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§1. Introduction and statement of main theorem

The purpose of this paper is to prove a maximal theorem for averages taken over suitable

discrete sub-varieties of nilpotent Lie groups.

The simplest instance of this result arises for the group of 3 × 3 strictly upper-triangular

matrices, (the Heisenberg group, H1). In this example one considers averages for functions f

defined on Z3 given by

(1.1) Ar(f)(a) =
1

r2

∑
b=(b1,b2)∈Z2

|b|<r

f(a1 + b1, a2 + b2, a3 + a1b2), with a = (a1, a2, a3) ∈ Z3.

The assertion is then

‖ sup
r>1

|Ar(f) ‖`2(Z3)≤ A ‖ f ‖`2(Z3) .

We now formulate our general result and describe the background and some of the ideas of the

proof.

a. The main theorem

We start with a simply connected nilpotent Lie group G of step k, with k ≥ 2. Thus for its

Lie algebra g we have the descending central series g = i1 ⊃ i2 · · · ⊃ ik ⊃ ik+1 = {0}, of ideals ij

with ij+1 = [g, ij], and ik 6= {0}. We let N denote the sub-group of G corresponding to ik and set

G′ = G/N , with π = G −→ G′ the corresponding projection.



We also suppose we are given a uniform (i.e. discrete, co-compact) sub-group Γ of G, and

denote Γ′ = π(Γ) the corresponding sub-group of G′.

We note that the ideals {ij} induce a homogeneous structure “at infinity” and a natural cor-

responding family of balls {Br}r≥1, Br ⊂ G; we also set B′r = π(Br), and B′r ⊂ G′.

Finally, we assume that we are given a polynomial mapping R of G′ to G so that:

(1) πR= identity on G′ (i.e. R is a section).

(2) R : Γ′ −→ Γ.

(3) for some c > 0, R : B′r ⊂ Bcr, for every r ≥ 1.

Denote B′
r = B′r ∩ Γ′ and let |B′r| = the number of points in Br. With these notions specified, we

define for a function f on Γ the averages Ar(f) by

(1.2) Ar(f)(a) =
1

|B′
r|
∑
b∈B′

r

f(a · R(b)) , a ∈ Γ .

Our result is then:

Theorem

(1.3) sup
r≥1

‖ |Ar(f)| ‖`2(Γ)≤ A ‖ f ‖`2(Γ).

b. Background

The proof of the theorem above depends in several aspects on that of a previous abelian

analogue obtained by Bourgain [BO, 1-3]. We can formulate that result as follows. Suppose P is a

polynomial on R with values in Rd that takes Z to Zd. Then if f is a function on Zd, the mapping

(1.4) f 7→ sup
r≥1

|1
r

r∑
n=1

f(m− P (n))| , m ∈ Zd

is bounded on `2(Zd) to itself, (as well as on `p, 1 < p ≤ ∞).
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Another antecedent, obtained independently by Arkhipov and Oskolkov [AO], can be restated

as a Hilbert transform analogue of (1.4). In effect, they showed that the mapping

(1.5) f 7→
∑′ f(m− P (n))

n

is bounded on `2(Zd).

Common to both the results in [BO] and [AO] is the use of techniques related to the circle

method of Hardy-Littlewood-Ramanujan, ideas which will also be important for us.

After these two results it was natural to try to extend the scope of the theory to higher-

dimensional sums and also in the non-translation-invariant setting, thus in this way to obtain

discrete analogues of singular Radon transforms and the corresponding maximal functions. (For

these operators, see [CNSW], and the model situation for nilpotent Lie groups in [RS].) In [SW]

an `2 theory for a class of discrete analogues of singular Radon transforms was developed. Thus

we may view the present paper as a first attack on the other branch of the question - that of the

maximal theorem in this context.

c. Remarks about the proof

Here we want to discuss briefly two aspects of the proof that differ or go beyond the techniques

used in the works mentioned above.

First one decomposes the circle, in the case of Example (1.1), (or the torus Td(k), where d(k)

= dimension of ik, in general) into “major arcs” or “minor arcs”. In previous situations this was

done, very roughly, according to whether the corresponding denominators q belonged to either of

the two cases: 1 ≤ q ≤ rε, or rε < q ≤ rk−ε. Here we shall need a tripartite decomposition: the

“small” q, 1 ≤ q ≤ (log r)γ; the “intermediate” q, (log r)γ < q ≤ rε; and the “large” q, with rε < q.

The range for small q is dictated by the need to approximate our operator by appropriate

tensor products, and the resulting necessity in making maximal estimates of choosing common

denominators for those q. These common denominators cannot be too large, requiring a condition

like q ≤ (log r)γ. However, once q exceeds this bound, a similar but much simpler analysis allows

us to treat each q at a time. This device works if q is not large (q ≤ rε, for some small ε). For the

remaining q, rε < q, the method of Weyl sum estimates (i.e. their operator analogues as in [SW2])

are effective.
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A second departure relates to the estimates of certain exponential-sum operators that occur.

We describe this in a situation which is simpler than in the applications below, but yet illustrates

the main point.

Consider the one-dimensional operator, Sθ
r , mapping `2(Z) to itself, given by

(1.6) Sθ
r (f)(m) =

1

r

∑
1≤n≤r

e2πiθmn f(n) .

The trivial estimate for Sθ
r is of course ‖ Sθ

r ‖= O(1), and as r −→ ∞ this is best that can

be said as long as θ is “small”, that is |θ| ≤ 1/r2. Also, when θ is “large”, e.g. |θ| ≈ 1 one

does obtain cancellation, ‖ Sθ
r ‖= O(r−δ) for some δ > 0, when θ satisfies the usual arithmetic

conditions arising in Weyl-sum estimates. However, beyond these standard phenomena, there is

an intermediate range: here a (non-arithmetic) cancellation occurs and one has

(1.7) ‖ Sθ
r ‖= O

(
1/|r2θ|1/2

)
, when say 1/r2 ≤ |θ| ≤ 1/r2−ε.

d. Organization of the paper

Given the complexity of the proof of the theorem, we begin in Section 2 by sketching the proof

in the special case corresponding to (1.1). This allows us to explain the basic scheme in this simpler

case. The goal of Sections 2 to 6 is to reduce the abstract and general form of the averages Ar

given by (1.2) to a concrete version given by (5.1). As a result, we get an operator on `2(Zd), with

summation taken over Zd′ (with d = dim(G), d′ = dim(G′)), and where all polynomials that occur

have integer coefficients. An important fact here is the observation of a certain non-degeneracy

of the polynomial Pk, which polynomial arises from the multiplication law. The reduction to

the concrete picture is made possible by considering an appropriate Malcev basis for a rational

structure of the Lie algebra g.

In Section 7 we decompose the averages Ar into three parts, corresponding to the division of

the sizes of the denominators q mentioned above. Section 8 begins our analysis when q is small,

and the corresponding grouping of terms with common denominator Q. The relevant maximal

operator that arises is treated in Section 9 by the use of Lemma 9.1, which gives the estimate

(1.7) in the general case. Section 10 deals with a Gauss-sum-like operator that arises in the tensor

product decomposition.
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Finally, Section 11 takes up the estimates for denominators q of intermediate size, and Section

12 for the rest.

We make some additional remarks.

1. It seems reasonable to suppose that it is possible to reformulate our result so as also to contain

the full abelian case (1.4), when p = 2. However, we have not attempted this because it

would not seem to shed further light on the (non-abelian) issues we have dealth with; also

because our techniques at present do not give results for p < 2.

2. However one can prove the maximal theorem for averages (1.2) for all p, 1 < p, in the special

case when the group G is of Step 2. (See [IMSW]). This uses ideas in the recent work of

[IW] that gives the `p boundedness, for 1 < p < ∞, of the Hilbert transform (1.5) and its

higher-dimensional abelian analogues.

3. The special case of the main theorem in which Γ is the group of strictly upper-triangular

matrices with integer coordinates has been presented at several conferences by the authors,

and has been announced in [M].

§2. A special case

Here we sketch the special case where G is the group of 3 × 3 the upper triangular matrices

with ones on the main diagonal.

We let Γ be the discrete subgroup

Γ =

α ∈ G : α =


1 a1 a3

0 1 a2

0 0 1




with a1, a2 and a3 integers. We then put β′ =


1 b1 0

0 1 b2

0 0 1

 ,
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where b1 and b2 are integers. Our averaging operator is, for a special choice of R, then

Af(α) =
1

r2

∑
β′=(b1,b2)
|b1|≤r
|b2|≤r

f(α · β′)

for f a function on Γ and α a point in Γ. In this case our main theorem asserts the following

estimate.

‖ sup
r>0

|Arf | ‖`2(Γ)≤ C ‖ f ‖`2(Γ) .

The outline of the proof of this special case is as follows.

Let ψ be a smooth function on R2 which is compactly supported and is one in a neighborhood

of the origin. Put

Mj f(α) =
1

22j

∑
β′

f(α · β′)ψ
(
β′

2j

)
where we identify the matrix β′ with the point β′ = (b1, b2) in Z2. It then suffices to prove

(2.1) ‖ sup
j
|Mjf | ‖`2 ≤ C ‖ f ‖`2 .

We take the Fourier transform in the a3 variable. That is we define

f̂(a1, a2, θ) =
∑
a3∈Z

f(a1, a2, a3) e
2πia3θ .

Then with

α = (a1, a2, a3) = (a, a3)

(2.2) Mj f(α) =

1∫
0

e−2πia3θ Sθ
j f̂( ·, θ)(a) dθ .
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Here Sθ
j takes functions on Z2 to functions on Z2, and is defined for w, a function on Z2, by

Sθ
j w(a1, a2) =

1

22j

∑
b=(b1,b2)

ψ

(
b

2j

)
e−2πia1b2θ w(b1 + a1, b2 + a2) .

We want to analyze the integral in (2.2) by the circle method of Hardy, Littlewood and Ramanujan.

To this end, choose a smooth even function χ(θ) which is one for −1 ≤ θ ≤ 1 and is supported in

−2 ≤ θ ≤ 2. We then write for (`, q) = 1, 1 ≤ ` ≤ q,

(2.3) M(`,q)
j f(α) =

∫
e−2πia3θ χ(2(2−ε)j(θ − `

q
))Sθ

j f̂(·, θ) (a) dθ ,

for a suitable small fixed ε.

We collect together those terms for which 2κ ≤ q < 2κ+1. Set

Mj,κ =
∑

`,q

2κ ≤ q < 2κ+1

1≤ `≤ q
(`,q) = 1 .

M(`,q)
j .

Next we choose a number γ with 1 < γ < 2. Then we put

(2.4) M1
j =

∑
2κ ≤ jγ

Mj,κ ,

and

(2.5) M2
j =

∑
jγ ≤ 2κ < 2εj

Mj,κ.

Then

(2.6) Mj = M1
j + M2

j + Ej. Here

Ej(α) =

∫
Ej

e−2πia3θ B(θ)Sθ
j f̂ (· , θ)(a) dθ
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where B(θ) = Bj(θ) is a function bounded informly in j, while each θ in Ej has an approximation

by a rational `/q with (`, q) = 1 such that∣∣∣∣θ − `

q

∣∣∣∣ ≤ 1

q
2−(2−ε)j , 2εj ≤ q ≤ 2(2−ε)j .

This can be seen as follows. Recall Dirichlet’s approximation, whereby for any real θ and

positive integer N , there is a fraction `/q, with (`, q) = 1 (or ` = 0, and q = 1), such that

|θ − `/q | ≤ 1

qN
, and 1 ≤ q ≤ N .

We now apply this with N the greatest positive integer not exceeding 2(2−ε)j, and consider the

intervals that arise in this way divided in two cases: either with q ≤ 2εj, or with 2εj < q ≤ 2(2−ε)j.

Note that in the former case, any two such intervals are disjoint for large j, because if this were not

the case, we would have |`1/q1 − `2/q2| ≤ 2 · 2−(2−ε)j. But then 1
q1q2

≤ |`1/q1 −`2/q2| ≤ 2 · 2−(2−ε)j,

which contradicts the fact that q1 ≤ 2εj and q2 ≤ 2εj. (Here we use the fact that 22εj � 2(2−ε)j,

which happens when ε < 2/3.) Now the intervals in M1
j are those for q ≤ jγ, and the intervals for

M2
j are those for jγ < q ≤ 2εj. The complement in [0, 1] of the union of the intervals arising for

both M1
j and M2

j is the set Ej. Also B(θ) = 1−
∑

χ(2(2−ε)j(θ − `/q)).

We next point out that for θ ε Ej, we have the “Weyl-sum” estimate

(2.7) ‖ Sθ
j ‖≤ C2−ηj

for some η > 0.

The estimate (2.7) is contained in [SW3], but it can also easily be seen directly; (see also

Section 12).

Given (2.7) we may apply Plancherel’s theorem to see

‖ Ej ‖≤ C 2−ηj .

Then a square function argument (sup
j
|Ej f | ≤ (

∑
j

|Ej f |2)1/2) disposes of sup
j
|Ej| .

Let us turn to the most difficult term in (2.6), M1
j . To treat this term, we will prove

8



(2.8) ‖ sup
j

2κ ≤ jγ

|Mj ,κ f | ‖≤ C2−ηκ ‖ f ‖

for some η > 0. To treat the various denominators q, 2κ ≤ q < 2κ+1, that arise in Mj,κ, it would be

convenient to have a common denominator and for this reason we begin by taking Q =
∏

2κ ≤ q < 2κ+1

q.

Next it is easy to see that the subgroup QΓ of Γ is a normal subgroup. (QΓ consists of those

α ∈ Γ whose coordinates are multiples of Q). For any α ∈ Γ, we may write α = (µQ) · σ
where the coordinates of σ are between 0 and Q − 1. We then wish to write Mj,κ = Nj ◦ H +

small error, where Nj is an operator acting on the µQ variables, and H acts on the σ variables.

In order to approximate Mj,κ by Nj ◦ H, it would be necessary to know that for any η > 0,

Q < Cη2
ηj. Unfortunately, this is not the case. So, following Bourgain [BO1], we divide the

q’s with 2κ ≤ q < 2κ+1 into groups F , with each group containing at most 2δκ elements where
1
2
< δ < 1/γ. If we now define Q =

∏
q∈F

q then one can see that for any η > 0

Q =
∏
qεF

q < 2(κ+1) 2δκ

< (jγ+1)jγδ

< 2C(log j) jγδ

< Cη 2ηj

since γδ < 1. Also the number of such groups we need to cover all q’s with 2κ ≤ q < 2κ+1 is at

most 2(1−δ)κ. So to obtain the estimate (2.8) it will suffice to obtain the estimate

(2.9) ‖ sup
j

2κ ≤ jγ

MF
j,κ f ‖≤

C

2κ/2
‖ f ‖,

where

(2.10) MF
j =

∑
qεF

q∑
a=1
(u,q)

M(`,q)
j .

Note that in the integral (2.3) for M(`,q)
j we may insert a factor χ(c22κ(θ − `

q
)) for c a large

fixed constant, since 2κ . jγ. Thus in the expression for M(`,q)
j f we may replace f by f (`,q) where

f̂ (`,q)(θ) = χ

(
c22κ

(
θ − `

q

))
f̂(θ) .

The advantage is that the functions f̂ (`,q)(θ) have disjoint support, and thus the f (`,q) are orthogonal

at least for 2κ ≤ q < 2κ+1; the disjointness of the supports is due to the fact that 1
q1q2

≤ (c22κ)−1.
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Now in the integral (2.3) we expand the periodic extension of χ(2(2−ε)j(θ − `
q
)) in a Fourier

series. So

χ(2(2−ε)j(θ − `

q
)) =

∑
b3

1

2(2−ε)j
χ̂

(
b3

2(2−ε)j

)
e2πib3(ε− `

q
)

where χ̂ is the Fourier transform of χ on R. We also expand f̂(b1, b2, θ) in its Fourier series and

then perform the θ integration. If we identify (b1, b2, b3) = (b, b3) with the matrix

β =


1 b1 b3

0 1 b2

0 0 1

 ,

we find

M(`,q)
j f(α) =

1

22j2(2−ε)j

∑
β=(b,b3)

e−2πib3
`
q ψ

(
b

2j

)
χ̂

(
b3

2(2−ε)j

)
f (`,q) (α · β) .

With Q as above, we write

α = µQ · σ

and

β = νQ · τ .

We use the notation
µ = (m1,m2,m3) = (m,m3) ,

σ = (s1, s2, s3) = (s, s3) ,

ν = (n1, n2, n3) = (n, n3)

and

τ = (t1, t2, t3) = (t, t3) .

We will then have 0 ≤ sj ≤ Q − 1 and 0 ≤ tj ≤ Q − 1. Since q|Q, the factor e−2πib3
`
q equals

e−2πit3
`
q . This will be essential in approximating MF

j by Nj · H.

Now with a little care, we can show that except for a small error

MF
j (µQ·σ) =

1

22j

1

2(2−ε)j

∑
νQ=(nQ,n3Q)

ψ

(
nQ

2j

)
χ̂

(
n3Q

2(2−ε)j

)
·
∑

`,q
τ=(t,t3)

e−2πit3
`
q f (`,q) (µQ · νQ · {σ · τ})
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where {σ · τ} is in the residue class of (σ · τ) modQ. That is, σ · τ ≡ {σ · τ} modQ and more

particularly the coordinates of {στ} are between 0 and Q − 1. To control the error, as we have

said before, it is crucial to use the fact that for any η > 0, Q ≤ Cη2
ηj. The analysis of the error is

carried out in the general case at end of Section 8.

Once this error is controlled, we have succeeded in getting, up to a small error that

MF
j (µa · σ) = Nj · Hσ ,

where for F a function on QΓ,

Nj F (µQ) =
∑
νQ

1

22j

1

2(2−ε)j
ψ

(
nQ

2j

)
χ̂

(
n3Q

2(2−ε)j

)
F (µQ · νQ) ,

and

Hσ(µQ) =
∑

τ=(t,t3)

∑
qεF

q∑
`=1

(`,q)=1

e−2πit3
`
q f (`,q) (µQ · {σ · τ}) .

This plays the role of a crucial “tensor product” decomposition. Then to obtain the estimate (2.9),

it will suffice to prove

(2.11) ‖ sup
j
Nj F ‖`2(QΓ)≤ C

Q3 ‖ F ‖`2(QΓ)

and

(2.12)
∑

σ

∑
µQ

|Hσ(µQ)|2 ≤ CQ6

2κ
‖ f ‖2

`2(Γ).

Let us begin with the estimate (2.11). Let

Bj = {g ∈ G : |x1| < 2j , |x2, | < 2j , |x3| < 22j} .

It is well known that (group) translates of the balls Br form a standard Vitali family of balls on

G. It follows that translates of the balls on QΓ defined by

BQ
j = {µQ ∈ QΓ : |m1Q| < 2j , |m2Q| < 2j , |m3Q| < 22j}
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forms a standard Vitali family of balls on QΓ with all constants uniform in Q, since BQ
j = Bj∩QΓ,

and |BQ
j | ∼ 24j

Q3 . It therefore follows by a well known argument that

‖ sup
j
| N 0

j F | ‖`2(QΓ)≤
C

Q3
‖ F ‖`2(QΓ) .

So we must now consider the difference Nj −N 0
j . To obtain (2.11) we have to show

‖ sup
j
| Nj F − N 0

j F | ‖≤
C

Q3
‖ F ‖ .

We will estimate Nj−N 0
j by using Fourier analysis on the group QZ, and we shall see the gain

of 2κ in (2.12) will come from an oscillation arising due to the “twist” of the group multiplication.

For F defined on QZ, we set

F̂ (θ) =
∑

F (nQ) e2πinQθ .

Then

F (nQ) = Q

∫ 1
2Q

− 1
2Q

e−2πinQθF̂ (θ)dθ ,

and ∑
|F (nQ)|2 = Q

∫ 1/2Q

− 1
2Q

| F̂ (θ)|2dθ .

In particular, we point out that

1

2(2−ε)j
χ̂

(
n3Q

2(2−ε)j

)
=

∫ 1
2Q

− 1
2Q

e−2πin3Qθ χ(2(2−ε)jθ) dθ .

Thus the QZ Fourier transform of 1
2(2−ε)j χ̂

(
n3Q

(22−ε)j

)
equals 1

Q
χ(2(2−ε)jθ) . Now

Nj F (µQ) = Q

∫ 1
2Q

− 1
2Q

e−2π2m3Qθ χ(2(2−ε)jθ)

Q
S ′θj F̂ (mQ , θ)dθ ,

where for a function w defined on QZ

S ′θj w(mQ) =
1

22j

∑
nQ

ψ

(
nQ

2j

)
e−2πiθm1n2Q2

w(mQ+ nQ) .

We will show that for 2−2j ≤ θ ≤ 2−(2−ε)j,
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(2.13) ‖ S ′θj ‖≤ C
(

1
Q2|22jθ|1/2

)
Let us assume (2.13). Then∑

m3Q

∣∣(Nj −N 0
j

)
F (µQ)

∣∣2
=

1

Q

∫
|χ(22−ε)jθ)− χ(22jθ)|2 |S ′θj F̂ (mQ, θ)|2dθ .

So ∑
µQ

|(Nj −N 0
j )F (µQ)|2 ≤

C

Q5

∫
| 1

|22jθ|
(χ
(
2(2−ε)jθ

)
− χ

(
22j(θ)

)
|2
∑
mQ

|F̂ (mQ, θ)|2 dθ .

Thus ∑
j

|(Nj −N 0
j )F (µQ)|2

≤ C
1

Q6

∑
µQ

(F (µQ)|2 .

This is because the sum
∑ 1

|22jθ|
is bounded as j ranges over 22j|θ| ≥ c.

Thus by using a square function argument, we arrive at (2.11). So the estimate (2.13) implies

(2.11), and we turn to a sketch of the proof of (2.13). To simplify the writing we shall assume

Q = 1 here. In proving (2.13), it suffices to consider functions w that are supported in a ball of

radius 2j, {n : |n− k| < 2j}, for an arbitrary center k.

Thus we replace the free variable m by m + k and we are led (up to a factor of e2πiθm2k1) to

estimating the sum

1

22j

∑
n

ψ(n/2j) e−2πiθm1n2 wk(m+ n)

where wk(u) = e−2πik1u2 w(u + k), and now wk(u) is supported in the ball |u| < 2j, and this

restricts m to the ball |m| < 2 · 2j.

We can then compare the above sum with the integral

1

22j

∫
ψ(y/2j) e−2πiθx1y2 f(x+ y) dy ,
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where f is defined by f(y) = wk(n) if y belongs to the unit cube centered at n.

Since |y| ≤ 2j and |x| < 2 · 2j the error committed by this comparison gives a bound

O(θ2j) + O(2−j), the first coming from the variation over each cube of e−2πiθx1y2 , and the sec-

ond from the variation of ψ(y/2j). Moreover, by rescaling and using stationary phase one can

observe that the integral operator has a norm which is O(|θ22j|−1/2). Altogether, this gives (2.13),

since θ = O(2−(2−ε)j). (In the setting of more general nilpotent Lie groups as in Section 9, where

the multiplicative twist is not bilinear, it is harder to approximate S ′θj by an integral operator.

However, this approximation can be made instead for the operator (S ′θj ) (S ′θj )∗.)

We turn to the proof of (2.12), that is the estimate for Hσ(µQ). After a change of variables,

we see

Hσ(µQ) =
∑

τ = (t1,t2,t3)
0≤ tj ≤Q−1

`,q

e−2πi(t3−s3−s1t2) `
q f `,q (µQ · τ) .

For w a function on Z2/Q, define

Tw(s1, s2) =

Q−1∑
t1=0

Q−1∑
t2=0

e2πis1t2
`
q w(t1, t2) .

The main step in establishing (2.11) is to show

(2.14) ‖ Tw ‖2
`2(Z2/Q)≤

Q4

q
‖ w ‖2

`2(Z2/Q).

This is an operator “Gauss sum” estimate of the kind considered in [SW3].

Granting (2.14), we see

∑
s3

|Hσ(µQ)|2 ≤ Q
∑
`,q

∣∣∣∣∣ ∑
τ

e−2πi(t3−s1t2) `
q f (`,q) (µQ, τ)

∣∣∣∣∣
2

≤ Q2
∑
`,q

Q∑
t3=1

∣∣∣∣∣
Q∑

t1=1

Q∑
t2=1

e2πit2s1
`
q f (`,q) (µQ · τ)

∣∣∣∣∣
2

.

So using (2.14), we find ∑
τ

|Hσ(µQ)|2 ≤ Q6

q

∑
τ

|f `,q(µQ · τ)|2 .
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Thus ∑
σ,µQ

|Hσ(µQ)|2 ≤ C Q6

2κ

∑
µQ,τ

|f (`,q)(µQ · τ)|2

≤ C Q6

2κ ‖ f (`,q) ‖2

Since |
∑

f̂ (`,q) | ≤ C |f̂ | and the f̂ `,q have disjoint supports, we arrive at (2.12).

To prove (2.14), let us denote by k(s, s′) the kernel of TT ∗. Then

∑
s

|k(s, s′)| ≤
Q−1∑
s1=0

Q−1∑
s2=0

∣∣∣∣∣
Q−1∑
t1=0

Q−1∑
t2=0

e2πi(s1−s′1) t2
Q
q

∣∣∣∣∣
=

Q4

q4

q−1∑
s1=0

q−1∑
s2=0

∣∣∣∣∣
q−1∑
t1=0

q−1∑
t2=0

e2πi(s1−s′1) t2
Q
q

∣∣∣∣∣ .
The sum on t2 is 0 unless s1 = s′1.

Thus ∑
s

|k(s, s′)| ≤ Q4

q
.

Similarly ∑
s′

|k(s, s′)| ≤ Q4

q
.

This gives (2.14) and completes our discussion of Mj.

The treatment of M2
j is similar to but much easier than the argument for M1

j . In discussing

M2
j it suffices to show that for each κ with jγ < 2κ < 2εj,

‖ Mj,κ ‖≤ C2−κ/2

uniformly in j. In fact, then ‖ sup
jγ<2κ

|Mj,κ| ‖2≤
∑

jγ<2κ

‖ Mj,κ ‖2≤ c

∞∑
j=1

j−γ <∞, since γ > 1.

§3. Some preliminaries on uniform subgroups, canonical coordinates and
corresponding balls

We now turn to the general situation.
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The main facts we need to know about uniform subgroups are summarized in the following

proposition. For the background material needed we shall refer to [CG].

Proposition 3.1: Let Γ be a uniform subgroup of a simply connected nilpotent Lie group G. Then

g, the Lie algebra of G has a basis

X1
1 , . . . X

d(1)
1 , . . . , X1

k , . . . , X
d(k)
k

such that

(a)

X1
u, . . . , X

d(u)
u , . . . , X1

k , . . . , X
d(k)
k

is a basis for the ideal iu.

(b)

Γ =
{
α ∈ G : α = exp(a1

1X
1
1 ) · exp(a2

1X
2
1 ) . . . exp(a

d(1)
1 X

d(1)
1 ) . . .

. . . exp(a1
kX

1
k) . . . exp(a

d(k)
k X

d(k)
k )

where the av
u are integers}.

(c)
[
Xv

u, X
v′

u′

]
is a finite linear combination of the Xv

u with rational coefficients.

The ideals iu are defined in §1 and are the span of all commutators in g of length ≥ u.

In particular, if su is the subspace of g spanned by X1
u, X2

u, · · ·X
d(u)
u , then the ideal iu equals

su ⊕ su+1 · · · ⊕ sk; also d(u) is the dimension of su.

The proof of Proposition 3.1 is contained in [CG]. For the convenience of the reader, we restate

the definitions and results in [CG] which imply this proposition.

Let g be a real nilpotent Lie algebra. A basis {X1 , · · ·Xn} for g is called a strong Malcev basis

if for each m, 1 ≤ m ≤ n, the span of {X1, · · ·Xm} is an ideal of g.

Suppose h1 ⊆ h2 ⊂ · · · ⊂ hk = g is a nested sequence of ideals in g, and that {X1, · · ·Xn}
is a basis for g. We say {X1, · · ·Xn} is a strong Malcev basis for g passing through h1, · · · hk if

16



{X1, · · ·Xn} is a strong Malcev basis for g, and for each j, 1 ≤ j ≤ k, there is a positive integer

mj such that {X1, · · ·Xmj
} is a basis for hj. Theorem 1.13(b) asserts that for any nested sequence

of ideals h1 ⊆ h2 ⊆ · · · ⊆ hk = g, there is a strong Malcev basis passing through h1, · · · hk. (See

also the second note after the proof of Theorem 1.13(b) in [CG].)

To say that g has a rational structure means that g has a basis {X1, · · ·Xn} such that [Xi, Xj] =

ΣCi,j,kXk with Ci,j,k rational. Then gQ = span of {X1, · · ·Xn} over the rationals is called a rational

structure for g. (See Lemma 5.11 (a)). Let h be a subalgebra of g. (For us h will be an ideal). Let

gQ be a fixed rational structure, and put hQ = h ∩ gQ. Then h is said to be rational if the span of

hQ over the reals is h. (This definition is given between Lemmas 5.1.1 and 5.1.2 in [CG]). Let G

be a connected, simply connected, nilpotent Lie group, and suppose H is a closed subgroup. H is

said to be rational if the Lie algebra of h is a rational subalgebra of g.

Assume G is a connected, simply connected Lie group with Lie algebra g, and suppose Γ is a

discrete subgroup of G. A strong Malcev basis {X1, · · ·Xn} of g is said to be strongly based on Γ

if

Γ = {y ∈ G : y = expm1X1 · expm2X2 · · · expmnXn , with mj integers}

Theorem 5.1.6 in [CG] asserts, among other things, that if Γ is a uniform subgroup of G, g

has a strong Malcev basis strongly based on Γ. In the proof of Theorem 5.1.8 (a), it is shown

that for any such basis [Xi, Xj] = ΣCi,j,kXk with Ci,jk rational. Thus any such basis determines

a rational structure, gQ, for g. Namely, gQ is the rational span of {Xi · · · Xn}. Denote the

inverse of the exponential mapping from g to G by log. Then by the Campbell-Hausdorff formula

log γ ∈ gQ for every γ ∈ Γ. Also, for any such basis expXj ∈ Γ. Thus, gQ is the rational span

of log γ, γ ∈ Γ, so gQ is determined by Γ. We call this gQ the rational structure of g determined

by Γ. Corollary 5.2.2 asserts that the ideals iu of the descending central series of g are rational

subalgebras, or equivalantly, if {iu} are the closed normal subgroups of g corresponding to {iu}, the

{iu} are rational subgroups. Thus Proposition 3.1 is implied by the following statement contained

in Proposition 5.3.2 of [CG].

Statement: Let Γ be a uniform subgroup of a connected, simply connected nilpotent Lie group

with Lie algebra g. Let H1⊂
6=
H2⊂

6=
· · · ⊂

6=
Hk = G be closed normal subgroups of G. Denote the

Lie algebra of Hj by hj, 1 ≤ j ≤ k. Suppose the Hj are rational subgroups of g (with respect to

the rational structure determined by Γ). Then there exists a strong Malcev basis for g strongly

17



based on Γ passing through hj, 1 ≤ j ≤ k.

We now fix some important notation. With d(j) as in the statement of Proposition 3.1, then

d = d(1) + · · · + d(k) is the dimension of g, and d′ = d(1) + · · · + d(k − 1) is the dimension of

g′ = g/ik. We also set

D = d(1) + 2d(2) + · · ·+ kd(k)

and

D′ = d(1) + 2d(2) + · · ·+ (k − 1) d(k − 1) .

D and D′ are called the homogeneous dimensions of G and G′ respectively.

For g and h in G we write g · h or gh for their product. If g′ and h′ are elements of G′, we use

the notation g′ ◦ h′ for their product in G′.

Suppose xu = (x1
u, . . . x

d(u)
u ) is a point in Rd(u). We write Xu for (X1

u, . . . X
d(u)
u ), and xu ·Xu for

x1
uX

1
u + · · ·+ x

d(u)
u X

d(u)
u ; also we set

exp(xu ∗Xu) = exp(x1
uX

1
u) · exp(x2

uX
2
u) . . . exp(xd(u)

u Xd(u)
u ) .

Since G is a simply connected nilpotent Lie group, every g ∈ G can be written uniquely in the

form

(3.1) g = exp(z1 ·X1 + · · ·+ zk · Xk)

with zu ∈ Rd(u). The z1, . . . zk are called canonical coordinates of the first kind.

In view of part (b) of proposition (3.1) it is useful to see that each g in G can be written in

the form

(3.2) g = exp(x1 ∗X1) exp(x2 ∗X2) . . . exp(xk ∗Xk)

and to try to clarify the relation between the x’s in (3.2) and the z’s in (3.1). The x’s in (3.2) are

called canonical coordinates of the second kind.

For this purpose it is convenient to introduce the notion of the homogeneous degree of a

polynomial, and consider the associated Rd and its corresponding homogeneity.
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Suppose we are given a gradation of Rd. That is, each x ∈ Rd can be written x = (x1, . . . xk)

with each xu = (x1
u, . . . x

d(u)
u ) a point in Rd(u). If eu = (e1u, . . . e

d(u)
u ) with each ev

u a non-negative

integer, we write xeu
u for (x1

u)
e1
u . . . (x

d(u)
u )e

d(u)
u . Also, we put

|eu| = e1u + · · ·+ ed(u)
u .

If P(x) is a monomial so that

P(x) = Axe1
1 · · ·xek

k

with A 6= 0, we say that P has homogeneous degree j if |e1| + 2|e2|+ · · · k|ek| = j. If

P(x) =
∑

ξ

Mξ(x)

is a finite sum of non-zero distinct monomials we say that the homogeneous degree of P is the

maximum homogeneous degree of the Mξ(x). We write the non-isotropic dileation x −→ λ ◦ x as

λ ◦ x = (λx1, λ
2x2, · · · , λkxk).

We collect some useful facts about homogeneous degrees of polynomials in the following lemma.

Lemma 3.2:

(a) Suppose P(x1, . . . xk) is a polynomial of homogeneous degree j with j < k. Then P is a

function of x1, . . . xj.

(b) If P(x1, . . . xk) is a polynomial of homogeneous degree j, then for every x, P(λ ◦ x) is a

polynomial in λ of degree at most j.

(c) Let P(x1, . . . xk) be a polynomial of homogeneous degree j. Then for at least one x, with

|xv
u| ≤ 1, for all u and v, P(λ ◦ x) is a polynomial in λ of degree j.

(d) Assume P(x1, . . . xk) is a polynomial of homogeneous degree j. Let

Qu =
(
Q1

u, . . .Qd(u)
u

)
, 1 ≤ u ≤ k

and set

P ′(x) = P(Q1(x), . . .Qk(x)) .

Then if each Qv
u as of homogeneous degree at most u, P ′(x) has homogeneous degree of most

j.
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Proof: The statements (a) and (b) are obvious, and we turn to (c).

Suppose

P(x) =
∑

ξ

Mξ(x)

with the Mξ distinct monomials. If Mξ(x) has homogeneous degree r, then

Mξ(λ ◦ x) = λrMξ(x) .

Thus, it suffices to observe that there is at least one x with |xv
u| ≤ 1 such that∑

ξ
deg Mξ = λ

Mξ(x)

is not zero.

To prove (d) we may assume P(x) is a monomial

P(x) = xe1
1 · · ·x

ek
k .

P ′(λ ◦ x) = Pe1
1 (λ ◦ x) · · · Pek

k (λ ◦ x) .

Now each Pv
u has homogeneous degree at most u. So each Pv

u(λ ◦ x) has degree at most u in λ.

Thus Peu
u (λ ◦ x) has degree at most u|eu| as a polynomial in λ. So the degree of P ′(λ ◦ x) as a

polynomial in λ is at most |e1|+2|e2|+ · · ·+ |k|ek| which is at most j. Conclusion (d) now follows

from conclusion (c).

We shall also use the same notion of homogeneous degree for polynomials in two variables x and

y.

Thus if M(x, y) is a monomial with M(x, y) = xe1
1 · · · xek

k y
e′1
1 · · · ye′k

k , we say the homogeneous

degree of M(x, y) is |e1|+ |e′1|+ · · · k|ek|+ k|e′k|.

We now relate the coordinates of the first and second kind.

Proposition 3.4: Let g ∈ G with

g = exp(x1 ∗ X1) · · · exp(xk ∗ Xk) .

Then

g = exp(z · X1 + · · ·+ zk · Xk)

with
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(3.3) zv
u = xv

u + qv
u (x1, . . . xu−1), 1 ≤ u ≤ k.

Here each qv
u is a polynomial of homogeneous degree at most u. Moreover, qu has rational

coefficients and qu(0) = 0.

Conversely, if

g = exp(z1 · X1 + · · ·+ zk · Xk)

g has a unique representation

g = exp(x1 ∗ X1) · · · exp(xk ∗ Xk)

with

(3.4) xu = yu + q′u(y1, . . . yu−1)

where each q′vu has homogeneous degree of most u, rational coefficients and q′u(0) = 0. In particular,

each g ∈ G has a unique expression of the form (3.2).

Proof: We first note that

[iu, iu′ ] ⊆ iu+u′ .

This is because iu consists of all elements of g which are finite linear combinations of commutators

of length at least u.

By the Campbell-Hausdorff formula

exp(x1 ∗ X1) · exp(x2 ∗ X2) · · · exp(xk · Xk)

= exp{x1 · X1 + · · ·+ xk ·Xk +
∑

ξ

Mξ} .

The sum on ξ is finite, and for each ξ

Mξ = Aξ x
v1
u1
. . . xvr

ur
[Xv1

u1
, [Xv2

u2
, . . . [Xvr−1

ur
] . . .]

where the Aξ are rational, and r ≥ 2. Each Mξ has homogeneous degree u1 + · · · + ur and

[Xv1
u1

[Xv2
u2
. . . [Xvr−1

ur−1
, Xvr

ur
] . . .] belongs to iu1 ···+ur and so can therefore be written as∑

u≥u1 + ···+ur

Au,v Pu,v (xv1
u1
, . . . xvr

ur
)Xv

u
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with Au,v rational. Since u1 + · · · + ur ≤ u and r ≥ 2 each uj is strictly less than u. Also,

Pu,v(0) = 0. This gives (3.3). (3.4) now follows from (3.3) by inductively solving for xu in terms

of zu and using Lemma 3.3.

We now turn to the description of multiplication in exponential coordinates of the second kind.

Proposition 3.5: Suppose g and h are in G with

g = exp(y1 ∗ X1) . . . exp(yk ∗ Xk)

and

h = exp(x1 ∗ X1) . . . exp(xk ∗ Xk) .

Then

g · h = exp(z1 ∗ X1) exp(z2 ∗ X2) . . . exp(zk ∗ Xk)

where

z1 = y1 + x1

and for u ≥ 2

zu = yu + xu + Pu(y1, . . . yu−1, x1 . . . xu−1) .

Pu = (P 1
u , . . . P

d(u)
u ) are polynomials having the following properties:

(a) Pu(0, x) = Pu(y, 0) = 0; Pu has rational coefficients; and each P v
u has homogeneous degree

(in x and y) at most u.

(b) Let

Pk = (P 1
k , . . . P

d(k)
k )

then for 1 ≤ v ≤ d(k)

P v
k (y, x) =

∑
e,f

1≤e≤d(k−1)
1≤f≤d(k)

Av
e,f y

e
k−1 x

f
1

+ a polynomial not involving yk−1 or xk−1.

(c) The d(k − 1) · d(1) by d(k) matrix (Av
e,f ) with rows parameterized by e and f and columns

parameterized by v, has a left inverse. That is, the matrix has rank d(k).
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Note: While conclusions (a) and (b) are more-or-less standard facts, the rank property expressed

in (c) is of crucial use in Section 9 below.

Proof: Note first that

g · h = exp(z1X1 + · · ·+ zkXk)

with

zu = yu + xu + P ′
u(y1, . . . yu−1 , x1 , . . . xu−1)

with P ′
u satisfying conditions (a). This is proved by using the Campbell-Hausdorff formula in the

same way that (3.3) was proved. The conclusions (a), (b) and (c) now follow from (3.4) and part

(d) of Lemma 3.2.

We turn to the proof of (b). We assume k ≥ 3. The proof in the case k = 2 is easier but

requires a slight change in the argument.

Let

w = exp(yk−1 ∗ Xk−1) · exp(x1 ∗ X1) · exp(−yk−1 ∗ Xk−1) .

w = exp(x1 ∗ X1) · exp
∑
e,f

ye
k−1x

f
1 [X

e
k−1, X

f
1 ] = exp(x, ∗X1) · w′

with

w′ = exp
∑
e,f

ye
k−1x

f
1 [X

e
k−1, X

f
1 ] .

In particular, w′ is in the center of g. Thus

g · h = exp(y1 ∗ X1) · · · exp(yk−2 ∗ Xk−2) · w · [exp(−yk−1 ∗ Xk−1)]
−1 exp(x2 ∗ X2) . . .

exp(xk−1 ∗ Xk−1) exp(yk ∗ Xk) exp(xk ∗ Xk)

= exp(y1 ∗X1) . . . exp(yk−2 ∗Xk−1)

· exp(x1 ∗X1)(exp(−yk−1 ∗Xk−1))
−1 exp(x2 ∗X2) . . . exp(xk−1 ∗Xk−1)

· exp(
∑

v

Xv
k (yv

k + xv
k +

∑
e,f

Av
e,f y

e
k−1x

f
1)

where Av
e,f is defined by the relation

[Xe
k−1, X

f
1 ] =

∑
v

Av
e,fX

v
k .
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Also, since k ≥ 3,

exp(−yk−1 ∗ Xk−1)
−1 = exp(yk−1 ∗ Xk−1)

and that term commutes with all the terms on its right in the above formula.

Thus

g · h = exp(y1 ∗ X1) . . . exp(yk−2 ∗ Xk−2 . . .

. . . exp(yk−1 + xk−1) ∗ Xk−1 exp

{∑
v

(
yv

k + xv
k +

∑
e,f

Av
e,f y

e
k−1x

f
1

)
xv

k−1

}
= exp((y1 + x1) ∗ X1) exp(Q2(y1 . . . yk−2) · X2

+ · · · +Qk(y1, . . . yk−2, x1, . . . xk−2) · Xk)

· exp(yk−1 + xk−1)Xk−1 exp

(∑
v

(
yv

k + xv
k +

∑
e,f

Av
e,fy

e
k−1x

f
1

)
Xv

k

)

Since [Xk−1, Xu] = 0 for u ≥ 2 (k ≥ 3) the conclusion follows.

We turn to the proof of (c).

Recall that su + su+1 · · ·+ sk = ik, where su is the subspace of the Lie algebra spanned by X1
u,

X2
u · · ·X

d(u)
u . Then since su ⊂ iu, if u + u′ > k we have that [su, su′ ] = 0, because [iu, iu′ ] = 0.

Therefore, ik = [g, ik−1] = [s1 + s2 · · ·+ sk , sk−1 + sk] = [s1, sk−1], which gives ik = [s1, sk−1].

So ik is contained in the span of the commutators Xv
1 and Xv

k−1 of length 2. That is, we can

write each Xr
k as

Xr
k =

∑
e,f

Br
e,f [Xe

k−1, X
f
1 ] .

Thus the matrix Br
e,f is a left inverse for Av

e,f .

Corollary 3.6: If g ∈ G and

g = exp(x1 ∗ X1) · · · exp(xk ∗ Xk)

g−1 = exp(z1 ∗ X1) · · · exp(zk ∗ Xk)

where z1 = −x1
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and for 2 ≤ u ≤ k

zu = −xu + P ′′
u (x1, . . . x`−1) .

Here P ′′
u are polynomials satisfying the following conditions.

(a) P ′′
u has rational coefficients

(b) P ′′
u has homogeneous degree at most u.

(c) P ′′
u (0) = 0.

To prove Corollary 3.6 put yu + zu = 0 in Proposition 3.5 and solve for yu recursively. Also use

part (d) of Lemma 3.2 to check the homogeneous degree of the P ′′
u .

Corollary 3.7: If

g = exp(y1 ∗ X1) . . . exp(yk ∗ Xk)

and

h = exp(x1 ∗ X1) . . . exp(xk ∗Xk)

then

g−1h = exp(z1 ∗ X1) . . . exp(zk ∗ Xk)

where

z1 = x1 − y1

and for 2 ≤ u ≤ k

zu = xu − yu + P ′
u(y1, . . . yu−1, x1, . . . xu−1)

Here the P ′
u are polynomials satisfying the following conditions.

(a) P ′
u has rational coefficients; P ′

u(y, y) = 0; P ′
u(0, x) = 0 and P ′

u(y, x) has homogeneous degree

at most u.

(b) P ′
k = (P ′1

k , . . . P
′d(k)
k ) where each P ′v

` has the form

P ′v
k (y, x) = −

∑
e,f

Ah
e,f y

e
k−1x

f
1

+ polynomial in y

+ polynomial not involving yk−1 or xk−1 .
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Corollary 3.7 is a consequence of Corollary 3.6 together with Proposition 3.5 and conclusion (d)

in Lemma 3.2.

We need analogues of Propositions 3.4 and 3.5 and its corollaries forG′. Since π is a homorphism

onto and π∗(Xk) = 0, each element g′ in G′ can be written in the form

(3.5) g′ = exp(z1 · π∗ (X1) + · · · + zk−1 · π∗(Xk−1))

and

(3.6) g′ = exp(x1 ∗ π∗(X1)) ◦ · · · ◦ exp(xk−1 ∗ π∗(Xk−1))

Proposition 3.8: If g′ has expressions (3.5) and (3.6), then for 1 ≤ u ≤ k − 1,

(3.7) yu = xu + qu (x1, . . . xu−1)

and

xu = yu + q′u (x1, . . . xu−1)

where the qu and q′u are the same polynomials as in Proposition 3.4.

Proof: Proposition 3.8 follows from Proposition 3.4 because π is a homomorphism onto.

The fact that π is a homomorphism onto also gives us the following analogues of Proposition

3.5, Corollary 3.6 and Corollary 3.7.

Proposition 3.9: Suppose g′ and h′ are in G′ with

g′ = exp(y1 ∗ π∗(X1)) ◦ exp(y2 ∗ π∗(X2)) ◦ · · · ◦ exp(xk−1 ∗ π∗(Xk−1)) .

Then

g′ ◦ h′ = exp(z1 ∗ π∗(X)1)) ◦ exp(z2 ∗ π∗(X2)) ◦ · · · ◦ exp(zk−1 ∗ π∗(Xk−1)) ,

g′
−1

= exp(z′′1 ∗ π∗(X1)) ◦ · · · exp(z′′k−1 ∗ π∗(Xk−1))

and

(g′
−1 ◦ h) = exp(z′1 ∗ π∗(X1)) ◦ · · · ◦ exp(z′k−1 ∗ π∗(Xk−1))
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where for 1 ≤ u ≤ k − 1

zu = yu + xu + Pu(x1 . . . xu−1, y1, . . . yu−1)

z′′u = −yu + P ′′
u (y1, . . . yu−1)

and

z′u = xu − yu + P ′
u(x1, . . . xu−1, y1, . . . yu−1)

where the polynomials Pu, P
′′
u and P ′

u are the same as in Proposition 3.5, Corollary 3.6 and Corol-

lary 3.7.

Next we want to define the balls B0
r and B0′

r on G and G′ in terms of coordinates of the second

kind; these will be “equivalent” to the balls Br and B′r introduced earlier in Section 1. Let

B0
r = {g ∈ G : g = exp(x1 ∗X1) · · · exp(xk ∗Xk)

with

sup
1≤ v≤ d(u)

|xv
u| < ru

for

1 ≤ u ≤ k} .

We set B0′
r = π(B0

r). So

B0′
r = {g′ ∈ G′ : g′ = exp(x1 ∗ π∗(X1)) ◦ · · · ◦ exp(xk−1 ∗ π∗(Xk−1))

with

sup
1≤ v≤ d(u)

|xv
u| < ru

for

1 ≤ u ≤ k − 1}

The balls Br and B0
r are equivalent in the following sense.

Proposition 3.10:

(a) There exists a positive constant c such that whenever r ≤ 1,

Br ⊂ B0
cr
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and

B0
r ⊂ Bcr .

(b) There exists a positive constant c such that

B0′r ⊂ B0′
cr

and

B0′
r ⊂ B′cr

(c) The ratios
|B0

r ∩ Γ|
rD

and
|B0′

r ∩ Γ′|
rD′

are bounded above and below.

(d) The ratios
|Br ∩ Γ|
rD

and
|B′r ∩ Γ′|
rD′

are bounded above and below.

Proof: Suppose first g ∈ Br so that

g = exp(t1Y + · · ·+ tkYk)

with Yu ∈ Iu ∩ O. (O a fixed neighborhood of 0 in G), and |tu| < ru. Then by writing Yu in

terms of the Xv
u, we see

g = exp(z1 · X1 + · · · + zk · Xk)

with

|zu| < Cru .

We then use Proposition 3.4 to write

g = exp(x1 ∗X1) · · · exp(xk ∗Xk) .

The homogeneity conditions on the polynomials q′u in Proposition 3.4, then imply |xv
u| < Cru.

Thus

Br ⊂ B0
cr .
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Similarly the homogeneity conditions on the polynomials qu in Proposition 3.4 imply Dr ⊂ Bcr.

This proves (a). The proof of (b) is the same. The conclusion (c) is clear, and then (d) follows

from (c) and the inclusion relations in (a) and (b).

Notes: • Since we have not assumed that the dilations {xv
u} −→ {δuXv

u}, δ > 0, are automor-

phisms, the properties of the balls Br in the above proposition, as well in Proposition

(3.12) below, can only be asserted for n strictly bounded from below.

• The definition of the balls B0
r makes them more convenient for calculation than their

equivalent balls Br. However not to further encumber the notation, we shall from now

on designate the former balls as Br, (and designate the projected balls B0′
r as B′r).

We now consider the appropriate norm and distance functions.

If g is in G and

g = exp(x1 ∗X1) · · · exp(xk ∗Xk)

we define

‖ g ‖= sup
1≤ v≤ d(u)
1≤u≤ k

|xv
u|1/u .

If g and h are in G, we set

ρ(g, h) = ‖ h−1g ‖ .

We gather together the basic properties of ‖ ‖ and ρ in the next proposition.

Proposition 3.11 Suppose g and h are in G.

(a) ‖ g ‖= 0 if and only if g is the identity in G.

(b) ρ(g, h) = 0 if and only if g = h.

For the remaining conclusion we assume ‖ g ‖ and ‖ h ‖ are ≥ 1.

(c) ‖ g−1 ‖≤ C ‖ g ‖
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(d) ρ(g, h) ≤ Cρ(h, g)

(e) ‖ g · h ‖≤ C(‖ g ‖ + ‖ h ‖)

(f) ρ(g, h) ≤ C(ρ(g, w) + ρ(w, h)) for and w ∈ G.

(g) ρ(g · h, h) ≤ C(‖ g ‖ + ‖ h ‖1−1/k‖ g ‖1/k).

Proof: Statements (a) and (b) are clear. Conclusion (c) follows from Corollary 3.6. Furthermore,

conclusion (c) implies conclusion (d). Property (e) is a consequence of Proposition 3.5 - that is

the homogeneity properties of the polynomials pu. If we write h−1g = h−1w ·w−1g, we see that (c)

and (e) imply (f). We turn to the proof of (g). If ‖ g ‖≥‖ h ‖, we see

ρ(g · h, h) = ‖ h−1gh ‖≤ C(‖ g ‖ + ‖ h ‖)

≤ C(‖ g ‖ + ‖ h ‖1−1/k ‖ h ‖1/k)

≤ C(‖ g ‖ + ‖ h ‖1−1/k‖ g ‖1/k) .

So we may assume ‖ g ‖≤‖ h ‖. Let

g = exp(y1 ∗X1) · · · exp(yk ∗Xk)

and

h = exp(x1 ∗X1) · · · exp(xk ∗Xk) .

Then

h−1g h = exp(z1 ∗X1) · · · exp(zk ∗Xk)

where

zu = yu + Qu(y1, . . . yu−1, x1, . . . xu−1)

where each Qu is a polynomial of homogeneous degree at most u, and Qu(0, x) = 0 So

|Qu(y, x)| ≤
u∑

s=1

|ys| |Q′
u(y1, . . . yu−1x1, . . . xu−1)|

where each Q′
u is for homogeneous degree at most u− s. (Here |ys| denotes the Euclidean norm of

the vector ys.)
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So if ‖ g ‖= A and ‖ h ‖= B

|zu| ≤ C(Au + AsBu−s) .

Thus
|zu|1/u ≤ C(A + As/uB1− s

u )

≤ C(A + A1/k B1−1/k)

since A ≤ B.

This completes the proof of Proposition 3.11.

Notice that Br = {g ∈ G , ‖ g ‖< r}.

More generally, for g ∈ G, we now set

Br(g) = {h ∈ G : ρ(h, g) < r} .

Proposition 3.2 implies the following Vitali properties of the balls Br(g).

Proposition 3.12: There is a constant c > 0 so that if r ≥ 1

(a) If Br (g) ∩ Br(h) 6= 0

Br(g) ⊂ Bcr(h) .

(b) If h ∈ Br(g), then

g ∈ Bcr(h) .

Let us define averages A′
rf for functions f on Γ as follows.

For α ∈ Γ

(3.8) A′
r f(α) = 1

rB′

∑
β′∈B′r ∩Γ′

f(α · R(β′)) .

Then in view of Proposition 3.10, we have the following assertion:
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To prove our main theorem, it suffices to prove

‖ sup
r>0

|A′
r f | ‖`2 ≤ C ‖ f ‖`2 .

§4. Coordinates

The use of the cannonical coordinates of the second kind allows us to identify the group G with

Rd′ × Rd(k) or G′ × Rd(k) as follows.

Every g ∈ G can be written as a pair (g′, xk)

with g′ = exp(x1 ∗ π(X1)) · exp(x2 ∗ π(X2)) · · · exp(xk−1 ∗ π(Xk−1))

and g = exp(x1 ∗X1) exp(x2 ∗X2) · · · exp(xk−1 ∗Xk−1) · exp(xk ∗Xk).

It will then be convenient to write

g = (x, xk), where x = (x1, . . . xk−1) ∈ Rd′ , with d′ = d(1) + d(2) · · · d(k − 1), xk ∈ Rd(k). In this

way we identify G with Rd′ × Rd(k) and G′ × Rd(k), and identify G′ with Rd′ . It then follows that

g = (x, xk) = (x, 0) · (0, xk) and π(x, xk) = x.

Similarly, any α ∈ Γ can be represented as α = (a, ak), with a ∈ Zd′ and ak ∈ Zd(k), and Γ′ is

then identified with Zd′ .

Suppose
g = exp(y1 ∗X1) . . . exp(yk−1 ∗ Xk−1) · exp(yk ∗ Xk)

= (y, yk)

and
h = exp(x1 ∗ X1) . . . exp(xk−1 ∗ Xk−1) exp(xk ∗ Xk)

= (x, xk) .

Then we have the following relation between multiplication in G′ and G.

Proposition 4.1:

(a) g · h = (z, zk)
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where

zk = yk + xk + Pk (y1, . . . yk−1 x1, . . . xk−1) .

(b) g−1 = (y−1, z′′k)

where y−1 is the inverse of y with respect to the group structure of G′ and

z′′k = −yk + P ′′
k (y1, . . . yk−1) .

(c)

g−1 · h = (y−1 ◦ x, z′k)

and

z′k = xk − yk + P ′
k(y1, . . . yk−1, x1, . . . x1, . . . xk−1) .

Here Pk, P
′
k and P ′′

k are as in Proposition 3.5. The proof of Proposition 4.1 is an immdiate

consequence of Proposition 3.5, Proposition 3.9 and the fact that exp(xk ∗ Xk) is in the

center of G.

We now consider the polynomial mapping R : G′ −→ G. Recall that by assumption πR is the

identity on G′. Using the coordinates above it therefore follows that

R(x) = (x,R(x)) .

Since multiplication is given by polynomials, R is therefore a polynomial map (from Rd′ to Rd(k)),

and so we write R = (R1, R2, · · ·Rd(k)). We then have:

Proposition 4.2 The polynomials R1, R2, · · ·Rd(k) each have homogeneous degree ≤ k. Each poly-

nomial has rational coefficients, and is of the form

(4.1)

Rv(x) =
∑
e,f

1≤ e≤ d(k−1)
1≤ f ≤ d(1)

Bv
e,f x

e
k−1 x

f
1

+
∑

e

B′v
e x

e
k−1

+ Λ(x1, . . . xk−2)
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where Λ is a polynomial of homogeneous degree at most k.

Proof: Note that the Rv are polynomials in the variables x1, x2, . . . xk−1only. If Rv had homoge-

neous degree greater than k there would be an x 6= 0 with |xv′
u | ≤ 1 such that Rv(λ ◦ x) would be

a polynomial in λ of degree at least k + 1, according to Lemma 3.2. But then

R(B′1) 6⊂ Bc

for any c > 0 contradicting the assumption on R. Given that Rv
k is of homogeneous degree at

most k, it must have the form (4.1).

Finally, we deal with the rationality assertions in Proposition (4.2).

The fact that R takes Γ′ into Γ implies that for m = (m1 . . .md(k−1)) with each mu ∈ Zd(u),

R(m) is an element of Zd(k). Thus, the rationality assertions concerning the coefficients of R in

Proposition 4.2 follow from the following lemma.

Lemma 4.3: Let R be a polynomial of degree at most k in d variables.

Assume that for every lattice point m in Rd, R(m) is an integer. Then the coefficients of R

are rational, and each coefficient may be written with denominator that divides some fixed integer

that depends on d and k.

Proof: Let us first suppose d = 1, and suppose

R = akx
k + · · · .

Let (∆R)(x) = R(x)−R(x− 1). Then ∆k R = k! ak. So k!ak is an integer.

Consider
k!R(x) = k!akx

k + k! ak−1 x
k−1 + . . .

= k!akx
k + Rk−1

Since R(x) takes integers into integers and k!ak is an integer, Rk−1 takes integers into integers.

Arguing inductively we see k!(k − 1)! . . . 2!aj is an integer for each j, 1 ≤ j ≤ k. Also a0 must be

an integer since R(0) is an integer.
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Now suppose

R(x, y) =
k∑

`=0

y` p`(x)

where p` is a polynomial with degree p` ≤ k. Then the preceding argument shows that for each

integer m, p`(m) is a rational number and the denominator divides C(k) for some integer C(k).

(In fact, C(k) = k!(k − 1)! · · · 1.) Then the polynomials C(k)p`(x) takes Z into Z. Thus the

polynomials C(k)p`(x) have coefficients which are rational numbers with denominators that divide

C(k). Thus, the coefficients of R(x, y) are rationals with denominators that divide C(k)2. This

proves the lemma for d = 2, and the lemma follows by an inductive argument, which shows that

the demoninators that divide C(k)d.

§5. The standard picture

We now want to reformulate our main theorem in a more concrete fashion.

First we recall the identifications above.

We have

Γ = {α : α = exp(a1 ∗X1) . . . exp(ak ∗Xk)

with

au = (a1
u, . . . , a

d(u)
u ) ∈ Zd(u) , av

u ∈ Z , 1 ≤ v ≤ d(u)} .

We set d = d(1) + · · ·+ d(k), D = d(1) + 2d(2) + · · · k · d(k),

d′ = d(1) + · · · + d(k − 1) , and D′ = d(1) + 2d(2) + · · · (k − 1) d(k − 1) ,

and use the notation

α = (a1, a2, . . . , ak−1, ak) = (a, ak) .

Our averages A′
r in (3.8) are now recast as follows.

(5.1) A′
r(f)(α) =

1

rD′

∑
b∈B′r∩Zd′

f(a ◦ b, ak + Pk(a, b) +R(b)) ,

where Pk and R are the polynomials described in Propositions 4.1 and 4.2. Also the polynomials

involved in the multiplication have 0, as well as Pk and R have rational coefficients.
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Proposition 5.1 The assertion of the theorem is equivalent with the inequality for (5.1):

‖ sup
r≥1

A′
r(f) ‖`2(Zd)≤ C ‖ f ‖`2(Zd)

§6. A last reduction

Now that we have obtained the form (5.1) with rational polynomials we shall show that we

may assume that coefficients of the polynomials are integers. For this reduction we need first of

all to consider

Q0 Γ = {α = (a1, . . . ak) ε Γ : Q0|av
u for each av

u .}

where Q0 is an integer so large that all of the denominators of the coefficients of the polynomials

P v
u divide Q0.

Proposition 6.1: Q0Γ is a subgroup of Γ.

Proof: Let Q0α = (Q0 a1, . . . Q0ak) and Q0β = (Q0b1, . . . , Q0bk) be points of Q0Γ. Then

(Q0α · Q0β)u = Q0αu + Q0βu + Pu(Q0α,Q0β) .

But the monomials in P v
u have at least degree 1 in α and β. So

P v
u (Q0α,Q0β) = Q0

∑
|e|≥1
|f |≥|

Cv
e,f Q

|e|−1
0 αe · Q|f |

0 βf

where each Cv
e,v is a rational number with denominator which divides Q0. Thus P v

u (Q0α,Q0β) is

an integer multiple of Q0. So Q0Γ is closed under multiplication. The coefficients of (αQ)−1 are

found inductively by solving the equations Q0au + bu + Pu(Q0a1, . . . Q0au−1, b1, . . . bu−1) = 0 so we

see inductively that the components of (Q0au)
−1 are of the form Q0 times an integer. So Q0Γ is

closed under inverse and thus Q0Γ is a subgroup of Γ.

Proposition 6.2: With the re-parametrization above, the multiplications in Q0Γ is expressed by

polynomials with integer coefficients. That is, the polynomials P v
u , P v′′ and P v′

u have integer coef-

ficients. Moreover 5.1, 5.2, 5.3 and 5.4 still hold.

Proof: This is essentially done in the proof of Proposition 6.1. Note the polynomials expressing

the multiplication in Q0Γ differ from those expressing the multiplication in Γ only in that each

coefficient gets multiplied by a power of Q0.
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Proposition 6.3: Each α ∈ Γ has a unique decomposition

α = σ · Q0µ

where Q0µ ∈ Q0Γ , σ ∈ Γ and σ = (s1 . . . sk) ∈ [0, Q− 1]d .

0 ≤ sv
u ≤ Q0−1, 1 ≤ v ≤ d(u), 1 ≤ u ≤ k ,

Proof: Suppose α has coordinates (a1, . . . ak). Then we want to find lattice points (m1, . . .mk)

and s1, . . . sk such that the 0 ≤ sv
u ≤ Q− 1, for 1 ≤ v ≤ d(u), 1 ≤ u ≤ k such that

a1 = s1 + Q0m1

and

au = su + Q0mu + Pu(s1, . . . su−1 , Q0m1 · · ·Q0mu−1) .

Since Pu(s, 0) = 0 and since the denominators at the coefficients of Pu divide Q0, we can solve the

equations inductively for su and mu.

We have a similar result for Γ′. We let Q0Γ
′ denote the points in Γ′ whose coordinates are

divisible by Q0.

Proposition 6.4: Q0Γ
′ is a subgroup of Γ′. If the points with coordinates (Q0a1, . . . Q0ak−1) are

parametrized by (a1, . . . ak−1), the polynomials expressing the product and inverse in Q0Γ
′ are the

same as the first k − 1 arising in Proposition 5.2.

Moreover, each β′ ∈ Γ′ has a unique decomposition

β′ = Q0ν
′ ◦ τ ′

where Q0ν
′ ∈ Q0Γ

′ and the coordinates tvu of τ ′ satisfy the inequality 0 ≤ tvu ≤ Q0 − 1.

Next for each τ ′ ∈ Zd′ with τ ′ ∈ [0, Q− 1]d
′
we define the polynomial Rτ ′ on Q0Γ

′ by setting

Rτ ′(Q0ν
′) = R((Q0ν)

′ ◦ τ ′) − R(τ ′) − Pk(Q0ν
′, τ ′) ,

with ν ′ ∈ Zd′ .

Also if σ ∈ Zd, with σ ∈ [0, Q− 1]d and f a function on Γ(= Zd), then we define the function

fσ,τ ′ on Q0Γ by

fσ,τ ′(Q0µ) = f(σ · (Q0µ)) · (τ ′, R(τ ′)) .
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Note that

f(α · R(β′))

= f((σ ·Q0µ) · (Q0ν
′ ◦ τ, R(Q0ν

′ ◦ τ ′))

= f((σ ·Q0µ) · (Q0ν
′, R(Q0ν

′ ◦ τ ′)− Pk(Q0ν
′, τ ′))) · (τ ′, 0)

= f(σ ·Q0µ) · (Q0ν
′, R(Q0ν

′ ◦ τ ′) − Pk(Q0ν
′, τ ′ −R(τ ′)) (τ ′, R(τ ′))

= f(σ · [Q0µ · (Q0ν
′, Rτ ′(Q0ν

′)) · (τ ′, R(τ ′))

= fσ,τ ′ (Q0µ · (Q0ν
′, Rτ ′(Q0ν

′)) .

Thus A′
r appearing in (5.1) can be written as a finite sumof such expressions (with f replaced

by fσ,τ ′) and in each the corresponding polynomials for the multiplication low ◦ and Pk have integer

coefficients

We wish next to show that we may assume the polynomial R has integer coefficients. We first

observe there is a number Q1 such that the denominators of all the coefficients appearing in the

polynomials Rσ′(x) = R(x ◦ σ′) · R−1(σ′) divide Q1. (We know the coefficients of R are rational

so the same is true for R−1(σ′).)

Now we form groups Q1 ◦ Γ and Q1Γ
′. The group Q1Γ

′ is as before but

Q1 ◦ Γ = {α ∈ Γ : α = (a1Q1, a2Q1, . . . ak−1Q1, ak) , au ∈ Zd(µ)} .

In other words, Q1 ◦Γ consists of points whose first k−1 coordinates are divisible by Q1. We then

have the following analogue of Propositions 6.1 and 6.3.

Proposition 6.5: Q1 ◦Γ is a subgroup of Γ, and for each α ∈ Γ, there exists a unique decomposition

α = σ · (Q1µ) with σ ∈ [0, Q1 − 1]d.

Now

Rτ ′(Q1x) = R(Q1x ◦ τ ′) −R(τ ′) − Pk(Q1x, τ
′) .

Then what is important to notice is that Rσ′(Q1x) has integer coefficients. Thus, if we re-

parametrize Q1 ◦ Γ by identifying (a1Q1, a2Q2, . . . ak−1Q1, ak) by (a1, a2, . . . ak−1), the expression
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for Rσ′ has integer coefficients. Moreover, Q1Γ
′ is a subset of Q1 ◦ Γ′ and all the structure of

Section 5 is preserved.

Thus, we have achieved the following result.

Proposition 6.6: In proving

‖ sup
r>0

|A′
rf | ‖`2(Γ)≤ C ‖ f ‖`2(Γ)

we may assume that all the polynomials arising in (5.1) have integer coefficients.

§7. The basic decomposition

Let us fix a smooth compactly supported function ψ on Rd′ which is one in a neighborhood of

the origin.

Then for f a function on Γ and α ∈ Γ, α = (a, ak), we set

Mjf(α) =
∑
b∈Z′

ψj(b) f(a ◦ b, ak + Pk(a, b) +R(b)) ,

and

ψj(b) = 2−jD′
ψ(2−j ◦ b) .

It then suffices to prove

‖ sup
j
Mjf ‖`2(Zd)≤ C ‖ f ‖`2(Zd) .

Now
f(a ◦ b, ak + Pk(a, b) + R(b))

=

∫
Td(k)

e−2πiak·θ e−2πiθ · [Pk(a,b)+ R(b)] f̂(a ◦ b, θ) dθ

where

f̂(a, θ) =
∑
ak

f(a, ak) e
2πiak · θ .

Thus for α = (a, ak)

(7.1) Mj(f)(α) =

∫
e−2πiak · θ Sθ

j f̂(·, θ)(a) dθ.
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Here Sθ
j is an operator acting on functions on Z′ defined as follows: if F is a function on Z′

(7.1∗) Sθ
jF (b) =

∑
b′∈Z′

ψj(b
′) e−2πi[Pk(b,b′)+ R(b′)] · θ F (b ◦ b′) .

We wish to analyze the integral 7.1 by the circle method.

We let χ′ be an even C∞ function on R which is supported in [−2, 2] and which is one on the

interval [−1, 1] and 0 ≤ χ′ ≤ 1. For θ = (θ1, . . . θd(k)), set χ(θ) = χ′(θ1) . . . χ
′(θd(k)). So for λ > 4,

χ(λθ) is supported in [−1
2
, 1

2
]. If λ > 4, we let χλ(θ) denote the periodic extension of χ(λθ). Then

χλ(θ) =
∑

vεZd(k)

χ̂λ(v) e
−2πiv·θ where

χ̂(ξ) =

∫
Rd(k)

e2πiξ · y χ(y) dy ,

and

χ̂λ(v) =
1

λd(k)
χ̂
(v
λ

)
(λ > 4).

If ` = (`1, . . . `d(k)) is in Zd(k), we write (`, q) = 1 when the only positive integer dividing q, `1, . . .

and `k is 1. We also write `
q

to represent
(

`1
q
. . . `k

q

)
in Rd(k). Further we set

M(`,q)
j f(α) =

∫
e−2πiak·θ · χλ(θ −

`

q
) · Sθ

j f̂(·, θ) (a) dθ ,

where λ = 2j(k−ε) for an appropriate small ε positive. The choice of the ε is fixed throughout. In

fact we will see below that it suffices to require 0 < ε ≤ 1/k(k + 3/2).

We shall also systematically write λ = 2j(k−ε) in what follows. Here we note that 2jε < (2λ)1/2,

and in fact this holds on the basis of our requirement since what is needed here is ε < k/3. (The

stronger restriction ε ≤ 1/k(k + 3/2) is needed in Section 11).

We collect together all the M(`,q)
j with 2κ ≤ q < 2κ+1 for some integer κ. So we define

Mκ,j f(α) =
∑

2κ ≤ q < 2κ+1

q∑
`v = 1

(`,q) = 1

M(`,q)
j f(α) .
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Next we fix a γ with 1 < γ < 2. We put

M1
j =

∑
2κ+1≤jγ

Mκ,j

M2
j =

∑
jγ≤2κ+1≤2εj

Mκ,j

and write

(7.2) Mj f = M1
j f + M2

j f + Ejf ,

where

Ejf(a, ak) =

∫
Ej

e−2πiak ·θ · B(θ)Sθ
j f̂(·, θ) (a) dθ .

Let us make the following clarifying remarks about this basic decomposition.

(i) For each fixed j we have split the possible demoniators into essentially three classes: the

small q, for which q ≤ jγ; the intermediate q, for which jγ < q ≤ 2εj; and the remainder, for

which 2εj < q.

(ii) The restriction q ≤ jγ is crucial in having common demononators Q that are O(2ηj), for all

η > 0, as was already seen in Section 2.

(iii) For both the small q and the intermediate q (these for which q ≤ 2εj), we have that the

supports of the cut-off functions χλ(θ − `/q) are disjoint. In fact if two such supports

intersect one would have | `v

q
− `′v

q′
| ≤ 4/λ, which implies 1

qq′
≤ 4/λ, and this contradicts the

assumption that q, q′ are both ≤ 2jε, while λ = 2j(k−ε).

(iv) Since B(θ) = 1−
∑
q≤2εj

χλ(θ−`/q) and the supports are disjoint, it follows that 0 ≤ B(θ) ≤ 1.

Moreover, if |θv − `v/q| ≤ 1/λ for q and `v 1 ≤ v ≤ d(k), with (q, `1, `2, · · · `d(k)) = 1 and

q ≤ 2εj, then χλ(θ − `/q) = 1. So B(θ) = 0 and thus θ 6= Ej, where Ej is defined as the

support of B.

(v) An additional remark about the tri-partite range of the q’s described in (i) above and the

choice of λ = 2j(k−ε). One could have chosen seperate ε’s, one for the size of the q’s
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(i.e. 2jε1), and the other for λ, (i.e. λ = 2j(k−ε2)). Now the restriction that arises for ε2

(in Section 9), is 0 < ε2 < 1/k. While the restriction that is needed for ε1 in Section 11 is

then ε1(k + 1/2) ≤ 1/k − ε2. If for simplicity we take ε1 = ε2, we then get ε ≤ 1
k(k+3/2)

.

Returning to the decomposition (7.2), our main theorem will be a consequence of the following

3 estimates:

(7.3) ‖ sup
j

2κ+1 ≤ jγ

|Mκ,j f | ‖`2 ≤ C2−ηκ , for some η > 0

(from which it obviously follows that ‖ sup
j
|M1

j f | ‖`2 ≤ C ‖ f ‖`2),

(7.4) ‖M2
j f ‖`2 ≤ Cj−γ/2 ‖ f ‖`2 ,

and

(7.5) ‖ Ej f ‖`2 ≤ C2−ηj ‖ f ‖`2 , for some η > 0.

§8. The splitting of Mκ,j

In this section we consider M1
j and thus assume 2κ+1 ≤ jγ. We choose a δ > 0 with 1

2
< δ < 1

γ
,

(where the inequalities are strict.) We let F be a subset of the q’s with 2κ ≤ q < 2κ+1 containing

at most 2κδ of the q’s, and let

MF
κ,j =

∑
q∈F

q∑
`v = 1

(`,q) = 1

M(`,q)
j .

Since we may divide the q’s with 2κ ≤ q < 2κ+1, into 2(1−δ)κ such groups F , the estimate (7.3)

will follow from the estimate

(8.1) ‖ sup
j
MF

κ,j f ‖`2 ≤ C2−
κ/2 ‖ f ‖`2

The advantage of decomposing the q’s into these smaller classes F , as we have shown in Section

2, is that for any η > 0, we have
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(8.2) Q =
∏
q∈F

q ≤ Cη2
ηj.

For 2κ ≤ q < 2κ+1 (since 2κ < jγ, thus 22κ � λ = 2j(k−ε)) we can write for α = (a, ak)

M(`,q)
j f(α) =

∫
e−2πiak · θ χλ(θ −

`

q
)χc22κ

(
θ − `

q

)
Sθ

j f̂(·, θ) (a) dθ .

(The factor χc 22κ (θ − `
q
) has been inserted.) We now define functions f (`,q) by the relation

f̂ (`,q) (θ) = f̂(θ)χc 22κ(θ − `

q
) .

So we may write

(8.4) M(`,q)
j f(α) =

∫
e−2πiak ·θ χλ

(
θ − `

q

)
Sθ

j f̂
(`,q)(·, θ)(a) dθ.

The advantage of (8.4) is that the functions f (`,q) are orthogonal since their Fourier transforms

have disjoint support.

Next we expand χλ(θ − `
q
) in its Fourier series.

χλ

(
θ − `

q

)
=

∑
bk ∈Zd(k)

1

λd(k)
· χ̂
(
bk
λ

)
e−2π i bk · θ e−2π i bk · `

q .

We also expand f̂ (`,q)(θ),

f̂ (`,q)(θ) =
∑

u∈Zd(k)

f (`,q)(u) e2πiu·θ .

Then if we perform the integration in (8.4), we find

(8.5) M(`,q)
j f(α) =

∑
β∈Γ

β = (b,bk)

e2πi(bk−R(b)) · `
q ψj(b)

1

λd(k)
χ̂

(
bk −R(b)

λ

)
f (`,q) (α · β) .

(We have identified (b, bk), b ∈ Γ′ and bk ∈ Zd(k) with points β ∈ Γ, and we have used the fact

that if β = (b, bk) and β′ = (b′, b′k), β · β′ = (b ◦ b′, bk + b′k + Pk(b, b
′)).
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The next step will be to write

α = Qµ · σ and β = Qν · τ

with Q as in (8.2), where σ and τ have their coordinates in [0, Q − 1], i.e. belong to [0, Q − 1]d.

The advantage is that the factor e2π2(bk−R(b)) · `
q will depend only on τ . This will enable us to write

MF
κ,j approximately as a composition of operators - one an averaging operator in the Qν variables,

and the other arithmetic in the τ variables.

We shall find it convenient to use the following notation. For each γ ∈ Γ (thought as a point

in Zd) we denote by {γ} the element of Γ whose elements are congruent to those of γ modulo Q,

and where {γ} lies in [0, Q− 1]d. Also for each γ and τ in Γ we set γ̄(τ) = {γ · τ}.

Proposition 8.1: Let QΓ denote the points in Γ whose coordinates are divisible by Q. Then

(a) QΓ is a normal subgroup of Γ.

(b) Each α ∈ Γ can be written uniquely in the form

α = Qµ · σ

with Qµ in QΓ and the coordinates of σ in the interval [0, Q− 1].

(c) If

α = Qµ · σ and β = Qν · τ

α · β = Qµ · (Qν)∗ {σ · τ}

where for each fixed σ and τ the mapping

Qν −→ (Qν)∗

is a bijection from QΓ onto QΓ.

(d) ρ(Qν, (Qν)∗) ≤ C(‖ Qν ‖1−1/k Q1/k +Q).

(e) For each γ ∈ Γ, the mapping γ̄ is a bijection of [0, Q− 1]d.
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Proof: We already know from Proposition (6.1) that QΓ is a subgroup of Γ. Now we know in

addition that the polynomials expressing multiplication and inverse have integer coefficients. Thus,

if β ∈ Γ and Qα is in QΓ, with say β = (b1, . . . bk) and Qα = (Qa1, . . . Qak)

(β−1(Qα)β)u = Qαu + Pu(Qα, β) ,

where Pu is a polynomial with integer coefficients. Also, Pu(0, β) = 0. Thus, P v
u (Qα, β) = Q times

an integer, for 1 ≤ v ≤ d(u). Hence QΓ is normal. The proof of (b) is the same as the proof of

Proposition 6.3.

We turn to the proof of part (c).

α · β = Qµ · σ · Qν · τ

= Qµ · σ · Qν · σ−1 · σ · τ .

Since QΓ is normal in Γ, σ · Qν σ−1 = (Qν)′ for some (Qν)′ ∈ QΓ. Moreover, (Qν)′ is uniquely

determined by Qν and σ.

We want to see that the mapping Qν −→ σ · Qν · σ−1 is onto QΓ. Given Qν ′ in Γ, take

Qν = σ−1Qν ′σ. Now by (b), στ = Qν ′′ · {σ · τ} with Qν ′′ uniquely determined by σ and τ . We

now put (Qν)∗ = (Qν)′ · (Qν)′′. Since multiplication by Qν ′′ is a bijection of QΓ onto QΓ and the

mapping Qν to Qν ′ is a bijection, it follows that the mapping Qν −→ (Qν)∗ is a bijection from

QΓ onto QΓ. Conclusion (d) follows from Proposition (3.11), (g).

To prove (e) it suffices to see that the mapping is surjective. Suppose, therefore, that α =

(α1, . . . , αk) ∈ Γ and also α ∈ [0, Q − 1]d. We want to find a τ ∈ [0, Q − 1]d so that γ̄(τ) = α.

Now here is a τ1 ∈ Zd(1), whose coordinates are [0, Q− 1], so that the coordinates of γ1 + τ1 − α1

are divisible by Q. Next choose τ2 ∈ Zd(2), with coordinates in [0, Q − 1] so that the coordinates

of γ2 + τ2 + P2(γ1, τ1) − α2 are divisible by Q, and then proceed inductively to determine τ =

(τ1, τ2, · · · τu).

We now want to write M(`,q)
j,ε in (8.5) in terms of the decomposition of Proposition 8.1. Recall

that we are using the notation

α = (a1, . . . ak−1, ak) = (a, ak)

and

β = (b2, . . . bk−1, bk) = (b, bk)
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for α and β in Γ.

We will write
Qµ = (Qm1, . . . , Qmk−1, Qmk) = (Qm,Qmk)

Qν = (Qn1, . . . , Qnk−1, Qnk) = (Qn,Qnk)

σ = (s1, . . . sk−1, sk) = (s, sk)

and

τ = (t1, . . . tk−1, tk) = (t, tk)

Then employing the decomposition in Proposition (8.1), we see

bk = Qnk + tk + Pk(Qn, t) ≡ tk (mod Q)

since Pk(0, ν) = 0. Then since R has integer coefficients

R(nQ ◦ t) ≡ R(t) (mod Q) .

Thus the factor

e2πi(bk−R(b)) · a
q = e2πi(tk−R(t)) · a

q .

Thus for α = Qµ · σ we have

M(`,q)
j f(α) =

∑
τ = (t,tk)

∑
Qν = (Qn,Qnk)

e2πi((tk−R(t)) · `
q ψj(Qn ◦ t)

1

λd(k)

χ̂
(

(Qν·τ)k −R(Qn◦t)
λ

)
× f (`,q)(Qµ · (Qν)∗ · {σ · τ}) .

Let

M′(`,q)
j f(Qµ · σ) =

∑
τ =(t,tk)

∑
Qν =(Qn,Qnk)

e2πi(tk−R(t)) · `
q ψj((Qn)∗) · 1

λd(k)

χ̂
(

(Qν)∗k −R((Qn)∗)

λ

)
f (`,q) (Qµ · (Qν)∗ {σ · τ}) .

We shall try to replace M(`,q)
j by M′(`,q)

j , but to do this we first transform M′(`,q)
j . We recall

from Proposition (8.1) that the mapping Qv −→ (Qv)∗ is a bijection on QΓ. So we may drop the

∗’s in the sum above.
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Next we set h(τ) = tk−R(t), τ = (t, tk). Then h(τ) = h(σ−1 ·στ), and since the multiplication

has integer coefficients σ−1 · στ = σ−1 · {σ · τ} modulo Q. Therefore since R also has integer

coefficients we get h(τ) = h(σ−1 · {σ ·τ}) modulo Q. Thus since q divides Q the term e2πi(tk−R(t))`/q

can be replaced by e2πi[(σ−1·{σ·τ})k−R(s−1◦{σ·τ}′) · `/q. Finally by (e) of Proposition (8.1) we may

replace {σ · τ} by τ and thus find that

M′(`,q)
j,ε f(Qµ · σ) =

∑
τ

∑
Qν

e2πi((σ−1 · τ)k −R(σ−1 ◦ τ)) · ψj(Qν)
1

λd(k)

χ̂
(

(Qν)k −R(Qn)
λ

)
f (`,q) (Qµ · Qν · τ) .

This would allow us to realize MF
κ,j as a composition of two operators (“tensor product”) Nj

acting on the QΓ variables and H acting on the [0, Q − 1]d variables. In fact, we define Nj for a

function F on QΓ, by setting

(8.5∗) Nj F (Qµ) =
∑
Qν

ψj(Qν) ·
1

λd(k)
χ

(
Qnk −Rk(Qn)

λ

)
F (Qµ · Qν) ,

and

Hσ(Qµ) =
∑
τ,`,q
q∈F

e2πi((σ−1·τ)k−R(s−1◦ t)) · `
q f `,q (Qµ · τ) .

Thus, if we could replace M(`,q)
j by M′(`,q)

j , we would have, in effect

MF
κ,j f(Qµ · σ) = Nj H

σ(Qµ) .

Then to prove (8.1), it would suffice to obtain the following estimates

(8.6) ‖ sup
j
Nj F ‖`2(QΓ)≤ C Q−d ‖ F ‖`2(QΓ)

and

(8.7)
∑

σ
Qµ

|Hσ(Qµ)|2 ≤ C Q2d

2κ
‖ f ‖2

`2(Γ) .
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Therefore let us now consider the error in replacing M(`,q)
j by M′(`,q)

j .

We have to replace 1
λd(k) χ̂

(
ak

λ

)
ψj(a) by

1

λd(k)
χ̂

(
bk
λ

)
ψ)j(b) ,

where
a = Qn , ak = (Qν)k − R(Qn) ,

b = (Qn) ◦ t , bk = (Qν · τ)k − R(Qn ◦ t) .

Now by the support conditions on ψj we have ‖ Qu ‖≤ c2j and ‖ Qn ◦ t ‖≤ c2j, and therefore

since |t| ≤ cQ, Proposition 3.11 insures that ρ(Qn ◦ t, Qn) ≤ Q1/k 2j(1−1/2) + Q.

Next we invoke the following simple observation. If α = (a1, . . . ak), and β = (b1, . . . bk) have

the property that ‖ α ‖≤ N , ‖ β ‖≤ N , and ρ(α, β) ≤ δ (with N, δ ≥), then

(8.8) |au − bu| ≤ c(δu + δNu−1), for 1 ≤ u ≤ k.

This can easily be verified by an induction in u.

Applying this to N ≈ 2j and δ = Q1/k2j(1−1/k) +Q ≤ cQ2j(1−1/k), and being somewhat wasteful

in the powers of Q, we see that

|au − bu| ≤ cQu2ju · 2−j/k , 1 ≤ u ≤ k − 1 .

Therefore by the mean-value theorem

|ψj(u)− ψj(b)| ≤ c2−jD′
Qk

k−1∑
u=1

2ju 2−j/k2−ju ≤ cQk 2−jD′
2−j/k .

Similarly |ak − bk| ≤ Qk 2jk 2−j/k. We now invoke the fact that ε < 1/k (which is a consequence

of our assumption ε ≤ 1
k(k+3/2)

) to get that

|χ̂
(ak

λ

)
− χ̂

(
bk
λ

)
| ≤ c

λ
Qk 2jk 2−j/k ≤ cQk2−j(1/k−ε) .
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Altogether then we see that

(8.9) ‖ ∆
`,q)
j ‖≤ cQk 2−ηj,

for some η > 0 (in fact η = (1/k)− ε).

Since MF
k,j is obtained by adding at most Q terms of the kind M`,q

j , we see that we have

produced an error which is O(Qk+1 2−ηj), which however is much smaller 2−κ/2, since Q = O(2η1j)

for any η1 > 0, and 2κ ≤ jγ. Thus the error is consistent with the inequality (8.1).

§9. The maximal estimate for Nj

We write Nj = N 0
j + (Nj −N 0

j ), where N 0
j is defined as follows: for Qµ = (Qm,Qmk) in QΓ

and F a function on QΓ,

N 0
j F (Qµ) = 1

2jD′ , 1
2jkdk

∑
Qν = (Qn,Qnk)

ψ(
1

2j
◦ (Qm)−1 ◦ Qn)

χ̂
(

Qnk −Qmk + P ′
k(Qm,Qn)−R((Qm)−1 ◦nQ)

2jk

)
· F (Qn) .

Since R has homogeneous degree of most k, |R((Qm)−1 ◦ Qn)| ≤ C 2jk,

whenever 1
2j ◦ (Qm)−1 ◦ Qn is in the support of ψ. Thus,

|N 0
j F (Qµ)| ≤ 1

2jD

∑
Qν

Φ(2−j ◦ ((Qµ)−1Qν))F (Qν)

with Φ decaying rapidly at infinity. For Qµ ∈ QΓ, set

BQ
r (µQ) = Br(µQ) ∩ QΓ .

Then since the balls Br satisfy the conclusions of Propositions 3.10 and 3.12, so do the balls BQ
r .

Also

N 0
j F (Qµ) ≤ C

2jD

∑
Qνε BQ

2j (Qµ)

|F (Qν)| .
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Moreover,

|BQ
2j (Qµ)| ∼ 2jD

Qd

since

BQ
2j (Qµ) = {Qν : |Qm1 −Qn1| < 2j

|Qm2 −Qn2 + P ′
2(Qm1, an1) | < 22j

...

...

|Qmk −Qnk + P ′
k(Qm1, . . . Qmk−1, Qn1 . . . Qnk−1) | < 2jk

with P ′
u homogeneous of degree at most u and P ′

u(Qµ,Qµ) = 0. Thus by the standard argument,

we have the estimate

(9.1) ‖ sup
j
|N 0

j F | ‖`2(QΓ)≤ C Q−d ‖ F ‖`2(QΓ) .

We are going to analyze Nj − N 0
j by using Fourier analysis on the group Q · Zd(k). For U a

function on QZd(k), we put, for θ in the d(k) dimensional torus,

(9.2) ÛQ(θ) =
∑

Qnk ∈Q Zd(k)

U (Qnk) e
2πiQnk · θ.

Then

(9.3) U(Qnk) = Qd(k)

∫
− 1

2Q
≤ θv ≤ 1

2Q

e−2πiQnk · θ ÛQ(θ) dθ

and

(9.4)
∑

|U(Qnk)|2 = Qd(k)

∫
− 1

2Q
≤ θv ≤ 1

2Q

|ÛQ(θ)|2 dθ.
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For U1 and U2 two functions on Zd(k), we define their convolution as

U1 ∗ U2 (Qm) =
∑
nQ

U1(Qm−Qn)U2(Qn) .

Then

(9.5) Û1 ∗ U2 = Û1 · Û2.

Next, we consider the Fourier transform of 1
λ
χ̂
(

Qnk

λ

)
, (that is, the Fourier transform on the

group QZd(k)). Recall that we always take λ = 2j(k−ε).

By definition
1

λ
χ̂

(
Qnk

λ

)
=

1

λ

∫
χ(ξ) e2πiQnk · ξ

λ dξ

=

∫
χ(λξ) e−2πiQnk · ξ dξ

= Qd(k)

∫
− 1

2Q
≤ θv ≤ 1

2Q

e−2πiQnk · θ · χ(λξ)

Qd(k)
dξ .

So then the Fourier transform of 1
λ
χ̂
(

Qnk

λ

)
= χ(λξ)

Qd(k) .

Thus we see from (9.5) that

Nj F (Qm,Qmk) = Qd(k)

∫
− 1

2Q
≤ θv ≤ 1

2Q

e−2πiQmk · θ 1

Qd(k)
χ(λθ)S ′θj F̂ (·, θ) (Qm) dθ .

Here S ′θj acts on functions V defined on QΓ′ by

S ′θj V (Qm) =
1

2jD′

∑
nQ

ψ (2−j ◦ (mQ)−1 ◦ nQ)) e−2πiθ · (P ′
k(mQ,nQ)−R((mQ)−1 ◦nQ)) V (nQ) .

This is just a variant of (7.1∗) defined on QΓ′ instead of Γ′.

We will prove the following lemma.

Lemma 9.1: For 2−jk ≤ |θ| ≤ 2−j(k−ε),

‖ S ′θj ‖≤ C

Qd′

1

(2jk|θ|)1/2
.
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Let us assume Lemma 9.1 for the moment. Then using Plancherel’s Theorem, we see

∑
Qmk

|Nj F (Qµ) − N 0
j F (Qµ)|2

≤ C

Qd(k)

∫
|χ(2j(k−ε)(θ)) − χ(2jkθ)| |2 · |S ′θj F̂ (· , θ) (Qµ)|2 dθ.

So if we use Lemma 9.1, we see

∑
Qµ

|Nj F (Qµ) − N 0
j F (Qµ)|2

≤ C

Qd(k)Q2d′

∫
1

2j(k−ε)
> |θ|> 1

2jk

(
1

(θ2jk)1/2

)2

·
∑
Qm

|F̂ (Qm, θ)|2 dθ .

Thus ∑
j

∑
Qµ

|Nj F (Qµ) − N 0
j F (Qµ)|2

≤ C

Qd(k)Q2d′

∫
|θ| ≤ 1

2Q

∑
mQ

|F̂ (mQ, θ)|2 dθ ≤ C

Q2d(k)Q2d′
‖ F ‖2

`2(QΓ) .

We have used the fact that
∑

j

1

|θ|2jk
is uniformly bounded in θ, if the summation in j is

restricted to the range |θ|2jk ≥ 1, (when j ≥ 1). Thus since

sup
j
|Nj(F ) −N 0

j (F )|2 ≤
∑

j

|Nj(F ) −N 0
j (F )|2 ,

we have proved

(9.6) ‖ sup
j
| (Nj − N 0

j )F ‖`2(QΓ) ≤ C Q−d ‖ F ‖`2(QΓ) .

If we take into account that d = d′ + d(k). Together with (9.1), (9.6) gives (8.6).

We turn to the proof of Lemma 9.1.

To estimate the norm of S ′θj , we will need to discuss the oscillatory term
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e−2πiθ · (P ′
k(Qm,Qn)−R((Qm)−1 ·nQ)) .

Let

r(m,n) = P ′
k(m,n) − R(m−1 ◦ n) .

From Propositions 3.7 and 4.2 we see that

r(m,n) · θ =
∑
e,f

∑
v

Av
e,f m

e
k−1 n

f
1 θ

v

−
∑
e,f

∑
v

Bv
e,f (ne

k−1 − me
k−1) (nf

1 − mf
1) θ

v

+ terms involving only m

+ terms involving only n

+ terms not involving mk−1 or nk−1 .

(The terms involving only m or only n will not affect the norm of S ′θj .)

Here, the Av
e,f and Bv

e,f are integers and the matrix (Av
e,f ) has a left inverse, as was discussed

in Section 5.

Thus we can write

(9.7) r(m,n) · θ =
∑
e,f

φ1
e,f m

e
k−1 n

f
1 +

∑
e,f

φ2
e,f n

e
k−1m

f
1

+ terms depending only on m

+ terms depending only on n

+ terms not involving mk−1 or nk−1

where

φ1
e,f =

∑
v

(−Av
e,f + Bv

e,f ) θ
v

and

φ2
e,f =

∑
v

Bv
e,f θ

v .
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We will need the following lemma.

Lemma 9.2: We have

θv =
∑
e,f

D1
e,f φ

1
e,f +

∑
e,f

D2
e,f φ

2
e,f

where the Di
e,f = Di

e,f (v), i = 1, 2 are rational numbers.

Let us assume Lemma 9.2 and complete the proof of Lemma 9.1. Recall that

2−jk ≤ |θ| ≤ 2−j(k−ε). Notice that at least one of the φi
e,f satisfies |φi

e,f | ≥ δ|θ| for some uni-

form δ > 0. Let us suppose |φ1
1,1| > δ|θ|.

Let K(Qn,Qn′) denote the kernel of (S ′θj )∗ Sθ
j . Then

|K(Qn,Qn′)| ≤
∑
m1

· · ·
∑
mk−2

∑
me

k−1
e≥2

2−2jD′|
∑
m1

k−1

ψ (2−j((Qm)−1 ◦ Qn))ψ(2−j((Qm)−1 ◦ Qn′))

e

2πim1
k−1{[(n

1
1−(n1

1)′) Q2φ1
1,1 +

d(1)∑
e = 2

(ne
1 − (ne

1)
′)Q2 φ1

1,e]}
|.

Consideration of the arguments of ψ in the above, showsK(Qn,Qn′) is supported in ρ(An,Qn′) <

C 2j.

We wish to replace the sum in (9.7) by a sum of integrals, replacing the variable m′
k−1 by a

continuous variable t below. In doing this, since |n1 − n′1| ≤ c2j the error due to K(Qn,Qn′) will

be at most

C 2−jD′
(2j max |φi

e,f |) ≤ C 2−jD′
2j 2−j(k−ε) ≤ C 2−jD′

2−j/2 , if ε <
1

2
,

since k ≥ 2.

Thus the error in ∑
Qn

|K(Qn,Qn′)| +
∑
Qn′

|K(Qn,Qn′)|

is at most ≤ C 2−j/4Q−2d′ . So the error gives a contribution to the norm of S ′θj which can be

subsummed in the right hand side of the inequality in Lemma 9.1.
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Returning to (9.7), note that the number of terms to be summed inm1, . . .mk−2,m
2
k−1, . . .m

d(k−1)
k−1

is at most C 2jD′

Qd′ · 2−(k−1)jQ.

In the integral on m1
k−1, we put t = 2−j(k−1)Qm1

k−1. The integral becomes

2j(k−1)

Q

∫
ψ̃(t) e

{2πi2j(k−1) Qt{(n1
1−n1′

1 ) Q2 φ1
1,1 +

d(1)∑
e =2

(ne
1 − ne′

1 )φ1
1,e}

dt .

Here ψ̃(t) depends on m1,m2 . . . m
2
k−1 . . . m

d(k−1)
k−1 , but its derivatives are all uniformly bounded.

Thus, the integral is at most

C
2j(k−1)

Q

{
1

1 + |2j(k−1)Q [(n1
1 − n1′

1 )φ1
1,1 + L]|2

}
where L is a linear combination of the ne

1 − ne′
1 with e ≥ 2. Summing over m1,−m2

k−2 . . .m
d(k−1)
k−1 ,

we see

|K(Qn,Qn′)| ≤ C

Qd′2jD′ ·
{

1

[1 + |2j(k−1)Q(n1
1 − n1′

1 )φ1
1,1 + L]|2

}
.

Then summing over n1
1, we see∑

n1
1

|K(Qn, Qn′)| ≤ C

Qd′2jD′ ·
1

2j(k−1)|Q| |φ1
1,1|

Now summing over the rest of the n-variables, we see∑
n

|K(Qn, Qn′)| ≤ C
Q2d′ 2jk|φ1

1,1|

≤ C
Q2d′ 2jk|θ| .

which completes the proof of Lemma 9.1.

Let us now consider Lemma 9.2. Since the matrix Ah
e,f has a left inverse, there is a d(k)× d(k)

sub-matrix that is invertible. Thus, Lemma 9.2 will be a consequence of an observation about

n× n matrices, where n = d(k). Suppose A = (aj,k) is an invertible n× n matrix and B = (bj,k)

is any n× n matrix. Set

(9.8) U1
j =

∑
k

(aj,k + bj,k) vk
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and

(9.9) U2
j =

∑
k

bj,k vk.

The equations (9.8) and (9.9) define 2n linear transformations from Rn to Rn, by mapping

(v1, . . . vn) −→
(
U

i(1)
1 , . . . U i(n)

n

)
with choices i(j) fixed to be 1 or 2. Then to prove Lemma 9.2, it suffices to show (if A is non-

singular) at least one of these 2n transformations is non-singular. Since A is non-singular, it is

easy to see that we may assume A is the identity.

Then we are in fact reduced to the following assertion.

Lemma 9.3: Let F = (fj,k) be any n× n matrix. Let F̄ be any of the 2n matrices

F̄ = F +


δ(1) 0 · · · 0

0 δ(2) · · · 0

0 0 · · · δ(n)


where δ(j) is either 0 or 1. Then at least one of the 2n matrices F̄ is non-singular.

In the above, the matirx F is B and A is the identity matrix.

For n = 1 the assertion is obvious. We prove the general case by induction on n.

Suppose we know the lemma to be true for n×n matrices, and let F = (fj,k) be an (n+1)×(n+1)

matrix. Put

E1 =



f1,1 f1,2 . . . f1,n+1

f2,1

... E

fn+1,1


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and

E2 =



f1,1 + 1, f1,2 . . . f1,n+1

f2,1

... E

fn+1,1


where E is any of the 2n matrices of the size n× n arising from the matrix

fj,k 2 ≤ j ≤ n+ 1 , 2 ≤ k ≤ n+ 1 .

By induction hypothesis, one of the matrices E is non-singular. Now if detE1 = 0 and

detE2 = 0, then by expanding on minors of the first row, we would find detE = 0 for all the

appropriate 2n choices of the matrices E, contradicting the induction hypothesis.

The statement concerning the rationality of the Di
e,f follows because they are the coefficients of

matrices inverse to matrices formed from the Av
e,f and Bv

e,f .

This finishes the proof of Lemma 9.2 and then also of the estimate 8.6.

§10. The estimate for Hσ.

In this section, we will obtain the estimate 8.7. We will continue with the notation

σ = (s1, . . . sk−1 sk) = (s, sk) and τ = (t1, . . . tk−1tk) = (t, tk). Then we recall for 0 ≤ sv
u ≤ Q−1

Hσ(Qµ) =
∑
q∈F

∑
`

1≤ `v ≤Q
(`,q) = 1

∑
τ

0≤ tvu ≤Q−1

e2πi[r(s,t)+ (tk−sk)] · `
q f (`,q) (Qµ · τ)

where as in Section 9,

r(s, t) = P ′(s, t)−R(s−1 ◦ t) .

So we can write

Hσ(Qµ) =
∑
q∈F

∑
`

(`,q)=1

e−2πisk · a
q V (`, q, s) ,
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where

V (`, q, s) =
∑

τ

e2πi[tk + r(s,t)] · `
q f (`,q) (Qµ · τ) .

So ∑
sk

|Hσ(Qµ)|2 = Qd(k)
∑
`,q

|V (`, q, s)|2

since ∑
sk

0≤ sv
k
≤Q−1

e
−2πisk ·

“
`
q
− `′

q′

”

=

{
Qdk if `

q
= `′

q′

0 otherwise .

That is

(10.1)
∑
sk

| Hσ(Qµ) |2 = Qd(k)
∑
(`,q)

|
∑

τ=(t,tk)

e2πi(tk+r(s,t)) · `
q f (`,q) (Qµ · τ) |2

≤ Q2d(k)
∑
`,q

∑
tk

|
∑

t

e2πi r(s,t) · `
q f (`,q) (Qµ · τ) |2 .

For a function F define on Zd′/q, and s ∈ Zd′/q, let us put

T`,q F (s) =
∑

t∈Zd′/q
0≤ tvu ≤ q−1

e2πi r(s,t) · `
q F (t) .

We will prove below the following lemma.

Lemma 10.1:

‖ T`,q F ‖2
`2(Zd′/q)

≤ C q2d′−1 ‖ F ‖2
`2(Zd′/q)

.

Let us assume Lemma 10.1 and show how it gives (8.7). Note that the factor e2πi r(s,t) · `
q has

period q in the s and t variables. So applying Lemma 10.1, the estimate 10.1 becomes

∑
σ

0≤ sv
u ≤Q−1

|Hσ(Qµ)|2 ≤ Q2d(k)
∑
`,q

(
Q

q

)2d′

q2d′−1
∑

τ
0≤ tvu ≤Q−1

|f (`,q) (Qµ · τ)|2 .
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Next we sum on Qµ. Since q ≈ 2κ and the functions f (`,q) are orthogonal, we obtain 8.7.

We turn to the proof of Lemma 10.1. One difficulty is that we only know (`1, . . . `d(k), q) = 1

and not that (`v, q) = for any v. In order to remedy that situation we first reduce matters to the

case that q is a power of a prime. (In that case, we would know (`v, q) = 1 for some v.)

To this end, we would like to prove a multiplicative formula for T`,q. That is, if (`, q1q2) = 1

and (q1, q2) = 1, we would like to say

T`,q1q2 = T`1,q1 ◦ T`2,q2

with (`1, q1) = (`2, q2) = 1. In order to achieve such a formula, we must consider a slightly

generalization of T`,q. Let

Ω(s, t) = (Ω1(s, t), . . . Ωd(k) (s, t))

where each Ωk(s, t) is a polynomial. Moreover, assume for 1 ≤ v ≤ d(k)

Ωv(s, t) = −
∑
e,f

Av
e,f s

e
k−1 t

f
1

+
∑
e,f

Bv
e,f s

e
k−1 t

f
1

+
∑
e,f

Bv
e,f t

e
k−1 s

f
1

+ p1(s) + p2(t)

+ p3(s1, . . . sk−2, t1, . . . tk−2) .

with Av
e,f and Bv

e,f as in the expressions for P v′

k (s, t) and R(s−1 ◦ t). Here we allow more general

p1, p2, p3, as opposed to the particular ones that arise after (9.6).

Set in the more general case

T`,q F (s) =
∑

t

e2πi Ω(s,t) · `
q F (t) .

We will prove Lemma 10.1 by showing

‖ T`,q F ‖2≤ Cq2d′−1 ‖ F ‖2
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where C does not depend on the particular choice of the polynomials p1, p2 and p3.

We need the following lemma.

Lemma 10.2: Let q = q1q2 with (q1, q2) = 1. Also, suppose (`, q) = 1. Then

‖ T`,q ‖`2(Zd′/q) ≤ ‖ T ′
`1,q1

‖`2(Zd′/q1) ‖ T
′
`2,q2

‖`2(Zd′/q2)

with `1 = `q2 and `2 = `q1.

The polynomials p1, p2 and p3 arising in T ′
`1,q1

and T ′
`2,q2

will in general differ from those in T`,q.

Proof of Lemma 10.2:

Consider the mapping from

Zd′/q1 × Zd′/q2 −→ Zd′/q1q2

that sends (s′νµ , s
′′ν
µ ) into sν

µ with

sν
µ = q2 s

′ν
µ + q1s

′′ν
µ (mod q1q2), ,

1 ≤ µ ≤ k − 1 , 1 ≤ ν ≤ d(µ) , 0 ≤ s′νν ≤ q2 − 1 , 0 ≤ s′′νµ ≤ q1 − 1 .

This map also sends

(t′νµ , t
′′ν
µ ) into tνµ

with

tνµ = q2 t
′ν
µ + q1 t

′′ν
µ .

By the Chinese remainder theorem, this map is one-to-one and onto.

Then we may write

T`,q F (s′q1 + s′′q2) =
(
T ′

`1,q1
◦
(
T ′

`2,q2

)
F
)

(s′q′ + s′′q2) ,

where T ′
`2,q2

acts only on the t′′ variable, and T ′
`1,q1

acts on the t′ variables. Then Lemma 10.2

follows.

In view of Lemma 10.2 it suffices to show that for all but a finite set of primes, p,
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(10.2) ‖ T ′
(`,pr) ‖2≤ p(2d′−1)r

and for all primes

(10.3) ‖ T ′
(`,pr) ‖≤ C(p) p(2d′−1)r .

To prove (10.2) and (10.3) we will employ Lemma 9.2. As in Lemma 9.2, put

φ1
e,f =

∑
v

(−Av
e,g + Bv

e,f ) θ
v

and

φ2
e,f =

∑
v

Bv
e,f θ

v .

Then by Lemma 9.2, we may write

(10.4) Q′θv =
∑
e,f

D′1
e,f φ

1
e,f + D′2

e,f φ
2
e,f

where Q′, D′1
e,f and D′2

e,f are integers with a bound depending only on the coefficients of the

polynomials arising in the group multiplication.

Now since Av
e,f and Bv

e,f are integral, each of the ϕi
e,f equal

bk
e,f

pr for some integers bie,f .

There are two cases: either p divides all the bie,f , or p does not divide at least one of them. Let

us begin with the second case and assume p does not devide b11,1. Let K(t, t′) denote the kernel of

T ′∗
`,q T

′
`,q. Then

K(t, t′) =
∑

s1,···sk−2

∑
s2
k−1···s

d(k−1)
k−1∑

s1
k−1

exp 2πis1
k−1

{
b11,1

pr
(t11 − t′11 ) +

∑
e≥ 2

b11,e

pr
(te1 − t′e1 )

}
.

Since (b11,1, p) = 1, b11,1 has an inverse mod pr. Hence, for 0 ≤ t′11 ≤ pr − 1, there is only one

value of t′1 such that

b11,1(t
1
1 − t′11 ) +

∑
e≥ 2

b11,e(t
e
1 − t′e1 ) ≡ 0(pr) .

Thus the sum on s1
k−1 is non-zero for at most one value of t′1, 0 ≤ t′1 ≤ pr − 1. Thus∑

t

|K(t, t′)| ≤ pr(2d′−1) .
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Similarly, ∑
t′

|K(t, t′)| ≤ pr(2d′−1) .

This shows

‖ T ′
`,pr ‖2≤ pr(2d′−1)

in this case.

In the first case, if p divides all the integers bie,f , then p must necessarily divide Q′, because it

does not divide `1, `2 , . . . `d(k). Thus if m0 is the largest integer so that pm0 divides Q′, a similar

argument shows

‖ T ′
`,pr ‖≤ pm0/2 pr(d′− 1

2
) .

This finishes the proof of Lemma 10.2 and hence of (8.7).

§11. The estimate for M 2
j

The purpose of this section is to prove the estimater (7.4). To obtain this it suffice to show

that for jγ ≤ 2κ ≤ 2εj

(11.1) ‖ Mκ,jf ‖`2≤ C2−κ/2 ‖ f ‖`2

uniformly in j.

In fact, since |M2
j (f)| ≤

∑
jγ≤2κ

|Mκ,j(f)|, then (11.1) would give ‖ M2
j ‖≤ cj−γ/2, which is

(7.4). So because sup
j
|M2

j (f)|2 ≤
∞∑

j=1

|M2
j (f)|2, the convergence of

∑
j≥1

j−γ would yield the desired

control of sup
j
|M2

j (f)|.

As before,

χλ

(
θ − `

q

)
χc22κ

(
θ − `

q

)
= χλ

(
θ − `

q

)
,
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because c22κ ≤ λ = 2j(k−ε). Thus, if 2κ ≤ q < 2κ+1,

M(`,q)
j f(α) =

∫
T d(k)

e−2πi ak · θ χλ

(
θ − `

q

)
Sθ

j f̂
(`,q) (·, 0) (a) dθ ,

where f (`,q) is defined by the relation

f̂ (`,q)(θ) = χc22κ

(
θ − `

q

)
f̂(θ) .

For any f , not only are the supports of the f̂ (`,q) disjoint, but also the supports of the
̂M(`,q)
j f (`,q)

are disjoint. So to prove the estimate (11.1), it suffices to prove that for each (`, q)

(11.2) ‖ M(`,q)
j f ‖`2 ≤ Cq−1/2 ‖ f ‖`2 .

To obtain this estimate we use the arguments in Sections 7-10, but in a simpler setup. This is

because it suffices to make the key estimates for each q, with 2κ ≤ q ≤ 2κ+1, instead of the

corresponding estimate for the collection of q’s (whose product is Q).

We proceed throughout with the sub-group qΓ in place of QΓ. We begin, as in Section 8, by

replacing M(`,q)
j by M′(`,q)

j , giving an error (see (8.4))

‖ ∆
(`,q)
j ‖≤ cqk2−ηj , with η = 1/k − ε .

Suppose we could prove that

(11.3) ‖ M′(`,q)
j ‖≤ cq1/2.

Then we would have

‖ M`,q
j ‖≤ cq−1/2 , because qk2−ηj ≤ cq−1/2

whenever q ≤ 2εj and η = 1/k − ε, in view of the fact that ε ≤ 1
k(k+3/2)

. Thus would have

established (11.2) and therfore (11.1).

To prove (11.3) we factor the operator into the corresponding tensor product, where the oper-

ator Nj is defined as in ((8.5∗)), but now with Q replaced by q. The main simplification occurs in

that we need only observe that uniformly in j.

‖ Nj ‖≤ cq−d .
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This is a simple `2 estimate, as opposed to the more difficult maximal estimate (8.6).

Also the estimate (8.7) is replaced by the parallel estimate with q instead of Q, with the same

proof as in Section 10. This then yields (11.3) and therefore (11.1).

§12. The error term

We shall now prove (7.5).

Since Ej(f)(·, ak) =

∫
Ej

e−2πiakθ B(θ)Sθ
j f̂(·, θ) dθ and 0 ≤ B(θ) ≤ 1, it suffices by Plancherel’s

theorem to prove that uniformly in j,

(12.1) ‖ Sθ
j ‖≤ c2−ηj, for θ ∈ Ej,

and η a (small) positive number.

Recall from (7.1∗), that

Sθ
j (F )(m) =

∑
n∈Zd′

ψj(n) e−2πi[Pk(m,n)+R(n)] · θ F (m ◦ n)

=
∑

n∈Zd′

ψj(m
−1 ◦ n) e2πir(m,n)·θ f(n) ,

where r(m,n) is given by equation (9.7). Here the coefficients of the principal terms of r(m,n)

(the monomials me
k−1n1f or ne

k−1m
f
1) are respectively designated by ϕ1

e,f and ϕ2
e,f . Now in (10.4)

we have inverted the relation between θ and the ϕ’s and have obtained

(12.2) Q′θv =
∑
e,f

D′1
e,f ϕ

1
e,f + D′2

e,f ϕ
2
e,f ), 1 ≤ v ≤ d(k).

where Q′, D′1
e,f = D′1

e,f (v), and D′2
e,f = D′2

e,f (v) are fixed integers.

Now let N = 2d(1)·d(k−1), the number of different indices (i, e, f) for D′i
e,f . Set D =

∑
|Di

e,f |.

Our claim is that of θ ∈ Ej then for at least one index (i, e, f) of the N possible choices, there

are integers ai
e,f , q

i
e,f with (ai

a,f , q
i
e,f ) = 1,

2εj/N

Q′ ≤ qi
e,f ≤ λD, (recall that λ = 2j(k−ε)), so that
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(12.3) |ϕi
e,f −

ai
e,f

qi
e,f
| ≤ 1

qi
e,f λD

.

In fact, such an approximation exists for all (i, e, f) by Dirichlet’s principle, without how-

ever the assurance 2εj/N/Q′ ≤ qi
e,f . Suppose the assertion fails, because the reverse inequality

qi
e,f ≤ 2εj/N/Q′ holds for all choices. Then picking the last common multiple of Q′ and all the qi

e,f ,

we could find a q, with q ≤ 2εj, and `1, . . . `d(k) so that (q1`1, . . . , `d(k)) = 1, and because of (12.2)

and (12.3) we would have

|θv − `v/q| ≤ 1/λ , for 1 ≤ v ≤ d(k) .

This means χλ(θ − `/q) = 1, and thus B(θ) = 0, that is θ /∈ Ej. This is a contradiction, and so

(12.3) must hold for at least one (i, e, f), which for simplicity we take to be the triple (1, 1, 1).

Once we have (12.3) our desired estimate falls in the framework of known estimates for opertor

Weyl-sums; see [SW2], Proposition 5. However we can also prove (12.1) directly as follows. It

suffices to estimate the norm of the operator (Sθ
j )
∗Sθ

j . Its kernel K(m,n) is given by

(12.4)
∑
a∈Zd′

ψj(a
−1 ◦ n) ψ̄j(a

−1
a ◦m) e2πi(r(a,n)−r(a,m))·θ,

and it suffices to see that

(12.5)
∑

n∈Zd′

|K(m,n)| ≤ c2−2ηj.

Recalling the equation (9.7) we see that

(r(a, n)− r(a,m)) · θ = a1
k−1 [ϕ1

11(n
1
1 −m1

j) +

d(k)∑
`=2

ϕ1
1,`(n

`
1 −m`

1)]

+ terms that do not involve a1
k−1 .

In the sum (12.4) we sum first in the a1
k−1 variable, and then in all the other a variables. Schemat-

ically,

|K(m,n)| ≤
∑

other a
variables

|
∑
a1

k−1

| .
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We see that the inner sum is majorized by

c2−jD′
2−jD′

min [2j(k−1) , {ϕ1
11(n

1
1 −m1

1) +

d(k)∑
`=1

ϕ1
1,` (n`

1 − n`
1)}−1]

where { · } denotes the fractional part.

Next, we sum this in n1
1 and simplify the notation by writing q for q1

1,1. We follow the usual

argument (as in [M0], §2 in Chapter 3) where we break the range of n1
1 into essentially 2j/q blocks

of length q, and use (12.3) for ϕ1
11. This gives an estimate

c(2−jD′
2−jD′

2j(k−1) · 2j/q + 2−jD′
2−jD′

(log q) 2j/q) .

We must still sum over all the remaining a variables (introducing a factor 2jD′
2−j(k−1)) and

all the remaining n variables, (introducing a further factor of 2jD′
2−j). This then shows that∑

n

|K(m,n)| ≤ c/q ≤ c2−2ηj, with η = ε/2N , since q ≥ 2εj/N/Q′. Thus (12.5) is proved and

(12.1) is established.
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