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Abstract. In this paper, we first study �q minimization and its associated iterative reweighted
algorithm for recovering sparse vectors. Unlike most existing work, we focus on unconstrained �q
minimization, for which we show a few advantages on noisy measurements and/or approximately
sparse vectors. Inspired by the results in [Daubechies et al., Comm. Pure Appl. Math., 63 (2010),
pp. 1–38] for constrained �q minimization, we start with a preliminary yet novel analysis for uncon-
strained �q minimization, which includes convergence, error bound, and local convergence behavior.
Then, the algorithm and analysis are extended to the recovery of low-rank matrices. The algorithms
for both vector and matrix recovery have been compared to some state-of-the-art algorithms and
show superior performance on recovering sparse vectors and low-rank matrices.
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1. Introduction. Recovering sparse vectors from linear measurements is one
of the central subjects in compressed sensing. Now the study has been extended to
recovering low-rank matrices X from their linear observations A(X), which arises
in many applications, for example, system identification [23], model reduction [12],
recovering shape and motion from image streams [27, 33], data mining and pattern
recognition [11], collaborative prediction [30], and low-dimensional embedding [22].
A particularly interesting case is the matrix completion problem, where A(X) is a
subset of the entries ofX. It has been shown in [29, 4, 6] that under certain conditions,
an m-by-n matrix M with rank r ≤ min{m,n} can be exactly recovered from a small
number of its entries in Ω ⊂ [m]× [n] by solving the convex program

(1.1) min
X

‖X‖∗, subject to PΩ(X) = PΩ(M),

where [m] := {1, 2, . . . ,m}, the nuclear norm ‖X‖∗ is the sum of the singular values
σi(X) of X, i.e., ‖X‖∗ =

∑r
i=1 σi(X), and PΩ(X) = PΩ(M) is short for Xij =

Mij , (i, j) ∈ Ω. The work [29] studies the low-rank matrix recovery problem with
constraint A(X) = A(M) for general linear operator A : R

m×n → R
p.

Various types of algorithms have been proposed for solving problem (1.1), and
many of them are extensions or adaptations of their predecessors for sparse vec-
tor recovery. They include the singular value thresholding algorithm [3] based on
the linearized Bregman algorithm [36, 28], fixed-point continuation code FPCA [24]
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extending FPC [18], the code APGL [32] extending [2], and the code [35] based
on the alternating direction method [16]. Algorithms with no vector recovery pre-
decessors include OptSpace [20] and LMaFit [34], which are based on explicit fac-
torizations M = USV ∗ and M = XY and nonlinear least-squares formulations
minU,S,V ‖PΩ(USV ∗ −M)‖F and minX,Y ‖PΩ(XY −M)‖F , respectively.

Besides the above, the nonconvex �q quasi-norm ‖x‖qq =
∑

i |xi|q, 0 < q < 1,
and its variants have been used to develop algorithms for recovering sparse vectors in
[7, 9, 10] and low-rank matrices in [26, 13]. First, compared to �1 norm ‖x‖1, ‖x‖qq
for 0 < q < 1 makes a closer approximation to the “counting norm” ‖x‖0, which is
the number of nonzero entries of x. It is shown in [8] that assuming certain restricted
isometry properties (RIPs) of the sensing matrix A, a sparse vector xo ∈ R

N is the
�q minimizer of Ax = b, where b := Axo can have fewer observations than needed by
convex �1 minimization. Works [15, 31] derive sufficient conditions in terms of RIP
of A for �q minimization to recover sparse vectors that are weaker than those known
for �1 minimization.

However, the �q quasi-norm is nonconvex for q < 1, and �q minimization is gen-
erally NP-hard [17]. Instead of directly minimizing the �q quasi-norm, which most
likely ends up with one of its many local minimizers, algorithms [7, 9, 10] solve a
sequence of smoothed subproblems. Specifically, [7] solves reweighted �1 subprob-
lems: given an existing iterate x(k), the algorithm generates a new iterate x(k+1)

by minimizing
∑

i wi|xi| with weights wi := (ε + |x(k)
i |)q−1. To see how it re-

lates to �q quasi-norm, one can let x(k) = x, ε = 0, and 0/0 be 0 and then get∑
i wi|xi| =

∑
i |xi|q = ‖x‖qq. On the other hand, [9, 10] solves reweighted �2 (more

precisely, least-squares) subproblems: at each iteration, they approximate ‖x‖qq by∑
i wi|xi|2 with weights wi := (ε2 + |x(k)

i |2)q/2−1.
In the reweighted �1/�2 iterations, a fixed ε > 0 not only avoids division by zero,

but it also often causes the limit xε = limk→∞ x(k) to contain very few entries larger
than O(|ε|) in magnitude. In this sense, xε is often a good approximation of xo up to
O(|ε|). To recover a sparse vector x from b = Ax, these algorithms need to vary ε,
starting at a large value and gradually reducing it. In particular, [10] sets ε in terms
of the (s+1)th largest entry of the latest iterate, where s is the sparsity guesstimate.
Empirical results show that to recover vectors with entries in decaying magnitudes,
the reweighted �1/�2 algorithms require significantly fewer measurements than convex
�1 minimization, and in compressed sensing this measurement reduction translates to
savings in sensing time and cost.

Like other types of algorithms, the above �q inspired algorithms have been ex-
tended to recovering low-rank matrices. In particular, algorithms [26, 13] extend
[9, 10] and apply reweighted �2 to approximate ‖X‖∗. Its subproblem will become
clear after some notation is introduced.

This paper introduces algorithms for sparse vector and low-rank matrix recoveries
based on unconstrained smoothed �q minimization and reweighted �2 iterations, as well
as their convergence results. One of the advantages of an unconstrained model over
its constrained counterpart (e.g., [26]) is its suitability for noisy measurements and
approximately sparse vector or low-rank matrix recovery. More precisely, we study
the following unconstrained smoothed �q minimization with 0 < q ≤ 1:

(1.2) min
x∈RN

‖x‖qq,ε +
1

2λ
‖Ax− b‖22,
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UNCONSTRAINED SMOOTHED �q MINIMIZATION 3

where

‖x‖qq,ε =
N∑
j=1

(x2
j + ε2)q/2.

This minimization is for sparse vector recovery. For low-rank matrix recovery, we
assume the singular values of X are ordered as σ1(X) ≥ σ2(X) ≥ · · · ≥ σr(X) >
σr+1(X) = · · · = σn(X) = 0 unless with more specification, where r = rank(X).
By writing X = UΣV � in its standard singular value decomposition (SVD), we
can extend X�X = V Σ�ΣV � to the definition (X�X)α := V (Σ�Σ)αV �, where α
is a real scalar and (Σ�Σ)α is a diagonal matrix with diagonal entries (σi(X))2α,
i = 1, . . . , n. Then, one gets

tr
(
(X�X)q/2

)
= tr

(
V (Σ�Σ)q/2V �

)
= tr

(
(Σ�Σ)q/2

)
=

n∑
i=1

(
σi(X)

)q
,

which is known as the Schatten-q quasi-norm of matrix X. For q = 1, 2, this identity
reduces to

‖X‖∗ = tr
(
(X�X)1/2

)
=

n∑
i=1

σi(X) and ‖X‖2F = tr
(
X�X

)
=

n∑
i=1

(
σi(X)

)2
,

respectively, which are the matrix analogues of the vector �1-norm and squared �2-
norm. We consider minimizing tr

(
(X�X)q/2

)
for 0 < q ≤ 1.

Our exposition on low-rank matrix recovery is based on unconstrained smoothed
�q minimization

(1.3) min
X

tr
(
(X�X + ε2I)q/2

)
+

1

2λ
‖A(X)− b‖22 ,

where I is the n × n identity matrix, ε > 0 is a smoothing parameter, and b is an
observation vector with or without noise. By the definition, we have (X�X+ε2I)q/2 =
V (Σ�Σ+ ε2I)q/2V � and

tr
(
(X�X + ε2I)q/2

)
=

n∑
i=1

(
σi(X)2 + ε2

)q/2
.

Roughly speaking, smoothed �q minimization is applied to the singular values of X.
Given X(k) at iteration k, our algorithm generates X(k+1) as the unique solution of

(1.4) min
X

q

2
tr
(
W (k)X�X

)
+

1

2λ
‖A(X)− b‖22 ,

where

W (k) :=
(
(X(k))�X(k) + ε2I

)q/2−1

.

The objective function of (1.4) is quadratic in the entries of X. At X(k), the gradient
of the objective function in (1.4) is the same as that of the objective function in (1.3).

Our algorithm is different from the ones studied in [26, 13]. The algorithm in [26]
is based on the constrained counterpart of (1.3) which minimizes tr((X�X + ε2I)q/2)
for 0 ≤ q ≤ 1 subject to A(X) = b, and it solves the constrained counterpart of (1.4)
at each iteration. In addition, the algorithm is analyzed only for q = 0, 1. In [13], the
constrained minimization is restricted to q = 1, and a different updating rule of W (k)

is used. Under the strong rank null space property assumption, their algorithm can
be proved to give the unique minimizer.
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1.1. Contributions. The contributions of this paper include novel algorithms
and convergence results for unconstrained �q minimization in both the vector and
matrix settings, relative to the existing papers [21], [10], and [13]. One of the proposed
algorithms improves the vector algorithm in [21] by introducing iterative updates of
εk; see Algorithm 2.1. This paper also improves an elementary inequality in [21] and
thus gives better estimation of the difference between two consecutive iterates; see the
inequalities in Lemma 2.3 and (2.11). In addition, these inequalities are extended from
the vector setting to the matrix setting. The iterative update of εk in the proposed
algorithms is the same as the one in [10]. The convergence study of the iteratively
weighted least-squares algorithms for constrained �q minimization in [10] guides our
study of unconstrained �q minimization. However, while the null space property plays
a central role in [10], it is no longer useful for analyzing unconstrained �q minimization
as x(k) − x(0) does not lie in the null space of A any more. We find a property (cf.
Lemma 2.7) to overcome this difficulty for establishing convergence and deriving a
local error bound. This study is extended to the setting of low-rank matrix recovery
in section 3.

Furthermore, our algorithm for matrix recovery is carefully implemented to ex-
ploit problem structures. Starting with an initial rank overestimate K, our algorithm
can automatically decrease it to the true rank by a rank-decreasing strategy. Using the
best rank-K approximation of (X(k))�X(k) to update W (k), we can efficiently solve
(1.4) for matrix completion problems by the Woodbury matrix identity. Our algo-
rithm is compared numerically with some state-of-the-art algorithms such as LMaFit
[34] and AGPL [32] on matrix completion problems and shows better performance on
matrix recovery from noiseless and noisy measurements.

1.2. Notation. We let lowercase letters p, q, . . . denote scalars and bold lower-
case letters x, z, . . . denote vectors. xi denotes the ith component of vector x. Capital
letters X,Y, . . . are used for matrices and caligraphic letters L,P, . . . for operators or
functionals. Greek letters with subscripts such as δt are reserved for RIP constants.
Capital letters such as C,C1, C2 are reserved for constants and I for the identity ma-
trix. Any vector x with no more than s nonzeros is called an s-sparse vector, and any
matrix X of rank not greater than r is called an r-rank matrix. The trace of a square
matrix X is denoted by tr(X) and the inner product 〈X,Y 〉 := tr(XY �) = tr(X�Y )
for any X,Y ∈ R

m×n. Other notation is given as it appears.

1.3. Organization. The rest of this paper is presented as follows. Section 2
discusses problem (1.2) with 0 < q ≤ 1. An iterative reweighted �2 algorithm inspired
by [9, 10] is presented for this unconstrained problem with convergence analysis. The
algorithm and analysis are extended in section 3 to the low-rank matrix recovery
problem (1.3). In section 4, we compare the proposed algorithms for both sparse
vector and low-rank matrix recovery to some state-of-the-art algorithms.

2. Unconstrained �q minimization with 0 < q ≤ 1. Our algorithm is
derived by solving a sequence of subproblems in the form of (1.2), which has the
objective

Lq(x, ε, λ) =

N∑
j=1

(
x2
j + ε2

)q/2
+

1

2λ
‖Ax− b‖22.

For any ε > 0 and λ > 0, the minimization problem (1.2) must have a solution because
Lq(x, ε, λ) is continuous with respect to x. Thus it can achieve the minimum over a

Wotao
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UNCONSTRAINED SMOOTHED �q MINIMIZATION 5

bounded set {x : ‖x‖2 ≤ Δ}, where Δ is a positive constant. In addition, Lq(x, ε, λ)
blows up as ‖x‖2 → ∞. For convenience, we let xε,λ,q denote a critical point of (1.2)
and it satisfies the first-order optimality condition

(2.1)

[
qxε,λ,q

j

(ε2 + (xε,λ,q
j )2)1−q/2

]
1≤j≤N

+
1

λ
A�(Axε,λ,q − b) = 0.

Due to the nonlinearity, there is no straightforward method to solve the above system
of equations unless for specific instances, such as A�A is a diagonal matrix and
q = 1. We approximately solve the system with a sequence of ε’s and the method is
summarized as Algorithm 2.1.

Algorithm 2.1 (iterative reweighted unconstrained �q for sparse vector recovery
(IRucLq-v)).

Input: vector b, matrix A and estimated sparsity level s;
Output: vector x ∈ R

N .
Choose appropriate parameters λ > 0, q ∈ (0, 1].
Initialize x(0) such that Ax(0) = b and ε0 = 1.
For k = 0, 1, 2, . . .
Solve the following linear system for x(k+1):

(2.2)

[
qx

(k+1)
j

(ε2k + (x
(k)
j )2)1−q/2

]
1≤j≤N

+
1

λ
A�(Ax(k+1) − b) = 0

or equivalently

(2.3)

⎛⎝A�A+Diag

⎡⎣ qλ(
ε2k + (x

(k)
j )2

)1−q/2
, j = 1, . . . , N

⎤⎦⎞⎠x(k+1) = A�b

Update εk+1 = min{εk, α · r(x(k+1))s+1} where α ∈ (0, 1) is a constant.
End For

In Algorithm 2.1, r(z) is the rearrangement of the absolute values of z ∈ R
N

in decreasing order. If εk+1 = 0, we choose x(k+1) to be an approximation of the
sparse solution and stop the iteration. Otherwise, we stop the computation within a
reasonable time and return the last x(k+1). A similar algorithm is proposed in [21],
but it does not have this ε-update. A large ε will smooth out small local minimizers,
as been explained in [9], so adaptively updating ε allows one to get close to the global
minimizer without getting trapped at a local minimizer.

It is easy to see that the linear system (2.3) is invertible for any x(k+1) as long
as εk > 0. Once εk+1 = 0, the iteration is stopped. Thus, Algorithm 2.1 is well
defined. It is clear from Algorithm 2.1 that {εk} is a nonincreasing sequence which is
convergent to some nonnegative number ε∗. Below we show that the sequence {x(k)}
is bounded and thus has at least a convergent subsequence. We also show that the
limit x∗ of any convergent subsequence is a critical point of (1.2) when ε∗ > 0. When
ε∗ = 0, the limit is a sparse vector with sparsity ‖x∗‖0 ≤ s, where ‖x‖0 stands for the
number of nonzero entries of vector x.

Definition 2.1 (RIP). For integer t = 1, 2, . . . , the restricted isometry constant
δt of matrix A is the smallest number such that

(2.4) (1− δt)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δt)‖x‖22
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holds for any t-sparse vector x. For simplicity, we say matrix A satisfies the RIP of
order t with constant δt.

According to the analysis in [14], the RIP constant satisfies

(2.5) δt = max
#(S)≤t

‖A�
SAS − I‖2,

where S ⊂ [n], #(S) denotes the cardinality of S, AS is a submatrix of A obtained by
taking all the columns indicated by S, and ‖X‖2 is the matrix 2-norm which equals
the largest singular value σ1(X).

Under the RIP assumption, we can ensure that the limit x∗ is a reasonable ap-
proximation of the sparse solution if x∗ has a very small tail in the sense

σs(x
∗)p = inf

‖y‖0≤s
‖x∗ − y‖p

for p ≥ 1, which is the error term of the best s-term approximation of x∗ in the
�p-norm.

2.1. Convergence of Algorithm 2.1. In the first part of this subsection, we
analyze the convergence of Algorithm 2.1 and give an error bound for its limit point
xε∗,λ. It is always assumed that the true signal xo satisfies Axo = b. Namely, our
results are established on the noiseless scenario. However, all these results can be
easily extended to noisy ones. The following theorem summarizes our main result for
0 < q ≤ 1. The second part of this subsection shows a stronger convergence result for
q = 1, in which case the problem (1.2) becomes a convex program.

Theorem 2.2. Suppose that xo is an s-sparse vector satisfying Axo = b. Assume
that A satisfies the RIP of order 2s with δ2s < 1 and the smoothing parameter εk → ε∗
as k → ∞. Then the sequence {x(k)} generated by Algorithm 2.1 with 0 < q ≤ 1 has
at least one convergent subsequence. When ε∗ > 0, the limit xε∗,λ of any convergent
subsequence is a critical point of problem (1.2) with ε = ε∗, and it satisfies

(2.6)
∥∥xε∗,λ − xo

∥∥
2
≤ C1

√
λ+ C2σs(x

ε∗,λ)2.

When ε∗ = 0, there must exist a subsequence from {x(k)} converging to an s-sparse
point x0,λ which satisfies

(2.7)
∥∥x0,λ − xo

∥∥
2
≤ C

√
λ.

Here, C1, C2, and C are positive constants dependent only on δ2s, ‖xo‖q, and initial
point x(0).

Remark 2.1. From the results in Theorem 2.2 we can see that when ε∗ = 0, the
limit x0,λ is away from the exact sparse solution by a factor of

√
λ. If ε∗ > 0, we

have to check how small the error σs(x
ε∗,λ)2 is. If the error is very small and λ is

very small, then xε∗,λ is close to the exact sparse solution. This result provides a
reasonable stopping criterion for Algorithm 2.1 when λ is small. Specifically, if the
tail of the current iterate x(k) is small after the sth largest term in magnitude, we
can terminate the algorithm. Equivalently, if εk is small, we can stop the iteration
according to the updating rule of ε.

Remark 2.2. Under the assumption that Lq(x, ε
∗, λ) has finitely many critical

points, we can show that the sequence {x(k)} is convergent when ε∗ > 0. Indeed,
let yi, i = 1, . . . , � be these critical points and c = mini
=j ‖yi − yj‖2 be the smallest
distance among them. For any 0 < d < c/3, there exists an integer K1 > 0 such
that for any k ≥ K1, x

(k) is inside the ball Bd(y
i) centered at some yi with radius
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d. Otherwise, there would be another new critical point. In addition, (2.11) indicates
that there exists another integer K2 > 0 such that ‖x(k+1) − x(k)‖2 < d for any
k ≥ K2. With these two observations, we claim that if x(K) ∈ Bd(y

i0), then all x(k)

for k ≥ K = max{K1,K2} are inside the same ball, and thus the sequence {x(k)}
converges to yi0 .

To prove Theorem 2.2, we begin with the following inequality.
Lemma 2.3. Given 0 < q ≤ 1, if εk ≥ εk+1 ≥ 0, then the inequality

(2.8) (εk + x2)q/2 − (εk+1 + y2)q/2 − q(x− y)y

(εk + x2)1−q/2
≥ q(x− y)2

2(εk + x2)1−q/2

holds for any x, y ∈ R.
Proof. We first use the well-known arithmetic-geometric mean inequality (cf. [19,

p. 16, (2.5.2)]) to have

(2.9) (εk + x2)1−q/2(εk+1 + y2)q/2 ≤
(
1− q

2

)
(εk + x2) +

q

2
(εk+1 + y2).

Then we compute the difference

(εk + x2)q/2 − (εk+1 + y2)q/2 − q(x− y)y

(εk + x2)1−q/2

=
(εk + x2)− (εk + x2)1−q/2(εk+1 + y2)q/2 − q(x− y)y

(εk + x2)1−q/2

≥ (εk + x2)− (1− q
2

)
(εk + x2)− q

2 (εk+1 + y2)− q(x− y)y

(εk + x2)1−q/2

=
q

2

εk − εk+1 + (x− y)2

(εk + x2)1−q/2
≥ q(x− y)2

2(εk + x2)1−q/2
,

which is the desired inequality.
Our next result shows the monotonicity of Lq(x

(k), εk, λ) along the sequence.
Inequality (2.10) is similar to that derived in [21], while inequality (2.11) is new.

Lemma 2.4. Let x(k+1) be the solution of (2.3) for k = 0, 1, 2, . . .. Then

(2.10)
∥∥Ax(k) −Ax(k+1)

∥∥2
2
≤ 2λ

(
Lq(x

(k), εk, λ)− Lq(x
(k+1), εk+1, λ)

)
.

Furthermore,

(2.11)
∥∥x(k+1) − x(k)

∥∥2
2
≤ C

(
Lq(x

(k), εk, λ)− Lq(x
(k+1), εk+1, λ)

)
for a positive constant C which is dependent on ε0 and a bound for x(k), k ≥ 0.

Proof. We first compute

Lq(x
(k), εk, λ)− Lq(x

(k+1), εk+1, λ)

=

N∑
j=1

(ε2k + |x(k)
j |2)q/2 −

N∑
j=1

(ε2k+1 + |x(k+1)
j |2)q/2

+
1

2λ

(∥∥Ax(k) − b
∥∥2
2
− ∥∥Ax(k+1) − b

∥∥2
2

)
=

N∑
j=1

(ε2k + |x(k)
j |2)q/2 − (ε2k+1 + |x(k+1)

j |2)q/2 + 1

2λ

∥∥Ax(k) −Ax(k+1)
∥∥2
2

+
1

λ

(
Ax(k+1) − b

)T (
Ax(k) −Ax(k+1)

)
.(2.12)
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Using (2.2), we have

(2.13)
1

λ

(
Ax(k+1) − b

)T (
Ax(k) −Ax(k+1)

)
= −

N∑
j=1

qx
(k+1)
j

(
x
(k)
j − x

(k+1)
j

)
(ε2k + |x(k)

j |2)1−q/2
.

Substituting (2.13) into (2.12) and using (2.8) yields

Lq(x
(k), εk, λ)− Lq(x

(k+1), εk+1, λ)

=
N∑
j=1

⎛⎝(ε2k + |x(k)
j |2)q/2 − (ε2k+1 + |x(k+1)

j |2)q/2 − qx
(k+1)
j

(
x
(k)
j − x

(k+1)
j

)(
ε2k + |x(k)

j |2)1−q/2

⎞⎠
+

1

2λ

∥∥Ax(k) −Ax(k+1)
∥∥2
2

≥ 1

2λ

∥∥Ax(k) −Ax(k+1)
∥∥2
2
+

N∑
j=1

(
x
(k)
j − x

(k+1)
j

)2 q

2(ε2k + |x(k)
j |2)1−q/2

(2.14)

from which result (2.10) follows immediately.

For inequality (2.11), we see from (2.10) that Lq(x
(k), εk, λ) is monotonically

decreasing. It thus follows that∥∥x(k)
∥∥q
q
≤ ∥∥x(k)

∥∥q
q,εk

≤ Lq(x
(k), εk, λ) ≤ Lq(x

(0), ε0, λ) =
∥∥x(0)

∥∥q
q,ε0

for all k ≥ 1. That is, there exists a positive number Δ such that
∥∥x(k)

∥∥
∞ ≤ Δ for

all k ≥ 1. Note εk ≤ ε0. Hence,

q

2(ε2k + |x(k)
j |2)1−q/2

≥ q

2(ε20 +Δ2)1−q/2
.

Letting 1
C = q

2(ε20+Δ2)1−q/2 , we have (2.11) from (2.14).

With the above preparations, we are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. If ε∗ > 0, the boundedness of {x(k)} implies that there
exists a subsequence {x(kj)} converging to some point xε∗,λ. Note that (2.11) indicates∥∥x(k+1) − x(k)

∥∥
2
→ 0. Thus the subsequence {x(kj+1)} also converges to xε∗,λ. Now,

replacing x(k), x(k+1), εk with x(kj), x(kj+1), εkj
in (2.2), respectively, and letting

j → ∞ yields ⎡⎣ qxε∗,λ
j(

ε2∗ + (xε∗,λ
j )2

)1−q/2

⎤⎦
1≤j≤N

+
1

λ
A�(Axε∗,λ − b) = 0.

Namely, xε∗,λ is a critical point of (1.2) with ε = ε∗ > 0.

We use Lemma 2.4 to get

Lq(x
ε∗,λ, ε∗, λ) ≤ Lq(x

(kj), εkj
, λ) ≤ Lq(x

(0), ε0, λ) ≤
∥∥x(0)

∥∥q
q
+N(ε0)

q =
∥∥x(0)

∥∥q
q
+N,

which implies
∥∥Axε∗,λ − b

∥∥
2
≤√2λLq(xε∗,λ, ε∗, λ) ≤

√
2λ(
∥∥x(0)

∥∥q
q
+N).
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Let S be the index set of nonzero entries of xo and let S∗ be the index set of s
largest entries in absolute value of xε∗,λ. Since ‖xo‖0 ≤ s, we have∥∥xε∗,λ − xo

∥∥
2
≤ ∥∥(xε∗,λ − xo)S∪S∗

∥∥
2
+
∥∥(xε∗,λ)(S∪S∗)c

∥∥
2

≤ 1√
1− δ2s

∥∥A(xε∗,λ − xo)S∪S∗
∥∥
2
+
∥∥(xε∗,λ)(S∪S∗)c

∥∥
2

≤ 1√
1− δ2s

∥∥Axε∗,λ − b
∥∥
2
+

(
1√

1− δ2s
‖A‖2 + 1

)∥∥(xε∗,λ)(S∪S∗)c
∥∥
2

≤ 1√
1− δ2s

√
2λ(
∥∥x(0)

∥∥q
q
+N) +

(
1√

1− δ2s
‖A‖2 + 1

)
σs(x

ε∗,λ)2.

This completes the proof of (2.6).
If ε∗ = 0, then εk = 0 for some k or εk = α · r(x(mk))s+1 holds for sufficiently

large k and some integer mk ≤ k. In the former case, x(k) is an s-sparse vector,
and we can let x0,λ = x(k). In the latter case, let x0,λ be a limit point of {x(mk)}
since {x(mk)} is bounded. Without loss of generality, we assume x0,λ = limk→∞ x(mk).
Then r(x0,λ)s+1 = limk→∞ r(x(mk))s+1 = limk→∞ εk

α = 0. That is, x0,λ is an s-sparse
vector. Therefore, in both cases, we have an s-sparse limit point x0,λ. Without loss
of generality, we assume x(k) → x0,λ. Using the RIP of A, we have∥∥x0,λ − xo

∥∥
2
≤ 1√

1− δ2s

∥∥A(x0,λ − xo)
∥∥
2
=

1√
1− δ2s

lim
k→∞

∥∥Ax(k) − b
∥∥
2

≤ 1√
1− δ2s

lim
k→∞

(
2λLq(x

(k), εk, λ)
)1/2

≤ 1√
1− δ2s

(
2λLq(x

(0), ε0, λ)
)1/2

≤ 1√
1− δ2s

√
2λ
∥∥x(0)

∥∥q
q,ε0

,

where we have used Lemma 2.4 in the third inequality. This completes the
proof.

Case of q = 1. When q = 1, we can prove a stronger result in the case of ε∗ > 0
and estimate the error in the �1 norm. The boundedness of {x(k)} from Algorithm 2.1
implies that {x(k)} has a convergent subsequence. Suppose x(kj) → x̃. We know that
x̃ satisfies the first-order optimality condition of minx L1(x, ε∗, λ) when ε∗ > 0. Since
L1(x, ε∗, λ) is strictly convex when ε∗ > 0, x̃ is the unique minimizer. It follows that
{x(k)} converges and the limit is the unique minimizer. As before let it be denoted
by xε∗,λ.

Theorem 2.5. Suppose xo is an s-sparse vector satisfying Axo = b, and suppose
that the RIP constants δ2s and δ3s of A satisfy γ = δ3s/(1− δ2s) < 1. If the limit of
{εk} is ε∗ > 0, then the sequence {x(k)} generated by Algorithm 2.1 with q = 1 and
α ≤ 1

N converges to the unique minimizer xε∗,λ of L1(x, ε∗, λ), which satisfies∥∥xo − xε∗,λ
∥∥
1
≤ C1σt(x

o)1 + C2λ

for an integer t < s small enough such that 1+γ
(1−γ)(s+1−t) < 1, where C1 and C2 are

two positive constants.
Remark 2.3. That is, when ε∗ > 0, if the solution xo has sparsity ‖xo‖0 ≤ t,

then σt(x
o)1 = 0 and hence Algorithm 2.1 can recover the sparse solution xo within

an error proportional to λ.
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To establish this result, we need a series of lemmas. Let

η = xε∗,λ − xo,

and let S0 contain the index set of the first s largest entries of xo in absolute value. In
addition, we let S1, S2, . . . be the subsets of the complement Sc

0 of S in {1, 2, . . . , n},
where S1 is the set of indices of the first s largest entries of ηSc

0
in absolute value and

S2 is the set of indices of next s largest entries in absolute value and so on.
Lemma 2.6. Suppose that A satisfies the RIP of order 2s with δ2s < 1. Then

(2.15) ‖ηS0∪S1
‖2 ≤ δ3s

1− δ2s

∑
j≥2

∥∥ηSj

∥∥
2
+

√
2s

1− δ2s
λ.

Proof. Letting S = S0 ∪ S1, by (2.1) we have

‖ηS‖22 =
∥∥(xε∗,λ − xo)S

∥∥2
2
=
〈
(xε∗,λ − xo)S ,x

ε∗,λ − xo
〉

=
〈
(xε∗,λ − xo)S , (I −ATA)(xε∗,λ − xo)

〉
+ λ

〈(
xε∗,λ − xo

)
S
,

[
xε∗,λ
j

(ε2∗ + (xε∗,λ
j )2)1/2

, j ∈ S

]〉
(2.16)

since xε∗,λ satisfies the first-order optimality condition. The first term of (2.16) is〈
(I −ATA)T (xε∗,λ − xo)S , (x

ε∗,λ − xo)
〉

≤ 〈(I −ATA)T (xε∗,λ − xo)S , (x
ε∗,λ − xo)S

〉
+
∑
j≥2

〈
(I −ATA)T (xε∗,λ − xo)S , (x

ε∗,λ − xo)Sj

〉

≤ δ2s
∥∥(xε∗,λ − xo)S

∥∥2
2
+ δ3s

∥∥(xε∗,λ − xo)S
∥∥
2

⎛⎝∑
j≥2

∥∥(xε∗,λ − xo)Sj

∥∥
2

⎞⎠ ,(2.17)

where we have used the property (2.5) of RIP constant to get (2.17). The second
term of (2.16) is

λ

〈(
xε∗,λ − xo

)
S
,

[
xε∗,λ
j

(ε2∗ + (xε∗,λ
j )2)1/2

, j ∈ S

]〉

≤ λ
∥∥(xε∗,λ − xo)S

∥∥
2

∥∥∥∥∥
[

xε∗,λ
j

(ε2∗ + (xε∗,λ
j )2)1/2

, j ∈ S

]∥∥∥∥∥
2

≤ λ
∥∥(xε∗,λ − xo)S

∥∥
2

√
2s.(2.18)

We summarize the above to have∥∥(xε∗,λ − xo)S
∥∥
2
≤ δ2s

∥∥(xε∗,λ − xo)S
∥∥
2
+ δ3s

∑
j≥2

∥∥(xε∗,λ − xo)Sj

∥∥
2
+ λ

√
2s(2.19)

or equivalently

(2.20)
∥∥(xε∗,λ − xo)S

∥∥
2
≤ δ3s

1− δ2s

∑
j≥2

∥∥(xε∗,λ − xo)Sj

∥∥
2
+

√
2s

1− δ2s
λ.
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Furthermore, with the above inequality, we can show the following.
Lemma 2.7. Suppose that A satisfies the RIP of order 2s with δ2s < 1. Then

(2.21) ‖ηS0
‖1 ≤ δ3s

1− δ2s
‖ηSc

0
‖1 + s

√
2

1− δ2s
λ.

Proof. We note that
∥∥ηSj

∥∥
2
≤ ∥∥ηSj−1

∥∥
1
/
√
s for all j ≥ 2 and

∑
j≥2

∥∥ηSj

∥∥
2
≤ 1√

s

∑
j≥1

∥∥ηSj

∥∥
1
=

1√
s

∥∥ηSc
0

∥∥
1
.(2.22)

Thus, we can use Lemma 2.6 and (2.22) to get

‖ηS0
‖1 ≤ √

s ‖ηS0
‖2 ≤ √

s ‖ηS‖2
≤ δ3s

√
s

1− δ2s

∑
j≥2

∥∥ηSj

∥∥
2
+

s
√
2

1− δ2s
λ ≤ δ3s

√
s

1− δ2s

1√
s

∥∥ηSc
0

∥∥
1
+

s
√
2

1− δ2s
λ

=
δ3s

1− δ2s

∥∥ηSc
0

∥∥
1
+

s
√
2

1− δ2s
λ.

Then the desired inequality (2.21) follows.
In addition, we need the following lemma, which is a variant of Lemma 4.2 of

[10]. Although the idea for the proof is very similar, we include it for convenience.
Lemma 2.8. Suppose that the RIP constants δ2s and δ3s of A satisfy γ =

δ3s/(1− δ2s) < 1. Let β =
√
2/(1− δ2s). Then

‖η‖1 ≤ 1 + γ

1− γ

(∥∥xε∗,λ
∥∥
1
− ‖xo‖1 + 2σs(x

o)1
)
+

2sβ

1− γ
λ.

Proof. We use Lemma 2.7 to have

‖η‖1 = ‖ηS0
‖1 +

∥∥ηSc
0

∥∥
1
≤ (1 + γ)

∥∥ηSc
0

∥∥
1
+ sβλ.(2.23)

Then ∥∥ηSc
0

∥∥
1
≤ ∥∥(xε∗,λ)Sc

0

∥∥
1
+
∥∥(xo)Sc

0

∥∥
1

=
∥∥xε∗,λ

∥∥
1
− ∥∥(xε∗,λ)S0

∥∥
1
+ 2

∥∥(xo)Sc
0

∥∥
1
− ∥∥(xo)Sc

0

∥∥
1

≤ ∥∥xε∗,λ
∥∥
1
− ‖xo‖1 + ‖(xo)S0

‖1 −
∥∥(xε∗,λ)S0

∥∥
1
+ 2

∥∥(xo)Sc
0

∥∥
1

≤ ∥∥xε∗,λ
∥∥
1
− ‖xo‖1 +

∥∥(xo − xε∗,λ)S0

∥∥
1
+ 2

∥∥(xo)Sc
0

∥∥
1

≤ ∥∥xε∗,λ
∥∥
1
− ‖xo‖1 + γ

∥∥ηSc
0

∥∥
1
+ sβλ+ 2

∥∥(xo)Sc
0

∥∥
1
,

where we have used Lemma 2.7 again in the last inequality. After rearranging the
terms, we get

(2.24)
∥∥ηSc

0

∥∥
1
≤ 1

1− γ

(∥∥xε∗,λ
∥∥
1
− ‖xo‖1 + sβλ+ 2

∥∥(xo)Sc
0

∥∥
1

)
.

Combining the inequalities in (2.23) and (2.24), we conclude the result in this
lemma.

With the above three lemmas, we are ready to prove Theorem 2.5.
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Proof of Theorem 2.5. The convergence of {x(k)} to the unique minimizer xε∗,λ

has been shown by the discussion before Theorem 2.5 or is implied by Remark 2.2
since L1(x, ε∗, λ) is strictly convex with respect to x when ε∗ > 0.

From Axo = b and ε∗ ≤ r(x(k))s+1

N for all k ≥ 0, it follows that∥∥xε∗,λ
∥∥
1
≤ L1(x

ε∗,λ, ε∗, λ) ≤ L1(x
o, ε∗, λ) ≤ ‖xo‖1 +Nε∗ ≤ ‖xo‖1 + r(xε∗,λ)s+1.

Using Lemma 2.8 and noting that xo is s-sparse, we have∥∥xo − xε∗,λ
∥∥
1
≤ 1 + γ

1− γ

(∥∥xε∗,λ
∥∥
1
− ‖xo‖1 + 2σs(x

o)1
)
+

2sβ

1− γ
λ

≤ 1 + γ

1− γ
r(xε∗,λ)s+1 + Cλ(2.25)

for C = 2sβ
1−γ and γ = δ3s

1−δ2s
< 1. Furthermore, based on the rearrangement r(xε∗,λ)

in decreasing order, we can choose t < s such that

(2.26)

(s+ 1− t) · r(xε∗,λ)s+1 ≤
s+1∑

j=t+1

r(xε∗,λ)j ≤ σt(x
ε∗,λ)1 ≤ ∥∥xo − xε∗,λ

∥∥
1
+ σt(x

o)1.

Then, it follows from (2.25) and (2.26) that∥∥xo − xε∗,λ
∥∥
1
≤ 1 + γ

1− γ
r(xε∗,λ)s+1 + Cλ

≤ 1 + γ

(1− γ)(s+ 1− t)

(∥∥xo − xε∗,λ
∥∥
1
+ σt(x

o)1
)
+ Cλ.

Therefore, if ν = 1+γ
(1−γ)(s+1−t) < 1, then

∥∥xo − xε∗,λ
∥∥
1
≤ ν

1− ν
σt(x

o)1 +
C

1− ν
λ,

and letting C1 = ν
1−ν and C2 = C

1−ν completes the proof.

2.2. Local convergence behavior of Algorithm 2.1. As discussed above,
when εk → 0, the limit point of the sequence {x(k)} from Algorithm 2.1 with 0 < q ≤ 1
is close to the sparse solution within an error proportional to

√
λ. When εk → ε∗ > 0

and q = 1, {x(k)} converges to the unique minimizer of problem (1.2) with ε = ε∗. The
minimizer is close to a sparse solution within an error proportional to λ. Only the case
corresponding to q < 1 and ε∗ > 0 needs to be studied further. This subsection gives
an analysis of the local convergence behavior of Algorithm 2.1 in this case. The main
result is the following theorem.

Theorem 2.9. Suppose that xo is an s-sparse vector satisfying Axo = b. Let
S0 be the index set of the nonzeros of xo. Assume that A satisfies the RIP of order
2s with δ2s < 1/2 and γ = δ3s

(1−δ2s)
< 1. Let {x(k)} be the sequence generated by

Algorithm 2.1 with 0 < q ≤ 1 and α ≤ 1
N1/q and assume the smoothing parameter

εk → ε∗ > 0. Let η(k) = x(k) − xo. If for some k, Ek :=
∥∥η(k)∥∥

q
≤ ρmini∈S0

|xo
i | with

ρ < 1, then there exists positive constants μ and C such that

(2.27) Eq
k+1 ≤ μ(Ek)

q(2−q) + C
√
λq.

Wotao
Highlight
exist
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When Ek → 0, (2.27) holds for all k ≥ k0 for some integer k0 ≥ 1 if λ = 0. If λ > 0
is sufficiently small, (2.27) holds for k0 ≤ k ≤ k0 +m for some integers k0 ≥ 1 and
m ≥ 0 (to be explained in Remark 2.4).

The proof of Theorem 2.9 will be given after we establish two lemmas. Let us
first give some explanation of the results in this theorem.

Remark 2.4. For q < 1 and λ = 0, Eq
k exhibits a superlinear convergence under

the assumption that Eq
k for some k is sufficiently small such that (Eq

k)
rμ ≤ δ < 1 for

some r ∈ (0, 1 − q). In case μ < 1, we also assume Ek ≤ 1. Then it follows from
(2.27) that Eq

k+1 ≤ μ(Eq
k)

r(Eq
k)

2−q−r ≤ Eq
k and hence Ek+1 ≤ Ek. Thus, we have

μ(Eq
k+1)

r ≤ μ(Eq
k)

r ≤ δ < 1 and Ek+1 ≤ Ek ≤ ρmini∈S0
|xo

i | < 1. Hence we can apply
(2.27) again. By induction, we see μ(Eq

k+m)r ≤ δ < 1 and Ek+m ≤ ρmini∈S0
|xo

i | for
all m ≥ 1. Therefore, by (2.27), we have

Eq
k+m ≤ δ(Eq

k+m−1)
2−q−r ≤ δ3−q−r(Eq

k+m−2)
(2−q−r)2 · · · ≤ δ	(Eq

k)
(2−q−r)m ,

where � =
∑m−1

j=0 (2− q − r)j . That is, Eq
k converges superlinearly. Intuitively, when

λ > 0 is sufficiently small, the errors Ek behave similarly. Indeed, under the same
assumption on Ek above, if λ is small such that C

√
λq ≤ min{(1 − δ)Eq

k+j , j =
1, . . . ,m} for another integer m, then the errors Ek+j for 0 ≤ j ≤ m also behave in a
superlinear fashion.

Remark 2.5. Due to the error behavior in Theorem 2.9, if Eq
k for k ≥ 1 are in

superlinear fashion, then ∥∥∥x(k+1) − x(k)
∥∥∥q
q
≤ Eq

k+1 + Eq
k,

i.e., the difference between two consecutive iterates behaves like that of Eq
k. If the

difference above is in a superlinear fashion, the limit xε∗,λ would be close to a sparse
solution very likely. This can be a stopping criterion for Algorithm 2.1.

As explained in Theorems 2.2 and 2.5, the limit xε∗,λ of any convergent subse-
quence of {x(k)} is away from xo by an amount dependent on λ and the residual
σs(x

ε∗,λ)1. Thus, without loss of generality, we next assume that {x(k)} converges
and let η(k) = x(k) − xo for k ≥ 1. Recall that S0 contains the index set of nonzeros
of xo with cardinality #(S0) = s. In addition, we let S1, S2, . . . be the subsets of Sc

0

with S1 being the set of indices of the first s largest entries of η
(k+1)
Sc in absolute value

and S2 the set of indices of next s largest entries and so on.
Lemma 2.10. Suppose that εk → ε∗ > 0 and suppose that A satisfies the RIP of

order 2s with δ2s < 1. Let S = S0 ∪ S1. Then

(2.28)
∥∥∥η(k+1)

S

∥∥∥
2
≤ δ3s

1− δ2s

∑
j≥2

∥∥∥η(k+1)
Sj

∥∥∥
2
+ Cλ

for a constant C > 0.
Proof. The proof directly follows that of Lemma 2.6 except for one step which

needs to be justified here. The inequality (2.18) is obtained from∥∥∥∥∥
[

xε∗,λ
j

(ε2∗ + (xε∗,λ
j )2)1/2

, j ∈ S

]∥∥∥∥∥
2

≤
√
2s.

Now the term becomes

∥∥∥∥[ x
(k+1)
j

(ε2k+(x
(k)
j )2)1/2

, j ∈ S

]∥∥∥∥
2

. Since εk ≥ ε∗ > 0 and {x(k)} is

bounded, then
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[

x
(k+1)
j

(ε2k + (x
(k)
j )2)1−q/2

, j ∈ S

]∥∥∥∥∥
2

≤
∥∥∥[|x(k+1)

j |(ε∗)q−2, j ∈ S
]∥∥∥

2
≤ Δ,

where Δ is a positive constant dependent on ε∗ and the bound of {x(k)}. Fol-
lowing other steps in the proof of Lemma 2.6 gives the desired result (2.28) with
C = Δ

1−δ2s
.

Furthermore, with the above inequality, we can show the next lemma.
Lemma 2.11. Suppose that A satisfies the RIP of order 2s with δ2s < 1 and

γ = δ3s/(1− δ2s) < 1. Then for any q ∈ (0, 1],

(2.29)
∥∥∥η(k+1)

S0

∥∥∥
q
≤ γ

1− γ

∥∥∥η(k+1)
Sc
0

∥∥∥
q
+ Cs1/q−1/2λ

for a constant C > 0.
Proof. The idea of the proof is similar to that of Lemma 2.7. We omit the

details.
We are now ready to prove Theorem 2.9. The proof mainly follows the ideas in

[10]. We spell out details in the setting of unconstrained �q minimization.
Proof of Theorem 2.9. By (2.2), we have

N∑
i=1

(
xo
i + η

(k+1)
i

)
η
(k+1)
i(

ε2k + (x
(k)
i )2

)1−q/2
+

1

qλ
(η(k+1))�ATAη(k+1) = 0.

Rearranging the terms and noting that xo is supported on S0, we have

(2.30)
N∑
i=1

(η
(k+1)
i )2(

ε2k + (x
(k)
i )2

)1−q/2
+

1

qλ
(η(k+1))�A�Aη(k+1) = −

∑
i∈S0

xo
i η

(k+1)
i(

ε2k + (x
(k)
i )2

)1−q/2
.

Using the assumption that |η(k)i | ≤ Ek ≤ ρminj∈S0
|xo

j | with ρ < 1, we get

|xo
i |(

ε2k + (x
(k)
i )2

)1−q/2
≤ |xo

i |(
(xo

i + η
(k)
i )2

)1−q/2
≤ |xo

i |q−1

(1− ρ)2−q
.

Letting C̃ = min{|xo
i |, xo

i = 0} and C̄ = (C̃)q−1, we have

|xo
i |(

ε2k + (x
(k)
i )2

)1−q/2
≤ C̄

(1− ρ)2−q

and hence,

−
∑
i∈S0

xo
i η

(k+1)
i(

ε2k + (x
(k)
i )2

)1−q/2
≤
∑
i∈S0

C̄

(1− ρ)2−q
|η(k+1)

i | = C̄

(1− ρ)2−q

∥∥∥η(k+1)
S0

∥∥∥
1
.

Thus, by (2.30), we further have

N∑
i=1

(
η
(k+1)
i

)2(
ε2k + (x

(k)
i )2

)1−q/2
≤

N∑
i=1

(
η
(k+1)
i

)2(
ε2k + (x

(k)
i )2

)1−q/2
+

1

qλ
η(k+1)A�Aη(k+1)

≤ C̄

(1− ρ)2−q

∥∥∥η(k+1)
S0

∥∥∥
1
≤ C̄

(1− ρ)2−q

∥∥∥η(k+1)
S0

∥∥∥
q

≤ C̄

(1− ρ)2−q

(
γ

1− γ

∥∥∥η(k+1)
Sc
0

∥∥∥
q
+ Cs1/q−1/2λ

)
(2.31)
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for some positive constant C, where we have used Lemma 2.11, i.e., the λ-null space
property (2.29).

On the other hand, the Cauchy–Schwarz inequality gives

∥∥∥η(k+1)
Sc
0

∥∥∥q
q
≤
⎛⎝∑

i∈Sc
0

|η(k+1)
i |2

(ε2k + |x(k)
i |2)1−q/2

⎞⎠q/2⎛⎝∑
i∈Sc

0

(ε2k + |x(k)
i |2)q/2

⎞⎠1−q/2

≤
(

N∑
i=1

|η(k+1)
i |2

(ε2k + |x(k)
i |2)1−q/2

)q/2
⎛⎝∑

i∈Sc
0

εqk + |x(k)
i |q

⎞⎠1−q/2

≤
(

C̄

(1− ρ)2−q

(
γ

1− γ

∥∥∥η(k+1)
Sc
0

∥∥∥
q
+ Cλ

))q/2(∥∥∥η(k)Sc
0

∥∥∥q
q
+Nεqk

)1−q/2

,

where we have used (2.31). Squaring both sides of the last inequality yields∥∥∥η(k+1)
Sc
0

∥∥∥2q
q

≤ C̄q

(1− ρ)q(2−q)

(
γq

(1− γ)q

∥∥∥η(k+1)
Sc
0

∥∥∥q
q
+ (Cλ)q

)(∥∥∥η(k)Sc
0

∥∥∥q
q
+Nεqk

)2−q

.

Finally, we have

Nεqk= (N1/qεk)
q ≤ (r(x(k))s+1)

q = (r(x(k))s+1)
q − (r(xo)s+1)

q

≤ |r(x(k))s+1 − r(xo)s+1|q ≤
∥∥∥r(x(k))− r(xo)

∥∥∥q
∞

≤ ‖x(k) − xo‖qq = ‖η(k)‖qq
by using Lemma 4.1 in [10]. Hence, with ᾱ = C̄q

(1−ρ)q(2−q) 2
2−q,

(2.32)
∥∥∥η(k+1)

Sc
0

∥∥∥2q
q

≤ ᾱ

(
γq

(1− γ)q

∥∥∥η(k+1)
Sc
0

∥∥∥q
q
+ (Cλ)q

)
‖η(k)‖q(2−q)

q .

If η
(k+1)
Sc
0

= 0, then we can use the λ-null space property (2.29) to see that
∥∥η(k+1)

∥∥
q
≤

Cλ and hence Ek+1 ≤ Cλ ≤ C
√
λq.

Otherwise, we let t =
∥∥∥η(k+1)

Sc
0

∥∥∥q
q
, a = ᾱ γq

(1−γ)q

∥∥η(k)∥∥q(2−q)

q
, which can be bounded

independently of k and b = ᾱ(Cλ)q
∥∥η(k)∥∥q(2−q)

q
. Then (2.32) becomes t2−at− b ≤ 0.

It follows that

t ≤ 1

2

(
a+

√
a2 + 4b

)
≤ 1

2
(2a+ 2

√
b).

More precisely, we have∥∥∥η(k+1)
Sc
0

∥∥∥q
q
≤ ᾱ

γq

(1− γ)q

∥∥∥η(k)∥∥∥q(2−q)

+ C
√
λq

for another positive constant C since
∥∥η(k)∥∥

q
is bounded. By Lemma 2.11, letting

θ = γ/(1− γ),∥∥∥η(k+1)
∥∥∥q
q
≤ (1 + θq)

∥∥∥η(k+1)
Sc
0

∥∥∥q
q
+ Cs1−q/2λq ≤ ᾱγq(1 + θq)

(1− γ)q

∥∥∥η(k)∥∥∥q(2−q)

q
+ C

√
λq

with another constant C in the last inequality which is dependent on s, where λ ∈
(0, 1) and q ≤ 1. Letting μ = ᾱγq(1+θq)

(1−γ)q , we finally obtain (2.27) and thus establish

the desired inequality.



16 MING-JUN LAI, YANGYANG XU, AND WOTAO YIN

3. Unconstrained �q minimization for low-rank matrix recovery. In this
section, we extend the study in the previous section to the low-rank matrix recovery
problem (1.3), which has the objective

Lq(X, ε, λ) = tr
(
(X�X + ε2I)q/2

)
+

1

2λ
‖A(X)− b‖22 ,

where b is an observation vector with or without noise and A is a linear operator
from R

m×n to R
p. Without loss of generality, we assume m ≥ n in this section. The

first-order optimality condition of problem (1.3) is ∇XLq(X, ε, λ) = 0, i.e.,

(3.1) qX
(
X�X + ε2I

)q/2−1
+

1

λ
A∗(A(X)− b

)
= 0,

where A∗ is the adjoint operator of A. Similar to the vector case, we approximately
solve a sequence of the nonlinear system (3.1) corresponding to a sequence of ε’s and
our algorithm is summarized as follows.

Algorithm 3.1 (iterative reweighted unconstrained �q for low-rank matrix recovery
(IRucLq-M)).

Input: vector b, linear operator A and estimated rank K;
Output: matrix X ∈ R

m×n.
Choose appropriate parameters λ > 0, q ∈ (0, 1].
Initialize X(0) such that A(X(0)) = b and ε = ε0 > 0.
For k = 0, 1, 2, . . .

Let W (k) =
(
(X(k))�X(k) + ε2kI

)q/2−1

Solve the following system for X(k+1)

(3.2) λqX(k+1)W (k) +A∗
(
A(X(k+1))

)
= A∗(b);

Update εk+1 by εk+1 = min
{
εk, α · σK+1(X

(k+1))
}
, where α ∈ (0, 1) is a

constant.
End For

In Algorithm 3.1, σK+1(X
(k+1)) is the (K +1)th largest singular value of X(k+1)

and W (k) is obtained by decomposing (X(k))�X(k) = V (k)(Σ(k))2(V (k))� in the SVD

format and letting W (k) = V (k)
(
(Σ(k))2 + ε2kI

)q/2−1
(V (k))�, where Σ(k) is a diagonal

matrix with the singular values of X(k) on its diagonal. If εk+1 = 0, we return X(k+1)

and terminate the algorithm. Otherwise, we stop the computation in a reaonable time
and return the last X(k+1).

3.1. Convergence analysis of Algorithm 3.1. Since the sequence {εk} is
nonincreasing and lower bounded by zero, it must converge to some ε∗ ≥ 0. In this
subsection, we show that the sequence {X(k)} is bounded and hence {X(k)} has at
least one convergent subsequence. In addition, when ε∗ > 0, the limit of any con-
vergent subsequence is a critical point satisfying the first-order optimality condition
(3.1) with ε = ε∗, and when ε∗ = 0, there exists a convergent subsequence whose limit
is a K-rank matrix. The following theorem summarizes the main convergence result.

Theorem 3.1. Suppose that the sequence {X(k)} is generated by Algorithm 3.1
with 0 < q ≤ 1 and εk → ε∗ as k → ∞. Then {X(k)} has at least one convergent
subsequence. If ε∗ > 0, the limit of any convergent subsequence of {X(k)} satisfies the
first-order optimality condition (3.1) with ε = ε∗. If ε∗ = 0, there exists at least one
subsequence of {X(k)} converging to a K-rank matrix X0,λ.

Wotao
Cross-Out

Wotao
Highlight
reasonable



UNCONSTRAINED SMOOTHED �q MINIMIZATION 17

Remark 3.1. Remark 2.2 also applies here, i.e., the assumption of finite critical
points implies the convergence of Algorithm 3.1.

Before proving this theorem, let us recall the following reversed version of the von
Neumann trace inequality.

Lemma 3.2. Suppose that A and B are n × n symmetric positive semidefinite
matrices. Let σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) ≥ 0 and σ1(B) ≥ σ2(B) ≥ · · · ≥
σn(B) ≥ 0 be singular values of A and B, respectively. Then

tr(AB) ≥
n∑

i=1

σi(A)σn−i+1(B).

The proof of this lemma can be found on p. 249 of [25]. Lemma 3.2 will be used
a few times in this section. By Lemma 3.2, we can prove the following lemma, which
is an extension of Lemma 2.3 in the matrix setting. It is standard in matrix analysis
that for a symmetric positive semidefinite matrix A with eigen-decomposition UDU�,
we define Aτ := UDτU�, where τ ∈ R.

Lemma 3.3. Let 0 ≤ c ≤ 1/2, ε > 0, and 0 < q < 2. The inequalities

tr
(
(εI +X�X)

q
2 − (εI + Y �Y )

q
2 − q(X − Y )�Y (εI +X�X)

q
2−1
)

≥ tr
(
cq(X − Y )�(X − Y )(εI +X�X)

q
2−1
)

(3.3)

≥ 0(3.4)

hold for any matrices X,Y ∈ R
m×n. Furthermore, we have

(i) if c < 1/2, inequalities (3.3) and (3.4) hold with equality if and only if X = Y;
(ii) if c = 1/2, inequality (3.3) holds with equality if and only if X and Y have the

same singular value sequence and right singular vectors.

Proof. For convenience, let [X] := εI +X�X and [Y ] := εI + Y �Y . In addition,
let [x]i = ε+ σ2

i (X) and [y]i = ε+ σ2
i (Y ). Since tr

(
q(X − Y )�(X − Y )[X]

q
2−1
) ≥ 0,

if the result is proved for c = 1/2, it holds for all c ≤ 1/2. Therefore, we let c = 1/2
and derive

tr
(
[X]

q
2 − [Y ]

q
2 − q(X − Y )�Y [X]

q
2−1
)
− tr

(q
2
(X − Y )�(X − Y )[X]

q
2−1
)(3.5)

= tr
(
[X]

q
2 − [Y ]

q
2 − q

2
X�X[X]

q
2−1 +

q

2
Y �Y [X]

q
2−1
)

≥
n∑

i=1

(
[x]

q
2
i − [y]

q
2
i − q

2
σi(X)2[x]

q
2−1
i +

q

2
σi(Y )2[x]

q
2−1
i

)
=

n∑
i=1

(
[x]

q
2
i − [y]

q
2
i − q(σi(X)− σi(Y ))σi(Y )[x]

q
2−1
i − q

2
(σi(X)− σi(Y ))2[x]

q
2−1
i

)
,

where the last inequality follows from

1. tr
(
[X]

q
2

)
=
∑

i σi

(
[X]

q
2

)
=
∑

i[x]
q
2
i , tr

(
[Y ]

q
2

)
=
∑

i σi

(
[Y ]

q
2

)
=
∑

i[y]
q
2
i ,

2. tr
(
X�X[X]

q
2−1
)
=
∑

i σi(X)2[x]
q
2−1
i ,

3. tr
(
Y �Y [X]

q
2−1
) ≥∑i σi(Y

�Y )σn−i+1

(
[X]

q
2−1
)
=
∑

i σi(Y )2[x]
q
2−1
i by

Lemma 3.2.

Wotao
Highlight
von Neumann's



18 MING-JUN LAI, YANGYANG XU, AND WOTAO YIN

Thus, the results in (3.3) and (3.4) now follow by using Lemma 2.3 in the previous
section for each term in the right-hand side of (3.5), specifically, with x = σi(X) and
y = σi(Y ) in (2.8). This inequality holds with equality if and only if Y �Y and [X]
have the same set of eigenvectors.

Using Lemma 3.3, we can prove the next lemma.
Lemma 3.4. Let the sequence {X(k)} be generated from Algorithm 3.1 with 0 <

q ≤ 1. Then there exists a constant c > 0 such that for k ≥ 1,

1

2λ

∥∥∥A(X(k+1) −X(k))
∥∥∥2
2
+ qc

∥∥∥X(k+1) −X(k)
∥∥∥2
F

≤ Lq(X
(k), εk, λ) − Lq(X

(k+1), εk+1, λ).(3.6)

Proof. The proof of this lemma is essentially the same as that of Lemma 2.4.
However, several steps need to be carefully modified for the matrix setting. Similar
to Lemma 2.4, we have

Lq(X
(k), εk, λ)− Lq(X

(k+1), εk+1, λ)

= tr

((
(X(k))�X(k) + ε2kI

) q
2

)
− tr

((
(X(k+1))�X(k+1) + ε2kI

) q
2

)
+

1

2λ

(∥∥∥A(X(k))− b
∥∥∥2
2
−
∥∥∥A(X(k+1))− b

∥∥∥2
2

)
= tr

((
(X(k))�X(k) + ε2kI

) q
2

)
− tr

((
(X(k+1))�X(k+1) + ε2kI

) q
2

)
+

1

2λ

∥∥∥A(X(k) −X(k+1))
∥∥∥2
2

− qtr

((
X(k) −X(k+1)

)�
X(k+1)

(
(X(k))�X(k) + ε2kI

) q
2−1
)
,

where we have used (3.2) in the last equality.
Now we can use Lemma 3.3 to get

Lq(X
(k), εk, λ)− Lq(X

(k+1), εk+1, λ)

≥ 1

2λ

∥∥∥A(X(k) −X(k+1))
∥∥∥2
2

+
q

2
tr

((
X(k) −X(k+1)

)� (
X(k) −X(k+1)

)(
(X(k))�X(k) + ε2kI

) q
2−1
)

≥ 1

2λ

∥∥∥A(X(k) −X(k+1))
∥∥∥2
2

+
q

2

n∑
i=1

σi

((
X(k) −X(k+1)

)� (
X(k) −X(k+1)

))(
σi(X

(k))2 + ε2k

) q
2−1

≥ 1

2λ

∥∥∥A(X(k) −X(k+1))
∥∥∥2
2
+ qc

n∑
i=1

σi

((
X(k) −X(k+1)

)� (
X(k) −X(k+1)

))
=

1

2λ

∥∥∥A(X(k) −X(k+1))
∥∥∥2
2
+ qc

∥∥∥X(k+1) −X(k)
∥∥∥2
F
.

Here, the second inequality follows from Lemma 3.2, and it implies

Lq(X
(k+1), εk+1, λ) ≤ Lq(X

(k), εk, λ).

Wotao
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Hence,

(3.7)(
σi(X

(k))2+ε2k
) q

2 ≤ tr
((

(X(k))�X(k) + ε2kI
) q

2

)
≤ Lq(X

(k), εk, λ) ≤ · · · ≤ Lq(X
(0), ε0, λ)

holds for any i = 1, . . . , n. Namely, σi(X
(k))2 + ε2k is upper bounded so

(
σi(X

(k))2 +

ε2k
)q/2−1

is lower bounded by a positive constant c, from which the third inequality
follows. This completes the proof.

Now, we are ready to prove Theorem 3.1.
Proof of Theorem 3.1. The inequalities in (3.7) imply that the sequence {X(k)}

is bounded. Hence, there is a subsequence {X(kj)} converging to some point X̂. If
ε∗ > 0, the weighting matrix W (kj) is always well defined since εkj

≥ ε∗. Note that

X(kj+1) solves (3.2) with W = W (kj), i.e.,

(3.8) λqX(kj+1)W (kj) +A∗(A(X(kj+1))
)
= A∗(b).

Then {X(kj+1)} must converge to some X̄. Now it follows from (3.6) that
∥∥X(k) −

X(k+1)
∥∥
F
→ 0, and thus∥∥∥X̂ − X̄

∥∥∥
F
= lim

j→∞

∥∥∥X(kj) −X(kj+1)
∥∥∥
F
→ 0.

Therefore, X̂ = X̄. Letting j → ∞ in (3.8) gives

λqX̂Ŵ +A∗(A(X̂)) = A∗(b)

with Ŵ = (X̂�X̂ + ε2∗I)
q/2−1, which implies that X̂ satisfies (3.1) with ε = ε∗.

If ε∗ = 0, then from the updating rule of εk, it must hold that εk = 0 for some
k or εk = α · σK+1(X

(mk)) for some integer mk ≤ k when k is sufficiently large. In
the first case, we have σK+1(X

(k)) = 0. Thus X(k) is a K-rank matrix, and we let
X0,λ = X(k). In the second case, we let X0,λ be the limit of a convergent subsequence
of {X(mk)}. Without causing confusion, we still denote the subsequence as {X(mk)}.
Then we have σK+1(X

0,λ) = limk→∞ σK+1(X
(mk)) = limk→∞ εk

α = ε∗
α = 0. Thus, in

both cases, X0,λ is a K-rank matrix, and this completes the proof.

3.2. Error analysis of Algorithm 3.1. Under the matrix-RIP assumption,
this subsection gives an error analysis of Algorithm 3.1.

Definition 3.5 (matrix-RIP). For integer r = 1, 2, . . ., the matrix-RIP constant
δr of A is the smallest number such that

(3.9) (1− δr) ‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δr) ‖X‖2F
holds for all r-rank matrices X. For simplicity, we say that A satisfies the matrix-RIP
of order r with constant δr.

Let er(X) be the error term of the best r-rank approximation of X in the
Frobenius norm, i.e.,

(3.10) er(X) = min
rank(Z)≤r

‖X − Z‖F .

Similarly, ρr(X) is defined as the error term of the best r-rank approximation of X
in nuclear norm, i.e.,

(3.11) ρr(X) = min
rank(Z)≤r

‖X − Z‖∗ .
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In what follows, we assume that the underlying true matrix Xo satisfies A(Xo) =
b. In general, the vector b can be contaminated by noise. Therefore, Xo may not
satisfy A(Xo) = b any more. Hence, our analysis always assumes that b contains
no noise. However, it is not difficult to extend our results to the noisy case. In
the remaining part of this section, we analyze the recoverability of Algorithm 3.1.
Theorem 3.6 considers the case of 0 < q ≤ 1 and Theorem 3.7 focuses on the case of
q = 1.

Theorem 3.6. Suppose that Xo is a K-rank matrix satisfying A(Xo) = b.
Assume that A satisfies the matrix-RIP of order 2K < min{m,n} with δ2K < 1.
Moreover, assume that ε∗ is the limit of sequence {εk}. If ε∗ > 0, then any limit point
X∗ of the sequence {X(k)} generated by Algorithm 3.1 with 0 < q ≤ 1 satisfies

(3.12) ‖X∗ −Xo‖F ≤ C1

√
λ+ C2eK(X∗).

When ε∗ = 0, there exists at least one subsequence converging to a K-rank matrix X∗

which satisfies

(3.13) ‖X∗ −Xo‖F ≤ C1

√
λ,

where C1, C2 are two positive constants and eK(X∗) is defined in (3.10).
Proof. Recall that we have proved that any limit point X∗ of {X(k)} is a critical

point when ε∗ > 0, and when ε∗ = 0, there exists at least one subsequence {X(kj)}
converging to a K-rank matrix X∗. Hence, we only need to prove inequalities (3.12)
and (3.13) to complete the proof.

Let us consider the case of ε∗ = 0 first. Note rank(X∗ − Xo) ≤ rank(X∗) +
rank(Xo) ≤ 2K. Since A satisfies the matrix-RIP of order 2K with δ2K < 1, we have

‖X∗ −Xo‖F ≤ 1√
1− δ2K

‖A(X∗ −Xo)‖2

=
1√

1− δ2K
lim
j→∞

∥∥∥A(X(kj))− b
∥∥∥
2

≤ 1√
1− δ2K

lim
j→∞

(
2λLq(X

(kj), εkj
, λ)
)1/2

≤ 1√
1− δ2K

(
2λLq(X

(0), ε0, λ)
)1/2

,

where we have used the monotonicity of the sequence {Lq(X
(k), εk, λ)} in the last

inequality. Note that Lq(X
(0), ε0, λ) is independent of λ sinceA(X(0)) = b. Therefore,

in the case of ε∗ = 0, the limit X∗ is close to the low-rank solution Xo within an error
proportional to

√
λ.

Next we consider the case of ε∗ > 0. Again, by the monotonicity of Lq(X
(k), εk, λ),

we have

Lq(X
∗, ε∗, λ) = lim

j→∞
Lq(X

(kj), εkj
, λ) ≤ Lq(X

(0), ε0, λ),

from which it follows that

(3.14) ‖A(X∗)− b‖2 ≤
√

2λLq(X∗, ε∗, λ) ≤
√

2λLq(X(0), ε0, λ).

Write X∗ in full-SVD format: X∗ = UKΣKV �
K + ŨKΣ̃K Ṽ �

K . Here UK and VK

consist of the K left and right singular vectors of X∗ corresponding to the first K
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largest singular values of X∗, respectively, and ŨK and ṼK consist of another m−K
left singular vectors and another n−K right singular vectors of X∗, respectively. In
addition, writeXo in economy-SVD formatXo = UbΣbV

�
b . If necessary, we add more

orthogonal columns to make Ub ∈ R
m×K and Vb ∈ R

n×K . Since 2K < min{m,n},
we can always find a column orthogonal matrix U ∈ R

m×(n−2K) such that U�UK = 0
and U�Ub = 0. Let P2K = I−UU� be a projection and its complementary projection
Pc
2K = UU�. Noting that rank(P2K(X)) ≤ 2K for any X ∈ R

m×n, we have

‖X∗ −Xo‖F ≤ ‖P2K(X∗ −Xo)‖F + ‖Pc
2K(X∗ −Xo)‖F

≤ 1√
1− δ2K

∥∥A(P2K(X∗ −Xo)
)∥∥

2
+ ‖Pc

2K(X∗ −Xo)‖F

=
1√

1− δ2K

∥∥A(X∗ −Xo)−A(Pc
2K(X∗ −Xo)

)∥∥
2
+ ‖Pc

2K(X∗−Xo)‖F

≤ 1√
1− δ2K

‖A(X∗)− b‖2 +
(

1√
1− δ2K

‖A‖+ 1

)
‖Pc

2K(X∗ −Xo)‖F

=
1√

1− δ2K
‖A(X∗)− b‖2 +

(
1√

1− δ2K
‖A‖+ 1

)∥∥∥U�ŨKΣ̃K

∥∥∥
F

≤ 1√
1− δ2K

‖A(X∗)− b‖2 +
(

1√
1− δ2K

‖A‖+ 1

)
eK(X∗),

where we have used the fact that ‖AB‖F ≤ ‖A‖2 ‖B‖F for any matrices A,B of
appropriate size in the last inequality, and ‖A‖ is the norm of operator. Applying
(3.14) to the last inequality completes the proof.

Case of q = 1. When q = 1 and ε∗ > 0, the function L1(X, ε∗, λ) is strictly
convex with respect to X. Hence, the critical point X∗ is the unique minimizer. In
this case, we are able to get a stronger result described as follows.

Theorem 3.7. Suppose that Xo is K-rank and A(Xo) = b. Assume that {X(k)}
is a sequence generated by Algorithm 3.1 with q = 1 and α ≤ 1/n, and assume
that the limit of {εk} is ε∗ > 0. Suppose that A satisfies the matrix-RIP of order
3K < min{m,n} such that γ = δ3K

1−δ2K
< 1. If ν = 1+γ

(1−γ)(K−t+1) < 1 for some integer

t < K, then {X(k)} converges to the unique minimizer X∗ of (1.3) with ε = ε∗, which
satisfies

(3.15) ‖Xo −X∗‖∗ ≤ C1

√
Kλ+ C2ρt(X

o),

where C1, C2 are two positive constants and ρt(X
o) is defined in (3.11).

Remark 3.2. According to (3.15), if rank(Xo) ≤ t < K, then X∗ differs from the
low-rank solution Xo by an amount proportional to λ. In addition, if λ = 0, which
corresponds to the constrained problem with constraint A(X) = b, then Algorithm
3.1 will successfully recover the low-rank matrix Xo.

To prove the theorem, we first show some lemmas. Denote Y = X∗ − Xo. Let
UbΣbV

�
b be the best rank-K approximation of Xo with Ub and Vb containing the left

and rightK singular vectors ofXo corresponding to the firstK largest singular values,
respectively, and Σb being a diagonal matrix with the first K largest singular values
on its diagonal. Define a projection PK = UbU

�
b and its complementary projection

Pc
K = I − PK . Split Y as Y = PK(Y ) + Pc

K(Y ). Suppose the SVD of Pc
K(Y ) is

Pc
K(Y ) = Ũ Σ̃Ṽ T . We further split Pc

K(Y ) =
∑

i≥1 Yi with Yi = ÛiΣ̂iV̂
�
i , where Û1

consists of the K columns of Ũ corresponding to the first K largest singular values,
Û2 the next K columns of Ũ corresponding to the next K largest singular values,
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and so on. V̂1, V̂2, . . . and Σ̂1, Σ̂2, . . . are obtained accordingly. For convenience, let
P = PK , Pc = Pc

K , and Ŷ = P(Y ) + Y1 in the following analysis.
Lemma 3.8. Suppose that A satisfies the matrix-RIP of order 2K < min{m,n}

with δ2K < 1. Let γ = δ3K
1−δ2K

and C =
√
n

1−δ2K
. Then

(3.16)
∥∥∥Ŷ ∥∥∥

F
≤ γ

∑
i≥2

‖Yi‖F + Cλ.

Proof. Note
∥∥∥Ŷ ∥∥∥2

F
= 〈Ŷ , Y 〉. Hence,

∥∥∥Ŷ ∥∥∥2
F
=
〈
Ŷ ,X∗ −Xo − λX∗ ((X∗)�X∗ + ε2∗I

)−1/2 −A∗A(X∗ −Xo)
〉

=
〈
Ŷ , (I −A∗A)(Y )

〉
− λ

〈
Ŷ ,X∗ ((X∗)�X∗ + ε2∗I

)−1/2
〉
,(3.17)

where we have used the fact that X∗ is a critical point of L1(X, ε∗, λ) in the first
equality.

For the first term in (3.17), we have

〈
Ŷ , (I −A∗A)(Y )

〉
=

〈
(I −A∗A)∗(Ŷ ), Ŷ +

∑
i≥2

Yi

〉

=
〈
(I −A∗A)∗(Ŷ ), Ŷ

〉
+
∑
i≥2

〈
(I −A∗A)∗(Ŷ ), Yi

〉
≤ δ2K

∥∥∥Ŷ ∥∥∥2
F
+
∑
i≥2

δ3K

∥∥∥Ŷ ∥∥∥
F
‖Yi‖F ,

where we have used an alternative definition of matrix-RIP of A. This definition is
similar to the vector case (2.5) and can be proved equivalent to (3.9) in essentially
the same way as in [14] by noting that the operator I −A∗A is self-adjoint. We leave
the details to the interested reader.

For the second term in (3.17), note that
∥∥X∗((X∗)�X∗ + ε2∗I)

−1/2
∥∥
F

≤ √
n by

straightforward calculations. Hence,

−λ
〈
Ŷ ,X∗ ((X∗)�X∗ + ε2∗I

)−1/2
〉
≤ √

nλ
∥∥∥Ŷ ∥∥∥

F
.

Now, we can summarize the above discussions to have∥∥∥Ŷ ∥∥∥2
F
≤ δ2K

∥∥∥Ŷ ∥∥∥2
F
+ δ3K

∥∥∥Ŷ ∥∥∥
F

∑
i≥2

‖Yi‖F +
√
nλ
∥∥∥Ŷ ∥∥∥

F
.

Dividing both sides in the above inequality by
∥∥∥Ŷ ∥∥∥

F
and rearranging the terms yield

(3.16).
Lemma 3.9. Under the same assumptions as in Lemma 3.8, we have

(3.18) ‖P(Y )‖∗ ≤ γ ‖Pc(Y )‖∗ +
√
KCλ,

where γ = δ3K
1−δ2K

and C =
√
n

1−δ2K
.
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Proof. Note ‖P(Y )‖2∗ ≤ K ‖P(Y )‖2F ≤ K
∥∥∥Ŷ ∥∥∥2

F
and ‖Yi‖F ≤ ‖Yi−1‖∗ /

√
K for

i ≥ 2. Then from Lemma 3.8, we have

‖P(Y )‖∗ ≤
√
K
∥∥∥Ŷ ∥∥∥

F
≤

√
K

⎛⎝γ
∑
i≥2

‖Yi‖F + Cλ

⎞⎠ ≤ γ
∑
i≥1

‖Yi‖∗ +
√
KCλ,

which together with
∑

i≥1 ‖Yi‖∗ = ‖Pc(Y )‖∗ completes the proof.
Lemma 3.10. Suppose the assumptions in Lemma 3.8 hold and assume γ =

δ3K
1−δ2K

< 1. Then

(3.19) ‖X∗ −Xo‖∗ ≤ 1 + γ

1− γ

( ‖X∗‖∗ − ‖Xo‖∗ + 2ρK(Xo)
)
+

2
√
K

1− γ
Cλ,

where C =
√
n

1−δ2K
and ρK(Xo) is defined in (3.11).

Proof. From Lemma 3.9, it follows that

(3.20) ‖Y ‖∗ ≤ ‖P(Y )‖∗ + ‖Pc(Y )‖∗ ≤ (1 + γ) ‖Pc(Y )‖∗ +
√
KCλ.

Moreover, we have

‖Pc(Y )‖∗ ≤ ‖Pc(X∗)‖∗ + ‖Pc(Xo)‖∗
= ‖X∗‖∗ − ‖P(X∗)‖∗ + 2 ‖Pc(Xo)‖∗ − ‖Pc(Xo)‖∗
≤ ‖X∗‖∗ − ‖Xo‖∗ + ‖P(Xo)‖∗ − ‖P(X∗)‖∗ + 2 ‖Pc(Xo)‖∗
≤ ‖X∗‖∗ − ‖Xo‖∗ + ‖P(Xo −X∗)‖∗ + 2 ‖Pc(Xo)‖∗
≤ ‖X∗‖∗ − ‖Xo‖∗ + γ ‖Pc(Y )‖∗ +

√
KCλ+ 2 ‖Pc(Xo)‖∗ ,

where we have used (3.18) in the last inequality. Rearranging the terms in the last
inequality yields

(3.21) ‖Pc(Y )‖∗ ≤ 1

1− γ

(
‖X∗‖∗ − ‖Xo‖∗ +

√
KCλ+ 2 ‖Pc(Xo)‖∗

)
.

Substituting (3.21) into (3.20) and rearranging the terms, we get the desired
result.

Now, we are ready to prove Theorem 3.7.
Proof of Theorem 3.7. Since L1(X, ε∗, λ) is strictly convex with respect to X,

Remark 3.1 implies that the whole sequence {X(k)} converges to the unique minimizer
X∗.

Following the proof of Theorem 2.5 in the beginning, we have

(3.22) ‖X∗‖∗ ≤ L1(X
∗, ε∗, λ) ≤ L1(X

o, ε∗, λ) ≤ ‖Xo‖∗ +nε∗ ≤ ‖Xo‖∗ +σK+1(X
∗),

which together with Lemma 3.10 indicates

‖X∗ −Xo‖∗ ≤ 1 + γ

1− γ

( ‖X∗‖∗ − ‖Xo‖∗ + 2ρK(Xo)
)
+

2
√
K

1− γ
Cλ

≤ 1 + γ

1− γ
σK+1(X

∗) +
2
√
K

1− γ
Cλ,(3.23)



24 MING-JUN LAI, YANGYANG XU, AND WOTAO YIN

where C =
√
n

1−δ2K
and we have used the fact that Xo is K-rank. For t < K, we have

(3.24) (K − t+ 1)σK+1(X
∗) ≤

K+1∑
i=t+1

σi(X
∗) ≤ ρt(X

∗) ≤ ‖X∗ −Xo‖∗ + ρt(X
o),

where we have used the following argument: letting Xo
[t] = Ub,tΣb,tV

�
b,t with Ub,t

being the first t singular vectors of Ub, Σb,t is the diagonal matrix with the first t
singular values on its diagonal, and Vb,t the first t singular vectors of Vb, then

ρt(X
∗) ≤

∥∥∥X∗ −Xo
[t]

∥∥∥
∗
≤ ‖X∗ −Xo‖∗ +

∥∥∥Xo −Xo
[t]

∥∥∥
∗
= ‖X∗ −Xo‖∗ + ρt(X

o).

Substituting (3.24) into (3.23) yields

‖X∗ −Xo‖∗ ≤ 1 + γ

(1− γ)(K − t+ 1)

( ‖X∗ −Xo‖∗ + ρt(X
o)
)
+

2
√
K

1− γ
Cλ.

Letting ν = 1+γ
(1−γ)(K−t+1) , C1 = 2C

(1−γ)(1−ν) and C2 = ν
1−ν , we have

‖X∗ −Xo‖∗ ≤ C1

√
Kλ+ C2ρt(X

o),

which completes the proof.
In a similar way, we can extend the discussion of local convergence behavior at

the end of the previous section to the matrix recovery setting. We leave it to the
interested reader.

4. Computational results. In this section, we present several numerical ex-
periments to illustrate the effectiveness of Algorithms 2.1 and 3.1. For Algorithm
2.1, we compare it with several state-of-the-art solvers on recovering sparse vectors.
For Algorithm 3.1, we compare it with two matrix completion solvers, i.e., we take
A = PΩ in (1.3). All our tests were performed on a Lenovo D20 Workstation with 40
GB of RAM and two Intel Xeon E5506 processors, each of them with four cores.

4.1. Sparse vector recovery. In Algorithm 2.1, for given q and λ, the step size
α and the sparsity estimate s are most important. Due to the nonconvexity of the
problem (for q < 1), too small α may cause the algorithm to stagnate at local minima.
In our tests, we took α = 0.9, which worked well for the tested sparse vectors. We
did not assume prior information of the true sparsity level and simply took s = �m

2 �,
where m is the row number of matrix A. For all the tests, we used zero vectors as the
starting points as we determined that using a zero vector or a pseudoinverse solution
of Ax(0) = b as an initial point for Algorithm 2.1 leads to a similar performance of
sparse vector recovery.

Choice of q. First, we tested Algorithm 2.1 on recovering sparse vectors with
q varying among {0.1, 0.5, 0.7, 1}. In this test, A was generated by MATLAB’s
command randn(64,256). The true vector xo had t nonzeros with each one en-
try generated according to the standard Gaussian distribution and t varying among
{8, 10, 12, . . . , 32}. The location of nonzeros was uniformly randomly generated. The
parameter λ was set to 10−6 for all q’s. Although the best λ should be dependent
on q in general, we considered the noiseless case, and λ = 10−6 is small enough to
approximately enforce Ax = Axo. We let the algorithm run to 1,000 iterations. The

recovery was regarded successful if
‖xr−xo‖2

‖xo‖2
≤ 10−3, where xr stands for a recovered

Wotao
Highlight
regarded as
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vector. The left picture in Figure 4.1 shows the frequency of successful recovery using
Algorithm 2.1 over 100 independent trials for various q’s and t’s. From the figure,
we can see that Algorithm 2.1 with q = 0.1, 0.5 performed better than q = 0.7 and
much better than q = 1. In addition, q = 0.5 gave slightly higher success frequency
than q = 0.1. We emphasize that our results do not counter the intuition that a
smaller q should recover more sparse vectors. This is because a smaller q makes the
minimizing functional more nonconvex and thus more difficult to solve. We found
that if we decreased ε more slowly, the performance of Algorithm 2.1 with q = 0.1
could be further improved. However, the running time also became much longer.

Comparison with other solvers. Second, we compared Algorithm 2.1
(IRucLq-v) with three existing �1 solvers, �1 magic [5], reweighted �1 [7], and the
homotopy method [1], and one �q solver (Lq-FL) [15]. �1 magic and reweighted �1
solve the constrained �1 minimization

min
x

‖x‖1 subject to Ax = Axo.

The homotopy method solves the unconstrained �1 minimization

(4.1) min
x

‖x‖1 +
1

2τ
‖Ax−Axo‖22 .

The �q method in [15] solves the constrained �q minimization

min
x

‖x‖qq subject to Ax = Axo.

Note that the �q method in [15] uses the output of �1 magic as the initial vector, and
a sequence of q’s are used during the iterations to produce the sparsest solution. In
this test, A had the size of 50×250, and each element was generated according to the
Gaussian distribution N (0, 1

50 ). This kind of matrix was also tested in [10]. The true
vector xo was generated in the same way as in the previous test. For Algorithm 2.1, we
used λ = 10−6 and q = 0.5, and for the homotopy method, we took τ = 10−6 in (4.1).
We let each algorithm run to the maximum number of iterations maxit = 1000, which
is sufficiently large for all of them. All other settings of the compared algorithms were

left to their default ones. If
‖xr−xo‖2

‖xo‖2
≤ 10−3, the recovery was regarded as successful.

The right picture in Figure 4.1 plots the success frequency of each method over 500
independent trials. From the figure, we can see that our method gives the highest
successful rate.

4.2. Matrix completion. This section reports some numerical results on solv-
ing matrix completion problems using Algorithm 3.1. For all the numerical tests, we
used X(0) = PΩ(M) as the starting point.

Rank estimation. In Algorithm 3.1, K is one of the most important parameters.
Since the true rank r is generally unknown, we deliberately used the overestimate
K = �1.5r� throughout our tests, unless otherwise specified. During the iterations of
our algorithm, K was updated dynamically as did in [34]. Specifically, suppose that
X was the current iterate and λKmin

≥ λKmin+1 ≥ . . . ≥ λK+1 > 0 were the (Kmin)th
through (K + 1)th largest eigenvalues of X�X, where Kmin was the user-specified
minimum rank estimate. Let λ̄i = λi/λi+1 for i = Kmin, . . . ,K, and suppose

K̂ = argmin
Kmin≤i≤K

λ̄i.
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Fig. 4.1. Comparison results of recoverability. Left: Algorithm 2.1 with different q’s. Right:
Algorithm 2.1 with q = 0.5 compares with three �1 solvers and one �q solver on recovering sparse
vectors.

If the condition

(K −Kmin + 1)λ̄
̂K∑

i
= ̂K λ̄i
> 10,

was satisfied, which means there is a “big” jump between λ
̂K and λ

̂K+1, then we

reduced K to K̂. We found from our numerical experiments that whenever this
adjustment was applied, K̂ became equal to the true rank r, so there was no need to
repeat this adjustment on each problem.

Choice of q. As in sparse vector recovery, we first numerically compared the
solutions of Algorithm 3.1 with different values of q on 100× 100 matrices to identify
a good value of q for the remaining tests. In this test, each matrix was exactly
low-rank and had the form M = MLMR, where ML and MR were generated by
MATLAB’s commands randn(m,r) and randn(r,n), respectively. The maximum
number of iterations was set to 1000, and the parameters λ and α were set to 10−6

and 0.9, respectively. A fixed sampling ratio SR = 0.5 was used in this test, where
SR � #(Ω)/(mn). We compared four different values of q = 0.1, 0.5, 0.7, 1 with initial
rank estimate K = �1.5r� and minimum rank estimate Kmin = 5. We regarded the

recovery successful if
‖Mr−M‖F

‖M‖F
≤ 10−3, where Mr stands for a recovered solution.

The left picture in Figure 4.2 depicts the success frequency over 100 independent trials
for each q and r. From the figure, we can see that Algorithm 3.1 with q = 1 performed
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Fig. 4.2. Comparison results of recoverability. Left: Algorithm 3.1 with different q’s. Right:
Algorithm 3.1 with q = 0.5 compares with APGL and LMaFit on recovering low-rank matrices.
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much worse than q = 0.1, 0.5, 0.7. Again, q = 0.5 gives the best performance. The
reason for the relatively lower success frequency of q = 0.1 over q = 0.5 is similar to
that for the vector case. Thus, in the remaining tests, we used q = 0.5.

Comparison on synthetic data. Second, we compared Algorithm 3.1
(IRucLq-M) with two recent matrix completion solvers APGL [32] and LMaFit [34].
These two algorithms compare favorably with a number of other methods including
FPCA [24] and OptSpace [20] on many types of matrices. APGL solves

min
X

‖X‖∗ +
1

2μ
‖PΩ(X −M)‖2F ,

and LMaFit solves

min
X,Y

‖PΩ(XY −M)‖2F subject to X ∈ R
m×K , Y ∈ R

K×n,

where K is an estimated rank and can be fixed or dynamically updated. In this test,
each matrix was exactly low-rank and had the form M = MLMR, where ML and
MR were generated by MATLAB’s commands rand(m,r)-0.5 and rand(r,n)-0.5,
respectively. It is worth mentioning that matrices with uniformly random entries are
usually more difficult to recover than those with Gaussian random entries. We let
IRucLq-M and APGL run to a maximum number of iterations maxit = 1000 and
LMaFit to maxit = 5000 since LMaFit converges relatively slowly and takes less time
per iteration. For IRucLq-M, we set α = 0.9 and λ = 10−6. Initial rank estimate K =
�1.5r� was used and the minimum rank estimate was set to Kmin = 5. For LMaFit,
both increasing-rank (LMaFit-inc) and decreasing-rank strategies (LMaFit-dec) were
compared corresponding to its parameter est_rank set to 2 and 1, respectively. Initial
rank estimateK = 5 was used for LMaFit-inc and the value of maximum rank estimate
parameter rank_max set to �1.5r�. The increase step parameter rk_inc was set to
1. For LMaFit-dec, the initial rank estimate was set to K = �1.5r� and the value
of minimum rank estimate parameter rank_min set to 5. For APGL, we set its
parameters truncation = 1 and truncation_gap = 10. The initial value of μ was
μ0 = 10−2 ‖PΩ(M)‖2, where ‖PΩ(M)‖2 equals the largest singular value of PΩ(M).
It was dynamically updated by the continuation technique μk = max(0.7μk−1, μmin),
where μmin = 10−6 ‖PΩ(M)‖2 was used. All other parameters related to LMaFit and

APGL were set to their default values. Similar to the previous test, if
‖Mr−M‖F

‖M‖F
≤

10−3, Mr is regarded as a successful recovery. The right picture in Figure 4.2 plots
the success frequency of each algorithm for different ranks over 500 independent trials.
From the figure, we can see that IRucLq-M gave the best recoverability.

Algorithm acceleration. We notice that (3.2) with A = PΩ is expensive to
solve with large-scale data since we need to solve m linear equations

(4.2) λqXi→W (k−1) + (PΩ(X))i→ = (PΩ(M))i→, i = 1, . . . ,m,

where Xi→ denotes the ith row of X. To tackle this difficulty, we follow [13] and keep
the best rank-K approximation of X�X, which is formed by the K largest eigenvalues
and their corresponding eigenvectors, while updating the weighting matrix W . Then,
we can exploit the Woodbury matrix identity to solve (4.2). More precisely, suppose
thatX is the current iterate andX�X = V Σ2V � is the eigen-decomposition ofX�X.
We approximate X�X by V Σ2

tV
�, where Σt is a diagonal matrix with diagonal

entries (Σt)jj = σj(X) if j ≤ K and zero otherwise. Now suppose ε and W are
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updated to ε+ = min{ε, α · σK+1(X)} and W+ = V (Σ2
t + ε2+I)

q/2−1V �, respectively.
Let VK ∈ R

n×K be the matrix consisting of the K columns of V corresponding
to the first K largest eigenvalues, and let DK be the K × K diagonal matrix with
diagonal elements (DK)jj = (σ2

j + ε2+)
q/2−1 − εq−2

+ for j = 1, . . . ,K. Then, we can

write W+ = VKDKV �
K + εq−2

+ I. Moreover, note that (PΩ(X))i→ = Xi→Ei, where
Ei ∈ R

n×n is the diagonal matrix with diagonal elements (Ei)jj = 1 if (i, j) ∈ Ω and
zero otherwise. Replacing W (k−1) in (4.2) by the updated weighting matrix W+, we
need to solve

(4.3) Xi→(λqVKDKV �
K + λqεq−2

+ I + Ei) = M i→Ei, i = 1, . . . ,m.

For convenience, letting D̄K = λqDK , Ēi = λqεq−2
+ I + Ei and using the Woodbury

matrix identity, we find the explicit solutions of (4.3) as

Xi→ = M i→Ei(Ē
−1
i − Ē−1

i VK(D̄−1
K + V �

K Ē−1
i VK)−1V �

K Ē−1
i ), i = 1, . . . ,m.

Since D̄−1
K + V �

K ĒiVK is K ×K, its inverse is less expensive to compute. This leads
to an accelerated algorithm which is called truncated -IRucLq-M, or t-IRucLq-M.

Next, we compared IRucLq-M and t-IRucLq-M on recovering low-rank matri-
ces of size 200 × 200. Each matrix had the form of M = MLMR, where ML and
MR were generated by MATLAB’s commands randn(m,r) and randn(r,n), respec-
tively. We fixed K = r, i.e., we used the correct rank estimate, and r varied among
{41, 44, 47, 50, 53}. The parameters α and λ were set to α = 0.9 and λ = 10−6 for
both IRucLq-M and t-IRucLq-M. We terminated the algorithms if

(4.4)

σK+1(X
(k)) ≤ tol for some k

or
|σK+1(X

(k))− σK+1(X
(k−1))|

max{1, σK+1(X(k−1))} ≤ tol for three consecutive k’s,

where tol = 10−5 was used in this test. In addition, we set maxit = 1000 for both
IRucLq-M and t-IRucLq-M. Figure 4.3 plots the success frequency and average run-
ning time over 100 independent trials. From the results, we can see that in general
t-IRucLq-M is faster than IRucLq-M with no quality loss. For this reason, only
t-IRucLq-M is used in the remaining experiments.

Comparison on a real image. Finally, we applied Algorithm 3.1 to grayscale
image recovery from partial observations. The original image (in Figure 4.4) has a
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Fig. 4.3. Comparison of IRucLq-M and t-IRucLq-M. Left: success frequency. Right: average
running time.
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Fig. 4.4. Grayscale image of 512× 512 pixels

resolution of 512×512. In this test, the underlying matrixM was not exactly low-rank
and had the form of

M = Mo + σ
‖Mo‖F
‖Ξ‖F

Ξ,

where Mo is the matrix representation of the image (not contaminated), σ varied
among {0.01, 0.05, 0.10}, and Ξ was white noise generated by MATLAB command
randn(m,n).

For t-IRucLq-M, we used α = 0.9 and heuristically set λ = 10−2σ. The rank
estimate was fixed to K = 40. For LMaFit, both fixing-rank (LMaFit-fix) and
increasing-rank (LMaFit-inc) strategies were compared corresponding to the param-
eter est_rank set to 0 and 2, respectively. For LMaFit-fix, the rank estimate was
fixed to K = 40. For LMaFit-inc, the initial rank estimate was set to K = 5 and
the maximum rank estimate was set to rank_max=50. Actually, we also tested both
t-IRucLq-M and LMaFit with the decreasing-rank (LMaFit-dec) strategy. We observe
that t-IRucLq-M would never decrease the initial rank estimate K. Hence, it was the
same as that with a rank fixing strategy. In addition, t-IRucLq-M made better recov-
ery for larger K. However, LMaFit-dec gave a worse solution than that by LMaFit-fix
or LMaFit-inc. For APGL, the continuation technique μk = max(0.7μk−1, μmin) was
used with μ0 = 0.1 ‖PΩ(M)‖2 and μmin = 10−3 ‖PΩ(M)‖2. The stopping tolerance
was set to 10−3 for both t-IRucLq-M (see (4.4)) and APGL and 10−4 for LMaFit since
we saw that 10−3 was too loose for LMaFit. The maximum number of iterations was
set to 2000 for all three algorithms. All other parameters for LMaFit and APGL were
set to the same values as in the previous test.

CPU time (sec), peak-signal noise ratio (PSNR), and mean square error (MSE)
were employed to measure the performance of the algorithms. Table 4.1 lists the
average results of 100 independent trials corresponding to different sampling ratios
SR = 0.3, 0.4, 0.5. From the table, we see that in most cases t-IRucLq-M obtains
better solutions than those by APGL with comparable speed. LMaFit is faster than
t-IRucLq-M, but it gives worse solutions with both fixing-rank and increasing-rank
strategies in all cases. We found that LMaFit could not improve the solution much,
even we let it run more iterations, say, to 5000.
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Table 4.1

Results of image recovery by t-IRucLq-M, APGL, and LMaFit. Best solutions are in boldface.

Problem APGL LMaFit-fix LMaFit-inc t-IRucLq-M
SR σ μ Time PSNR MSE Time PSNR MSE Time PSNR MSE Time PSNR MSE

0.3 0.01 8.06e-2 16.9 24.45 3.59e-3 6.84 17.26 1.90e-2 9.99 18.73 1.34e-2 24.7 24.64 3.44e-3
0.3 0.05 8.06e-2 16.6 23.35 4.62e-3 5.32 16.98 2.02e-2 8.76 17.99 1.59e-2 23.9 23.92 4.06e-3
0.3 0.10 8.06e-2 23.6 21.34 7.35e-3 5.60 16.19 2.42e-2 10.3 16.54 2.22e-2 23.6 22.33 5.85e-3
0.4 0.01 1.07e-1 11.7 26.41 2.29e-3 2.77 23.42 4.56e-3 9.36 22.77 5.31e-3 11.4 26.29 2.35e-3
0.4 0.05 1.07e-1 17.9 24.84 3.28e-3 2.68 22.65 5.44e-3 9.51 21.76 6.69e-3 12.9 25.50 2.82e-3
0.4 0.10 1.07e-1 24.9 22.12 6.13e-3 3.03 20.71 8.50e-3 9.91 19.89 1.03e-2 15.9 23.68 4.29e-3
0.5 0.01 1.34e-1 17.8 28.07 1.56e-3 1.20 25.52 2.80e-3 8.06 25.58 2.77e-3 9.06 27.47 1.79e-3
0.5 0.05 1.34e-1 22.8 25.84 2.60e-3 1.41 24.92 3.22e-3 8.36 24.85 3.28e-3 10.9 26.48 2.25e-3
0.5 0.10 1.34e-1 26.3 22.39 5.77e-3 1.37 23.26 4.72e-3 8.41 22.86 5.18e-3 10.3 24.33 3.69e-3
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