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Abstract
We present a condition on the matrix of an underdetermined linear system which

guarantees that the solution of the system with minimal �q-quasinorm is also the
sparsest one. This generalizes, and slightly improves, a similar result for the �1-
norm. We then introduce a simple numerical scheme to compute solutions with
minimal �q-quasinorm, and we study its convergence. Finally, we display the results
of some experiments which indicate that the �q-method performs better than other
available methods.

1 Introduction

Our objective in this paper is to find the sparsest solutions of a linear system Az = y.
Here we think of the fixed vector y as an incomplete set of m linear measurements taken
of a signal x ∈ R

N , thus it is represented as y = Ax for some m × N matrix A. Since
the number m of measurements is smaller than the dimension N of the signal space –
typically, much smaller – the linear system Az = y has many solutions, among which we
wish to single out the sparsest ones, i.e. the solutions of Az = y with a minimal number
of nonzero components. Following the tradition, we write ‖z‖0 for the number of nonzero
components of a vector z, and we rephrase the problem as

minimize
z∈RN

‖z‖0 subject to Az = y. (P0)
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One can easily observe that a solution z of (P0) is guaranteed to be unique as soon as
2‖z‖0 < spark(A), where spark(A) ≤ rank(A) + 1 is the smallest integer σ for which σ
columns of A are linearly dependent, see [8]. Uniqueness can also be characterized in
terms of the Restricted Isometry Constants δk of the matrix A. We recall that these are
the smallest constants 0 < δk ≤ 1 for which the matrix A satisfies the Restricted Isometry
Property of order k, that is

(1 − δk)‖z‖2
2 ≤ ‖Az‖2

2 ≤ (1 + δk)‖z‖2
2 whenever ‖z‖0 ≤ k. (1)

It is then easy to observe that any s-sparse vector x is recovered via the minimization (P0)
in which y = Ax if and only if the strict inequality δ2s < 1 holds, see e.g. [4].

However appealing (P0) might seem, it remains an NP-problem [11] that cannot be
solved in practice. Nonetheless, assuming certain conditions on the matrix A, alternative
strategies to find sparsest solutions have been put forward, such as orthogonal greedy
algorithms or basis pursuit. The latter replaces the problem (P0) by the �1-minimization

minimize
z∈RN

‖z‖1 subject to Az = y. (P1)

Candès and Tao [5] showed for instance that any s-sparse vector is exactly recovered via
the minimization (P1) as soon as δ3s + 3δ4s < 2. Note that a condition involving only δ2s

would seem more natural, in view of the previous considerations. Candès provided just
that in [2] when he established exact recovery of s-sparse vectors via �1-minimization under
the condition

δ2s <
√

2 − 1 ≈ 0.4142. (2)

We shall now adopt a strategy that lies between the minimizations (P0) and (P1).
Namely, we consider, for some 0 < q ≤ 1, the minimization

minimize
z∈RN

‖z‖q subject to Az = y. (Pq)

This is by no means a brand new approach. Gribonval and Nielsen, see e.g. [10], studied
the �q-minimization in terms of Coherence. Chartrand [7] studied it in terms of Restricted
Isometry Constants. He stated that s-sparse vectors can be exactly recovered by solving
(Pq) under the assumption that δas +bδ(a+1)s < b − 1 holds for some b > 1 and a := bq/(2−q).
He then claimed that exact recovery of s-sparse vectors can be obtained from the solution of
(Pq) for some q > 0 small enough, provided that δ2s+1 < 1. There was a minor imprecision
in his arguments, as he neglected the fact that as must be an integer when he chose the
number a under the requirement 1 < a < 1+1/s. A correct justification would be to define
a := 1 + 1/s, so that the sufficient condition δas + bδ(a+1)s < b − 1, where b := a(2−q)/q > 1,
becomes feasible for q > 0 small enough as long as δ2s+1 < 1.

Let us describe our contribution to the question while explaining the organization of
the paper. In Section 2, we discuss exact recovery from perfect data via �q-minimization.
In particular, we derive from Theorem 2.1 a sufficient condition slightly weaker than (2), as
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well as another version of Chartrand’s result. Theorem 2.1 actually follows from the more
general Theorem 3.1, which is stated and proved in Section 3. This theorem deals with the
more realistic situation of a measurement y = Ax + e containing a perturbation vector e
with ‖e‖2 ≤ ϑ for some fixed amount ϑ ≥ 0. This framework is exactly the one introduced
by Candès, Romberg, and Tao in [3] for the case q = 1. Next, in Section 4, we propose a
numerical algorithm to approximate the minimization (Pq). We then discuss convergence
issues and prove that the output of the algorithm is not merely an approximation, but is in
fact exact. Finally, we compare in Section 5 our �q-algorithm with four existing methods:
the orthogonal greedy algorithm, see e.g. [13], the regularized orthogonal matching pursuit,
see [12], the �1-minimization, and the reweighted �1-minimization, see [6]. The last two,
as well as our �q-algorithm, use the �1-magic software available on Candès’ web page. It
comes as a small surprise that the �q-method performs best.

2 Exact recovery via �q-minimization

Our main theorem is similar in flavor to many previous ones – in fact, its proof is inspired
by theirs – except that we avoid Restricted Isometry Constants, as we felt that the non-
homogeneity of the Restricted Isometry Property (1) contradicted the consistency of the
problem with respect to measurement amplification, or in other words, that it was in
conflict with the equivalence of all the linear systems (c A)z = cy, c ∈ R. Instead, we
introduce αk, βk ≥ 0 to be the best constants in the inequalities

αk‖z‖2 ≤ ‖Az‖2 ≤ βk ‖z‖2, ‖z‖0 ≤ k.

Our results are to be stated in terms of a quantity invariant under the change A ← c A,
namely

γ2s :=
β2s

2

α2s
2

≥ 1.

The quantity γ2s can be made arbitrarily close to 1 by taking the entries of A to be e.g.
independent realizations of Gaussian random variables of mean zero and identical variance,
provided that m ≥ c · s log(N/s), where c is a constant depending on γ2s − 1. We refer the
reader to [1] for a precise statement and a simple proof based on concentration of measure
inequalities.

We start by illustrating Theorem 3.1 in the special case of s-sparse vectors that are
measured with infinite precision, which means that both the error σs(x)q of best s-term
approximation to x with respect to the �q-quasinorm and the relative measurement error
θ are equal to zero.

Theorem 2.1 Given 0 < q ≤ 1, if

γ2t − 1 < 4(
√

2 − 1)

(
t

s

)1/q−1/2

for some integer t ≥ s, (3)
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then every s-sparse vector is exactly recovered by solving (Pq).

Let us remark that, in practice, we do not solve (Pq) but an approximated problem,
which still yields exact solutions. There are two special instances of the above result that
are worth pointing out. The first one corresponds to the choices t = s and q = 1.

Corollary 2.1 Under the assumption that

γ2s < 4
√

2 − 3 ≈ 2.6569, (4)

every s-sparse vector is exactly recovered by solving (P1).

This slightly improves Candès’ condition (2), since the constant γ2s is expressed in
terms of the Restricted Isometry Constant δ2s as

γ2s =
1 + δ2s

1 − δ2s

,

hence the condition (4) becomes δ2s < 2(3 −
√

2)/7 ≈ 0.4531.
The second special instance we are pointing out corresponds to the choice t = s + 1.

In this case, Condition (3) reads

γ2s+2 < 1 + 4(
√

2 − 1)

(
1 +

1

s

)1/q−1/2

.

The right-hand side of this inequality tends to infinity as q approaches zero. The following
result is then straightforward.

Corollary 2.2 Under the assumption that

γ2s+2 < +∞,

every s-sparse vector is exactly recovered by solving (Pq) for some q > 0 small enough.

Let us note that the condition γ2s+2 < +∞ is equivalent to the condition δ2s+2 < 1.
This result is almost optimal, since it says that if one could recover every (s + 1)-sparse
vector via the theoretical program (P0), then one can actually recover every s-sparse vector
via the program (Pq) for some q > 0.

Theorem 2.1 is an immediate consequence of Theorem 3.1 to be given in the next
section, hence we do not provide a separate proof. Let us nonetheless comment briefly
on this potential proof, as it helps to elucidate the structure of the main proof. Let us
consider first a vector v in the null-space of A and an index set S with |S| ≤ s. The
vector vS, i.e. the vector which equals v on S and vanishes on the complement S of S
in {1, . . . , N }, has the same image under A as the vector −vS . Since vS is s-sparse, the
anticipated result implies ‖vS ‖q < ‖vS ‖q, unless vS = vS, i.e. v = 0. This necessary
condition turns out to be sufficient, too. It is established in Step 1 of the main proof using
the assumption on γ2t. Then, using the �q-minimization in Step 2, we establish a reverse
inequality ‖vS ‖q ≤ ‖vS ‖q for the support S of the vector x and for v := x − x∗, where x∗

is a solution of (Pq). Clearly, the two inequalities imply that v = 0, or equivalently that
any solution x∗ of (Pq) equals the original vector x, as expected.
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3 Approximate recovery from imperfect data

We now consider the situation where the measurements y are moderately flawed, i.e. we
suppose

‖Ax − y‖2 ≤ β2s · θ.

Note that θ represents a relative error between accurate and inaccurate measurements, so
that it makes the previous bound invariant under the change A ← c A, y ← c y. This differs
slightly from the formulation of [3] for q = 1, where the absolute error was considered. Of
course, the choice of the homogeneous constant β2s is somewhat arbitrary, it is merely
dictated by the nice estimates (5) and (6). In order to approximately recover the original
vector x ∈ R

N from the knowledge of y, we shall solve the minimization

minimize
z∈RN

‖z‖q subject to ‖Az − y‖2 ≤ β2s · θ. (Pq,θ)

Before anything else, let us make sure that this minimization is solvable.

Lemma 3.1 A solution of (Pq,θ) exists for any 0 < q ≤ 1 and any θ ≥ 0.

Proof. Let κ be the value of the minimum in (Pq,θ). It is straightforward to see that
(Pq,θ) is equivalent to, say, the minimization

minimize
z∈RN

‖z‖q subject to ‖z‖q ≤ 2κ and ‖Az − y‖2 ≤ β2s · θ.

Because the set
{
z ∈ R

N : ‖z‖q ≤ 2κ, ‖Az − y‖2 ≤ β2s · θ
}

is compact and because the
�q-quasinorm is a continuous function, we can conclude that a minimizer exists.

We are now in a position to state the main theoretical result of the paper. In what
follows, the quantity σs(x)q denotes the error of best s-term approximation to x with
respect to the �q-quasinorm, that is

σs(x)q := inf
‖z‖0≤s

‖x − z‖q.

Theorem 3.1 Given 0 < q ≤ 1, if Condition (3) holds, i.e. if

γ2t − 1 < 4(
√

2 − 1)

(
t

s

)1/q−1/2

for some integer t ≥ s,

then a solution x∗ of (Pq,θ) approximate the original vector x with errors

‖x − x∗‖q ≤ C1 · σs(x)q + D1 · s1/q−1/2 · θ, (5)

‖x − x∗‖2 ≤ C2 · σs(x)q

t1/q−1/2
+ D2 · θ. (6)

The constants C1, C2, D1, and D2 depend only on q, γ2t, and the ratio s/t.
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Proof. The proof involves some properties of the �q-quasinorm which must be recalled.
Namely, for any vectors u and v in R

n, one has

‖u‖1 ≤ ‖u‖q, ‖u‖q ≤ n1/q−1/2 ‖u‖2, ‖u + v‖q
q ≤ ‖u‖q

q + ‖v‖q
q. (7)

Step 1: Consequence of the assumption on γ2t.
We consider an arbitrary index set S =: S0 with |S| ≤ s. Let v be a vector in R

N , which
will often — but not always — be an element of the null-space of A. For instance, we
will take v := x − x∗ in Step 2. We partition the complement of S in {1, . . . , N } as
S = S1 ∪ S2 ∪ . . ., where

S1 := {indices of the t largest absolute-value components of v in S},

S2 := {indices of the next t largest absolute-value components of v in S},

...

We first observe that

‖vS0 ‖2
2 + ‖vS1 ‖2

2 = ‖vS0 + vS1 ‖2
2 ≤ 1

α2
2t

‖A(vS0 + vS1)‖2
2 (8)

=
1

α2
2t

〈A(v − vS2 − vS3 − · · · ), A(vS0 + vS1)〉 (9)

=
1

α2
2t

〈Av, A(vS0 + vS1)〉 +
1

α2
2t

∑
k≥2

[
〈A(−vSk

), AvS0 〉 + 〈A(−vSk
), AvS1 〉

]
. (10)

Let us renormalize the vectors −vSk
and vS0 so that their �2-norms equal one by setting

uk := −vSk
/‖vSk

‖2 and u0 := vS0/‖vS0 ‖2. We then obtain

〈A(−vSk
), AvS0 〉

‖vSk
‖2 ‖vS0 ‖2

= 〈Auk, Au0〉 =
1

4

[
‖A(uk + u0)‖2

2 − ‖A(uk − u0)‖2
2

]
≤ 1

4

[
β2

2t ‖uk + u0‖2
2 − α2

2t ‖uk − u0‖2
2

]
=

1

2
[β2

2t − α2
2t].

With a similar argument with S1 in place of S0, we can derive

〈A(−vSk
), AvS0 〉 + 〈A(−vSk

), AvS1 〉 ≤ β2
2t − α2

2t

2
‖vSk

‖2

[
‖vS0 ‖2 + ‖vS1 ‖2

]
. (11)

Besides, we have

〈Av, A(vS0 + vS1)〉 ≤ ‖Av‖2 · ‖A(vS0 + vS1)‖2 ≤ ‖Av‖2 · β2t

[
‖vS0 ‖2 + ‖vS1 ‖2

]
. (12)

Substituting the inequalities (11) and (12) into (10), we have

‖vS0 ‖2
2 + ‖vS1 ‖2

2 ≤
(γ2t

β2t
‖Av‖2 +

γ2t − 1

2

∑
k≥2

‖vSk
‖2

)[
‖vS0 ‖2 + ‖vS1 ‖2

]
.

6
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With c := γ2t/β2t · ‖Av‖2, d := (γ2t − 1)/2, and Σ :=
∑

k≥2 ‖vSk
‖2, this reads

[
‖vS0 ‖2 − c + dΣ

2

]2

+
[

‖vS1 ‖2 − c + dΣ

2

]2

≤ (c + dΣ)2

2
.

The above inequality easily implies

‖vS0 ‖2 ≤ c + dΣ

2
+

c + dΣ√
2

=
(1 +

√
2)

2
· (c + dΣ). (13)

By Hölder’s inequality mentioned in (7), we get

‖vS0 ‖q ≤ s1/q−1/2 ‖vS0 ‖2 ≤ 1 +
√

2

2
· (c + dΣ) · s1/q−1/2. (14)

It now remains to bound Σ. Given an integer k ≥ 2, let us consider i ∈ Sk and j ∈ Sk−1.
From the inequality |vi| ≤ |vj | raised to the power q, we derive that |vi|q ≤ t−1‖vSk−1

‖q
q by

averaging over j. In turn, this yields the inequality ‖vSk
‖2

2 ≤ t1−2/q ‖vSk−1
‖2

q by raising to
the power 2/q and summing over i. It follows that

Σ =
∑
k≥2

‖vSk
‖2 ≤ t1/2−1/q

∑
k≥1

‖vSk
‖q ≤ t1/2−1/q

[ ∑
k≥1

‖vSk
‖q

q

]1/q

= t1/2−1/q ‖vS ‖q.

Combining the above inequality with (14), we obtain the partial conclusion:

‖vS ‖q ≤ λ

2β2t
· ‖Av‖2 · s1/q−1/2 + μ · ‖vS ‖q, v ∈ R

N , |S| ≤ s, (15)

where the constants λ and μ are given by

λ := (1 +
√

2)γ2t and μ :=
1

4
(1 +

√
2)(γ2t − 1)

(s

t

)1/q−1/2

. (16)

Note that the assumption on γ2t translates into the inequality μ < 1.
Step 2: Consequence of the �q-minimization.
Now let S be specified as the set of indices of the s largest absolute-value components of
x, and let v be specified as v := x − x∗. Because x∗ is a minimizer of (Pq,θ), we have

‖x‖q
q ≥ ‖x∗‖q

q, i.e. ‖xS ‖q
q + ‖xS ‖q

q ≥ ‖x∗
S ‖q

q + ‖x∗
S

‖q
q.

By the triangular inequality mentioned in (7), we obtain

‖xS ‖q
q + ‖xS ‖q

q ≥ ‖xS ‖q
q − ‖vS ‖q

q + ‖vS ‖q
q − ‖xS ‖q

q.

Rearranging the latter yields the inequality

‖vS ‖q
q ≤ 2 ‖xS ‖q

q + ‖vS ‖q
q = 2 σs(x)q

q + ‖vS ‖q
q. (17)

7
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Step 3: Error estimates.
We now take into account the bound

‖Av‖2 = ‖Ax − Ax∗‖2 ≤ ‖Ax − y‖2 + ‖Ax∗ − y‖2 ≤ β2s · θ + β2s · θ ≤ 2β2t · θ.

For the �q-error, we combine the estimates (15) and (17) to get

‖vS ‖q
q ≤ 2 σs(x)q

q + λq · s1−q/2 · θq + μq · ‖vS ‖q
q.

As a consequence of μ < 1, we now obtain

‖vS ‖q
q ≤ 2

1 − μq
· σs(x)q

q +
λq

1 − μq
· s1−q/2 · θq.

Using the estimate (15) once more, we can derive that

‖v‖q = [ ‖vS ‖q
q + ‖vS ‖q

q ]1/q ≤
[
(1 + μq) · ‖vS ‖q

q + λq · s1−q/2 · θq
]1/q

≤
[

2 (1 + μq)

1 − μq
· σs(x)q

q +
2 λq

1 − μq
· s1−q/2 · θq

]1/q

≤ 21/q−1

[
21/q (1 + μq)1/q

(1 − μq)1/q
· σs(x)q +

21/q λ

(1 − μq)1/q
· s1/q−1/2 · θ

]
,

where we have made use of the inequality [aq + bq]1/q ≤ 21/q−1[a + b] for a, b ≥ 0. The
estimate (5) follows with

C1 :=
22/q−1 (1 + μq)1/q

(1 − μq)1/q
and D1 :=

22/q−1 λ

(1 − μq)1/q
.

As for the �2-error, we remark that the bound (13) also holds for ‖vS1 ‖2 in place of ‖vS0 ‖2

to obtain

‖v‖2 =
[ ∑

k≥0

‖vSk
‖2

2

]1/2

≤
∑
k≥0

‖vSk
‖2 ≤ (1 +

√
2) · (c + dΣ) + Σ ≤ ν · Σ + 2λ · θ,

where ν := (λ + 1 −
√

2)/2. Then, in view of the bound

Σ ≤ t1/2−1/q ‖vS ‖q ≤ t1/2−1/q · 21/q−1 ·
[ 21/q

(1 − μq)1/q
· σs(x)q +

λ

(1 − μq)1/q
· s1/q−1/2 · θ

]
,

we may finally conclude that

‖v‖2 ≤ 22/q−1 ν

(1 − μq)1/q
· σs(x)q

t1/q−1/2
+

[ 21/q−1 λ ν

(1 − μq)1/q
·
(s

t

)1/q−1/2

+ 2λ
]
θ.

This leads to the estimate (6) with

C2 :=
22/q−2 (λ + 1 −

√
2)

(1 − μq)1/q
and D2 :=

21/q−2 λ (λ + 1 −
√

2)

(1 − μq)1/q
+ 2λ.

The reader is invited to verify that the constants C1, D1, C2, and D2 depend only on q,
γ2t, and the ratio s/t. However, they grow exponentially fast when q tends to zero.
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4 Description of the algorithm

We assume from now on that x is an s-sparse vector. The minimization problem (Pq)
suggested to recover x is nonconvex, so it needs to be approximated. We propose in this
section an algorithm to compute a minimizer of the approximated problem, for which we
give an informal but detailed justification.

We shall proceed iteratively, starting from a vector z0 satisfying Az0 = y, which is a
reasonable guess for x, and constructing a sequence (zn) recursively by defining zn+1 as a
solution of the minimization problem

minimize
z∈RN

N∑
i=1

|zi|
(|zn,i| + εn)1−q

subject to Az = y. (18)

Here, the sequence (εn) is a nonincreasing sequence of positive numbers. It might be
prescribed from the start or defined during the iterative process. In practice, we will take
limn→∞ εn = 0 to facilitate the use of Proposition 4.2. However, we also allow the case
limn→∞ εn > 0 in order not to exclude constant sequences (εn) from the theory. We point
out that the scheme is easy to implement, since each step reduces to an �1-minimization
problem (P1) relatively to the renormalized matrix

An := A × Diag[(|zn,i| + εn)1−q].

We shall now concentrate on convergence issues. We start with the following lemma.

Proposition 4.1 For any nonincreasing sequence (εn) of positive numbers and for any
initial vector z0 satisfying Az0 = y, the sequence (zn) defined by (18) admits a convergent
subsequence.

Proof. Using the monotonicity of the sequence (εn), Hölder’s inequality, and the
minimality property of zn+1, we may write

N∑
i=1

(|zn+1,i| + εn+1)
q ≤

N∑
i=1

(|zn+1,i| + εn)q

(|zn,i| + εn)q(1−q)
· (|zn,i| + εn)q(1−q)

≤
[ N∑

i=1

|zn+1,i| + εn

(|zn,i| + εn)1−q

]q[ N∑
i=1

(|zn,i| + εn)q
]1−q

≤
[ N∑

i=1

|zn,i| + εn

(|zn,i| + εn)1−q

]q[ N∑
i=1

(|zn,i| + εn)q
]1−q

,

that is to say
N∑

i=1

(|zn+1,i| + εn+1)
q ≤

N∑
i=1

(|zn,i| + εn)q. (19)

9
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In particular, we obtain

‖zn‖∞ ≤ ‖zn‖q ≤
[ N∑

i=1

(|zn,i| + εn)q
]1/q

≤
[ N∑

i=1

(|z0,i| + ε0)
q
]1/q

.

The boundedness of (zn) implies the existence of a convergent subsequence.
Unfortunately, the convergence of the whole sequence (zn) could not be established

rigorously. However, several points beside the numerical experiments of Section 5 hint at
its convergence to the original s-sparse vector x. First, with ε := limn→∞ εn and in view of
the inequality (19), it is reasonable to expect that any cluster point of the sequence (zn)
is a minimizer of

minimize
z∈RN

N∑
i=1

(|zi| + ε)q subject to Az = y, (Pq,ε)

at least under appropriate conditions on z0 — this question is further discussed in the
remark at the end of this section. In the case of a constant sequence (εn), for instance, if
z0 is chosen as a minimizer of (Pq,ε), then zn is also a minimizer of (Pq,ε) for every n ≥ 0.
Then, as we shall see in Proposition 4.3, when ε > 0 is small enough, any minimizer of
(Pq,ε) turns out to be the vector x itself, provided that Condition (3) is fulfilled. Thus,
under Condition (3) and the appropriate conditions on z0, we can expect x to be a cluster
point of the sequence (zn). This implies, by virtue of the forthcoming Proposition 4.2,
that zn is actually equal to x for n large enough. Proposition 4.2 is noteworthy: it states
that the algorithm (18) recovers the vector x exactly, not just approximately. The proof
is based on the following lemma, of independent interest.

Lemma 4.1 Given an s-sparse vector x supported on a set S, and given a weight vector
w ∈ R

N
+ , if

γ2t − 1 < 4(
√

2 − 1)

(
t

s

)1/2

· mini∈S wi

maxi∈S wi
for some integer t ≥ s, (20)

then the vector x is exactly recovered by the minimization

minimize
z∈RN

N∑
i=1

|zi|
wi

subject to Az = y. (Pw)

Proof. Consider the weighted �1-norm defined by

‖z‖w :=
N∑

i=1

|zi|
wi

, z ∈ R
N .

10
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Let z̄ be a minimizer of (Pw). Our objective is to show that v := x − z̄ equals zero.
We shall follow the proof of Theorem 3.1. First, if S denotes the support of x, we can
reproduce Step 2 to get

‖vS ‖w ≤ ‖vS ‖w. (21)

On the other hand, since v ∈ ker A, an estimate analogous to (13) reads

‖vS ‖2 ≤ 1 +
√

2

4
(γ2t − 1) ·

∑
k≥2

‖vTk
‖2, (22)

where we have partitioned S as T1 ∪ T2 ∪ . . . with

T1 := {indices of the t largest values of |vi|/wi in S},

T2 := {indices of the next t largest values of |vi|/wi in S},

...

Let us observe that

‖vS ‖w =
∑
i∈S

|vi|
wi

≤
[ ∑

i∈S

1

w2
i

]1/2[ ∑
i∈S

v2
i

]1/2

≤ 1

mini∈S wi
· s1/2 · ‖vS ‖2. (23)

The inequalities (23) and (22) therefore imply

‖vS ‖w ≤ 1

mini∈S wi

· 1 +
√

2

4
(γ2t − 1) · s1/2

∑
k≥2

‖vTk
‖2. (24)

Now, given an integer k ≥ 2, let us consider i ∈ Tk and j ∈ Tk−1. From the inequality
|vi|/wi ≤ |vj |/wj, we derive that |vi| ≤ wi · t−1‖vTk−1

‖w by averaging over j. In turn,
this yields the inequality ‖vTk

‖2
2 ≤

[∑
i∈Tk

w2
i

]
· t−2‖vTk−1

‖2
w ≤ maxi∈S w2

i · t−1‖vTk−1
‖2

w by
squaring and summing over i. It follows that∑

k≥2

‖vTk
‖2 ≤ max

i∈S
wi · t−1/2

∑
k≥2

‖vTk−1
‖w ≤ max

i∈S
wi · t−1/2‖vS ‖w. (25)

In view of (24) and (25), we obtain

‖vS ‖w ≤ maxi∈S wi

mini∈S wi
· 1 +

√
2

4
(γ2t − 1)

(s

t

)1/2

· ‖vS ‖w =: μ̄ · ‖vS ‖w. (26)

The estimates (21) and (26) together imply the conclusion v = 0, provided that μ̄ < 1,
which simply reduces to Condition (20).

11
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Proposition 4.2 Given 0 < q < 1 and the original s-sparse vector x, there exists η > 0
such that, if

εn < η and ‖zn − x‖∞ < η for some n, (27)

then one has
zk = x for all k > n.

The constant η depends only on q, x, and γ2s.

Proof. Let us denote by S the support of the vector x and by ξ the positive number
defined by ξ := mini∈S |xi|. We take η small enough so that

γ2s − 1 < 4(
√

2 − 1)
(ξ − η

2η

)1−q

.

The vector zn+1 is obtained from the minimization (Pw) where wi := (|zn,i| + εn)1−q. We
observe that

|zn,i| + εn

{
≥ |xi| − |zn,i − xi| + εn ≥ ξ − η, i ∈ S,
≤ |xi| + |zn,i − xi| + εn ≤ 2η, i ∈ S.

We deduce that
mini∈S wi

maxi∈S wi

≥
(ξ − η

2η

)1−q

.

Therefore, Condition (20) is fulfilled with t = s, and Lemma 4.1 implies that zn+1 = x.
The conditions of (27) are now obviously satisfied for n + 1 instead of n, which implies
that zn+2 = x. It follows by immediate induction that zk = x for all k > n.

To continue this section, we now justify that the minimization (Pq,ε) also guarantees
exact recovery when ε > 0 is small enough. First, we isolate the following lemma.

Lemma 4.2 Given 0 < q ≤ 1 and an s-sparse vector x, if Condition (3) holds, i.e. if

γ2t − 1 < 4(
√

2 − 1)

(
t

s

)1/q−1/2

for some integer t ≥ s,

then for any vector z satisfying Az = y, one has

‖z − x‖q
q ≤ C

[
‖z‖q

q − ‖x‖q
q

]
,

for some constant C depending only on q, γ2t, and the ratio s/t.

Proof. Let us set v := z − x, and let S denote the support of x. We recall that, since
v ∈ ker A, the estimate (15) yields

‖vS ‖q ≤ μ · ‖vS ‖q, μ :=
1

4
(1 +

√
2)(γ2t − 1)

(s

t

)1/q−1/2

. (28)

12
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According to Condition (3), we have μ < 1. Let us now observe that

‖vS ‖q
q = ‖zS ‖q

q = ‖z‖q
q − ‖zS ‖q

q ≤ ‖z‖q
q −

(
‖xS ‖q

q − ‖vS ‖q
q

)
= ‖vS ‖q

q +
[

‖z‖q
q − ‖x‖q

q

]
.

Then, using (28), we derive

‖vS ‖q
q ≤ μq ‖vS ‖q

q +
[

‖z‖q
q − ‖x‖q

q

]
, i.e. ‖vS ‖q

q ≤ 1

1 − μq

[
‖z‖q

q − ‖x‖q
q

]
.

Using (28) once more, we obtain

‖v‖q
q = ‖vS ‖q

q + ‖vS ‖q
q ≤ (1 + μq)‖vS ‖q

q ≤ 1 + μq

1 − μq

[
‖z‖q

q − ‖x‖q
q

]
.

This is the expected inequality, with C := (1 + μq)/(1 − μq).

Proposition 4.3 Given 0 < q < 1 and the original s-sparse vector x, if Condition (3)
holds, i.e. if

γ2t − 1 < 4(
√

2 − 1)

(
t

s

)1/q−1/2

for some integer t ≥ s,

then there exists ζ > 0 such that, for any nonnegative ε less than ζ, the vector x is exactly
recovered by solving (Pq,ε). The constant ζ depends only on N , q, x, γ2t, and the ratio s/t.

Proof. Let zε be a minimizer of (Pq,ε). We have

‖zε‖q
q − ‖x‖q

q =

N∑
i=1

|zε,i|q −
N∑

i=1

|xi|q ≤
N∑

i=1

(|zε,i|+ε)q −
( N∑

i=1

(|xi|+ε)q −
N∑

i=1

εq
)

≤ Nεq. (29)

We define ζ := (CN)−1/q η, where η is the constant of Proposition 4.2. Given ε < ζ , we
have ε < η, and, in view of (29), we also have

‖zε − x‖∞ ≤ ‖zε − x‖q ≤ C1/q
[

‖zε‖q
q − ‖x‖q

q

]1/q ≤ (CN)1/qε < η.

Therefore, according to Proposition 4.2, we infer that zk = x for all k ≥ 1, where the
sequence (zn) is defined by the iteration (18) with z0 = zε and εn = ε for all n. On the
other hand, for a vector z satisfying Az = y, the inequalities

N∑
i=1

(|zε,i| + ε)q ≤
N∑

i=1

(|zi| + ε)q ≤
[ N∑

i=1

|zi| + ε

(|zε,i| + ε)1−q

]q[ N∑
i=1

(|zε,i| + ε)q
]1−q

yield the lower bound
N∑

i=1

|zi| + ε

(|zε,i| + ε)1−q
≥

N∑
i=1

(|zε,i| + ε)q.

13
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This means that we can chose z1 = zε as a minimizer in (18) when n = 0. Since we have
also proved that z1 = x, we conclude that zε = x, as desired.

We conclude this section with an auxiliary discussion on convergence issues.
Remark. In our rough explanation of the convergence of the sequence (zn) towards the
original s-sparse vector x, we insisted on certain appropriate conditions on the initial vector
z0. We highlight here that the convergence towards x cannot be achieved without such
conditions. Indeed, let us consider the 1-sparse vector x and the 3 × 4 matrix A defined
by

x := [1, 0, 0, 0]	, A :=

⎡
⎣1 0 0 −1

0 1 0 −1
0 0 1 −1

⎤
⎦ .

Note that the null-space of A is spanned by [1, 1, 1, 1]	. Thus, any vector z satisfying
Az = Ax is of the form

z = [1 + t, t, t, t]	, t ∈ R.

In this case, the minimization (Pq) reads

minimize
t∈R

|1 + t|q + 3|t|q.

It is easy to check that, for 0 < q ≤ 1, the minimum is achieved for t = 0, i.e. for
z = x, so that the vector x is recovered by �q-minimization — for q > 0 small enough,
this was guaranteed by the fact that δ3 < 1. However, if we start the iterative scheme at
z0 = [0, −1, −1, −1]	, the minimization (18) reads

minimize
t∈R

|1 + t|
ε1−q

+ 3
|t|

(1 + ε)1−q
.

It is easy to check that, if ε > 1/(31/(1−q) − 1), the minimum is achieved for t = 0, so that
z1 = x. But if ε < 1/(31/(1−q) − 1), the minimum is achieved for t = −1, so that z1 = z0.
In this case, we obtain zn = z0 for all n, by immediate induction. Therefore, the sequence
(zn) does not converge to x independently of the choice of z0. It should also be noticed
that, even though the vector [0, −1, −1, −1]	 is the limit of a sequence (zn), it is not a
local minimizer of (Pq,ε) when q is close to 1 and ε close to 0.

5 Numerical experiments

We compare in this section the algorithm described in Section 4 with four other existing
algorithms, namely the orthogonal greedy algorithm (OGA, see [13]), the regularized or-
thogonal matching pursuit (ROMP, see [12]), the �1-minimization (L1), and the reweighted
�1-minimization (RWL1, see [6]).

There are many greedy algorithms available in the literature, see e.g. [14], [15], [16],
and [9], but that we find the orthogonal greedy algorithm of [13] more efficient due to two

14
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of its features: one is to select multiple columns from A during each greedy iteration and
the other is to use an iterative computational algorithm to find the best approximation in
each greedy computation. We thank Alex Petukhov for providing us with his MATLAB
code. The MATLAB codes for the regularized orthogonal matching pursuit and for the
�1-minimization can be found online. As for the code associated to the �q-method of this
paper, it is available on the authors’ web pages.

We point out that the reweighted �1-minimization discussed in [6], which came to our
attention while we were testing this scheme, is the special instance of the algorithm (18)
with

q = 0, εn = ε, z0 = minimizer of (P1).

Thus, as the approximation of the original problem (P0), one would intuitively expect
that, among the approximations of the problems (Pq), the reweighted �1-minimization is
the best option to recover sparse vectors. This is not the case, though, and there appears
to be some advantages in letting the parameter q vary, as demonstrated by the numerical
experiments below.

In our first experiment, we justify the values attributed by default to the number of
iterations n, the exponent q, and the sequence (εk) in our �q-algorithm. The choice is based
on the computations summarized in Figures 1, 2, and 3. Here, we have selected N = 512
and m = 128. For each sparsity level s between 40 and 64, we have picked 150 pairs of
s-sparse vector x and matrix A at random. This means that the support of the vector x
is chosen as the first s values of a random permutation of {1, . . . , N }, and that the entries
of x on its support, as well as the entries of A, are independent identically distributed
Gaussian random variables with zero mean and unit variance. Then, for each pair (x, A),
using only the partial information y = Ax, we have tried to recover x as the vector zn

produced by the iterative scheme (18) started at the minimizer z0 of (P1). This was done
for several values of the parameters n, q, and (εk). The recovery was considered a success
if ‖x − zn‖2 < 10−3.

In Figure 1, the frequency of success appears stationary after a relatively small number
of iterations. Figures 2 and 3 suggests that a sequence (εk) decreasing too fast does not
improve the efficiency of the computations. Let us mention that the constant sequence
defined by εk = 1/2 will not be used, as the value of the constant should depend on the
expected amplitude of the vector x. Figure 2 also shows that the choice q = 0 is not
unequivocally the best choice for a single q. Based on these considerations, our preferred
values for the parameters are

• number of iteration: n = 10,

• ε-sequence: εk =
1

k + 2
,

• exponents: q ∈ {0, 0.05, 0.1, 0.2}.
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Figure 1: Frequency of success vs. number of iterations n
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Figure 3: Frequency of success vs. sparsity s

Let us point out that our �q-algorithm allows several choices for q, including q = 0, and that
the sparsest output produced from these choices is eventually retained. In this way, it is no
surprise that the �q-method performs at least as well as the reweighted �1-minimization. It
is surprising, however, that it does perform better, even by a small margin. This improve-
ment is obtained at a default cost of 4 times a 10-iteration reweighted �1-minimization, i.e.
at a cost of 40 times an �1-minimization.

In our last experiment, we present an extensive comparison of the algorithms previously
mentioned. We used 100 random pairs (x, A) for this test, with N = 512 and m = 128.
For each pair, we run each of the five algorithms to obtain a vector x̃, and we have
strengthened the condition for successful recovery to ‖x − x̃‖∞ < 10−5. In the reweighted
�1-minimization, we have taken n = 20 and εk = 1/10, while in the �q-algorithm, we have
taken n = 20, εk = 1/2k, and q = 0, q = 0.1, q = 0.2, . . ., q = 0.9 successively. In fact,
not all these values of q were necessarily used. The knowledge of the original vector x was
indeed exploited in this particular experiment to stop the program at the first occurrence
of a successful recovery. All the same, even with the non-optimal parameters we chose,
Figure 4 reveals that an �q-method with varying q gives somewhat better success rates
than the other four algorithms considered.
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Figure 4: Comparison of the five algorithms for sparse vectors with arbitrary entries
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