

z3
1




T 


−2 14 −10 6 0 0 0
−2 −4 −12 −20 −10 0 0
0 14 −12 76 −12 14 0
0 0 −10 −20 −12 −4 −2
0 0 0 6 −10 14 −2







z−3
2

z−2
2

z−1
2

1
z2
z2
2

z3
2




,

768G3(z1, z2) =




z−3
1

z−2
1

z−1
1

1
z1
z2
1

z3
1




T 


−2 −2 0 0 0
14 −4 14 0 0
−10 −12 −12 −10 0
6 −20 76 −20 6
0 −10 −12 −12 −10
0 0 14 −4 14
0 0 0 −2 −2







z−1
2

1
z2
z2
2

z3
2



,

and

768G4(z1, z2) =




z−1
1

1
z1
z2
1

z3
1




T 


6 −10 14 −2 0
−10 −20 −12 −4 −2
14 −12 76 −12 14
−2 −4 −12 −20 −10
0 −2 14 −10 6







z−1
2

1
z2
z2
2

z3
2



.

Since Q2 = G2, we now give Q3 as follows. Let

10616832Q3 = [z−7
1 , · · · , z−1

1 , 1, z1, · · · , z−7
1 ]Q[z−7

2 , · · · , z−1
2 , 1, z2, · · · , z−9

2 ]T
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with matrix Q being a of size 15×17 defined by Q = [Q1Q2] and Q1 of size 15×9
and Q2 of size 15 × 8, where

Q1 =




−1 5 −1 9 1 3 1 −1 0
1 −2 −26 −2 −52 2 −22 2 3
−2 7 11 73 71 63 85 −17 27
2 −4 −46 24 −516 144 −628 168 −158
−1 −1 33 37 369 271 773 15 480
1 −2 −22 70 −672 714 −3110 1402 −2285
0 −3 21 −45 385 −63 1713 291 2057
0 0 −2 44 −228 700 −2462 2712 −6520
0 0 0 −18 70 −174 746 −260 2057
0 0 0 0 −4 96 −340 792 −2285
0 0 0 0 0 −28 74 −150 480
0 0 0 0 0 0 2 52 −158
0 0 0 0 0 0 0 −14 27
0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0




,

and

Q2 =




0 0 0 0 0 0 0
0 0 0 0 0 0 0

−14 0 0 0 0 0 0
52 2 0 0 0 0 0

−150 74 −28 0 0 0 0
792 −340 96 −4 0 0 0
−260 746 −174 70 −18 0 0
2712 −2462 700 −228 44 −2 0 0
291 1713 −63 385 −45 21 −3 0
1402 −3110 714 −672 70 −22 −2 1
15 773 271 369 37 33 −1 −1
168 −628 144 −516 24 −46 −4 2
2 −22 2 −52 −2 −26 −2 1
−1 1 3 1 9 −1 5 −1




.

The expression for Q4 involves a matrix of size about 51 × 51. Due to the space
limit, we omit the details for Q4.

5 Pre-Riesz and Riesz Bases in H
s(IRd)

We now consider s > 0. First we consider a refinable function φ which generates
an MRA for Hs(IRd). φ satisfies the refinable equation φ̂(2ω) = P (z)φ̂(ω). Let us
examine the boundedness of Ãj/B̃j. In this case, using the expression of Φs

j in the
proof of Lemma 3.2, we have Φs

j −→ Φ0 for j → −∞. Similarly, using the formula
for Gj,k in Lemma 3.1., we conclude that Gj,k −→ Gk for j → −∞ where

Gk =
1

2d/2
E(P (z)P (z)Φ0(z))einkω − 1

2d/2
E(einkωP (z)Φ0(z))P (z),
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for k = 2, · · · , 2d. Since the Gram-Schmidt orthogonalization procedure is finite,
Hj,k −→ Hk, k = 2, · · · , 2d which are obtained from Gk, k = 2, · · · , 2d by the Gram-
Schmidt procedure. The smallest and largest eigenvalues λj,1 and λj,2d−1 converge

to the λ1 and λ2d−1 of the corresponding matrix H(ω)TH(ω) where

H(ω) = [Hk(e
i(ω+n`π))] 2≤k≤2d

1≤`≤2d

From (1) and (2), we have αj −→ α and βj −→ β, where

α = min
ω∈[0,2π]d

∑

m∈ZZd

|φ̂(ω + 2mπ)|2

and
β = max

ω∈[0,2π]d

∑

m∈ZZd

|φ̂(ω + 2mπ)|2.

Thus, Ãj/B̃j ≥ A > 0 for j → −∞. It thus follows that

Proposition 5.1. Suppose that φ generates an MRA for Hs(IRd). Suppose that
Φ0(z) > 0 and the first polyphase component E(P ) 6= 0. Then for any fixed integer
N , ψ∗

j,k, k = 2, · · · , 2d, j = −∞, · · · , N constructed in Section 3 are prewavelets for

subspace Hs
N (IRd) =

N⊕

j=−∞

2d⊕

k=2

Wj,k of Hs(IRd). Hence, the integer translates of

ψ∗
j,k, k = 2, · · · , 2d, j = −∞, · · · , N form a Riesz basis for Hs

N (IRs).

Let us further study the case when j → +∞. First we look at (1) and (2). Note
that

∑

m∈ZZd

(1 + 22j(ω + 2mπ)2)s|φ̂(ω + 2mπ)|2

= 22js
∑

m∈ZZd

(2−2j + (ω + 2mπ)2)s|φ̂(ω + 2mπ)|2.

After the factor 22js,

∑

m∈ZZd

(2−2j + (ω + 2mπ)2)s|φ̂(ω + 2mπ)|2

−→
∑

m∈ZZd

(ω + 2mπ)2s|φ̂(ω + 2mπ)|2 =: Φs
∗(z).

That is,
Φs
∗(z) =

∑

m∈ZZd

〈φ(x), φ(x −m)〉∗,szm

where 〈f, g〉∗,s =
1

(2π)d

∫
ω2sf̂(ω)ĝ(ω)dω. We have Φs

∗ = limj→+∞ Φs
j/2

2js.

Meanwhile, for Gj,k(ω), Gj,k(ω)/22js converge to

E(P (z)P (z)Φs
∗(z))e

inkω − E(einkωP (z)Φs
∗(z))P (ω) =: G∗,k(ω)
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using the formula for Gj,k in Lemma 3.1. Our main assumption in Lemma 3.1 and
Theorem 3.3 requires

E(P (z)P (z)Φs
∗(z)) =

1

2d

∑

m∈ZZd

(2ω + 2mπ)2s|φ̂(2ω + 2mπ)|2

be nonzero. However, it is zero when ω = 0 if φ has a linear accuracy, i.e., φ̂(2mπ) =
0 for allm ∈ ZZd\{0}. In other words, the integer translates of φ reproduce constant
functions by the well-known Strang and Fix condition. Especially, for any box
spline function φ, φ satisfies φ̂(2mπ) = 0 except for m = 0. Thus

Ãj/B̃j =
Ãj/(2

2js)

B̃j/(22js)

may be zero for j → +∞. Our construction based on one refinable function will
not give prewavelets for any Sobolev space Hs(IRd) with s > 0. (See [Lorentz and
Oswald’97] for the first and original reason).

In order to construct a Riesz basis, we have to use nonstationary scaling func-
tions. One approach is to modify a scaling function into nonstationary scaling
functions. Suppose φ generates an MRA for Hs(IRd). We define

φ̂j(ω) =
1

(1 + 22jω2)s/2
φ̂(ω)

for j ∈ ZZ. It is easy to see that φ̂j is refinable and satisfies

φ̂j(ω) = P (eiω/2)φ̂j+1(ω/2)

where P is the mask associated with φ, i.e., φ̂(ω) = P (eiω/2)φ̂(ω/2). Thus, Pj = P

for all j ∈ ZZd. Next it is also easy to see φ̂j ∈ Hs(IRd). Let Vj be the span of all
φj(2

j · −m),m ∈ ZZd. We can show that Vj , j ∈ ZZd form an MRA for Hs(IRd)
by using a generalized version of results in [Bastin and Laubin’97]. To construct
prewavelets, let us check

Φs
j(z) =

∑

m∈ZZd

(1 + 22j(ω + 2mπ)2)s|φ̂j(ω + 2mπ)|2

=
∑

m∈ZZd

|φ̂(ω + 2mπ)|2 6= 0.

Without loss of generality, we may assume that the first component of the
polyphase form of P is not zero. That is, E(P (z)) 6= 0. Notice that from the
computation in Lemma 3.1, Gj,k’s are independent of j and so are Ãj/B̃j . There-
fore, the functions ψ∗

j,k are prewavelets for Hs(IRd) by Theorem 3.6. Only thing
that is not satisfactory about this approach is the support of the prewavelets. That
is, the support of the prewavelets so constructed may not be compactly supported
in general even though φ is compactly supported. For the univariate setting, the
support of φj is half-spaced when s = 1 and the prewavelets involving some dif-
ferences of integer translates of φj may be compactly supported. This issue is
still under further investigation. The above discussion can be summarized in the
following
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Proposition 5.2. Suppose that φ generates an MRA for Hs(IRd). Then φ can
be so modified to have φj , j ∈ ZZ that the construction in §3 produce prewavelets
ψ∗

j,k for Hs(IRd).

Finally we show that box splines can be used to construct pre-Riesz bases in
Hs(IRd). Recall D is a direction set, box spline φD and the associated mask PD

from the previous section. Suppose again D is unimodular. The smoothness order
m(D) of φD which can be found by using the following relation

m(D) + 1 = min{#(Y ), Y ⊂ D, span (D\Y ) 6= IRd}.

(Cf. [de Boor, Höllig, and Riemenschneider’93]). That is, φD ∈ C
m(D)−1
0 (IRd) is

m(D)−1 continuously differentiable and the derivatives of m(D) order is Lipchitz.
Thus, φD ∈ Hs(IRd) for all s ≤ m(D). It is known that φD generates an MRA for
Hs(IRd) (cf. [Lorentz and Oswald’97]). Mainly we need to verify the two conditions
in Theorem 3.4. We have already explained one of the conditions in the previous
section. Only the other one is needed to be shown as follows.

Theorem 5.3. Suppose that the direction set D is unimodular. Then

E(PD(z)PD(z)Φs
D(z)) > 0

for 0 ≤ s ≤ m(D).

Proof: Recall the proof of Lemma 3.2. When s = 0, we have

E(PD(ω)PD(ω)Φs
D(z)) = 2−dΦs

D(z2).

Recall that by Poisson summer formula,

Φ0
D(z) =

∑

m∈ZZd

|φ̂D(ω + 2mπ)|2

which is strictly bigger than 0 when D is unimodular (cf. [Dahmen and Mic-
chelli’83]). Thus, Φ0

D(z2) > 0.
We now consider the situation when s > 0. Using the notation and method in

Lemma 3.2, we have

E(PD(z)PD(z)Φs
D(z))

=
1

2d

∑

m∈ZZd

(1 + 4|ω + 2mπ|2)s|φ̂D(2ω + 2mπ)|2

≥ 1

2d

∑

m∈ZZd

|φ̂D(2ω + 2mπ)|2

which is strictly bigger than 0 when D is unimodular.
Hence, we can use many box splines to construct compactly supported pre-

Riesz bases for Hs(IRd) since many box splines φD satisfy E(PD) 6= 0 as shown in
the previous section. Finally let us present an example of orthogonal decomposition
in H1(IR2) to illustrate the constructive steps.
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Example 5.3. We consider box spline B̃1,1,1 = φD based on D = {e1, e2,−(e1 +
e2)} and construct an orthogonal decomposition in H1(IR2). For simplicity, we will
construct them in V1 only. It is easy to verify that

Φ1(z) =
∑

m∈ZZ2

〈2φD(2x), 2φD(2x−m)〉1zm

=
1

2
+

1

12
(z1 + z2 + 1/z1 + 1/z2 + z1z2 + 1/(z1z2))

+4(2 − z1 − 1/z1) + 4(2 − z2 − 1/z2).

Using Maple, we have

E(P (z)P (z)Φ1(z)) =
33

2
− 47

12
z1−

47

12
z2−

47

12
z−1
1 − 47

12
z−1
2 +

1

12
z1z2+

1

12
z−1
1 z−1

2 > 0.

As in Example 4.2, we obtain the Laurent polynomials for G1, · · · , G4 and
Q2, Q3, Q4. They are as follows:

384G1(z1, z2)

=




z−3
1

z−2
1

z−1
1

1
z1
z2
1

z3
1




T 


−1 −1 47 47 0 0 0
−1 14 46 −658 47 0 0
47 46 −211 −163 94 47 0
47 −658 −163 2748 −163 −658 47
0 47 94 −163 −211 46 47
0 0 47 −658 46 14 −1
0 0 0 47 47 −1 −1







z−3
2

z−2
2

z−1
2

1
z2
z2
2

z3
2




,

384G2(z1, z2) =




z−1
1

1
z1
z2
1

z3
1




T 


23 31 −29 −405 0 0 0
23 46 −6 −58 −29 0 0
0 −353 −6 1526 −6 −353 0
0 0 −29 −58 −6 46 23
0 0 0 −405 −29 31 23







z−3
2

z−2
2

z−1
2

1
z2
z2
2

z3
2




,

384G3(z1, z2) =




z−3
1

z−2
1

z−1
1

1
z1
z2
1

z3
1




T 


23 23 0 0 0
31 46 −353 0 0
−29 −6 −6 −29 0
−405 −58 1526 −58 −405

0 −29 −6 −6 −29
0 0 −353 46 31
0 0 0 23 23







z−1
2

1
z2
z2
2

z3
2



,

and

384G4(z1, z2) =




z−1
1

1
z1
z2
1

z3
1




T 


−45 −53 −329 47 0
−53 −106 −6 94 47
−329 −6 1478 −6 −329
47 94 −6 −106 −53
0 47 −329 −53 −45







z−1
2

1
z2
z2
2

z3
2



.



31

Since Q2 = G2, we now give Q3 as follows. Let

10616832Q3 = [z−7
1 , · · · , z−1

1 , 1, z1, · · · , z−7
1 ]Q[z−7

2 , · · · , z−1
2 , 1, z2, · · · , z−9

2 ]T

with matrix Q being a of size 15 × 17 defined by Q = [Q1Q2Q3] and Q1 of size
15 × 6, Q2 of size 15 × 5, and Q3 of size 15 × 7, where

Q1 =


23 −1027 −6745 131001 481609 −3766053
1081 46, −148514 −13490 5173988 963218
−2162 135607 547283 −8520383 −23032993 25246911

−139702 −4324 9938450 1094520 −101068020 −46052496
50807 −4199017 −11095431 37245541 114451161 −53158505

4178065 101614 −66131662 −22186538 843672264 227807802
0 4424157 12823245 −35255637 −125967191 34180785
0 0 175074718 25544876 −2148644820 −229747844
0 0 0 9169230 28041046 −14774238
0 0 0 0 498508508 30537216
0 0 0 0 0 −684508
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

Q2 =


−10123847 −5750497 0 0 0
−30765934 −20247694 160893267 0 0
50904199 −17700717 −11180078 0
755212076 195925704 −2063036150 −15153740 488505122
−322886659 −166746753 91661280 70952634 7691738
−4749939230 −599720822 10035141787 −12603144 −4114923076
345950793 231628203 −67813519 −159649796 −121175494

10153980610 464093784 −19712983960 464093784 10153980610
−121175494 −159649796 −67813519 231628203 345950793
−4114923076 −12603144 10035141787 −599720822 −4749939230

7691738 70952634 91661280 −166746753 −322886659
]488505122 −15153740 −2063036150 195925704 755212076

0 −11180078 −17700717 50904199 98444461
0 0 160893267 −20247694 −30765934
0 0 0 −5750497 −10123847




,

Q3 =



32




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−684508 0 0 0 0 0
30537216 498508508 0 0 0 0
−14774238 28041046 9169230 0 0 0
−229747844 −2148644820 25544876 175074718 0 0
34180785 −125967191 −35255637 12823245 4424157 0
227807802 843672264 −22186538 −66131662 101614 4178065
−53158505 114451161 37245541 −11095431 −4199017 50807
−46052496 −101068020 1094520 9938450 −4324 −139702
25246911 −23032993 −8520383 547283 135607 −2162
963218 5173988 −13490 −148514 46 1081

−3766053 481609 131001 −6745 −1027 23




.

The matrix associated with Q4 is more complicatedly involved and the details
are left to the interested reader.
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