Bivariate Splines for Fluid Flows

Ming-Jun Lai and Paul Wenston

Abstract. We discuss numerical approximations of the 2D steady state Navier
Stokes equations in stream function formulation using bivariate splines of arbi-
trary degree d and arbitrary smoothness r with r < d. We derive the discrete
Navier-Stokes equations in terms of B-coefficients of bivariate splines over a
triangulation, with curved boundary edges, of any given domain. Smoothness
conditions and boundary conditions are enforced through Lagrange multipli-
ers. The pressure is computed by solving a Poisson equation with Neumann
boundary conditions. We have implemented this approach in MATLAB and
our numerical experiments show that our method is effective. Numerical simu-
lations of several fluid flows will be included to demonstrate the effectiveness of
the bivariate spline method.
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§1. Introduction

One of the major tasks for applied mathematicians is to develop efficient methods
for numerical solutions of partial differential equations. The steady-state Navier-
Stokes equations are one of the most important partial differential equations which
have various applications. Although there are many computational methods avail-
able in the literature for the numerical solution of the Navier-Stokes equations, new
and more efficient methods continue to be developed in order to increase the power
of computational flow simulations. For example, in a recent paper [Botella’02], a
collocation B-spline method was developed for the solution of the Navier-Stokes
equations. In this paper, we use bivariate spline functions over arbitrary triangu-
lations for numerical solution of 2D Navier-Stokes equations. (See [Awanou and
Lai’02] for the trivariate spline approximation of 3D Navier-Stokes equations.) Our
approach is like the finite element method using triangles to approximate any given
2D polygonal domains and using piecewise polynomials over triangulations to ap-
proximate the solution of the Navier-Stokes equations. The main different features
are:
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(1) no macro-element or locally supported spline functions are constructed;

(2) polynomials of high degrees can be easily used to get a better approximation
power;

(3) smoothness can be imposed in a flexible way across the domain at places where
the solution is expected to be smooth. For example, the solution of the steady
state Navier-Stokes equation is H? inside the domain and H! near the bound-
ary (cf. [Serrin’62]);

(4) the mass and stiffness matrices can be assembled easily and these processes
can be done in parallel;

(5) The stream function formulation will be used and thus the spline approxi-
mation of the solution of Navier-Stokes equations satisfies the divergence-free
condition exactly;

(6) the matrices that arise are singular which is an important difference from the
classical finite element method.

(7) Our spline method leads to a linear system of special structure. We introduce a
special numerical method to solve such particularly structured linear systems.
Let us first introduce the stream function formulation. Let Q C R? be a simply

connected domain and u = (u1,u3)T be the planar velocity of a fluid flow over .

Also, let p be the pressure function, f = (f1, f2)T be the external body force of the

fluid and g = (g1, 92)T be the velocity of the fluid flow on the boundary 0Q. Then

the steady state Navier-Stokes equations are

—vAu+ (u-Vi)u+Vp=1~f, (z,y)€
divu = 0, (z,y) € Q (1.1)
u=g, (iE, y) € 89,

where A denotes the usual Laplacian operator and V the gradient operator. After
omitting the nonlinear terms, we have the steady state Stokes’ equations:

—vAu+Vp==£f, (z,y)€Q
divu = 0, (z,y) € Q (1.2)
u=g (z,y) € 0 .

Recall the fact that there exists a stream function ¢ such that u = curl g, i.e.,
0 0 . . .
U = 8—('0, Uy = —a—(p. Such ¢ is unique up to a constant (cf. [Girault and
Y x
Raviart’86, pp. 37-39].) Thus we may simplify the above Stokes and Navier-Stokes
equations by cancelling the pressure term. Consider the Stokes equations first.
Replacing u by curlyp and then differentiating the first equation with respect to y
and the second with respect to x, we substract the first equation from the second

one to obtain the following fourth order equation
vAZp =h
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with h = % — %. Thus, the Stokes equations become a biharmonic equation:
Yy

(VA%p=h, inQ
g_QO = —g9, on 02

X 822 (1.3)
8—y =g, on 0f)

L ¢ = bo, on 0f)

where b is an anti-derivative of the tangential derivative of ¢ along 0¢2 and will be
examined in detail later. By a similar calculation, we easily see that the Navier-
Stokes equations become the following fourth order nonlinear equation

(A2, O (09 %9 0907
oy \ 0y 0x0y  Ox 0y?
2 2
Oxr \ 0y 0z%> Ox 0z0y

\ ¢ (1.4)

L = _g,, on 0f)

gm

78 _ g1, on 0f)

dy
\ ¢ = by, on 0X) .

Let H?(Q) be the usual Sobolev space and HZ(Q2) be the subspace of H?(£2)
of functions whose derivatives of order less than or equal to one all vanish on the
boundary 90f2. Define the bilinear form ay (¢, ) and trilinear form ¢(6, ¢, 1) by

aﬂ%wwiLAw@mAw@wmuw

q(0,,%) = /QAG(a:,y) (a{pg;’ y) 37#;5; v _ 8@((9:;, ) 810;:2, y)) dzdy

and denote the Ly () inner product by

<mw=éﬁwwwwww@.

We that say ¢ € H?(Q) is a weak solution of the Stokes equations (1.3) if ¢ satisfies
the following

( IéUIZ(QOa ¢) = <h7¢>7 WP € Hg(Q)
> —92; on 0f)
$ g
78 _ g1, on 0f)
0y
L ¢ = ba, on 0L .




Similarly, a function ¢ € H?(Q) is a weak solution of the Navier-Stokes equations
(1.4) if ¢ satisfies

( Vaaz(w,w) +q(p, p,¥) = (h,¥), Vo € HZ(Q)
_QD = —ga, on 89
$ gz
—(p g 91; OII 8Q
oy
[ @ = bo, on 01 .

Such weak formulations are referred as the stream function formulation of the Stokes
and Navier-Stokes equations, respectively. It is known that the weak solution for
Stokes’ equations exists and is unique for any v > 0. For the Navier-Stokes equa-
tions, such a weak solution exists for any v > 0, and is unique when v is sufficiently
large. (See, e.g., [Girault and Raviart’86].)

There are two major advantages using the stream function formulation over the
traditional velocity-pressure formulation and vorticity-stream function formulation.
Indeed, with the stream function formulation, we need to approximate only one
stream function. Otherwise, we need to approximate two components of the velocity
and one pressure function if the velocity-pressure formulatio is used or one vorticity
and one stream function if the vorticity-stream function formulation is used. In
addition, the stream function formulation eliminates the pressure function which
does not have appropriate boundary condition. In the vorticity-stream function
formulation, the vorticity function does not have appropriate boundary condition.
With bivariate spline functions of higher degrees, we are able to approximate stream
functions very well. Thus, in this paper, we will use bivariate splines to approximate
the stream function of the Stokes and Navier-Stokes equations.

Next we discuss the computation of the pressure functions. By taking diver-
gence, div, of the equations in (1.1) and (1.2), we can easily see that the pressure
functions p of the Stokes and Navier-Stokes equations satisfy the following Pois-
son equations with nonhomogeneous Neumann boundary conditions involving the
stream functions.

—Ap = —div(f), in Q
{ g—i =vA(n-curlp)+n-f on 0 (1.5)
for the Stokes equation and
—Ap = —div(f) + div[(curly - V)curl(y)], in Q
{ g—i =vA(n-curlp) +n-f+n-[(curlp - V)(curly)], on 0Q (1.6)

for the Navier-Stokes equations. We will use these boundary conditions to compute
p aftey we find the spline approximations of the stream function ¢.

The paper is organized as follows: In §2, we first introduce bivariate spline
spaces and in particular, the B-form representation of spline functions. The con-
strained minimization problems that will be used to generate approximate solutions
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of the stokes and Navier Stoke equations lead, by way of Lagrange multipliers, to
linear systems of the form

LT Al [A] _[F

0 L|lc| |G|’

with A singular. We then introduce an iterative method to solve the above system
and discuss its convergence. We continue in §3 with a discussion of the spline
solution of the 2D Stokes equations, an equivalent biharmonic equation. In §4, we
discuss the spline approximations of the 2D Navier-Stokes equations and prove the
convergence of two methods for solving the discrete nonlinear equations. In §5, we
present numerical results for standard benchmark flows such as the driven cavity
flows, backward-facing step flows, and flows around circular obstacles. Also, we
also present some other fluid flow experiments.

§2. Preliminaries

2.1. Bivariate Spline Functions
Given a bounded polygonal domain €2 € R?, let A be a triangulation of €.
Let d > 1 and r > —1 be two fixed integers. We introduce the spline spaces

SH(A) ={s e C"(Q), s|s € Py, Vt € A},

where IP; denotes the space of bivariate polynomials of total degree d.

In this paper, the B-form representation of splines on triangulations will be
used (cf. [Farin’86] or [de Boor’87]). Let T' = (v1,v2,v3) be a non-degenerate
triangle with v; = (x;,v;), i = 1,2, 3. It is well-known that every point v = (x, y)
can be written uniquely in the form

vV = )\1V1 + )\2V2 + )\3V3, (21)

with
M+ A+ A3 =1, (2.2)

where A1, Ao, and A3 are called the barycentric coordinates of the point v = (z, y)
relative to the triangle T. Moreover each ); is a linear polynomial in z,y. Let

d!
~ K]

By (v) NXNE i+ k=d.
They are called the Bernstein-Bézier polynomials of degree d. In fact, the set

B = {ngk(m,y,z), i+j+k=d}
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is a basis for the space of polynomials IP;. As a consequence any polynomial p of

degree d can be written uniquely in terms of ijk’s, ie.,

t+j+k=d

The representation (2.3) for polynomials is referred to as the B-form with respect
to T. Let

iVl —I—jV2 + ng
d

Dd,T:{gijk: ,Z+]+k:d,T€A} (24)
be a set of the domain points of degree d over triangulation A. For each spline
function s € Sj(A), since s restricted to each triangle T € A is a polynomial of
degree d, we may write

— T pd
slr = Z CijpBijr, T € A.
i+j+k=d

Such a representation is called the B-form representation of the spline function s
(cf. [de Boor’87]). We denote by ¢ := {cg;.k, i+j+k=d,T € A} the B-coefficient
vector of s.

To evaluate a polynomial in B-form, there is the so-called de Casteljau algo-

rithm which we now describe. For p = Z cijkajk, let us write ¢;;; =: ) (N

ijk
t+j+k=d
with A = (A1, A2, A3) being the barycentric coordinates of v = (x, y) with respective
to T and define for a positive integer r > 1

o)

oo = Alcg;}]?’k(x) + A2c§j"j‘+11{k(A)

r—1
We have then
p= Z cZ(;,)C()\)ij;T, 0<r<d.
i+j+k=d—r

In particular, for » = d, we have

p= C(()(,i()),o(A)

which is the value of p at v = (z,y) whose barycentric coordinates are A =
()\1, AQ, )\3) with )\1 + )\2 + )\3 =1.

We next discuss how to take derivatives of polynomials in B-form. We start
with formulas for the directional derivatives of p in a direction defined by a vector
u. We have:

Dup=d Y c(a)Bi,
i+jt+k=d—1
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with a = (a1, ag, a3) the T-coordinates of u; that is,
u=aivy + asvsa + asvs,

with
a1 +as+az=1.

Note that if u = vq — vy is the direction vector, the T-coordinates of u are (1, —1,0).
In general, we have

m d! m m
Dyp(v) = d—m) >, cz(jk) (a) BT (v). (2.5)
T it jt+k=d—m

Note that for arbitrary direction vector u = (uy,us) € IR?,

D —u2 —i—u2
up = 183317 28yp'

For a triangle T = (vy,vq,v3), if we let u = vo — vy = (z2 — Z1,%2 — ¥1), V =
vy — vy = (23 — x1,ys — Y1), it follows that

Dg;p:(y?)_yl)D p— (y2_y1)D

24, " 24, P 26)
(T2 — 1) (3 — 1) '
Dyp="2"p, Worp
P =04, P~ 94, P

where A7 is the area of T'.

There are precise formulas for the integrals and inner products of polynomials
in B-form (cf. [Chui and Lai’90]).

Lemma 2.1. Let p be a polynomial of degree d with B-coefficients c;j, t+j+k =
d on a triangle T'. Then

At
/p(a:,y)da:dy:d—H Z Cijk>
T (“3 )z‘+j+k=d
where AT = area of T .

Lemma 2.2. Let g be another polynomial with B-coefficients d;;i,1+ j + k = d,
the inner product of p and q over t is given by

Ar
/t pla D )dedy = ' gy

i+r\ [(j+8\ [(k+t (2.7)
Z Cz'jkdrst . . k .
itith=d ¢ J

r+s+t=d

We next discuss the smoothness conditions for a spline function s in Sj(A).
These are well-known conditions on the coefficients of s that will assure that s has
certain global smoothness properties.



Theorem 2.3. Let t = (v1,v3,v3) and t' = (v1,vs2,v4) be two triangles with
common edge {v1,v2). Then s is of class C" on t Ut if and only if

cﬁjm = Z c§+u,j+y,,€Bmwﬂ(v4), m=0,...,7, i+7j=d—m.
ptrv+Kr=m
For a proof, see [Farin’86] or [de Boor’87]. This theorem guarantees the exis-
tence of a matrix H such that s is in C"(Q) if and only if

He =0,

where ¢ encodes the B-coefficients of s.
2.2. A Matrix Iterative Method

The constrained minimization problems that will be used to generate approx-
imate solutions of the stokes and Navier Stoke equations will lead, by way of La-
grange multipliers, to linear systems of the form

[LOT ﬂ [2] - [g] (2.8)

with A singular and appropriate matrices L and vectors F' and G. Computing
a least squares solution of the above system would allow us to compute ¢ when
c is unique. However, when the size of a system is very large, any least squares
method will be too costly. We present here an iterative method for solving the above
system which involves matrices of smaller size. Consider the following sequence of

problems:
LT A7 [ A+ F
[—d L][d“”]:[G—fM“}’ (29)

for k= 0,1,..., with an initial guess A, e.g., A(®) = 0, and I the identity matrix.
Assume that the size of L is m X n and the size of A is n X n with m < n. Note
that (2.9) reads

AcFHD) 4 [TAG+) —

L) _ a1 = g _ x®), (2.10)
Multiplying on the left the second equation in (2.10) by LT, we get

LT L+ _ e TAG+Y) — 1Tq _ T A\K)

1 1
or LTANk+1) — T rek+l) _ 1T + LTAK) We substitute this into the first
€ €
equation in (2.10) to get

1 1
(A+ =LTL)c*D) = F 4 —LTG — LTA®), (2.11)
€ €

Using again the first equation in (2.10), i.e., Ac®) = F — LTAK) to replace F in
(2.11), we have

1 1
(A+ =LTL)c*+D = Ac® + ZL7q,
€ €
for all £ > 1. This leads to the following



Algorithm 2.4. Fixe > 0. Given an initial guess \(*) € Im(L), e.g., \(?) = 0, we
define ¢V by

cM =4+ 1LTL)—l(F +lrrg LT
€ €

and iteratively define
k) = (44 lLTL)—l(AcW + 1LTG), (2.12)
€ €

for k =1,2,..., where Im(L) is the range of L.

This algorithm was briefly discussed in [Gunzburger’89]. A convergence result
was pointed out. That is, [lc — cF+1|| < Cellc — ¢®)|| for some constant C > 0.
According to this result for convergence one clearly needs to choose ¢ small enough
to guarantee that Ce < 1. Here we present the following convergence result (cf.
[Awanou and Lai’02] for a proof) which ensures the convergence for any ¢ > 0.

Theorem 2.5. Let A = A, + A, where A, = %(A + AT) is the symmetric part
of A and A, = 1(A — AT) is the anti-symmetric part of A. Furthermore, suppose
that A, is positive definite with respect to L, that is, xT A;x = 0 and Lx = 0 imply
that x = 0. Then for any € > 0, the matrix

1
A+ -LTL
€

is invertible. That is, the Algorithm 2.4 is well-defined. Furthermore, there exists
positive constants C(e) > 1 and (e) < 1 depending on € but independent of k such
that

le = ¢®FV| < C(e) (v(e)) ™,

for k > 1.

Our numerical experiments show that it gives the same result as the least
squares method. Since any least squares method is computationally expensive, we
recommend the iterative method for large problems.

§3. Spline Approximations of the Stokes Equations

In this section, we consider spline approximations of the 2D Stokes equations in
the stream function formulation. That is, we consider the following biharmonic
equation with nonhomogeneous boundary conditions g; and gs:

( I/(I,Z(QO, ¢) = <h7¢>7 WP € Hg(Q)
8_S0 = —92, on 02
\ 33; (3.1)
— =01, on 0f)
oy
L © = ba, on 0f2,




where by is an anti-derivative of the tangential derivative of ¢ along 02 which can
be computed based on g; and gy. For simplicity, let by be the normal derivative of
o along 0€). Note that b; can be easily computed using g; and gs.

It is well-known that the weak solution of (3.1) exists and is unique (cf. [Gi-
rault and Raviart’86]). We are going to approximate the weak solution of (3.1) by
using bivariate spline functions. Let A be a triangulation of 2 if €2 is a polygonal
domain. Otherwise, we choose vertices vy, - --, v, on 0§2 which include all the cor-
ner points of J¢2. Instead of the piecewise linear interpolation of the vertices, we
use a CY piecewise quadratic spline curve ssq, which interpolates the vertices, to
approximate the boundary 0€). Clearly, we may assume that s is a much better
approximation of 0€) than the piecewise linear interpolant based on an appropriate
choice of vy, ---,v,. Adding interior vertices v,4+1,---,vn inside 2, we triangulate
Q using the vertices vy, ---,vn. For convenience, we let A be the triangulation
consisting of all interior triangles and boundary triangles with piecewise quadratic
edges.

Let d and r be two positive integer with d > r and let S C S(A) be the space
of spline functions which are C™ inside of Q. Note that S C H?(Q). Recall from
§2.1 that s € S3(A) can be given by

s(z,y) = Z Cg,j,ka,j,k(xay)av(xay) €teA.
itjth=d

Let ¢ = (¢} .9+ Jj +k = d,t € A) be the B-coefficient vector of s. Recall from
62.1 that there is a matrix H such that if s € S, then

He = 0.

Although in general we may not be able to find a spline function s € S satisfying the
boundary conditions exactly, we can find a spline S € S approximating the bound-
ary conditions. If the the boundary conditions are continuous, the interpolation is
the obvious choice. Assuming that vq,---, v, are arranged in the counterclockwise
direction, Sp interpolates by at d + 1 distinct points on any straight boundary edge
(vi,vi+1) and at 2d + 1 distinct points on any quadratic boundary curved edge
v; ~ V;+1. Also g—i: interpolates b; at d distinct points on any straight boundary
edge (v;,v;+1) and at 2d — 1 disctinct points on any quadratic boundary curved
edge v; — v;+1 , where n; denotes the outer normal direction of boundary edge
(vi, vi11) or v; ~ v;11. If the boundary conditions are not continuous, we can
still use interpolation except that the interpolation values now come from a conve-
niently choosen smooth approximation of the bounday conditions. Since the values
of any spline and its normal derivative at any of the interpolation points are linear
combinations of the B-coefficients of the spline, we may use

Bc=b (3.2)
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to express the approximate boundary conditions. Let Sp = SN HZ (). Our spline
approximation of the biharmonic equation (3.1) is to find spp € S satisfying the
approximate boundary condition (3.2) such that

vaz(spp,s) = (h,s),Vs € Sp. (3.3)

Using the Lax-Milgram Theorem, problem (3.3) has an unique solution sp 1 in S.
Based on the theory of elliptic equations (cf. [Evans’98]), solving problem (3.3) is
equivalent to finding ¢ which minimizes the following energy functional

E(s) = gaQ(s, s) — (h, s)

subject to s € § satisfying the approximation conditions. In terms of B-coefficients,
the above energy functional can be approximated by

E(c) := gcTAc —c"Mh

subject to Hc = 0 and Bc = b, where A = diag (A4, t € A) is a bending matrix
with blocks
Ay = [ / ABf’j,kABf,mmdacdy] te A,
¢

i+j+k=d
I+m+n=d

M = diag (M, t € A) is a mass matrix with blocks

M, = [/ijkamndzdy] te
‘ 2J 21T, itjth=d
I+m+n=d
and h = (hf ,, .,l+m+n=d,t€A)is a vector with

sh=Y_ lumnBi, dedy € SH(A)
l+m-+4n=d

the spline interpolation of A over the domain points {Slt’m,n, l+m+n=dte A}

We note that the mass and bending matrices, M and A, are diagonal block matrices

whose blocks can be assembled trivially and in parallel. The matrix H is sparse

with each row involving at most (r + 1)(r + 2)/2 + 1 nonzero elements. Also, the

matrix B is very sparse with each row containing at most d + 1 nonzero elements.
Following the Lagrange multiplier method, we let

L(c,a,8) = %CTAC +aTHe+ T Be — ¢ Mh
and compute local minimizers. It follows that we need to solve the following
[HT BT VA'I [a'l [Mh'l
0 0 H Bi=10 |.
Lo o slle] [v]

11



We note that the existence and uniqueness of sp 3, implies that the there eixsts a
unique solution c satisfying the above linear system. Clearly, A is positive definite
with respect to [H; B]. Thus, our iterative method introduced in §2.2 can be applied
to this system and the iterative solutions converge.

Next we use the approach presented above to compute the pressure function
assuming that we have found the approximation of the stream function ¢. That
is, we need to solve the Poisson problem with Neumann boundary conditions (1.5).
Note that we are seeking the pressure in

12(Q) = {p € L*(), /Q p=0}.

Again we can use the spline space S as an approximating space. For a spline
approximation s, of p with B-coefficient vector c,, its integral over a triangle is
simply a weighted sum of its B-coefficients (cf. Lemma 2.1), hence the spline
approximation of the zero mean value condition, fQ p = 0, can be written

with U a vector of size N. The pressure is also the solution of a minimization
problem, namely that of minimizing the functional

P(v) = 1/ |Av|? — / (—hv —/ (f - nv + vA(curlp - n)v
2 Ja Q 80
over LZ(Q).
We now write P in terms of ¢,. Let G interpolate f - n + v(Acurly) - n on
the boundary. The later is computed by using the spline approximation sp 1 of
the solution ¢ of the Stokes equations. Let R be the matrix which restricts the

B-coefficients ¢ of a spline over 2 to the B-coefficients of the spline restricted to
0€2. We have

1
P(c,) = 5(c,,)Tch —h"Mc, — GE MyRc,,
where K is the stiffness matrix which is a diagonal block matrix similar to A and
My is the mass matrix for the bivariate splines of degree d over the edges of 0.
Following the Lagrange multiplier method, we need to solve the following linear
system:

U HT K] [\ Mh + RT MyRG,
0 0 H||[Xx]|= 0
0 0 U]l le 0

Again, it is easy to see that K is positive definite with respect to [H;U]. The
iterative method described in §2.2 converges.
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84. Spline Approximations of the Navier-Stokes Equations

In this section, we consider the bivariate spline approximation of the 2D Navier-
Stokes equations in the stream function formulation. Let ¢ € H?(Q2) be the weak
solution of the Navier-Stokes equations

((vaz(p, ) + q(e, 0, 9) = (h,y), V¢ € H3(Q)
8—('0 = —go, on 0f)

{ gfﬁ (4.1)
— =01, on 89
0y

(@ = b2, on 9f) .

It is known that the weak solution ¢ exists and is unique if v is sufficiently large
or h is sufficiently small (cf. [Girault and Raviart’86]). We shall use the approach
discussed in the previous section to derive spline approximations of the stream
function ¢.

With the same spline space & and the same notation as in the previous section,
we have

0,2(Q0, @b) = CTAda

where ¢ and d stand for the B-coefficient vectors of spline functions ¢,9 € S.
The difference with the previous section is the presence of the nonlinear term, the
trilinear form ¢ defined by

q(e%w):/ﬁe(%y) (Wéﬂ;y) %éﬂ;,y) N 3@29;,1/) 3¢g;,y)>d$dy_ (4.9)

Let us first get acquainted with the trilinear form (4.2). Let e encode the B-
coefficient vector of the spline function # in S. We can, by tedious computations,
show that there is a matrix @(e), which is a linear function of e, such that

a(9,¢,9) = d"Q(e)c. (4.3)

There are several useful properties of Q)(e) given below.
Lemma 4.1. Q(e) is anti-symmetric, i.e., Q(e)T = —Q(e).

Proof: We first note that g(0, ¢, ) = —q(0, v, ¢). In terms of B-coefficient vectors,
we have

dTQ(e)c = —cTQ(e)d.

Thus, it follows from d7Q(e)Tc = cT'Q(e)d that dTQ(e)Tc = —dTQ(e)c for all ¢
and d. Hence, Q(e)T = —Q(e). O
Consequently, we have

Lemma 4.2. Fixe. dTQ(e)d = 0 for any d satisfying Hd = 0.

Next we will need the following
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Lemma 4.3. There exists a constant C; such that
[dQ(e)c| < Cillc] [Id]| [lell-

Proof: The Markov inequality and a tedious computation yields the above esti-
mate. [

The coefficient vector ¢ of th spline approximation of the weak solution satisfies
Hc =0 and Bc =b and

vel Ad + cTQ(c)d = hT Mmd, (4.4)

for all coefficient vectors d of splines in Sy. The existence of ¢ can be shown by
using the same argument for the existence of the weak solution ¢ satisfying (4.1)
(cf. [ Girault and Raviart’86] and [Lai and Wenston’00]). We are mainly interested
in computing c.

We now observe that if ¢ and A are choosen so that

vAc — Q(c)c+ [HT BT]A= Mh
He=0 (4.5)
Bc=b

then
H

B

for all vectors d. Since both Hd = 0 and Hd = 0 for all coefficient vectors d of
splines in Sy (4.4) follows.

We next derive two methods to linearize the nonlinear equations (4.5), using
a simple iteration algorithm and Newton’s method.

veT Ad + cTQ(c)d + AT [ } d-hTMd=0

Algorithm 4.4 (A simple iteration algorithm). Let (c(®) be the solution of
the linear problem (i.e. the associated Stokes equations) and forn = 0,1, ..., define
(D A(+1) a5 the solution of

vAct) — Q(c™)c D) 4 [HT BT)A"+1) = Mh
Hc™t) = (4.6)
Bet) = p,

We use Algorithm 2.4 to find the new iterates ¢(®*1) of the above Algorithm
4.4. Note that A is symmetric and positive definite with respect to H and B and
that Q(c(™) is anti-symmetric by Lemma 4.1. Theorem 2.5 ensures that the matrix
iterative method converges for the linear system in (4.6).
To apply Newton’s method to solve (4.5), we consider the mapping I" defined
by
I':(c,\) — (vAc — Q(c)c+ [HT BT]A — Mh, He, Bc —b)
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and seek to solve I'(c, \) = 0. We write X = (¢, A\(") and let X(© be the
solution of the linear Stokes problem. Then we define X(**t1 by the equation

' (XM™)xC+h) - X)) = _1(X™),

Thanks to the bilinearity of the mapping (¢,d) — Q(c)d, the above equation leads
to

vActY — QM)+ — QD) — ™)™ + [HT BTIA+D) = Mh

Hc"t) =0  (4.7)
Be"th = p.

It can be shown that Q(c(™ 1) —c(™)c(™ can be written Q(c(™)(c™+1) —c(™) with

Q(c™)c = Q(c(™)c™ for some matrix Q(c(™). We have our second algorithm
Algorithm 4.5 (Newton’s method). Let (c(®) be the solution of the Stokes
equations and for n = 0,1,2,... define (c»t1), A("*1) to be the solution of
VAC(n+1) . Q(c(n))c(n—i-l) . @(C(n))c(n—}—l) + [HT BT])\(n—l-l) — Mh — @(c(n))c(n)
Hc™D =

Be™tl) = p.
(4.8)

For the linear system (4.8), Algorithm 2.4 converges by Theorem 2.5 because
Q(c™) is anti-symmetric and vA 4+ Q(c(™) is positive definite with respect to
[H; B for v sufficiently large. Indeed, since A is positive definite with respect to
H, we have

T 2
x" Ax > ap|x||

for any x satisfying Hx = 0. It follows from Lemma 4.3,
vx" Ax + xTQ(c™)x > way||x[|> = C1 ™| |||
By Lemma 4.6 below, the sequence ||c(™]| is bounded and hence,
vxT Ax +xTQ(c™)x > (v — C1Ca)|[x[|*.

Therefore, for v sufficiently large, vA + @(c(")) is positive definite with respect to
[H; B].

Lemma 4.6. Suppose that c("t1) is the solution of (4.8). Then
le" V) < C

15



for a positive constant C' independent of n.

Proof: Let ¢ be the solution of (4.5). Let e®t!) = ¢ — ¢(®*Y and r(»+1) =
A — A+ Then we have

vAe™tD 4+ Q(c™)c V) 1+ Q™)™ — Q(c)c + [H; BT (D)
= Q(c™)c™

which gives

or
vAe™ ) — Q(c™)e™t) — Q(e()c — Qe V)™

+ Q(e™)e™ + [H; BT+t = 0.
We multiply this equation on the left by (e»*))T and get
V(e TN e+ — _ (DT Q(eM)e™ 1 (oM HD)TQ(e(n 1)),
It follows that
vag|le®™ V]| < Cy(|le™ ]| + |le™+V][[|c™)]])
< G ")+ e+ 1 + 1l ).

We now use an induction to prove the desired result. Assume that |e(™| < K
with K < %"0‘0_0761'1”6” This is alway possible if v is large enough. Then we have

(vao — CL(K + [|o)]])[e™+V]] < C1le™]|?

or

Cy
K?< K.
voag — Cl(K + ||C|| B

This completes the proof with Cs = K + ||c||. O

le™ 1] <

5.1. Computational Experiments on Driven Cavity Flows

Example 4.7. Let us consider the standard cavity flow over unit square domain
[0,1] x [0,1]. The boundary conditions are u = (uy,u2) = (0,0) for all four line
boundary pieces except for ui(z,1) =1 when 0 < z < 1. With Reynolds numbers
are 10, 100, 1000, 5000, and 10000, the stream lines of the cavity flow are shown
in Figs 1-5. We use a triangulation with only 256 triangles and bivariate splines
of degree 8 and smoothness 2. All the computation is done using a PC with MS
Window 2000. We can see that the contours of the stream functions are very closed
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Fig. 1  The stream lines of driven cavity flow (Renolds Number=10)

to those computed by using finite difference method as shown in [Griebel, and
et.’98]. Certainly, our method can compute the stream functions for much higher
Reynolds numbers.

Also, the vorticity of the flows,

2 2

0 0
¢($ay) = qu(x’y) + 8—y2¢($7y)7

are shown as in Figs. 6-10. They are very similar to those computed by using finite
difference method given in [Griebel and et.’98].

5.2. Computational Experiments on Backward Facing Step Flows

Next we consider the well-known backward facing step flows. The inflow con-
dition at the left inlet is the parabolic low with maximum value 1. The outflow
condition at the right outlet is
Outflow condition: Both velocity components remain the same in the direction
normal to the boundary. That is,

at the outlet, where 7,n denote the tangential and normal direction of the outlet.
The following are some numerical simulations of the backward-facing step flows For

17
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Fig. 2 The stream lines of driven cavity flow (Renolds Number=100)
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Fig. 3 The stream lines of driven cavity flow (Renolds Number=1,000)

detailed explanation of these flows, see, e.g. [Griebel and al.’98] and the reference
therein.
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Fig. 4 The stream lines of driven cavity flow (Renolds Number=5,000)
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Fig. 5 The stream lines of driven cavity flow (Renolds Number=10,000)

5.3. Computational Experiments of Flows around circular obstacle
In addition to the no-slip and outflow boundary conditions in the previous
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The contour of the vorticity of the driven cavity flow (Renolds Number=10)
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Fig. 7 The contour of the vorticity of driven cavity flow (Renolds Number=100)

subsections, we need the following freeslip conditions for simulating the flows around
some obstacles.
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Fig. 8 The contour of the vorticity of driven cavity flow (Renolds Number=1,000)
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Fig. 9 The contour of the vorticity of driven cavity flow (Renolds Number=>5,000)
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Fig. 11  Flows over a backward facing step
Reynolds number=1

Fig. 12 Flows over a backward facing step
Reynolds number=100

Fig. 13  Flows over a backward facing step
Reynolds numbers=250

— —
P ——

ﬁf

Fig. 14  Flows over a backward facing step
Reynolds number=500

Freeslip conditions: No fluid penetrates the boundary. l.e.,

along a part of the boundary 0€2. Here are some numerical simulations of flows
around a circular disk for various Reynolds numbers. The in-flows are at a constant
velocity at the left vertical boundary, i.e., v = 1 and v = 0. These flows can be
compared with the ones in [Griebel and et.’98] and [Van Dyke’82].

5.4. Computational Experiments on Other Interested Flows
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Fig. 15 Flow around a disk with Reynolds number=10
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Fig. 16 Flow around a disk with Reynolds number=50
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Fig. 17  Flow around a disk with Reynolds number=100

We first show cavity flows over a triangular domain.

Example 4.8. Let us consider the cavity flow over triangular domain. We uni-
formly refine the triangle into 256 subtriangles and use bivariate splines of degree
8 and smoothness 2. The boundary conditions are u = (uy,u2) = (0,0) for all
three line boundary pieces except for ui(x,1) =1 when 0 < z < 1. With Reynolds
numbers are 100, 1000, and 5000, the stream lines of the cavity flow are shown in
Figs 18, 20, 22 while the contour of vorticity are shown in Figs. 19, 21 and 23.

Next we present some additional examples which need inflow and outflow con-
ditions.

Example 4.9. In this example, we compare with the flows around a bluff car
model and streamlined car model as in Fig. 24. The flows are similar to the real
simulations as compiled in [Nakayama’7§].

Example 4.10. In this example, we consider the flow through sudden contraction
and enlargement. We compare with the flows with two levels of contraction and
enlargement. The flows are constant at the left vertical boundary and are same for
the two flows in Fig. 25, but result two different flow pattens.

§7. References
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Fig. 18 Driven Cavity Flow (Renolds Number=100)
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Fig. 20 Driven Cavity Flow (Renolds Number=1000)
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Fig. 22 Driven Cavity Flow (Renolds Number=5000)
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Flows through sudden contraction and enlargement
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