WEAK HYPERGRAPH REGULARITY AND APPLICATIONS
TO GEOMETRIC RAMSEY THEORY

NEIL LYALL AKOS MAGYAR

ABSTRACT. Let A = A1 X ... x Ag C R™, where R = R"1 X ... X R™ and each with each A; C R" a
non-degenerate simplex of n; points. We prove that any set S C R", with n = nj + - - -+ ng of positive upper
Banach density necessarily contains an isometric copy of all sufficiently large dilates of the configuration A.
In particular any such set S C R?? contains a d-dimensional cube of side length X, for all A > \o(S). We
also prove analogous results with the underlying space being the integer lattice. The proof is based on a
weak hypergraph regularity lemma and an associated counting lemma developed in the context of Euclidean
spaces and the integer lattice.

1. INTRODUCTION

1.1. Existing Results I: Distances and Simplices in Subsets of R". Recall that the upper Banach
density of a measurable set S C R” is defined by

1SN QM)
1.1 0*(S) = lim sup ———————,
(L.1) (5) = Jim_sup == 5%,
where | - | denotes Lebesgue measure on R™ and Q(NV) denotes the cube [-N/2, N/2]™.

A result of Katznelson and Weiss [6] states that if S C R? has positive upper Banach density, then its
distance set {|z — 2’| : z,2’ € S} contains all sufficiently large numbers. Note that the distance set of any set
of positive Lebesgue measure in R™ automatically contains all sufficiently small numbers (by the Lebesgue
density theorem) and that it is easy to construct a set of positive upper density which does not contain a
fixed distance by placing small balls centered on an appropriate square grid.

Theorem A (Katznelson and Weiss [6]). If S C R? with §*(S) > 0, then there exists a threshold Ao = \o(S)
such that S is guaranteed to contain pairs of points {x1,xa} with |xe — x1| = X for all A > Ag.

This result was later reproved using Fourier analytic techniques by Bourgain in [1] where he established the
following more general result for all configurations of n points in R™ whose affine span is n — 1 dimensional,
namely for all non-degenerate simplices.

Theorem B (Bourgain [1]). Let A C R™ be a non-degenerate simplezx of n points. If S C R™ with §*(S) > 0,
then there exists a threshold A\g = Ao(S,A) such that S contains an isometric copy of NA for all A > Ag.

Recall that a finite point configuration A’ is said to be an isometric copy of AA if there exists a bijection
¢ A — A such that |p(v) — p(w)| = N|v — w| for all v,w € A, i.e. if A’is obtained from AA (the dilation
of A by a factor \) via a rotation and translation.

Bourgain deduced Theorem B as an immediate consequence of the following stronger quantitative result
for measurable subsets of the unit cube of positive measure. In the proposition below, and throughout this
article, we shall refer to a decreasing sequence {); }3]:1 as lacunary if A\j11 < A;/2forall 1 <j < J.

Proposition B (Bourgain [1]). Let A C R" be a non-degenerate simplex of n points. For any 0 < § <1
there ezists a constant J = Oa(673") such that if 1 > Xy > -+ > \j is any lacunary sequence and S C [0, 1]"
with |S| > 6, then there exists 1 < j < J such that S contains an isometric copy of AA for all X € [Aj11, Aj].
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In [12] the authors provided a short direct proof of Theorem B without using Proposition B. It is based on
the observation that uniformly distributed sets S C R? contain the expected “number” of isometric copies of
dilates AA and that all sets of positive upper density become uniformly distributed at sufficiently large scales.
However, for the purposes of this paper it will be important to recall Bourgain’s indirect approach.

To see that Proposition B implies Theorem B notice that if Theorem B were not to hold for some set
S C R™ of upper Banach density §*(S) > § > 0, then there must exist a lacunary sequence A\ > --- > Ay > 1,
with J the constant in Proposition B, such that S does not contain an isometric copy of A;A for any 1 < j < J.
Taking a sufficiently large cube @ with side length N > A\; and |S N Q| > §|Q| and scaling back @ — [0, 1]
contradicts Proposition B.

We further note that by taking A; = 277 in Proposition B we obtain the following “Falconer-type” result
for subsets of [0, 1] of positive Lebesgue measure.

Corollary B. If A C R" is a non-degenerate simplex of n points, then any S C [0,1]™ with |S| > 0 will
necessarily contain an isometric copy of AA for all X in some interval of length at least exp(—Cal|S|~3").

Bourgain further demonstrated in [1] that no result along the lines of Theorem B can hold for configurations
that contain any three points in arithmetic progression along a line, specifically showing that for any n > 1
there are sets of positive upper Banach density in R™ which do not contain an isometric copy of configurations
of the form {0, y, 2y} with |y| = X for all sufficiently large A. This should be contrasted with the following
remarkable result of Tamar Ziegler.

Theorem C (Ziegler [25]). Let F be any configuration of k points in R™ with n > 2.

If S C R™ has positive upper density, then there exists a threshold Ao = X\o(S, F) such that Se contains an
isometric copy of AF for all X > Ay and any € > 0, where S denotes the e-neighborhood of S.

Bourgain’s example was later generalized by Graham [9] to establish that the condition that € > 0 in
Theorem C is necessary and cannot be strengthened to € = 0 for any given non-spherical configuration F
in R™ for any n > 1, that is for any finite configuration of points that cannot be inscribed in some sphere.
We note that the sets constructed by Bourgain and Graham have the property that for any ¢ > 0 their
e-neighborhoods will contain arbitrarily large cubes and hence trivially satisfy Theorem C with Ay = 0.

It is natural to ask if any spherical configuration F, beyond the known example of simplices, has the
property that every positive upper Banach density subset of R™, for some sufficiently large n, contains an
isometric copy of AF for all sufficiently large A, and even to conjecture that this ought to hold for all spherical
configurations. The first breakthrough in this direction came in [12] when the authors established this for
configurations of four points forming a 2-dimensional rectangle in R* and more generally for any configuration
that is the direct product of two non-degenerate simplices in R™ for suitably large n.

The purpose of this article is to present a strengthening of the results in [12] and to extend them to cover
configurations with a higher dimensional product structure in both the Euclidean and discrete settings.

1.2. New Results I: Rectangles and Products of Simplices in Subsets of R".

The first main result of this article is the following
Theorem 1.1. Let R be 2¢ points forming the vertices of a fired d-dimensional rectangle in R>?.

(i) If S C R2? has positive upper Banach density, then there exists a threshold Ao = \o(S, R) such that
S contains an isometric copy of AR for all X > Xg.

(ii) For any 0 < & <1 there exists a constant ¢ = c¢(5,R) > 0 such that any S C [0,1]?? with |S| > 6 is
guaranteed to contain an isometric copy of AR for all X in some interval of length at least c.

Moreover, if R has sidelengths given by ty,...,tq, then the isometric copies of AR in both (i) and (ii) above
can all be realized in the special form {x11, 212} X -+ x {xg1, Tg2} € R? x - -+ x R? with each |zj0 — 1| = At;.

The multi-dimensional extension of Szemerédi’s theorem on arithmetic progressions in sets of positive
density due to Furstenberg and Katznelson [5] implies, and is equivalent to the fact, that there are isometric
copies of AR in S for arbitrarily large A, with sides parallel to the coordinate axis. While Theorem 1.1
states that there is an isometric copy of AR in S for every sufficiently large A, with sides parallel to given
2-dimensional coordinate subspaces.
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A weaker version of Theorem 1.1, with R?? replaced with R®?, was later established by Durcik and Kovag
in [4] using an adaptation of arguments of the second author with Cook and Pramanik in [3]. This approach
also makes direct use of the full strength of the multi-dimensional Szemerédi theorem and as such leads to
quantitatively weaker results.

Our arguments work for more general patterns where d-dimensional rectangles are replaced with direct
products of non-degenerate simplices.
Theorem 1.2. Let A = A; x --- x Ag € R", where R" = R™ x --- x R" and each A; C R™ is a
non-degenerate simplex of n; points.

(i) If S CR™ has positive upper Banach density, then there exists a threshold Ao = \o(S, A) such that S
contains an isometric copy of AA for all A > Ag.

(ii) For any 0 < § <1 there exists a constant ¢ = (0, A) > 0 such that any S C [0, 1]™ with |S| > ¢ is
guaranteed to contain an isometric copy of NA for all X in some interval of length at least c.

Moreover the isometric copies of AA in both (i) and (ii) above can all be realized in the special form
A} X - x Al with each A} CR™ an isometric copy of AA;.

Quantitative Remark. A careful analysis of our proof reveals that the constant ¢(d, A) can be taken
greater than W (C\6 31 "4)~1 where Wy (m) is a tower of exponentials defined by Wi (m) = exp(m) and
Wit1(m) = exp(Wg(m)) for k > 1.

1.3. Existing Results II: Distances and Simplices in Subsets of Z". The problem of counting isometric
copies of a given non-degenerate simplex in Z™ (with one vertex fixed) has been extensively studied via its
equivalent formulation as the number of ways a quadratic form can be represented as a sum of squares of
linear forms, see [11] and [19]. This was exploited by the second author in [16] and [17] to establish analogous
results to those described in Section 1.1 above for subsets of the integer lattice Z™ of positive upper density.

Recall that the upper Banach density of a set S C Z™ is analogously defined by
(1.2) 6*(S) = lim sup IS0+ Q)| Q(N))|7
Nooosepn QN
where | - | now denotes counting measure on Z" and Q(N) the discrete cube [-N/2, N/2]" N Z".
In light of the fact that any pairs of distinct points {z1,22} in Z™ has the property that the square of the
distance between them |zo — 1|? is always a positive integer we introduce the convenient notation

VN:={\: A>0and \? € Z}.

Theorem A’ (Magyar [16]). Let 0 < § < 1.

If S C Z5 has upper Banach density at least §, then there exists an integer qo = qo(8) and Ao = Ao(S) such
that S contains pairs of points {x1, 2o} with |xo — x1| = qoA for all X € VN with X > X¢.

Theorem B’ (Magyar [17]). Let 0 < § < 1 and A C Z*"*3 be a non-degenerate simplex of n points.

(i) If S C Z*>"*3 has upper Banach density at least 0, then there exists an integer qo = O(exp(Cad~13"))
and \g = X\o(S, A) such that S contains an isometric copy of goAA for all X € VN with X > \g.

(ii) If N > exp(2CAd713"), then any S C {1,..., N}?"*3 with cardinality |S| > 6 N?"*3 will necessarily
contain an isometric copy of NA for some A € VN with 1 < X < N.

Note that the fact that S C Z" could fall entirely into a fixed congruence class of some integer 1 < g < §~1/"

ensures that the go that appears in Theorems A’ and B’ above must be divisible by the least common multiple
of all integers 1 < ¢ < §~'/". Indeed if S = (¢Z)" with 1 < ¢ < §~'/™ then S has upper Banach density at
least ¢, however the distance between any two points z,y € S is of the form |z — y| = g\ for some A € vN.

However, in both Theorems A’ and Part (i) of Theorem B’, one can take gy = 1 if the sets S are assumed
to be suitably uniformly distributed on congruence classes of small modulus. This leads via an easy density
increment strategy to short new proofs, see [14] for Theorem A’ and Section 8 for Part (i) of Theorem B'.

The original argument in [17] deduced Theorem B’ from the following discrete analogue of Proposition B.
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Proposition B’ (Magyar [17]). Let A C Z*"*3 be a non-degenerate simplex of n points.

For any 0 < & < 1 there exist constants J = OA(673") and qo = O(exp(Cad~13")) such that if
N > X\ > - 2> Xj > 1 is any lacunary sequence in qO\/N and S C {1,...,N}2"+3 with cardinality

|S| > §N2"F3 then S will necessarily contain an isometric copy of ;A for some 1 < j < .J.

To see that Proposition B’ implies Theorem B’ notice that if Part (i) of Theorem B’ were not to hold
for some set S C Z?"*3 of upper Banach density *(S) > 6 > 0 with go from Proposition B’, then there
must exist a lacunary sequence A\; > --- > Ay > 1 in gov/N, with J the constant from Proposition B/, such
that S does not contain an isometric copy of A;A for any 1 < j < J. Since we can find a sufficiently large
cube @ with integer side length N that is divisible by go and greater than A; such that |SNQ| > 0|Q|, this
contradicts Proposition B’. Part (ii) of Theorem B’ follows from Proposition B’ by taking A\; = 277 qq.

1.4. New Results II: Rectangles and Products of Simplices in Subsets of Z".
We will also establish the following discrete analogues of Theorem 1.1 and 1.2.

Theorem 1.3. Let 0 < § <1 and R be 2¢ points forming the vertices of a d-dimensional rectangle in Z°%.

(i) If S C Z°? has upper Banach density at least 8, then there ewist integers qo = qo(6,R) and \g =
Mo(S,R) such that S contains an isometric copy of qoAR for all X € VN with X\ > X.

(ii) There exists a constant N (8, R) such that if N > N(§,R), then any S C {1,..., N} with cardinality
|S| > SN will necessarily contain an isometric copy of AR for some \ € VN with 1 < X < N.

If R has side lengths given by t1, ..., tq, then each of the isometric copies in (i) and (ii) above can be realized
in the form {x11, 212} X -+ X {&a1,xa2} T Z° x - -+ x Z° with each |zjo — xj1| = qoAt; and At;, respectively.

Our arguments again work for more general patterns where d-dimensional rectangles are replaced with
direct products of non-degenerate simplices.

Theorem 1.4. Let 0 < 6 <1 and A = Ay X -+ X Ay C Z", where Z" = Z>™M+3 x ... x Z2™4F3 and each
A; C 7213 s g non-degenerate simplex of n; points.

(i) If S C Z™ has upper Banach density at least 0, then there exist integers qo = qo(0, A) and Ag = Ao(S, A)
such that S contains an isometric copy of goAA for all X € VN with A > X.

(ii) There exists a constant N (5, A) such that if N > N(0,A), then any S C {1,..., N}" with cardinality
|S| > 6N"™ will necessarily contain an isometric copy of AA for some A € VN with 1 < X < N.

Moreover, each of the isometric copies in (i) and (ii) above can be realized in the special form A} x --- x A}
with each A C Z*iF3 an isometric copy of goAA; and NA;, respectively.

Quantitative Remark. A careful analysis of our proof reveals that the constant ¢o(d, A) (and consequently
also N(d,A)) can be taken less than Wy (C\§ =131 "4) where Wy (m) is a tower of exponentials defined by
Wi (m) = exp(m) and Wiy1(m) = exp(Wy(m)) for k > 1.

1.5. Notations and Outline. We will consider the parameters d,nq, ..., nq fixed and will not indicate the
dependence on them. Thus we will write f = O(g) if |f| < C(nq,...,nq)g. If the implicit constants in our
estimates depend on additional parameters ¢,d, K, ... the we will write f = O¢ 5 k,...(9). We will use the
notation f < g to indicate that |f| < cg for some constant ¢ > 0 sufficiently small for our purposes.

Given an ¢ > 0 and a (finite or infinite) sequence Ly > Ly > --- > 0, we will say that the sequence is
e-admissible if L;j /L4 € N and L1 < €%L; for all j > 1. Moreover, if ¢ € N is given and L; € N for all
1 < j < J, then we will call the sequence Lo > Ly > --- > Ly (g, q)-admissible if in addition L;/q € N. Such
sequences of scales will often appear in our statements both in the continuous and the discrete case.

Our proofs are based on a weak hypergraph regularity lemma and an associated counting lemma developed
in the context of Euclidean spaces and the integer lattice. In Section 2 we introduce our approach in the
model case of finite fields and prove an analogue of Theorem 1.1 in this setting. In Section 3 we review
Theorem 1.2 for a single simplex and ultimately establish the base case of our general inductive approach
to Theorem 1.2. In Section 4 we address Theorem 1.2 for the direct product of two simplices, this provides
a new proof (and strengthening) of the main result of [12] and serves as a gentle preparation for the more
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complicated general case which we present in the Section 5. The proof of Theorem 1.4 is outlined in Sections
6 and 7, while a short direct proof of Part (i) of Theorem B’ is presented in Section 8.

2. MODEL CASE: VECTOR SPACES OVER FINITE FIELDS.

In this section we will illustrate our general method by giving a complete proof of Theorem 1.1 in the
model setting of Fj where [, denotes the finite field of ¢ elements. We do this as the notation and arguments
are more transparent in this setting yet many of the main ideas are still present.

We say that two vectors u,v € F are orthogonal, if 2 -y = 0, where “” stands for the usual dot product. A
rectangle in [y is then a set R = {z1,y1} X - -+ X {2, yn} with side vectors y; — x; being pairwise orthogonal.
The finite field analogue of Theorem 1.1 is the following
Proposition 2.1. For any 0 < § < 1 there exists an integer qo = qo(9) with the following property:
If g > qo and ty,...,tq € Fy, then any S C F?Id with |S| > § ¢** will contain points
{$11,1712} X oo X {l‘dl,l‘dg} - V1 X X Vd with |1'j2 —,13]'1|2 = tj fOT 1 < j < d

where we have written IF(QId =Vix-x Vg with V; ~ IF?I pairwise orthogonal coordinate subspaces.

2.1. Overview of the proof of Proposition 2.1. Write ng = Vi x ... x Vg with V; ~ Fg pairwise
orthogonal coordinate subspaces. For any ¢ := (t1,...,tq) € F; and S C ng we define

d
Ni(1s) =By evz . mevz |] Ls(1e,s- s wae,) [ ] o (@50 — 1)
(€1,...,0a)€{1,2}¢ Jj=1

where we used the shorthand notation z; := (xj1,xj2) for each 1 < j < d and the averaging notation:
1
Ereaf(e) = 755 3 /(@)
z€A

for a finite set A # (). We have also used the notation
if |z =t
oo(z) = 4 |z _
0 otherwise

for each t € F. Note that the function o; may be viewed as the discrete analogue of the normalized surface
area measure on the sphere of radius v/£. It is well-known, see [10], that

Ererz ou(z) =1+ O(q~'/?)
and for all £ # 0 one has
. i€ _
6:(§) = Epere ai(x) ¥ T = 0(q7?).

Note that if NVy(1g) > 0, then this implies that S contains a rectangle of the form {z11, 212} X x{Z41, Ta2 }
with Tj1, %52 € V} and |l‘j2 — .Z‘jl‘z = tj for 1 < 7 < d.

Our approach to Proposition 2.1 in fact establishes the following quantitatively stronger result.

Proposition 2.2. For any 0 < e < 1 there exists an integer qo = qo(€) with the following property:
If ¢ > qo, then for any S C ]de and ty,...,tq € Fy one has

S\
M(18)><(|]2(|1> —€

where we have written ]Fid =V x...x Vg with V; ~ ]Fi pairwise orthogonal coordinate subspaces.

A crucial observation in the proof of Proposition 2.2 is that the averages N;(1g) can be compared to ones
which can be easily estimated from below. We define, for any S C ng, the (unrestricted) count

M(1s) =Fy vz, oeve |] Ls(T1eys -0 s Tdey)-
(b1 la)E{1,2}
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It is easy to see, by carefully applying Cauchy-Schwarz d times to Eq,,cvy.... auev,ls(T11,. .., 2q1), that

2 mag = ()"

Our approach to Proposition 2.2 therefore reduces to establishing that for any € > 0 one has
(2.2) Ni(1s) = M(1s) +O(e) + O:(qg~'/?).

The validity of (2.2) will follow immediately from the d = k case of Proposition 2.3 below. However, before
we can state this counting lemma we need to introduce some further notation from the theory of hypergraphs,
notation that we shall ultimately make use of throughout the paper.

2.2. Hypergraph Notation and a Counting Lemma.

In order to streamline our notation we will make use the language of hypergraphs. For J := {1,...,d}
and 1 <k <d, welet Hqp = {e C J; |e| = k} denote the full k-regular hypergraph on the vertex set J. For
K :={jl; j e J, 1 €{1,2}} we define the projection 7 : K — J as 7(jl) := j and use this in turn to define
the hypergraph bundle

2
Hay ={e C K; |e| = [n(e)| = k}
using the shorthand notation 2 = (2,2,...,2) to indicate that |[7=1(j)| = 2 for all j € J.
Notice when k = d then H,4 q consists of one element, the set e = {1,...,d}, and
Ha = { {1, ... dla}; (In, ..., la) € {1,219}
Let V = ng and V =V; x ... x Vg with V; ~ Fg pairwise orthogonal coordinate subspaces. For a given
z = (z11,%12, .., Ta1, Taz) € V? with zj1, ;o € V; and a given edge e = {1l1,...,dlq}, we write

z, = (T, - Za,)-

Note that the map z — z, defines a projection 7, : V2 — V. With this notation, we can clearly now write

d
Ni(ls) = Ezeye H 1s(z Hfftj(sz—le)
j=1

ee’HE’d

M(ls I€V2 H 15 —6

eEHgyd
Now for any 1 < k < d and any edge e € Hap, le. € C{1,....d}, |e'| =k, we let Ve :=[],.., V;. For
every z € V2 and e € ’Hd w» we define z, := m.(z) where 7 : V2 Vﬂ(e) is the natural projection map.

Our key counting lemma, Pr0p0s1t10n 2.3 below, which we will establish by induction on 1 < k < d below,
is then the statement that given a family of functions f. : Vi) — [-1,1], e € ’H%,k, the averages (generalizing
those discussed above) which are defined by

d
(2.3) (f67 BEHdk =Egeve H fe(z, Hatj(mﬂ_le)
eEHgyk J=1
(2.4) M(fose € Hyp) =Egere ] felz
eE?—LEk

are approximately equal. Specifically, one has

Proposition 2.3 (Counting Lemma). Let 1 <k <d and 0 < e < 1. For any collection of functions
fo i Vagey = [-1,1) with e € H3 ,

one has

(2:5) Ni(fe: e €H3)) = M(fes e € Ha ) +0(e) + Oc(a™/?).
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If we apply this Proposition with d = k and f, = 1g for all e € 7—[%7 4» then Theorem 2.1 clearly follows
given the lower bound (2.1).

2.3. Proof of Proposition 2.3. We will establish Proposition 2.3 by inducting on 1 < k£ < d.
For k = 1 the result follows from the basic observation that if fi, fo : IF2 — [-1,1] and let ¢ € Fy, then

By zoerz f1(z1) f2(22) o0 (22 — 21) => Al 6+(£)
£eF?
(2.6) = /1(0) f2(0) + O(¢~"/?)

=Euy perz fi(z1) f2(22) + O(q™'7?)
by the properties of the function & given above.

To see how this implies Proposition 2.3 for k¥ = 1 we note that since ’H%l ={jl: 1<5j<d,1<1<2}it
follows that

—.

Ni(fe; e € 7{%,1) = || Eujiepoerz fin(zj1) fi2(@j2) on(zje — 2)1)

1

J

I
m&

Bujiagaerz fi1(@51) fiz(2j2) + O(g ) = M(fe;e € 7'[%71) +0(qg/?).
1

<.
Il

The induction step has two main ingredients, the first is an estimate of the type which is often referred to
as a generalized von-Neumann inequality, namely

Lemma 2.1. Let 1 < k < d. For any collection of functions fe : V) — [—1,1] with e € Hik one has
(2.7) Ni(fe; e€H3,) < H;{lgl I fellow, ., + O '?)
ec

d,k

where for any e € H%,k and f: Vi) = [=1,1] we define
(2.8) ”f”EI(V,r( ) = Brevz | E

ee’ngk

The corresponding inequality for the multilinear expression M(fe; e € ’H% x), namely the fact that

M(fe: 667‘16”3 ) < H ||fe||D Vi(e)) ) < H;in ”fe”D(V,r(p))
eG’H;k °c

is well-known and is referred to as the Gowers-Cauchy-Schwarz inequality [8].

The second and main ingredient is an approximate decomposition of a graph to simpler ones, and is
essentially the so-called weak (hypergraph) regularity lemma of Frieze and Kannan [7].

We will first introduce this in the case d = 2. A bipartite graph with (finite) vertex sets V;, Vs is a
set S C V7 x V5 and a function f: Vi3 x Vo — R may be viewed as weighted bipartite graph with weights
f(x1,x2) on the edges (x1,x2). If P; and Ps are partitions of V; and Vs respectively then P =Py x Py is a
partition Vi x V, and we let E(f|P) denote the function that is constant and equal to Eycaf(x) on each
atom A = A; X Ay of P. The weak regularity lemma states that for any ¢ > 0 and for any weighted graph
f: V1 x Vo — [—1,1] there exist partitions P; of V; with |P;]| < 20(=™*) for j = 1,2, so that

(2.9) Exyevi Eyevs (f — E(fIP))(21,22) 1y, (21)1u,(22)| < €

for all Uy C V; and Uy C V. Informally this means that the graph f can be approximated with precision &
with the “low complexity” graph E(f,P). If we consider the o-algebras B; generated by the partitions P; and
the o-algebra B = B; V By generated by Py x Py then we have E(f|B), the so-called conditional expectation
function of f. Moreover it is easy to see, using Cauchy-Schwarz, that estimate (2.9) follows from

(2.10) 1f = E(f1B1 V Ba)llovixve) < e
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With this more probabilistic point of view the weak regularity lemma says that the function f can be
approximated with precision ¢ by a low complexity function E(f|B; \/ Bz), corresponding to o-algebras B;
on V; generated by O(s7?) sets. This formulation is also referred to as a Koopman- von Neumann type
decomposition, see Corollary 6.3 in [23].

We will need a natural extension to k-regular hypergraphs. See [22, 8], and also [2] for extension to sparse
hypergraphs. Given an edge ¢’ € Hg i, of k elements we define its boundary o¢ == {f € Hap-1; f C e}
For each §' = e"\{j} € O¢’ let B; be a o-algebra on Vj := [[,., Vj and By = {U x Vj; U € By} denote its
pull-back over the space V.. The o-algebra B = \/f, coer By is the smallest o-algebra on de’ containing By
for all f € Oe’. Note that the atoms of B are of the form A = ;. Ay where Ay is an atom of By. We say

that the complexity of a o-algebra By is at most m, and write complex(By) < m, if it is generated by m sets.

Lemma 2.2 (Weak hypergraph regularity lemma). Let 1 <k < d and f. : V() — [—1,1] be a given function
for each e € H%k. For any € > 0 there exists o-algebras By on Vi for each f' € Hap—1 such that

(2.11) complex(By) = O(z—:*QkH)

and

(2.12) Ife —E(fel \/ Bi)low..,) <c foralleeHs,.
freorn(e)

The proof of Lemmas 2.1 and 2.2 are presented in Section 2.4 below. We close this subsection by
demonstrating how these lemmas can be combined to establish Proposition 2.3.

Proof of Proposition 2.3.

Let ¢ > 0, 2 < k < d and assume that the lemma holds for £ — 1. It follows from Lemma 2.2 that
there exists o-algebras By of complexity 0(5_2k+1) on Vy for each § € Hy -1 for which (2.12) holds for all
ec H%,k‘ For each e € "H%,k we let fo := E(f.] \/f’GB‘rr(e) By) and write f. = fo + he. By Lemma 2.1 and
multi-linearity we have that

(2.13) Ni(fe: e € H3p) = Nifes e € Ha ) +O(e) + O(g1/?)
and also by the Gowers-Cauchy-Schwarz inequality

(2.14) M(fe; e € H3 ) = M(fe; e € Ha )+ O(e).

The conditional expectation functions f. are linear combinations of the indicator functions 1 4, of the
atoms A, of the o-algebras B, := \/f’eafr(e) Bj:. Since the number of terms in this linear combination is
at most 20572“1, with coefficients at most 1 in modulus, plugging these into the multi-linear expressions
Ni(fe; e € H%,k) and M(fe; e € 'H%’k) one obtains a linear combination of expressions of the form
Ni(1a,; e H%}k) and M(14,; e € ’H%’k) respectively with each A, being an atoms of B, for all e € H%,k'

The key observation is that these expressions are at level k — 1 instead of k. Indeed, 14, = [Iicon(e) 1.,
where Acp = ALy x Vj, with A, being an atom of By when | = w(e)\{j}. If e = (jil1,...,jl,. .., jrlk),
let py (e) :== (jil1, ..., jklk) € H§7k_1, obtained from e by removing the jl-entry. Then we have la,, (z,) =
1A;f/ (gp,f(e)) since x;; € Vj, and hence
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It therefore follows that
d

Ne(la.; e € Hd k) = Ezeve H H pf,(e) H (52 —x51)
cet? , §/€0m(e) i=1
d
2
=Eyeve [] 11 a2y 0) ] ot (@ie = 20) = Nilgys € Hapon)

fEHZ ,_, e€HA T €dm(e) j=1
Py (e)=f

=19
and similarly that
ML e € Hy) = Mlgys € Hiy ).
It then follows from the induction hypotheses that
Nilas e € Hgy) = M(La.: e € Hy ) +0(1) +O0c, (a71/?)

_ok+1 _ok+1
for any e; > 0. If we choose g1 :=2"¢1¢ : , with C > 1 sufficiently large, then ¢, 2¢¢ o O(e) and it
follows that - -
Jvﬁ(fe? ee€ ,H%’k) = M(fe; e € ,H%,k) +0(e) + Oe(q_l/z)'
This, together with (2.13) and (2.14), establishes that (2.5) hold for d = k as required. O

4. Proof of Lemmas 2.1 and 2.2.

Proof of Lemma 2.1. We start by observing the following consequence of (2.6), namely that
2
(2.15) Eay aser f1(21) fo(22) 01 (22 — 21)| < Bay aper f1(21) fi(22) + O(g7?)
for any f1, fa : F2 — [—1,1] and t € F}.
Now, fix an edge, say eg = (11,21,...,k1). Partition the edges e € H%k into three groups; the first group

consisting of edges e for which 1 ¢ 7(e), the second where 11 € e and write e = (11,¢’) with €’ € H%*l,k}*l
and the third when 12 € e, using the notation H%A,kﬂ = {(j2la, ..., jxlk)}. Accordingly we can write

d
(2.16) /\[t(fe, GGHdk Epeve H fe(z H f(11 e’) (11,2 H f(12e T12,Z) H %2 %1

1¢m(e) e Gdelkal e Edel’kfl
If for given 2 € V; and 2’ = (z21, %22, .- ., Tq1,Ta2) € Vi X ... X de we define
/ /
p@z)= ][] fae(@z,) and  gxz)= [ faze(@z)
e,eH%—l,k—l elGH%—l,k—l

then we can write

z&

(2.17) A/t(fe; €c H%,k) =Eaoy1 200, 2a1,20 H fe(z
1¢n(e) j:

X EIM T12 gl(xllv )92(1'12,% )Jtl(xu - $11).

3732 —xj1)

By (2.15) we can estimate the inner sum in (2.17) by the square root of
IE$11 T12 91(5511, )91(1'127 ) + O( 71/2)'
Thus by Cauchy-Schwarz, and the fact that fe: V) — [=1,1] for all e € 7-[% > we can conclude that

u

(218) -/\/t(fe; €ec H%,k)2 S EI11,I12 ..... Tq1,Td2 H f(ll e’) 1'117 )f(ll e’) x127 Lot H mg2 - x]Q)

e/EHd 1,k—1 -

The expression on the right hand side of the inequality above is similar to that in (2.16) except for the
following changes. The functions f, for 1 ¢ e are eliminated i.e. replaced by 1, as well as the factor o¢,. The
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functions f(12./), are replaced by f(11,e) for all e’ € "H%_Lk_l. Repeating the same procedure for j =2,...,k
one eliminates all the factors o, for 1 < j <k, moreover all the functions f. for edges e such that j ¢ m(e)
for some 1 < j < k, which leaves only the edges e so that 7(e) = (1,2,...,k), moreover for such edges the
functions f. are eventually replaced by fe, = fi1,21,... k1. The factors oy, (52 — x;1) are not changed for j > k
however as the function f., does not depend on the variables xj; for j > k, averaging over these variables
gives rise to a factor of 1 + O(g~/2). Thus one obtains the following final estimate

2 k _ k _
(219) M(fe; ec Hg,k;)2 S E$117$127---7$k173¢k2 H feo(ge) + O(q 1/2) = ||f€o||2E|(V,\.(eO)) + O(q 1/2)'
w(e)=(1,...,k)

This proves the lemma, as it is clear that the above procedure can be applied to any edge in place of
eo = (11,21,...,k1). O

Proof of Lemma 2.2. For a function f, : Vi) — [~1,1] and a o-algebra B, on V() define the energy of
fe with respect to By () as

g(mew(e)) = ||E(fe‘8ﬂ(e))||g = EIEVTr(e) |E(f6|8‘n'(e))(x)|27

and for a family of functions f. and o-algebras By (., e € 7—[%_’ . its total energy as

S(f€7B7T(E); ec H%Jg) = Z g(feaBﬂ'(e))'

eEH%)k

We will show that if (2.12) does not hold for a family of o-algebras By (.) = \/f’eaﬂ'(e) Bj: , then the o-algebras
B can be refined so that the total energy of the system increases by a quantity depending only on . Since
the functions f. are bounded the total energy of the system is O(1), the energy increment process must stop
in O(1) steps, and (2.12) must hold. The idea of this procedure appears already in the proof of Szemerédi’s
regularity lemma [20], and have been used since in various places [7, 22, 8].

Initially set By := {0, Vj} and hence By () = {0, Vz(c)} to be the trivial o-algebras. Assume that in general
(2.12) does not hold for a family of o-algebras By, with f/ € Hg,—1. Then there exists an edge e € H%’k
so that ||96HD(VW<6)) > ¢, with ge := fe — E(fe|Bx(e)). Let e = (11,...,k1) for simplicity of notation, hence

m(e) = (1,...,k). Then, with notation '’ = (212,...,2Zk2), one has
k k
e? < ||ge||2D(Vﬂ(e>) =Eoii 210,200,200 H 96(x111 Y xklk)
b1l =1,2
k
<Eops,zhe | Eorzin 9e (T115 - -+, Tie1) H R (T11, o Tjm11, Tj1 155 Th1)
j=1

for some functions h; .+ that are bounded by 1 in magnitude. Indeed if and edge e # (11,...,k1) then z. does
not depend at least one of the variables ;1. Thus there must be an 2’ for which the inner sum in the above

expression is at least 2", Fix such an z’. Decomposing the functions h; ./ into their positive and negative
parts and then writing them as an average of indicator functions, one obtains that there sets B; C V(o) (5}
such that
k
_ k
Ew117___7lklge(.’1311, ce ,Jikl) H lBj (1‘11, e L1141y - 7331@1) Z 2 k 52
j=1

which can be written more succinctly, using the inner product notation, as

k
> 27k 2",

k
(2:20) (e = E(£elBr). [T 18))

For {' = Om(e)\{j} let Bj, be the o-algebra generated by By and the set B; and let B ) =V con(c) By -
Since the functions 1p; are measurable with respect to the o-algebra B, () for all 1 < j < k, we have that

.

(2.21) (fe = E(felBrey)s || 18,) =0

1

J
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and hence, by Cauchy-Schwarz, that
_ k41
(2.22) E(felBrey) = E(felBr(e)lz = IE(felBr)lz = IE(felBrie)lI3 = 272> .

Note that the first equality above follows from the fact that conditional expectation function E(f|B) is the
orthogonal projection of f to the subspace of B-measurable functions in L2. This also implies that energy of
a function is always increasing when the underlying o-algebra is refined, and (2.22) tells us that the energy of
fe is increased by at least ¢ g2

For § ¢ On(e) we set Bg, := By. Then the total energy of the family f. with respect to the system
B;(E) = Vyeon(e) By € € H%’k is also increased by at least ¢ e "

It is clear that the complexity of the o-algebras By are increased by at most 1, hence, as explained above,
the lemma follows by applying this energy increment process at most O(e_zkﬂ) times. O

3. THE BASE CASE OF AN INDUCTIVE STRATEGY TO ESTABLISH THEOREM 1.2

In this section we will ultimately establish the base case of our more general inductive argument. We
however start by giving a quick review of the proof of Theorem 1.2 when d = 1 (which contains both Theorem
B and Corollary B as stated in Section 1.1), namely the case of a single simplex. This was originally addressed
in [1] and revisited in [12] and [13].

3.1. A Single Simplex in R". Let @ C R" be a fixed cube and let I[(Q) denotes its side length.

Let A° = {v; = 0,v9,...,v,} € R” be a fixed non-degenerate simplex and define t3; := vy, - v; for
2 < k,l <n where “-” is the dot product on R™. Given A > 0, a simplex A = {21 = 0,29,...,2,} CR"
is isometric to AA° if and only if xy, - #; = A2ty for all 2 < k,1 < n. Thus the configuration space Syao of
isometric copies of MA? is a non-singular real variety given by the above equations. Let oyso be natural
normalized surface area measure on Syao, described in [1], [12], and [13]. It is clear that the variable z; can
be replaced by any of the variables x; by redeﬁning the constants t;.

For any family of functions fi,..., fn: @ = [—1,1] and 0 < A < {(Q) we define the multi-linear expression
(3.1) Nipo oftyesfn): ][ / oo fu(@n) doya, (ke — 21, ..oy 2 — 1) dy.
z1€Q J@a,..

We note that all of our functions are 1-bounded and both integrals, in fact all integrals in this paper, are
normalized. Recall that we are using the normalized integral notation f G f= ﬁ / 4 f- Since the normalized

measure oo is supported on Sya, we will not indicate the support of the variables (z2,..., ;) explicitly.
Note also that if S C @ is a measurable set and NiAo,Q(ls, ..., 1g) > 0 then S must contain an isometric
copy of AAC. The following proposition (with Q = [0, 1]") is a quantitatively stronger version of Proposition

B that appeared in Section 1.1 and hence immediately establishes Theorem 1.2 for d = 1.
Proposition 3.1. For any 0 < ¢ < 1 there ewists an integer J = O(e~2loge ™) with the following property:
Given any lacunary sequence 1(Q) > A1 > --- > Xy and S C Q, there is some 1 < j < J such that
S
(3.2) Niroo(ls, ... 1s) > <||Q||>
fOT all A € [)\j+1, Aj]

Our approach to establishing Proposition 3.1 is to compare the above expressions to simpler ones for which
it is easy to obtain lower bounds. Given a scale 0 < A < (@) we define the multi-linear expression

(3.3) M3 o(frs- o fn) ::][ ][ fi(zr) . fo(@y) day .. day, dt

teQ Jx1,x2,...,xn Et+Q(N)
where Q(\) = [—%, 3] and t + Q()) is the shift of the cube Q()) by the vector ¢. Note that if S C @Q is a set
of measure |S| > §|Q)| for some § > 0, then Holder implies

(3.4) M}\Q(ls,...,lg):][ <][ 1S(x)dx> dtz(f ][ lg(x)dz> > 5" — O(e)
teQ \Jzet+Q(N) teQ Jaet+Q(N)
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for all scales 0 < A < €l(Q).

Recall that for any € > 0 we call a sequence Ly > --- > Lj e-admissible if L;/L;j4+1 € Nand L1 < 62Lj
for all 1 < j < J. Note that given any lacunary sequence [(Q) > A\ > --- > Ay with J' > (loge™!) J, one
can always finds an e-admissible sequence of scales I(Q) > Ly > --- > L; such that for each 1 < j < J the
interval [L;41, L;] contains at least two consecutive elements from the original lacunary sequence.

In light of this observation, and the one above regarding a lower bound for M%\’Q(ls, ..., 1g), our proof of
Proposition 3.1 reduces to establishing the following “counting lemma”.

Proposition 3.2. Let 0 < ¢ < 1. There exists an integer J; = O(e=2) such that for any s-admissible
sequence of scales I(Q) > Ly > --- > Ly, and S C Q there is some 1 < j < Jy such that

(3.5) Niaoo(ls, .- 1s) = M3 o(1s,...,15) + O(e)
fOT’ all A € [Lj+1,Lj].

There are two main ingredients in the proof of Proposition 3.2, this will be typical to all of our arguments.
The first ingredient is a result which establishes that the our multi-linear forms N, )% AO’Q( fis-oy fn) are
controlled by an appropriate norm which measures the uniformity of distribution of functions f : Q — [—1,1]
with respect to particular scales L. This is analogous to estimates in additive combinatorics [8], [?] which are
often referred to as generalized von-Neumann inequalities.

The result below was proved in [12] for @ = [0, 1], however a simple scaling of the variables x; transfers
the result to an arbitrary cube Q.

Lemma 3.1 (A Generalized von-Neumann inequality [12]). Let e >0, 0 < A < 1(Q), and 0 < L < €5\.

For any collections of functions fi1,..., fn: Q — [—1,1] we have
(36) NsogUfiee o f)l < min [[fillu @) +00)
where for any f: Q — [—1,1] we define
2
(3.7) 1w =1 |f e
vi(@) teQ'Jzet+Q(L)

with t + Q(L) denoting the shift of the cube Q(L) = [f%, %]" by the vector t.
The corresponding inequality for the multilinear expression M%\Q( fi,..., fn), namely the fact that
M5 o(f1s- s fa) < z:f{llnn I fillor @) + O(e)

whenever 0 < L < %) follows easily from Cauchy-Schwarz together with the simple observation that

1£lluz @ < Ifllur, @) + Ofe)
whenever L' < L.

The second key ingredient, proved in [13] and generalized in Lemma 3.3 below, is a Koopman-von Neumann
type decomposition of functions where the underlying o-algebras are generated by cubes of a fixed length.

To recall it, let @ C R™ be a cube, L > 0 be scale that divides [(Q), Q(L) = [-%, £]", and G ¢ denote the
collection of cubes ¢ + Q(L) partitioning the cube @ and I'z, ¢ denote the grids corresponding to the centers of
the cubes. By a slightly abuse of notation we also write Gy, ¢ for the o-algebra generated by the grid. Recall

that the conditional expectation function E(f|Gr ¢g) is constant and equal to fA f on each cube A € Gy, .

Lemma 3.2 (A Koopman-von Neumann type decomposition [12]). Let 0 < e <1 and Q C R"™ be a cube.

There exists an integer J; = O(e2) such that for any e-admissible sequence [(Q) > Ly > --- > Ly, and
function f: Q — [—1,1] there is some 1 < j < Jy such that

(3.8) If =BGzl |, @ =€

Proof of Proposition 3.2. Let Gr; ¢ be the grid obtained from Lemma 3.2 for the functions f = 15 for some
fixed e > 0. Let f:=E(f|Gr,,q), then by (3.6) and multi-linearity, we have

N)%A”,Q(f"'wf) :N)}AO,Q(]?P":J?) +O(8)v
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and also

Mio(fioos /) =Mig(f, ... f) + O(e)
provided for 6’6Lj+1 < \. Thus in showing (6.4) one can replace the functions f with f. If we make the
additional assumption that A < eL; then it is easy to see, using the fact that the function f is constant on
the cubes Q¢(L;) € Gr, g, that

Nipog(fs- i f) = My o(f,-.. )+ O(e).

Since the condition e %L;1; < X\ < eL; can be replaced with L;11 < A < L; if one passes to a
subsequence of scales, for example L; = Ls;, this completes the proof of Proposition 3.2. O

3.2. The base case of a general inductive strategy.

In this section, as preparation to handle the case of products of simplices, we prove a parametric version of
Proposition 3.2, namely Proposition 3.3 below, which will serve as the base case for later inductive arguments.

Let Q@ = Q1 X -+ X Qg with @Q; C R™ be cubes of equal side length I(Q). Let L be a scale dividing
1(Q) and for each t = (t1,...,tq) € T let Qu(L) = t+ Q(L) and Q, (L) = t; + Q;(L). Note that
Qi(L) = Q¢ (L) X -+ x Q¢ (L). Here Q(L) = [—%, £]" and @Q;(L) = [-£, £]™ for each 1 <i < d.

Let A? = {v},..., v, } € R™ be a non-degenerate simplex for each 1 <7 < d.

Proposition 3.3 (Parametric Counting Lemma on R™ for Simplices).

Let 0 < e <1 and R > 1. There exists an integer J; = Ji(, R) = O(Re~*) such that for any e-admissible

sequence of scales Lo > Ly > --- > Ly, with the property that Ly divides I(Q) and collection of functions
for s QuLo) = [-1,1] with 1<i<d 1<k<n;, 1<r<Randtelp, ¢

there exists 1 < j < Jy and a set T, CT'r, o of size |T.| < ¢e|l'r, | such that

(3'9) N){A?,Qti(Lo)( 1112’ T Zz’;;) = M}\,Qti(LO)( ILZ; ] :L’:;i) + O(E)

for all X € [Ljy1,L;] and t ¢ T, uniformly in1 <i<d and1<r <R.

The proof of Proposition 3.3 will follow from Lemma 3.1 and the following generalization of Lemma 3.2
in which we simultaneously consider a family of functions supported on the subcubes in a partition of an
original cube Q.

Lemma 3.3 (A simultaneous Koopman-von Neumann type decomposition).

Let 0 <e <1, m>1, and Q C R" be a cube. There exists an integer J, = O(me~3) such that for any
e-admissible sequence Lo > Ly > --- > Ly with the property that Ly divides I(Q), and collection of functions
fl,t7 ceey fm,t : Qt(LO) — [_17 1]
defined for each t € T'r, g, there is some 1 < j < J; and a set T. CT'r, q of size |T:| < e|l'r,.q| such that

(3.10) 1fie = E(fielGr;@uza)lug, @i <€

foralll<i<m andt ¢ Tk.

Proof of Proposition 3.3. Fix 1 <i<d. For 1 <k <n; and t = (t1,...,ta) € I'r,,q, we will abuse notation
and write 4 '
f;’z(l‘l, ce ,J}d) = ,Z:;(Z‘Z)
for (x1,...,24) € Qi(Lo).
If we apply Lemma 3.3 to the family of functions f;; on Q(Lg) for 1<i<d,1<k<n;and1<r <R,
with m = (ny + ... + ng)R, then this produces a grid Gy, o for some 1 < j < J; = O(e"®R), and a set
T. CTp, . of size [T| < ¢|T'L,.ql, such that

e = E(el9e;.)lluy @uron S €

uniformly for 1 <i<d, 1 <k<n;and 1 <r < Rfort¢T..
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Since fi(x1,...,xa) = fi(x;) for (z1,...,24) € Qu(Lo) it is easy to see that

”f]z:z - E( ]?,yglzj,Q)HUEJ,_H(QL(LO)) = ||f]z:£ - E( ;1£|ng,Qi) |Uij+1(Qti(L0))‘
Let fi :== E(f.}|91,.0,) , then by Lemma 3.1, one has
AIA?QH(LU)(HZL T TZLZ:i) = iA?»Qti(Lo)( 711:2’ T 771{:2) +0(e),

and
M}\,Qti(LO)(ff:; . f:;:;) = Mi,Qti(Lo)(ff’,; S J?TZL:;) +O(e)
for all ¢ ¢ T. provided e L, 1 < A. Finally, if we also have A < L, then it is easy to see that
NAlAg,Qti(LO)(ﬁZ; cee ff{;g) = Mi,Qti(Lo)(fli:; cee ﬁf,g) + O(e)
as the functions f;g are constant on cubes Q¢,(L;) of Gz, q,, which are of size L; < eLo.

Passing first to a subsequence of scales, for example L; = Ls;, the condition 5’6Lj+1 K A< el can be
replaced with L;; < A < L; so this completes the proof of the Proposition. |

We conclude this section with a sketch of the proof of Lemma 3.3. These arguments are standard, see for
example the proof of Lemma 3.2 given in [12].

Proof of Lemma 3.3. First we make an observation about the U} (Q)-norm. Suppose 0 < L' < 2L with L'/
dividing L. If s € 'y o and ¢t € Q4(L') then |t — s| = O(L’) and hence

][ g(z)dx = ][ g(z)dz +O(L'/L)
z€Q(L) z€Qs(L)

for any function g : Q@ — [—1, 1]. Moreover, since the cube Q<(L) is partitioned into the smaller cubes Q;(L’),
we have by Cauchy-Schwarz
f o glayds
z€Q (L)

2
][ g(x) da:’ <Eter, o0
z€Qs(L)

From these observations it is easy to see that

2
lgll7 :][ ][ g(x) dx‘ dt < Eger,,
UL(@) teQ'JzeqQ. (L) e

and we note that the right side of the above expression is ||E(g|Gr q) H%Z(Q) since the conditional expectation

:

][ g(x) d:r:’2 +O(L'/L)
zEQ+(L’)

function E(g|Gr q) is constant and equal to f

x

cQu(1) 9(x) dz on the cubes Q¢(L’).

Suppose that (3.10) does not hold for some 1 < i < m for every ¢ in some set T, C I'z o of size
|Te| > €|’y |- If we apply the above observation to g := fi; —E(fi 1|91, q,(L,)), for every t € T, we obtain
by orthogonality that

D NESialGr ez liz @iz = D INEFitlGe,,0u ) lZ2(que) + o2

i=1 i=1
for some constant ¢ > 0.
If we now define f; : @ — [—1,1] such that fi|(q,(L,)) = fit, for 1 <i < m, average over t € 'z, g, and
use the fact || fil|72g) = Eteryy ol fitl72(0, (£o))» We obtain

(3.11) Y IEilGL20)i2q) = D IEfilGL,.0) 1 Z2(q) + .

i=1 i=1

It is clear that the sums in the above expressions are bounded by m for all j > 1, thus (3.11) cannot hold
for some 1 < j < J; for J; := Cme3. This implies that (3.10) must hold for some 1 < j < Jy, for all
1<i<mandallt¢T, foraset T, CT'y, o of size |T.| <e|T'L,.0l O
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4. PRODUCT OF TWO SIMPLICES IN R"

Although not strictly necessary, we discuss in this section the special case d = 2 of Theorem 1.2. This
already gives an improvement of the main results of [12], but more importantly serves as a gentle preparation
for the more complicated general case, presented in the Section 5, which involve both a plethora of different
scales and the hypergraph bundle notation introduced in Section 2.2.

4.1. Proof of Theorem 1.2 with d = 2.

Let Q = Q1 x Q2 with @1 C R™ and Q2 C R"™ be cubes of equal side length /(Q) and A = Al x AY
with AY = {v11,...,v1n, } CR™ and AY = {v11,...,v2,,} € R™ two non-degenerate simplices.

In order to “count” configurations of the form A = A; x Ay C R™ T2 with A; and A, isometric copies of
AAY and AAY respectively for some 0 < A < I(Q) in a set S C @ we introduce the multi-linear expression

ny n2

Nino.gUfu}) = ]inte ]ile% /m12 . /1:22 ITII fr@e, =)

.......... iEgn2 k=11l=1
dono(T12 — 11, -+ s T1iny — T11) doxag (Ta2 — To1, - -+ Tan, — T21) dTo1 dz1y
for any family of functions fi; : Q1 X Q2 — [-1,1] with 1 <k <mn; and 1 <1 < no.
Indeed, if fr; = 1g for all 1 <k <n; and 1 <[ < no then the above expression is 0 unless there exists a
configuration A C S of the form A; x Ay with A; and A, isometric copies of AA{ and AAY respectively.

The short argument presented in Section 1.1 demonstrating how both Theorem B and Corollary B follow
from Proposition B, and hence from Proposition 3.1, applies equally well to each of our main theorems. This
reduces our main theorems to analogous quantitative results involving an arbitrary lacunary sequence of
scales. In the case d = 2 of Theorem 1.2 this stronger quantitative result takes the following form:

Proposition 4.1. For any 0 < ¢ < 1 there exists an integer J = O(exp(Ce™13)) with the following property:
Given any lacunary sequence [(Q) > A1 > -+ > Ay and S C Q, there is some 1 < j < J such that

(1) Maaish> (1) -

for all A € [\j+1, A\j].
Our approach to establishing Proposition 4.1 is again to compare the above expressions to simpler ones for

which it is easy to obtain lower bounds. For any 0 < A < I(Q) and family of functions fi; : Q1 X Q2 — [—1, 1]
with 1 <k <njp; and 1 <[ < ny we consider

ny n2

M3 o({fu}) = ][ ][ ][ Tri(@ 1k, v2r) dzg dzy dt
@ teQ Jz e(t1+Q1(\)"1 Jz,€(t2+Q2(N)"2 ,};[111;[2
where t = (t1,t2) € Q1 X Q2, 2, = (Ti1, ..., Tin,) and Q;(N) = [—%, A7 for i = 1,2.

2
Note that if S C @ is a set of measure |S| > §|Q| for some § > 0, then careful applications of Holder’s
inequality give

ning
M3 o({1s}) > ][ ][ 1s(21, o) drydas dt > 6" — Ofe)
teQ \J (z1,22)€L+Q(N)

for all scales 0 < A < €l(Q).

In light of the observation above, and the discussion preceding Proposition 3.2, we see that Proposition
4.1, and hence Theorem 1.2 when d = 2, will follows as a consequence of the following

Proposition 4.2. Let 0 < ¢ < 1. There exists an integer Jo = O(exp(Ce12)) such that for any e-admissible
sequence of scales 1(Q) > Ly > --- > Ly, and S C Q there is some 1 < j < Jy such that

(4.2) NA2A07Q({1S}) = M3 o({1s}) + O(e)
fOT all \ € [Lj+1, LJ]
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There are again two main ingredients in the proof of Proposition 4.2. The first establishes that the our
multi-linear forms A /\2 A0 Q({ fr1}) are controlled by an appropriate box-type norm attached to a scale L.

Let @ = Q1 X Q2 be a cube. For any scale 0 < L < I(Q) and function f: @ — R we define its local box
norm at scale L to be

(1.3 191 @i = F_ Wl dt
teq
where Q(L) = [-%, £]m+n2 and
(4.4) ||f||é(@) 5:f _ f _ Sflen,zan) f(ziz, 201) f(211, 222) f (212, 222) d1y - - - das
Z11,212€Q1 Y T21,T22€Q2

for any cube C~2 C @ of the form @ = C~21 X ég with C~2j CQjforj=1,2.

Lemma 4.1 (A Generalized von-Neumann inequality [12]). Let e >0, 0 < A < [(Q), and 0 < L < e?*\.
For any collections of functions fr; : Q1 X Q2 — [—1,1] with 1 <k <ny and 1 <1 < ng we have both

(4.5) Mo o{fuPI < min_ | fullog@ixgs) + O)

1<k<ny, 1<I<n,

2 .
(4.6) IM3 o fu})] < Lp i | frillon @ x@a)-

The result above was essentially proved in [12] for the multi-linear forms N3, o When @ = [0, 1|ratnz,
however a simple scaling argument transfers the result to an arbitrary cube Q. For completeness we include
its short proof in Section 4.2 below.

The second and main ingredient is an analogue of a weak form of Szemerédi’s regularity lemma due to
Frieze and Kannan [7]. The more probabilistic formulation, we will use below, can be found for example in
[21], [22], and [23], and is also sometimes referred to as a Koopman-von Neumann type decomposition.

For any cube @ C R™ and scale L > 0 that divides [(Q) we will let Q(L) = [-%, £]" and G/, ¢ denote the
collection of cubes Q;(L) =t + Q(L) partitioning the cube @ and let I'y o denote grid corresponding to the
centers of these cubes. We will say that a finite o-algebra B on @ is of scale L if it contains G, ¢ and for
simplicity of notation will write B; for Blg,(z)-

Recall that if we have two o-algebras B; on a cube 1 and Bz on Q3 then by By V By we mean the
o-algebra on @ = @)1 X Q2 generated by the sets By x By with By € By and By € By. Recall also that we
say the complexity of a o-algebra B is at most m, and write complex(B) < m, if it is generated by m sets.

Lemma 4.2 (Weak regularity lemma in R™).

Let 0 < e <1 and Q = Q1 X Q2 with Q1 CR™ and Q2 C R™ be cubes of equal side length 1(Q).

There exists an integer Jo = O(e~'2) such that for any e*-admissible sequence (Q) > Ly > --- > Ly, and
function f: Q — [—1,1] there is some 1 < j < Jo and a o-algebra B of scale L; on Q such that

(4.7) If =E(f1B)llo.,,, @ixq) <€

which has the additional local structure that for each t = (t1,t2) € I'r, g there exist o-algebras By y on Qy, (L;)
and Bay on Q,(L;) with complex(B; ;) = O(j) fori=1,2 such that B, = B1; V Bay.

Comparing the above statement to Lemma 2.2 for d = 2, i.e to the weak regularity lemma, note that the
o-algebra B of scale L; has a direct product structure only locally, inside each cube Q;(L;). Moreover this
product structure varies with ¢ € I'z,, g, however the “local complexity” remains uniformly bounded.

Assuming for now the validity of Lemmas 4.1 and 4.2 we prove Proposition 4.2. We will make crucial use
of Proposition 3.3, namely our parametric counting lemma on R™ for simplices.

Proof of Proposition 4.2. Let 0 < ¢ < 1, g1 := exp(—Cie7'?) for some C; > 1, and {L;};>1 be an ;-
admissible sequence of scales. Set R = 55{1 and Ji(e1, R) be the parameter appearing in Proposition 3.3,
noting that J; (g1, R) = O(e7°).
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For L € {L;}j>1 write index(L) = j if L = L;. We now choose a subsequence {L’} C {L;} so that
Ly = Ly and index(L} ) > index(L}) + Ji(e1, R) + 2. Applying Lemma 4.2, with fi; = f := 15 for all
1<k <mn;and 1 <1< ny, guarantees the existence of a o-algebra B of scale L; on @ such that

(4.8) If —E(f1B)lo,,  (@xq <€

+1

for some 1 < j < Ce 2. Moreover, we know that B has the additional local structure that for each
t=(t1,ta) € FL;)Q there exist o-algebras By, on Qtl(L;) and By, on Q, (L;) with complex(B; ;) = O(s712)
for i = 1,2 such that B; = B+ V Bz ;. Thus, if we let Ry, and Ry, denote the number of atoms in B;; and
Ba; respectively, then ‘we can assume, by formally adding the empty set to these collections of atoms if
necessary, that Ry = Ray = R’ := exp(Ce™'?) for all t € I'rs o.

If we let f:= E(f|B; V Bz), then by Lemma 4.1 and multi-linearity we have
(4.9) )%AU,Q({f}) = NAQAO,Q({f}) +0(e) and M?\,Q({f}) = Mi,Q({f}) +O(e)

provided for 5_24L;-+1 < A. For agiven t € I'g 1/ write fi for the restriction of f to the cube Q:(L}). By
localization, one then has

(4.10) N)?AO,Q({fT}) = EzeFLE_,Q NfAO,QL(L;)({JFz}) + O(e),
and
(4.11) M3 Q{f}) = Erery, o M3 g, ({F}) + O(e)

provided one also insists that A < e L.

For givent € I'ps o, the functions fi(z1, 22) are linear combinations of functions of the form Ly (z1)1 472 (22),
where {A7; }1<r, <r and {A }1<r,<pr are the collections of the atoms of the o-algebras By ¢ and By ; defined
on the cubes Qy, (L;) and Qy, (L;) Thus for each ¢ € FL;)Q one has

R R

i=> Lam X 1yr
t Qrplafy X 1az2

’I“1:1 ’I”Q:l
where r = (r1,72). Plugging these linear expansions into the multi-linear expressions in above one obtains
2 3 2
N,\AO,QL(LQ.)({JZ}) = Z Qr.t N/\A",QL(L;.)({lA;,lgkl x 1Ag?£kl})
r={ry; }x1
using the notations r,; = (71,k1, T2,k1), Qe = [y ay,, t- Notice that the product

niy Nz

H H IAI}ikl (Ilk-)lA;i,kz (z27)

k=11=1
is nonzero only if A;E“ = quk, that is if 71 g = 715, for all 1 <1 < ny, as the atoms A7, are all disjoint.
Similarly, one has that rg 1 = ro; for all 1 <k < ny. Thus, in fact
(112) Moyt = Y ans Mo gy {1 x 1))
r={ry; }r
and similarly
(4.13) Mi,QL(L;.)({fL}) = Z Qrg Mi,QL(L;)({lA;ltvk X 1,4;25})'
r={ry; tri N -
Note, that indices r are running through the index set [1, R']™* x [1, R']"2 of size at most R if C, > 1.

The key observation is that
2 _ Al 1
(4.14) N)\AO’QL(L;)(lA:)IL,k X 1A;2L,z) = NAA(f’Qtl(L;)(lA;‘El s 1A;1£,n1 ) NAAE,sz(LQ)(lA;il N 1A;z£,n2)

and

(415) Mi,QL(L;)(lA;z’“ X 1A;"?£l) = M%\,Qtl (LS)(lA:,lil geeey 1A:’1£.n1 ) M%HQQ (L;)(1A22£,1 geeey 1A;2£n2 )
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Let r = {(r1,x,7r2,1) }r and g;f =1k, gl2,tz i=1,r2.. Writing j’ := index(L}) and J' := index(L},),
L 1,t A 2.t

one may apply Proposition 3.3 for the families of functions g,i:f, glzf, where 1 < k <n;,1 <1 <nyand
r = (r1,5 T2,k € [1, R']™ X [1, R']™, with respect to the e1-admissible sequence of scales

Ljy1 2> Ljiyo>---2>Ly_1.

This is possible as J' — j" = Jy(e1, R). Then there is a scale L; with j* < j < J’ so that

1,r 1,r 1,r 1,r
(416) st 05 055 = M g 1) (01 0hE) + 0(e1)
and
2,r 2,r 2,1 2,r
(4.17) N3a2.Quy ) (1L 2 Gnt) = Ma g () (9752 9nia) + O(e1),

for all A € [Ljy1, L;] uniformly in r = {(r1 %, 72,) }w and t ¢ T, C FL;WQ, for a set of size |T.,| < 51|I‘L;_7Q\.
Then, by (4.14)-(4.15) and (4.12)-(4.13), we have

(4.18) N)%AO,QL(L;)({JFL}) = Mi,QL(L’j) ({fe}) +O(e)

fort ¢ Te,, as |ar¢| <1 and Rey < e. Finally, since |T;,| < 51|I‘L;7Q|7 by averaging in ¢ € I'zs g, one has
Nino qU{F}) = M3 o ({FH) +0(e)

using (4.10)-(4.11) and the Proposition follows by (4.9) with an index 1 < j < J, = O(e~ 27 ). O

4.2. Proof of Lemmas 4.1 and 4.2.

Proof of Lemma 4.1. First we note that if x := L™"1_1 /5 1 /9)» and ¥, := x1 * X1, then

Yp(xe —21) = /XL($1 —t)xp(xe —t) dt

t
and hence for any function f: Q — [—1, 1], with @ C R™ being a cube of side length I(Q), one has

191300 = F S0 o) dede + OL/(@)
x1€ T2
Write 2’ := (221, ..., %2n,) and let gi o () := [}, fer(2z,22). Then one may write
N,%AO,Q({fkl}) = ][ / N,\lAng(ng', s Gniaz) dU,\A3 (T22 — 21, - .., Tan, — T21) dT21.
221€Q2 Jx22,...,T2n,

Using estimate (3.6), the above observation, and Cauchy-Schwarz one has

|N§A0,Q({fkl})|2 < ][ o / Yr(r12 — 211) NiAg,QQ (hl,ru,mlza ) hnz,mll,mlz) dryidzis + 0(54)
T11€@1 JT12

provided 0 < A < I(Q) and 0 < L < €%\ where hi g1y 002 (®) = fu(z11, 2) fr(z12, z) for 1 <1 < ng. Applying
the same procedure again ultimately gives

NRao U DIt < N f11lldy, (@i xqa) +OEY).

The same estimate can of course be given for any function fx; in place of fi;. This establishes (4.5).
Estimate (4.6) is established similarly. O

Proof of Lemma 4.2. For each t = (t1,t2) € 'z, o we will let By ((L1) := {0,Q¢ (L1)} and By (L) =
{0, Q+,(L1)}, in other words the trivial o-algebras on Qy, (L1) and Qy,(L1) respectively. If (4.8) holds with
B(L1) = G1,,0, noting that B,(L1) := Bi14(L1) V Ba,(L1) in this case, then we are done.

We now assume that we have developed, for each t = (¢1,t2) € Iy, @, o-algebras B14(Lj) on Qy (Lj)
and Ba (L) on Q,(L;) with complex(B;(L;)) < j for ¢ = 1,2. Let B(L;) be the o-algebra such that
Bi(Lj) = B1(L;) V Ba(Lj) for all £t € I'p; ¢ and assume that (4.8) does not hold, namely that

l9llo:,,, @ = ¢
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where g := f —E(f|B(L;)). By the definition of the local box norm this means that

F lolleau, e > <
teQ

and hence, as L2 < 1L, 1, it is easy to see that
4 4
Esere, 0 19I56+or, ) 2 € /2

This implies that there is a set S C 'z, ¢ of size |S| > (¢*/4)|T'L,,, ¢l such that for all s = (s1,s2) € S,
one has that ||g||é(QS(LH2)) > ¢*/4. Tt therefore follows, as is well-known see for example [12] or [23], that
there exist sets By s C Qs, (Lj12) and Ba s C Qs,(L;42) such that

(4.19) ][ ][ g(z1,22) 1, ,(21)1B, , (z2) dry doe > 54/16.
21€Qs; (Ljt2) J22€Qsy (Ljt2)

For a given s € ', ¢ there is a unique ¢ = £(s) such that Qs(L;j12) € Q¢(L;). Let Bj ((Lji2) :=
B1,e(Lj)lQ., (L;42) and By ((Lji2) = Ba2t(Lj)|q., (1;..) noting that complex(B; (Ljt+2)) < j fori=1,2, as
the complexity of a o-algebra does not increase when restricted to a set. If, for i = 1,2, we let B; s(Lj;2)
denote the o-algebra generated by B ,(L;12) and the set B;, if s € S and let B; s(Lj12) := B; ;(Lj+2)
otherwise, then clearly complex(B; 4(L;+2)) is at most j + 1. We now define B(L;2) to the the sigma algebra
of scale Lo with the property that Bs(Lji2) = Bi s(Lji2) V Bas(Ljy2) forall s € I'r, , g

Using the inner product notation (f, g)g = fQ f(@)g(x) dz we can rewrite (4.19) as

<.f - E(f‘B(L]))a 131,§ X 132@ >Qi(Lj+2) > 84/16

for all s € S. Since the function 1p, , X 1p, , is measurable with respect to B(L;12) one clearly has

(f —E(fIB(Lj+2)) s 1B, . X 1B, .)Qu(L;42) =0

and hence
<]E(f|B(LJ+2)) - E(f|B(LJ))a 1B1,£ X 132,§>Q£(Lj+2) > 84/16'
It then follows from Cauchy-Schwarz and orthogonality that

IEFIB(Lj+2) 72 (0u(r, .00y = IEFIBULN T 2000 (2,.0)) = €°/256.
Since |S| > (e*/4)|TL,,,,q| averaging over all s € T’z ¢ gives
IECfIB(Ljr2))Z2(q) = IEfIBEL))I72q) +2/2".

Trivially both sides are at most 1 thus the process must stop at a step j = O(¢7'2) where (4.8) holds for a
o-algebra of “local complexity” at most j. This proves the Lemma. O

5. PROOF OF THEOREM 1.2: THE GENERAL CASE.

After these preparations we will now consider the general case of Theorem 1.2. Let Q@ = Q1 x---x Qg CR"
with Q; C R™ cubes of equal side length {(Q) and A® = A? x --- x AY with each A; C R™ a non-degenerate
simplex of n; points for 1 <14 < d.

We will use a generalized version of the hypergraph terminology introduced in Section 2. In particular,
for a vertex set I = {1,2,...,d} and set K = {il; 1 <i¢<d,1<1<n;} wewill let 7: K — I denote the
projection defined by 7 (il) := i. As before we will let Hy 1 := {e C I; |e| = k} denote the complete k-regular
hypergraph with vertex set I, and for the multi-index n = (ny,...,nq) define the hypergraph bundle

Hip = 1{e C K; |e| = [n(e)| = k}
noting that |7 =1(i)| = n; for all i € I.

In order to parameterize the vertices of direct products of simplices, i.e. sets of the form A = Ay x -+ x Ay
with A; C @, we consider points £ = (z4,...,24) With z; = (x;,...,Zin,) € Q;* for each i € I. Now for
any 1 < k < d and any edge e’ € Hgp we will write Q¢ := [[;c., Qi, and for every z € Q" x -+ x Qy*
and e € Hy, we define z, := m.(z), where T, : Q7' x --- x Q)¢ — Qx(ey is the natural projection map.
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Writing A; = {x;1, ..., Tin, } we have that Ay x - xAg={z,: e€ Hgd} since every edge . is of the form

(11, -+ xar,). We can therefore identify points z with configurations of the form Ay x -+ x Ag.
For any 0 < A < I(Q) the measures daAAo introduced in Section 3.1, are supported on points (ya, ..., Yn,)
for which the simplex A; = {0,9a,...,Yn, } is isometric to AA?. For simplicity of notation we will write
/ f dO’ ][ / dU/\AO(l'ZQ —1’11,...,.%7;”1. —(Eﬂ)dl'il
i1€Q; JTi2,. <o ling
Note that the support of the measure dag\ is the set of points x; so that the simplex A; := {x;1,...,%in, }

is isometric to AAY and x;; € Q;, moreover the measure is normalized. Thus if S C @Q is a set then the
density of configurations A in S of the form A = Ay x ... x Ay with each A; C @; an isometric copy of A\A?
is given by the expression

(5.1) Nino ollssecHy,): / / H ls(z,) dop(zy) ... do)(z,).

Sdeety ,
The proof of Theorem 1.2 reduces to establishing the following stronger quantitative result.

Proposition 5.1. For any 0 < € < 1 there exists an integer Jg = Jq(€) with the following property:
Given any lacunary sequence [(Q) > Ay > -+ > Ay, and S C Q, there is some 1 < j < Jy such that

A
(52) N:\iAO’Q(ls7 eEsz) > <|62| — &
for all X € [Ajq1, Aj].
Quantitative Remark. A careful analysis of our proof reveals that there is a choice of J4(¢) which is less

than Wy(log(Cae™2)), where Wy (m) is again the tower-exponential function defined by Wi(m) = exp(m)
and Wy41(m) = exp(Wy(m)) for k > 1.

For any 0 < A < I(Q) and set S C @ we define the expression:

(53) Ml)i\’Q(].S, (& EHﬁd) :]f QM?+Q()\)(1S, GEHTEL,d)dz
te
where Q(A) = [-3, 3]" and
(5.4) M(Lss e € 1) ::][ .. ][ ] tsle) day - day
z,€Qyt Jaz,eqy? o

foranycube@ngftheformézél X e x@d with @i C Q; for 1 <i < d. Note that if S C @ is a set
of measure |S| > §|Q| for some § > 0, then careful applications of Hélder’s inequality give

ni nd
MS o(lsie € Hyy) > ][ ][ ls(z1,...,2q)dzy ... dxg dt > ™" — Ofe)
’ EEQ (11) 7wd)€§+Q(>‘)

for all scales 0 < A < 1(Q).

In light of the discussion above, and that preceding Proposition 3.2, we see that Proposition 5.1, and hence
Theorem 1.2 in general, will follows as a consequence of the following

Proposition 5.2. Let 0 < e < 1. There exists an integer Jg = Jq(e) such that for any e-admissible sequence
of scales (Q) > Ly > --- > Ly, and S C Q there is some 1 < j < Jg such that

(5.5) Ninoo(lss e € Hyy) = M3 o(ls; e € Hyy) + O(e)
fO'I" all \ € [Lj+1, LJ]

The validity of Proposition 5.2 will follow immediately from the d = k case of Proposition 5.3 below.



WEAK HYPERGRAPH REGULARITY AND APPLICATIONS TO GEOMETRIC RAMSEY THEORY 21

5.1. Reduction of Proposition 5.2 to a more general “local” counting lemma.

For any given 1 < k < d and collection of functions fe : Q) — [~1,1] with e € ’Hg,k we define the
following multi-linear expressions

(5.6) Niso o(fore € Hy) o= / / I folw) doda)....doday)
Ly La eEH%k
and
(5.7) M o(fu: e € HE) :=f Mg (fes e € W) e
te

where Q(A) = [-3, 3]" and

(5.8) (f67 e€Hyy): ][ Gm ][ e H fe(ze)dz, ... dzy

foranycube@ngfthefoer:él X e x@dwith@ngi for 1 <i <d.

Our strategy to proving Proposition 5.2 is the same as illustrated in the finite field settings, that is
we would like to compare averages Nyao o(fe;e € ’Hgk) to those of /\/ld olfe;e€ Hgk) at certain scales
X € [Ljt1, Lj], inductively for 1 < k < d. However in the Euclidean case, an extra complication emerges due
to the fact the (hypergraph) regularity lemma, the analogue of Lemma 2.2, does not produce o-algebras By,
for f € 7—[37 x_1, on the cubes @;. In a similar manner to the case for d = 2 discussed in the previous section,
we will only obtain o-algebras “local” on cubes Qﬁf (Lo) at some scale Ly > 0. This will have the effect that
the functions f. will be replaced by a family of functions f. ;, where ¢ runs through a grid I'z, ¢.

To be more precise, let L > 0 be a scale dividing the side-length {(Q). For t € I'; ¢ and €’ € Hq we will
use t., to denote the projection of £ onto Q. and @ , (L) :=t., + Qe (L) to denote the projection of the
cube Q¢(L) centered at t onto Q.. It is then easy to see that for any € > 0 we have

(5.9) NAdAO,Q(fd e € Hyp) = Eier, g N)(\iAO,QL(L)(fe,ﬁ e € Hyp) +0(e)
and
(5.10) M o(fese € M) = Eeer, o Mil\,QL(L)(fe,i e € Hyp) +O(e)

provided 0 < A < L where f.; denotes the restriction of a function f, to the cube Q;(L).

At this point the proof of Proposition 5.2 reduces to showing that the expressions in (7.8) and (7.9) only
differ by O(e) at some scales A € [L;41,L;], given an e-admissible sequence Ly > Ly > --- > L, for any
collection of bounded functions f., e € Hy ., t € T'ry.0. Indeed, our crucial result will be the following

Proposition 5.3 (Local Counting Lemma). Let0 < ¢ < 1 and M > 1. There exists an integer Ji, = Ji(e, M)
such that for any e-admissible sequence of scales Lo > Ly > --- > Ly, with the property that Lo divides 1(Q),
and collection of functions

0 Qi (Lo) = [1,1] with e € Hyy, 1<m <M andt €T, q
there exists 1 < j < Ji and a set T, CT'r, o of size |T:| < e|l'L,.q| such that
(5.11) N;\iAO,QL(LO)(f:E; e € Hay) = Mig,ro)(fei € € Hay) +O(e)
for all A € [Lj11, L;] and t ¢ T, uniformly in e € Hﬁk and 1 <m < M.

5.2. Proof of Proposition 5.3.
We will prove Proposition 5.3 by induction on 1 < k < d. For k = 1 this is basically Proposition 3.3.
Indeed, in this case for a given t = (t1,...,t4) € Tz, @ and edge e € Hy, = {il : 1 <i<d, 1 <1<n;}
we have that f"(z.) = fi",(zit) with 2 € Q,(Lo) and hence both
d
Nipo (o) (f5: € € Hy) H 380y, (Do) it fime o)



22 NEIL LYALL AKOS MAGYAR

d
d
M uen [ e € Hg) = [T Miqy, o) (Fies- oo i)

i=1

By Proposition 3.3 there exists an 1 < j < J; = O(Me™*) and an exceptional set 7. C 'y, o of size
|T:| <e|l'L,,0l, such that uniformly for ¢ ¢ T, and for 1 < < d, one has

leAg,Q,,i(Lo)(onl,p-~- init) = My, Qs (Lo) fil s+ fin, ) +O(€)
hence
Nia0.gu (o) (fE1s € € Hay) = MS g, (1) (F1s € € Hiy) + O(e)
as the all factors are trivially bounded by 1 in magnitude. This implies (5.11) for k = 1.
For the induction step we again need two main ingredients. The first establishes that the our multi-linear
forms N fAO’Q( fe; e € /Hi ) are controlled by an appropriate box-type norm attached to a scale L.

Let Q =Q1 X -+ x Qg and 1 < k < d. For any scale 0 < L < I(Q) and function f : Q. — [—1, 1] with
€' € Hq 1 we define its local box norm at scale L by

k
6,12 Buiany = f I Bieeon s
where
619 WEg=f o f o TL S me) den e de de
z11,212€Q1 Tp1,Tr2€QK (U1,....0)€{1,2}F

for any cube Q of the form @ = @1 X oo X Q.
Lemma 5.1 (Generalized von-Neumann inequality). Let e >0, 0 < A < [(Q) and 0 < L < (£2°)0A.
For any 1 < k < d and collection of functions fo : Qry — [—1,1] with e € 'H%k we have both

(5.14) N{no o(fei e € Hi ) < min 1felloL (@) +O(E)
€Sty K

(5.15) IMS o(fe; € € Hi )| < i fellon @)

d,k
The crucial ingredient is the following analogue of the weak hypergraph regularity lemma.

Lemma 5.2 (Parametric weak hypergraph regularity lemma for R™). Let 0 <e <1, M > 1, and 1 < k < d.

There exists Ji, = O(M&‘QHS) such that for any EQk-admissible sequence Lo > L1 > --- > ij with the
property that Ly divides [(Q) and collection of functions

0yt Qe (Lo) = [-1,1] with e € Hyw 1<m <M, andt €T, 0

there is some 1 < j < Ji and o-algebras Be: ¢ of scale Lj on Qq ,(Lo) for eacht € Tp, o and €' € Hap such
that

(5.16) 112 = BB I0s,,, @, (o)) S €
uniformly for allt ¢ T., e € Hy,,, and 1 <m < M, where T. C T, g with |T.| < ¢e|T', ql-

Moreover, the o-algebras B,/ ; have the additional local structure that the exist o-algebras Bes 5 s on Qéf, (Lj)
with complex(Ber ) = O(j) for each s €T'r; g, € € Hay, and f € 0¢’ such that if s € Q(Lo), then

(5.17) B“Qs, ) \/ Ber ji s
f €de’

Lemma 5.2 is the parametric and simultaneous version of the extension of Lemma 3.7 to the product of d
simplices. The difference is that in the general case one has to deal with a parametric family of functions
o as t is running through a grid I', ¢. The essential new content of Lemma 5.2 is that one can develop
o-algebras Bes .t on the cubes Q;(Lo) with respect to the family of functions f” such that the local structure
described above and (5.16) hold simultaneously for almost all t € T'z .
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Proof of Proposition 5.3. Assume the Proposition holds for k& — 1.

Let € > 0, &1 := exp (—Cie=2""") for some large constant C; = Cy(n,k,d) > 1, and {L;}j>1 be an

e1-admissible sequence of scales. Set F(e) := Jy_1(e1, M) with M = ee; .

For L € {L;};>1 we again write index(L) = j if L = L;. We now choose a subsequence {L’} C {L;} so
that Ly = Lo and index(L} ) > index(L’;) + F'(¢) +2. Lemma 5.2 then guarantees the existence of o-algebras
B, of scale L;. on @y, (Lo) for each t € 'y, o and €' € Hgq, with the local structure described above, such
that

(5.18) | fehy — E( $|Bﬂ(e),;)HDL3+1(QLW(S) (Lo)) S €
uniformly for all t ¢ T/, e € ’Hik, and 1 < m < M, for some 1 < j < Ji(e, M) = O(M5’2k+3), where

T! CTp,q with [T!| < e|Tpyq|. Let [ := E(fI|Br(e)s) for t € Tp, o and e € Hﬁk. If t ¢ T, then by
(5.14), (5.15), and (5.16) we have both

(5.19) N)ilAO,QL(LO)(fZZ; e € Hyp) = Nino g, (1) (i€ € Hiy) + O(e)
(5.20) Mi,QL(LO)(fem,ﬁ e€Hyy) = Mi,QL(LO)(JFZZQ e € Hyyp) +O(e).

provided (E_Qk)GL;»H < . For given s € PL/ijL(LO) one may write f;”ﬁ for the restriction of f;”i on the cube
Qs(L%) € Qi(Lo), as s uniquely determines t. By localization, provided A < L}, we then have both

(5.21) N;‘iAOvQL(LO)(f_‘Ti; ec Hik) = ]E§€FL;"QL(L0)N)(‘1A07Q§(L;‘)(f_;f;; ec Hg,k) +0(e),
(5.22) MS Qo) (fise € M) = EﬁEPL;,QL@mMi,QQ(L;)(J?ZE% e € Hyy) + O(e).
For a fixed cube Qs(L’;) we have that
Res
—_— .
(523) feé - Zl aﬁ,re,m 1A7r(e),§

where {A::‘(e) sJ1<r<R, . is the family of atoms of the o-algebra By (), restricted to the cube Q,(L’). Note

that |as,.| <1 and |R. 5| = Ofexp (Ce_QHS)). By adding the empty set to the collection of atoms one

k+3
)

may assume |R, 5| = R := exp (Ce~? for all e € H%k and s € FL;,Q Then, by multi-linearity, using the

notations r = (re)eepz, and ars =[], s, one has both

(524) NgAO,Qi(L;)(fge; e c Hg,k) = ZO@,LW N/\dA07Q§(L;)(1AT'C ;e € Hg,k)

m(e),s

m(e),s

(5.25) MU;QQ(L;)( flie €M) =Y aurm Mi,Qi(Lg_)qu

The key observation is that these expressions in the sum above are all at level £ — 1 instead of k. To see
this let e = (i1l1, .., imlm, - - ikli) so € =mw(e) = (i1, -y im,- - ik). H §f = e \{ism} then recall that the

edge py(e) = (i1, ... ikly) € My, _, is obtained from e by removing the i,,l,-entry. Thus, for any atom
Aer s of Bs (L) we have by (5.17), that
(526) 1Ae/,£(£e) = H 1Ae/,f/.§, (gpi/(e))

i/ coe!

where Aoy 5 is an atom of the o-algebra By . Thus

(5.27) P | | I e, @)= I oG

e€Hy fEHG o1 e€Hy ,,.f €07 (e) fEHG 1
Py (e)=f

It follows that
(528) NgAOin(L;)(lA:re(e),i; ec Hik) = N)C\IA07Q£(L;) (gié, f S H%k—l)
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and hence that
(5.29) NSAU,QQ(L;)(f_g;; €€ H%k) = Z%Lm N)l\iAD,QQ(L;) (gﬁé; fe H%k—l)

and similarly

(5.30) MS gy (Fli e € Hp) = Y s M8 g, 1) (954 F € Hipy)-

Note that number of index vectors r = (re) epz  Is RP with D := |H%,| and hence RP? < M if C; > 1.

Writing j' := index(L}) and J' := index(L’, ;) it then follows from our inductive hypothesis functions,
applied with respect to the e;-admissible sequence of scales

Ljiyy 2 Ljryo>--2 Ly
which is possible as J' — j’ > Ji_1(e1, RP), that there is a scale L; with j' < j < J’ so that
(5.31) Naaoguwy) (055§ € Ha1) = Mgy (955§ € Hipy) +O(e1)
for all A € [Lj4+1,L;] uniformly in r for s ¢ Se,, where S;, C L' is a set of size |Se, | < 61\FL;,Q|-

Since the cubes Q;(Lo) form a partition of @ as ¢ runs through the grid I'y,, o the relative density of the

set S;, can substantially increase only of a few cubes Q¢(Lo). Indeed, it is easy to see that [T/ | < 51/ IT'L,.0l
for the set

T/ :={teTi,0: |5, NQuL)| >e)” Trr.@ NQe(Lo)l}

We claim that (5.11) holds for A € [L; 1, L;] uniformly in ¢ ¢ T, := T U T/,
Indeed, from (7.17), (7.18), and (5.31) and the fact that |a, .| < 1, it follows

N)\AO ,Qs ( (fe s; €€ Hd k) M()i\,Qi(L;.) (feg? ec Hg,k) + 0(5)

for s ¢ Se, N Q¢(Lo) since RDsl < ¢. Finally, the fact that £ ¢ T together with localization, namely (5.21)
and (5.22), ensures that averaging over FL3-7QL(L0) gives

eE’Hﬁk,andlgmgM.

r n r n 1/2
N)C\IAO,QL(LO) (fers e € Hyy) = MiQA(LO) (fers e € Hgy) +0(e) + O(ey / )
which in light of (5.19), (5.20), and the fact that £y < &2 complete the proof. O

5.3. Proof of Lemmas 5.1 and 5.2.

Proof of Lemma 5.1. The argument is similar to that of Lemma 2.1. Fix an edge, say ep = (11,12,...,1k),
and partition the edges e € ’Hg,k in to as follows. Let Hy be the set of those edges e for which 1 ¢ w(e),
and for [ =1,...,n1 let H; denote the collection of edges of the form e = (11, jalo, ..., jilk), in other words
e € H; if e = (11,€') for some edge e’ = (jala, ..., Jrlk) € Hg—l,k—l' Accordingly write

H fe(ge) = H fe(ge) H H fll,e’(xll?ge/)'

ee’Hﬁk e€Ho =1 e’E’H%ﬁLk*l
For z € Q1 and 2/ = (z,,...,24) with z; € Q' define

(5.32) g(z.a) = [ fueluwz)
eEMG 1 ks
Then one may write
ni
(5.33) NfAO,Q(fe;eeﬂgk):f f H felz, (f Hgl (217, dal(m1)> do))(z,) ... doy(z,).
Ld ecHo Z1 =1

For the inner integrals we have, using (3.6), the estimate

2
<][ Hgl T11, % d01> < llgillfn ) +O(e f / 91(y11)91 (y12)0} (y12 — y11) dynr dyna + O(e>).
T Y11 Y Y12

11=1
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provided 0 < L < (Ezk)ﬁ)\, where as in the proof of Lemma 4.1 we use the notation
Ul = o) = [ X~ X (e — D)
¢

with x¢ = L7 1 _p 2,12 for 1 <i < k. By Cauchy-Schwarz we then have

2
N)I?AD’Q(]C@; egHﬁk’ S / ][ ][ H fll’e/(xn,ge,)fuye/(sclg,ge/)daé‘...dag‘dwi(gl)+O(52k)
y, Yz, z

de€My gy

where dwi(gi) = |Qi| "% (yi2 — yi) dyi dyiz with y, = (yi1,¥i2) € Q? for 1 <i<k.

The expression we have obtained above is similar to the one in (5.6) except for the following changes. The
variable z; € Q7" is replaced by Y, € Q? and the measure do} by dw}. The functions fi; . are replaced
by fi1,er, for 1 <1 < nq, while the functions f, for all e € ’Hg’k such that 1 ¢ m(e) are eliminated, that is
replaced by 1. Repeating the same procedure for ¢ = 2,...,k replaces all variables z; with variables y. as
well as the measures do} with dw?. The procedure eliminates all functions f. when e is an edge such that
1 ¢ m(e) for some 1 < i < k; for the remaining edges, when mw(e) = (1,...,k), it replaces the functions f. with
feo = fi1,21,...,1k- For k <i the variables x; and the measures doi)‘ are not changed, however integrating in
these variables will have no contribution as the measures are normalized. Thus one obtains the following final
estimate

n [2° 1 1 LA k
(5.34) ‘N)\AO’Q(fe; ee€ Hak‘ < m/ m/ H feo(y,) Hwi(yiz — i) dyir dyiz + O(e%)
Y Yy ceM2 i=1

noting that these integrals are not normalized. Thus, one may write the expression in (5.34), using a change
of variables y;1 1= yi1 — ti, Yi2 1= Yiz — t;, as

1 1 k k
(5.35) 7/][ i/][ Fooly,) dy, . dy, dt = | fo, 2 +0()
(@il Jo, Sy etivan 1@kl Je, Jy ctiran 11 7oty duy -y, *TH(@eeo)

eG'H%’k

where the last equality follows from the facts that the function fe, is supported on the cube Qy(.,) and hence
the integration in ¢ is restricted to the cube @ + Q(L), giving rise an error of O(L/I(Q)). Estimate (5.14)
follows from (5.34) and (5.35) noting that the above procedure can be applied to any e € 7—[&{ & in place of eg.
Estimate (5.15) is established similarly. O

Proof of Lemma 5.2. For j =0 we set Ber 1(Lo) := {Q¢(Lo), 0} and Ber jr,s(Lo) := {Qs,, (Lo), 0} for ' € Hay,
f € 0¢/, and t,s € T'r,,¢. We will develop o-algebras Bes (L;) of scale L; such that (5.17) holds with
complex(Ber 5 5(Lj)) < j.

We define the total energy of a family of functions f!"; with respect to a family of o-algebras Bes +(L;) as

M
(5.36) E(feBer t(Lj)) := Eter,, o Z Z IIE( :E\Bw(e),;(Lj))||%2(Q£”(e)(Lo))-

m=1 eE’H%ch

Since |f7,] <1 for all e, m, and t it follows that the total energy is bounded by M - [H, | = O(M). Our
strategy will be to show that if (5.16) does not hold then there exist a family of o-algebras Bes ¢(L;j42) such that

the total energy of the family of functions f} is increased by at least ckEQHS with respect to this new family
of o-algebras, and at the same time ensuring that (5.17) remains valid with complex(Bes y s(Lj12)) < j + 2.

This iterative process must stop at some j = O(M S_QHS) proving the Lemma.

Assume that we have developed o-algebras B/ ((L;) and Be/y s(L;) of scale L; such that (5.17) holds
with complex(Ber i s(L;)) < j. If (5.16) does not hold then |T.| > ¢|I'z, o] for the set

T.:={teTr,q : |If —E( ;n,E|B7T(€)a§<Lj))||DLj+1(Qzﬂ_(ﬂ) (Lo)) = € for some e € ’Hg’k and 1 <m < M}.

Fixt e T, and let e € ’Hﬁk and 1 < m < M be such that

12, = B2 Brey e EaDlias, (@ (2o > €
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and write ¢’ := m(e). Consider the partition of the cube Q;_, (Lo) into small cubes Q; ,(L;2) where s, €

I'L; 2.0, NQt, (Lo). By the localization properties of the O, (Q)-norm, and the fact that L; o < EszjH
we have that

k
52

||f|\|jL 1@, (Do) S Bs ers 0, 1 1112 (@, (L)) T 57
for any function f: @y ,(Lo) — [~1,1]. Thus there exists a set Sc .y C Tz, q, , (L) of size

2k
‘Seet| > |FLJ+2,Qt /(LO)‘
such that

k
82

.
(5.37) 14— A Be (L) B, (taem) 2
for all 5., € S¢ct-

For a given cube @ and functions f, g : @ — R, define the normalized inner product of f and g as

f.g)q == fQ f(@)g(x) dx

Then by the well-known property of the O-norm, see for example [23] or the proof of Lemma 2.2, it follows
from (5.37) that there exits sets

Bjrs, b © Qs (Ljt2)
for f' € de¢’ such that

k
82

5.38 <m B. , > >
(5:3%) e~ BUfelBerally f,l;j,[e Biteet)Q, (Lysa) = 2042

If s €I'p,,, @ then there is a unique t = £(s) € I',,@ such that s € Q(Lo). If t € T and 5., € S ¢
then we define the o-algebras By ,s(Lj+2) on Qs (Lji2) as follows. Write By e/ s = By s, Where ¢ = {(s)
and let By o s(Lj42) be the o-algebra generated by the set By ./, and the o-algebra By o o (L;) restricted
to Qéf,(LjJrg) where s’ € I'; ¢ is the unique element so that s € Q. (L;). Note that that the complexity
of the o-algebra By o ¢(Ljy2) is at most one larger then the complexity of the o-algebra By o o (L;) as
restricting a o-algebra to a set does not increase its complexity. If t = t(s) ¢ T or s., ¢ Se. then let
By er,s(Ljt2) be simply the restriction of By er,s(L;) to the cube Qs (Ljt2), or equivalently define the sets

Bf/,el)é = Qéi’(Lj+2)' Finally, let

(5.39) Bes(Liy2) = \/ Byes(Ljt2)
freder
be the corresponding o-algebra on the cube Q; , (Lj12)-

Since the cubes Q, , (L;42) partition the cube Q; ,(Lo) as s., runs through the grid I'z,,,, o., N Q:_, (Lo),
these o-algebras define a o-algebra B/ (L;12) on @y, (Lo), such that its restriction to the cubes Q;_, (Lj+2)
is equal to the o-algebras Bes s(Lj42).

Since the function Hf'eae' 1p;, ,,, is measurable with respect to the o-algebra Ber +(Ljy2) restricted to the
cube Q; ,(L;j12) one clearly has

(5.40) (f7 = E(fTBee(Liva))s 11 18y 0., (1) = 0-
i/ €de’

and hence, by (5.38), that

k
62

(5.41) (E(f41Ber o(Lit2)) = B(ZBera(L)y 11 1oy )0., (2sen) = ohiz”
i €de’
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It then follows from Cauchy-Schwarz and orthogonality, using the fact that the o-algebra Bes ¢((Ljy2)) is a
refinement of B/ (L;12), that

(5.42) B3 Ber (L2 ) —E(4Ber e (L)) Z2cq, , (1y10)

= [IE( gn,ﬂBe',z(LjH))H%‘Z(Qﬁg,(LHQ)) — [IE( gn,;\Be',z(Lj))H%Z(Qée,(Lj+2))
> 762)6 ’
- (2k+2)
2k
for s, € Se - Since |Se | > ET|FLJ'+2’Q1€/ (Lo)| averaging over s,, € I'L0.0., (Lo) implies

2k+2

m m E
(5.43) ([E( e,;|5e',z(Lj+2))||2L2(Q1e,(LO)) > ”E(fe,;‘Be',i(Lj))H%?(Qig,(Lo)) + Sar7e-

At this point we have shown that if t € T, then there exists an edge e € ’Hg) w1 <m < M, and o-algebras
Bert(Lji2)) of scale Ljio on Qy ,(Lo), with €’ = 7(e), such that (5.43) holds.

For all €’ € Hqj with €” # €’ let By v s(Ljt2) be the restriction of the o-algebra By o o (Lj) to the

cube @, (Ljt2), where s’ is such that s € Qy(L;). By (5.39) this implies that Ber s(Lj12) is also the

restriction of Ber o (L;) to the cube Qs , (Lj12), and hence the g-algebra Be ¢(L;12) is generated by the

grid Gr..,.q, , (Lo) and the o-algebra Ber ¢ (L;).
We have therefore defined a family of the o-algebras Bes ((L;12) for ¢/ € Hq, satistying

ok+2

M M
m m €
S 3 BB a2 D D TG Bre BBy, oy + 775

m=1 eg?—[’ik m=1 e/eﬂg,k

Using the fact that |T;| > ¢|T'r, | and averaging over t € I',, ¢ it follows using the notations of (5.36) that
ok+3

m m €
E(f4|Ber t(Ljr2)) > E(f41Ber t(Lj)) + 2R 76"

As the total energy E(f";[Ber ¢(L;)) is bounded by O(M), the process must stop at a step j = O(M e=2"")
where (5.16) holds for a o-algebra of “local complexity” at most j, completing the proof of Lemma 5.2. O

6. THE BASE CASE OF AN INDUCTIVE STRATEGY TO ESTABLISH THEOREM 1.4

In this section we will ultimately establish the base case of our more general inductive argument. We will
however start by giving a (new) proof of Theorem B’, namely the case d = 1 of Theorem 1.4.

6.1. A Single Simplex in Z". Let A? = {v; = 0,v2,...,v,,} be a fixed non-degenerate simplex of n;
points in Z" with n = 2n; + 3 and define tg; := vg - v; for 2 < k,l < n;. Recall, see [17], that a simplex
A={m;=0,...,my, } CZ" is isometric to AA? if and only if my, - m; = N2ty for all 2 < k,1 < n;.

For any positive integer ¢ and A € ¢v/'N we define Syao 4(ma, ..., my,) : Z"™ =Y — {0,1} be the function
whose value is 1 if my - m; = A2t with both my and my in (gZ)" for all 2 < k,l < n; and is equal to 0
otherwise. It is a well-known fact in number theory, see [11] or [17], that for n > 2n; + 1 we have that

> Saaoglma, ... ma,) = p(A%) (A/g) M1+ O(AT))

for some absolute constant 7 > 0 and some constant p(A%) > 0, the so-called singular series, which can be
interpreted as the product of the densities of the solutions of the above system of equations among the p-adics
and among the reals. Thus if we define

Tan0,q 1= p(A) T (A /q) (IS o

then oyao0 4 is normalized in so much that

Y oaaoglma,..my) =14+ 0\T)

m2,...,Mny
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for some absolute constant 7 > 0.
Let Q C Z" be a fixed cube and let [(Q) denotes its side length. For any family of functions
fl)"'afnl :Q_> [_171]

and 0 < A < I(Q) we define the following two multi-linear expressions

(6.1)  Maogolfiveifu) =EBmeq > filma)... fo, (Mn,) 0rn0g(ma —ma,...,mpy, —my)

ma,...,Mny

and

(6.2) M3 oo ) = Eic@ By oo, etqian) J1(ma) - fry (M)

where Q(g, \) := [—3,3]" N (¢Z)". Note that if S C @ and N/\le,qu(lg, ...,1g) > 0 then S must contain
an isometric copy of AAY, while if |.S| > §|Q| for some § > 0 then as before Holder implies that

(6.3) M g0(ls, ... 1g) > 6" — O(e)

for all scales A € ¢v/N with 0 < X\ < €1(Q).

Recall that for any 0 < ¢ < 1 and positive integer ¢ we call a sequence L1 > --- > L; (g, q)-admissible
if Lj/Ljy1 € Nand L1 < EQLj forall 1 <j < Jand L;/q € N. Note that if A\; > --- > Xy > 1 is any
lacunary sequence in ¢v/N with J’ > (loge~!) J +log g, one can always finds an (e, ¢)-admissible sequence of
scales Ly > --- > L; with the property that for each 1 < j < J the interval [L;11, L;] contains at least two
consecutive elements from the original lacunary sequence.

In light of these observations we see that the following “counting lemma” ultimately establishes a
quantitatively stronger version of Proposition B’ that appeared in Section 1.3 and hence immediately
establishes Theorem 1.4 for d = 1.

Proposition 6.1. Let 0 < e < 1 and gj := q1(g)? for j > 1 with q1(¢) :=lem{1 < ¢ < Ce~19}.
There ezists J1 = O(e72) such that for any (e, q,,)-admissible sequence of scales I(Q) > Ly > -+ > Ly,
and S C Q there is some 1 < j < Jy such that

(6.4) Miaaog.o(lss1s) = M3 g o(ls, .-, 1s) + O(e)
for all A € qj\/N with Ljzq1 <A< L.

As in the continuous setting the proof of Proposition 6.1 has two main ingredients, namely Lemmas 6.1
and 6.2 below. In these lemmas, and for the remainder Sections 6 and 7, we will continue to use the notation
qi(e) :==lem{1 < ¢ < Cc7 10}

for any given € > 0.

Lemma 6.1 (A Generalized von Neumann inequality).

Let0 < e < 1, q,¢ € N with qq1(¢)|¢’, and X € ¢v'N with A < 1(Q) and 1 < L < €'°X. For any collection
of functions f1,..., fn, : @ = [—1,1] we have

(65) |N)}A0,q,Q(f17'-'7fn1)| < min ||fl||Uql,L(Q)+O(E)

- lgignl
where for any function f: Q — [—1,1] we define
1 1/2
(6.6) £l @1 = (g7 221 * xan 0?)
teQ
with X4, denoting the normalized characteristic function of the cubes Q(q, L) := [—%, £]" N (¢Z)".

For any cube @ C Z™ of side length I(Q) and ¢, L € N satisfying ¢ < L with L dividing /(Q), we shall now

partition @ into cubic grids Q¢(q, L) =t + ((¢Z)" N Q(L)), with Q(L) = [-%, £]" as usual. These grids form

the atoms of a o-algebra G, 1, ¢. Note that if ¢|¢’ and L'|L then G, 1.0 C Gy.1/.q-
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Lemma 6.2 (A Koopman-von Neumann type decomposition).

Let 0 < e < 1 and q; := q1(¢)? for all j > 1. There exists an integer J, = O(e~2) such that any
(€,q5,)-admissible sequence of scales I(Q) > Ly > --- > Ly and function f : Q — [~1,1] there is some
1 < j < Jy such that

(6.7) 1f = E(f1Gg;.25.0)lu;

2j+1-Lj+1

@ <&

The reduction of Proposition 6.1 to these two lemmas is essentially identical to the analogous argument in
the continuous setting as presented at the end of Section 3.1, we choose to omit the details.

Proof of Lemma 6.1. We will rely on some prior exponential sum estimates, specifically Propositions 4.2 and
4.4 in [17]. First we deal with the case ny > 3. By the change of variables m; := my, m; := m; —my for
2 <4 < nj, one may write

Nipogo(fisifm) =EBmicon D, filma)fa(ma +ma) - fu, (M1 + M) 0xn0 g(Ma, ... mn, ).

M2, Mg

‘We now write

(J'/\Ao’q(Tng7 cee ,mnl) = O')\Aor,q(mg, ce ,mm,l) U:;w.’mn171 (mnl)
where AY” = {v; = 0,vy,...,v,, 1} and for each ma,...,m,,_1 € (¢Z)" we are using U:?;""’m"lfl(m)

denote the (essentially) normalized indicator function of the subset of (¢Z)™ that contains m if and only if
m - my = Ntp,, forall 2 <k < nj.

Using the fact that |f;] < 1, together with Cauchy-Schwarz and Plancherel, one can then easily see that

(63) Mgl fu)P S 17 [ 17 Higf6)d

with o
Hyg©) = Y onavglma,...omn 1) oy, " (O

M2,y Mpq

It then follows by Propositions 4.2 and 4.4 in [17], with § = ¢* and after rescaling by g, that in addition to
being non-negative and uniformly bounded in £ we in fact have
l

(6.9) H) 4(&) =0(e) whenever ‘q{ - >

4
q(g) et)\’

for all { € Z™.

We note that the expression Hy 4(£) may be interpreted as the Fourier transform of the indicator function
of the set of integer points on a certain variety, and estimate (6.9) indicates that this concentrates near
rational points of small denominator. It is this crucial fact from number theory which makes results like
Theorem B’ possible.

Since
- qn —2mim-&
Xq,L(§) = n Z e
me[—-%,L)m, glm

it is easy to see that Xq,1(I/q) = 1 for all [ € Z™ and that there exists some absolute constant C' > 0 such that

(6.10) 0<1-Xqr(§)?*<CLIE~1/q]
for all £ € T" and [ € Z". Tt is then easy to see using our assumption that gq(¢)|¢’ that
(6.11) 0 < Hyg(§)(1 =Xy ,(6)*) < Ce

for some constant C' > 0 uniformly in ¢ € T" provided L < 5. Substituting inequality (6.7) into (6.8), we
obtain

NRa0,g.q(fr- - fu)P < 1QITY (/ | fan (©)P HA(O) Ry, (€)% d + /Ifn1 (OPHAE)( - %/,L(ﬁ)%%)

< HmeQUql, @t O(e)
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provided L < €?). This proves Lemma 6.1 for k > 3, as it is clear that by re-indexing the above estimate
holds for any of the functions f; in place of f,,. For ny = 2 an easy modification of arguments in [14],
specifically the proof of Lemma 3 therein, establishes that

Naaeqo(ft )17 < Mlfillzs, @) +OC)

for i = 1,2 provided L < €®\. O

Proof of Lemma 6.2. Let g, L € N such that L|N, g|L. The “modulo ¢” grids Q:(q, L) = t+Q(q, L) partition
the cube @ with ¢ running through the set I'y 1, o = {1,...,¢}" +I'r o, where I';, ¢ denote the centers of
the “integer” grids ¢t + @Q(L) in an initial partition of Q. Let ¢/, L’ be positive integers so that ¢|¢’, L'|L and
L' <e’L. IfseTly g and t € Qs(q’, L) then |t — s| = O(L') and hence

Ereq.(a,0)9(2) = Ereq,(q,0)9(2) + O(L'/L)

for any function g : Q@ — [—1,1]. Moreover, since the cube Q;(q, L) is partitioned into the smaller cubes
Q+(q', L"), we have by Cauchy-Schwarz

Ercq.(q.0) 9@ <EBiery 1o oo [Brequ .0 9(@)*.
From this it is easy to see that
||9||12J(}‘L(Q) = EtGQ|E$EQt(Q7L)g(x)‘2 < EtGFq/YL/‘Q |Eert(q',L/)9(517)|2 +O(L'/L)

and we note that the right side of the above expression is [|[E(¢9|Gy .1/ .q) H%?(Q) since the conditional expectation
function E(g|G, 1,q) is constant and equal to E,cq,(q,2)9(x) on the cubes Q:(q', L').
Now suppose (6.7) does not hold for some j > 1, that is

If = E(flgqj,L,-,Q)II?J;J_+

Since Lji2 < €2Lji1, Ljy2|L;j, and gj41]gj+2 we can apply the above observations to g := f — E(f|Gy,.L,.Q)
and obtain, by orthogonality, that

2
@ ¢

1L

(6'12) ||E(f|gq;'+2,Lj+2,Q)HQLQ(Q) > ”E(ﬂgqngpQ)HQL?(Q) + ce?
for some constant ¢ > 0. Since the above expressions are clearly bounded by 1, the above procedure must
stop in O(e72) steps at which (6.7) must hold for some 1 < j < J;(¢) with J;(g) = O(e72). O

6.2. The base case of our general inductive strategy.

Let Q = Q1 X ... x Qq with Q; C Z?™*3 be cubes of equal side length [(Q) and A C Z2"*3 be a
non-degenerate simplex of n; points for 1 <14 < d.

We note that for any gy € N and scale Lo dividing I(Q) if £ = (t1,...,tq) € I'yy.1,,0, then the corresponding
grids Q¢(qo, Lo) in the partition of @ take the form Q(qo, Lo) = Q+, (g0, Lo) X - -+ X Q¢,(q0, Lo)-

As in the continuous setting we will ultimately need a parametric version of Proposition 6.1, namely
Proposition 6.2 below.
Proposition 6.2 (Parametric Counting Lemma on Z"™ for Simplices). Let 0 <& <1 and R > 1.

There exists an integer J; = Ji(g, R) = O(Re™*) such that for any (¢, qs, )-admissible sequence of scales
Lo > Ly > -+ > Ly, with Ly dividing 1(Q) and q; := qoq1(g)? for 0 < j < J; with qo € N, and collection of
functions

7 Qi (gos Lo) — [~1,1] with 1<i<d, 1<k<n;, 1<r<Randt€Tly 1,0
there exists 1 < j < Ji and a set T, C Ty 1,,0 of size |T:| < e|l'gy,1,0] such that
(6.13) NAa5.@1, (a0iLo) FLLr 2 Flt) = Mg 00 aonko) (Fits -+ Fula) +0(e)
for all A € qj\/N with Ljt1 <A< L; and t ¢ T, uniformly in1 <i<dand1l<r <R.

This proposition follows, as the analogous result did in the continuous setting, from Lemma 6.1 and the
follow parametric version of Lemma 6.2.
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Lemma 6.3 (A simultaneous Koopman-von Neumann type decomposition).

Let 0 <e <1, m>1, and Q CZ" be a cube. There exists an integer J = O(ms_?’) such that for any
(€,q7,)-admissible sequence Lo > Ly > --- > Lj with Loy dividing [(Q) and q; := q0q1(e)? for 0 < j < J;
with qo € N, and collection of functions

fies om0 Qe(go, Lo) — [-1,1]
defined for each t € Ty 1,.q, there is some 1 < j < Jy and a set T- C Ty 1.0 of size |T.| < €|Tqy.1o.0| such
that
(6.14) 1fie = E(fitl9q;.L,.Q:i(q0,L0) U2

aj4+1-Lj41

(Qi(q0,L0)) =€
foralll <i<m andt ¢T..

Lemma 6.3 above is of course the discrete analogue of Lemma 3.2. Since the proofs of Proposition 6.2 and
Lemma 6.3 are almost identical to the arguments presented in Section 3.2 we choose to omit these details.

7. PROOF OF THEOREM 1.4: THE GENERAL CASE

After the preparations in Section 6 we can proceed very similarly as in Section 5 to prove our main result
in the discrete case, namely Theorem 1.4. The main difference will be that given 0 < e < 1 and 1 < k <d,
we construct a positive integer g (g) and assume that all our sequences of scales will be (e, ¢x(£))-admissible.
The cubes Q;(L) will be naturally now be replaced by the grids Q;(¢, L) of the form that already appear in
Section 6 where we always assume ¢| L.

Let AY = A x ... x A§ with each AY C Z2?"*3 a non-degenerate simplex of n; points for 1 < i < d
and Q = Q1 X ... x Qq C Z™ with Q; C Z?™*3 cubes of equal side length [(Q) (taken much larger than
the diameter of A%). We will use the same parameterizations in terms of hypergraph bundles H; dk and
corresponding notations as in Section 5 to count the configurations A = Ay x ... x Ay C @ with each A; C @
an isometric copy of AA? for some \ € VvN.

Given any positive integer ¢ and A € ¢v/N we will make use of the notation

(71) Zf 0)\(1 = EIilGQi Z f( )UAAO (l’ig —xﬂ,...,xmi _xil)dl'il
Li2;erTin
with oya0 , as defined in the previous section and z; = (71, ..., Tin,) € Q.

Note that if S C @ then the density of configurations A in S, of the form A = A; x ... x Ay with each
A; C Q; an isometric copy of AA? for some \ € qVN is given by the expression

(7.2) N)\AOqQ(ls’eEHdd Z Z H Is(z, U/\q(%) Oiq(£d)'

Zg eG'Hd 4

More generally, for any given 1 <k < d and a family of functions fe : Q) — [~1,1] with e € Hy ) we
define the multi-linear expression

(7.3) Nino g o(fere € Hiy) Z ST fel@) ad @) o8 ().
Zy e€Hy,
as well as
(7.4) M,\ ., Q(fe; ee Hﬁk) = Eieq M?—i—Q(q L) (fe;e € Hgk)
where Q(q, L) = Q1(q, L) x -+ x Qu(q, L) with each Q;(q,L) = (¢ZnN [ ])2"7~+3 and
(7.5) ME(fese € Hip) =E, com - E, 5 H folz,)
eE'H'jk_

foranycube@QQoftheformézél X e X@dwith@ngi for 1 <i<d.
We note that it is easy to show, as in the continuous, that if S C @ with |S| > §|Q| for some ¢ > 0 then

(7.6) MS ,o(sse € Hyy) = 6™ — O(e)
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for all scales A € ¢vN with 0 < A\ < el(Q). In light of this observation and the discussion preceding
Proposition 6.1 the proof of Theorem 1.4 reduces, as it did in the continuous setting, to the following

Proposition 7.1. Let 0 < ¢ <« 1. There exist positive integers J; = Ju(e) and qq(e) such that for any
(g,qa(g)7%)-admissible sequence of scales 1(Q) > Ly > --- > Ly, and S C Q there is some 1 < j < Jy such
that

(7.7) Ninog0(lsi e € Hiy) = MR, o(lsie € Hy,) + O(e),
for all X € ¢;v'N with Lj 1 <\ < Lj with qj := qa(e)’.

Quantitative Remark. A careful analysis of our proof reveals that there exist choices of Jy(€) and ¢q(e) which
are less than Wy(log(Cac™?)) and Wy(Cae™13) respectively where Wy, (m) is again the tower-exponential
function defined by Wi(m) = exp(m) and Wy41(m) = exp(W(m)) for k& > 1.

The proof of Proposition 7.1 follows along the same lines as the analogous result in the continuous setting.
As before we will compare the averages N/{iAO}q’Q(fE; e € Hﬁk) to those of Mﬁl\’q,Q (fe;e € Hﬁk), at certain

scales ¢ and A € ¢v/N with with Ljt1 <A< Ly, inductively for 1 < k < d. As the arguments closely follow
those given in Section 5 we will be brief and emphasize mainly just the additional features.

7.1. Reduction of Proposition 7.1 to a more general “local” counting lemma.

For any given 1 < k < d and a family of functions f. : Q) — [~1,1] with e € Hﬁk it is easy to see that
for any € > 0, scale Ly > 0 dividing the side-length I(Q), and ¢o|g we have

(7.8) NgAO,q,Q(fe; e € Hyy) = Erery 100 N)K\IA",q,QL(qO,LU)(fe,E; e € Hy,,) +O0(e)
and
(7.9) ./\/lfl\7q7Q(fe; ec ’Hﬁk) =Eier, o Mi,q,QL(qo,Lo)(feb ec ’Hﬁk) +0(¢e)

provided 0 < A < eLg where f.; denotes the restriction of a function f. to the cube Q¢(qo, Lo)-

Thus the proof of Proposition 7.1 reduces to showing that the expressions in (7.8) and (7.9) only differ by
O(e) for all scales \ € gv'N with Ljt1 < X< Ly, given an (e, g)-admissible sequence Ly > Ly > --- > Ly, for
any collection of bounded functions f., e € 'H:,i & t € T'qy,00,0- Indeed, our crucial result will be the following
Proposition 7.2 (Local Counting Lemma in Z™). Let 0 < ¢ < 1 and qo, M € N.

There exist positive integers J, = Ji(e, M) and qi(g) such that for any (e, q7,)-admissible sequence of
scales Lo > Ly > --- > Ly, with Ly dividing 1(Q) and q; := qo qi(€)? for j > 1, and collection of functions

[0 Qi (qo, Lo) i— [=1,1] with e € 'Hik, 1<m<Mandt €lyy 100

€

there exists 1 < j < J and a set T, C Ty 1.0 of size |T;| < €|l'g.1y,Q| such that
(7'10) NgAO,%:Q;(Qo’LO)(fei; ec /Hg,k) = Mi,t]j,Qg(QU,Lo)(fe’i; ec /Hg,k) + O(E)
for all A € qj\/N with Ljt1 <A< L; and t ¢ T, uniformly in e € Hﬁk and 1 <m < M.

Note that if k =d, Lo = I(Q), go = M =1, then |T'y, 1,,0| = 1, and moreover if f.; = 1g for all e € ’Hﬁk
for a set S C @, then Proposition 7.2 reduces to precisely Proposition 7.1. In fact, Proposition 7.2 is a
parametric, multi-linear and simultaneous extension of Proposition 7.1 which we need in the induction step,
i.e. when going from level & — 1 to level k.

7.2. Proof of Proposition 7.2. We will prove Proposition 7.2 by induction on 1 < k < d.
For k =1 this is basically Proposition 6.2, exactly as it was in the base case of the proof of Proposition 5.3.

For the induction step we will again need two main ingredients. The first establishes that the our
multi-linear forms N, wolfee€ H;,.) are controlled by a box-type norm attached to scales ¢’ and L.

Let Q = Q1 % ... x Qq with Q; C Z2™*3 be cubes of equal side length [(Q) and 1 < k < d. For any scale
0 < L < 1(Q) and function f : Qe — [—1, 1] with e’ € Hg i we define its local box norm at scales ¢’ and L by

k k
(7.11) Hf”ZDq/TL(Qe,) = Eseq., Hf”QD(QQ(q/,L))
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where
(7.12) ||f||D(Q B, ened  Bopt 2iaco, H f(@iey, - xrey)
([1,...,Zk)€{1,2}k
for any cube Q of the form Q = Q; X --- x Qx. We note that (7.4) and (7.5) are special cases of (7.11) and
(7.12) with k =d, n=(2,...,2), and f, = f for all e € "Hid.
Lemma 7.1 (A Generalized von-Neumann inequality on Z™). Let 1 < k < d.

Let 0 < e < 1, ¢,¢ € N with qq1(¢)|¢, and A € ¢v'N with A < 1(Q) and 1 < L < (EQk)lo)\. For any
collection of functions fe : Qr(ey — [—1,1] with e € Hgk we have both

(7.13) ‘NAAO a0, Q(fe7e € Hd k )| < eg_}n erHEI 1,0 (Qnr(e)) +O(e)
d,k
and
(7.14) MG o(fese € HE I < fnin 1fello, 1 (@uey)-
d,k

The proof of inequalities (7.13) and (7.14) follow exactly as in the continuous case, see Lemma 5.1, using
Lemma 6.1 in place of Lemma 3.1. We omit the details.

The crucial ingredient is again a parametric weak hypergraph regularity lemma, i.e. Lemma 5.2 adapted
to the discrete settings. The proof is essentially the same as in the continuous case, with exception that
the 0y ;-norms are replaced by U, r,-norms where g; = goq’ is a given sequence of positive integers and
Ly>Ly>--->Lyisan (e,qs)-admissible sequence of scales. To state it we say that a o-algebra B on a
cube Q is of scale (g, L) if it is refinement of the grid G, 1@, i.e. if its atoms partition each cube Q:(g, L) of
the grid. We will always assume that ¢|L and L|I(Q). Recall also that we say the complexity of a o-algebra
B is at most m, and write complex(B) < m, if it is generated by m sets.

Lemma 7.2 (Parametric weak hypergraph regularity lemma for Z").

Let0<e<1,1<k<d, qo,q,Lo, M €N, and let q; := qoq’ for j > 1. There exists J = O(Ms_ZHB)

such that for any (62k,qjk)—admissible sequence Lo > Ly > --- > Lj_with the property that Lo divides 1(Q)
and collection of functions

f& Qe (a0, Lo) = [=1,1] with e € Hyy, 1 <m <M, and t € Lgy,10,0

there is some 1 < j < Jy, and o-algebras Ber; of scale (g, Lj) on Q¢ (q0, Lo) for each t € Ty, 1, and
e’ € Hay such that

(7.15) 17 = B(UEeBre). 0y, ny0 (@, (L) S €
uniformly for allt ¢ T., e € Hy,, and 1 <m < M, where T. C Ty, 1,0 with |T:| < €|y 1,.0]-

Moreover, the o-algebras Bery have the additional local structure that the exist o-algebras Be y s on
Qs (q;,L;) with complex(Be jr,s) = O(j) for each s € Ty, 1,.q, € € Hay, and § € O’ such that if
ERS Qﬁ(qu LO): then

(7.16) Ber g

@iy = V Bers

i/ €de’

The proof of Lemma 7.2 follows exactly as the corresponding proof of Lemma 5.2 in the continuous setting,
so we will omit the details. We will however provide some details of how one deduces Proposition 7.2, from
Lemmas 7.1 and 7.2. The arguments are again very similar to those in the continuous setting, however one
needs to make a careful choice of the integers g (e), appearing in the statement of the Proposition.

Proof of Proposition 7.2. Let 2 < k < d and assume that the lemma holds for k — 1.
Let 0 < e < 1and g1 :=exp (—Cle_2k+3) for some large constant Cy = Ci(n, k,d) > 1.

We then define gi(g) := qx_1(g1) recalling that q;(¢) := lem{1 < ¢ < Ce~'°} and note that it is easy
to see by induction that g;(g)|gr(e’) for 0 < & < e and qx—1(¢)|gx(e). We further define the function
F(e) := Jy_1(e1, M) with M = ;' and recall that qj = qo qi(g)’ for j > 1.
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We now proceed exactly as in the proof of Proposition 5.3 but with {L;};>1 being a (¢1, ¢7)-admissible
sequence of scales, with J > F(e) Ji(e, M). We again choose a subsequence {Li} C{L;} so that Ly = Lo
and index(L} ;) > index(L}) 4+ F(e) 4 2, but also now set ¢j = ¢;, where j' := index(L};). Lemma 7.2
then guarantees the existence of o-algebras B, of scale (g;, L;) on @y, (qo, Lo) for each t € I'y, 1, and
e’ € Hqr, with the local structure described above, such that (7.15) holds uniformly for all ¢ ¢ T/, e € H%k,
and 1 <m < M, for some 1 < j < Jy(e, M) = O(Me=2"""), where T! CTq.n0,0 With |TZ| < e|Tq.10.0l-

Arguing as in the proof of Proposition 5.3 we can conclude from this that for each j* <1 < J' we have

(7.17) N/{iA%ql,QE(q_;,L;)(feT?g? ec Hg,k) = Z%,z,m NAdA%ql,Qi(q_;,L(j) (yﬁé; fe /Hg,k,l) +O(e)
and

d m n d T, n
(7.18) M a@uta; ) (fesi e € Hp) = Z%é,m M\ a1.Q.(a),L)) (95,5 T € Hypy) +O(e)

provided (s_2k)1°L;-+1 < A with A € ¢v/N, where each |a ... | < 1 and number of index vectors r = (re)eerz
is R” with D := [Hy,| and hence R” < M if Cy > 1.

By induction, we apply Proposition 7.2 to the sequence of scales L} = Ljs > Lji1q1 >+ > Ly =L}
with e > 0 and for ¢ := ¢ qr(e)i" = q;’ Qr—1(e1)79" where j < 1 < J' with respect to the family of
functions g;f : ng (¢j, L) — [=1,1]. This is possible as J" — j' > Ji_1(e1, RP) and our sequence of scales
is (e1, ¢yr)-admissible. Thus there exists an index j' <1 < J’ such that for all A € aVN with Ly, <A< I
we have

(7.19) NgAU,ql,Qi(q;,L_’j) (95 F€EHap 1) = M()i\,ql,Qi(q_;,L;.) (956 F € Hap_y) +O(en)

uniformly in r for s ¢ S.,, where S, C Ly 11, is a set of size |Se, | < 51|Fq;,L3,Q\.

The remainder of the proof follows as just as it did for Proposition 5.3. O

8. APPENDIX: A SHORT DIRECT PROOF OF PART (I) OF THEOREM B’

We conclude by providing a short direct proof of Part (i) of Theorem B’, namely the following

Theorem 8.1 (Magyar [17]). Let 0 < § <1 and A C Z?**3 be a non-degenerate simplex of k points.

If S C Z2**+3 has upper Banach density at least §, then there exists an integer qo = qo(8) and Ao = Xo(S, A)
such that S contains an isometric copy of goAA for all A € VN with X > ).

For any € > 0 we define
¢- :=1lem{l < ¢ < Ce71%

with C' > 0 a (sufficiently) large absolute constant. Following [14] we further define S C Z" to be e-uniformly
distributed (modulo ¢ ) if its relative upper Banach density on any residue class modulo ¢. never exceeds
(1 + £2) times its density on Z", namely if

(S s+ (a:2)") < (1+€%)6%(S)

for all s € {1,...,¢.}%. It turns out that this notion is closely related to the U} ; (Q)-norm introduced in
Section 6. Recall that for any cube @ C Z™ and function f : @ — [—1, 1] we define
1 1/2
(8.1) 1710301 = (g7 221 * xan 0)
teQ
with g,z denoting the normalized characteristic function of the cubes Q(g, L) := [—£, £]" N (¢Z)". Note

that the Uql, 1 (@)-norm measures the mean square oscillation of a function with respect to cubic grids of size
L and gap q.

The following observation from [14] (specifically Lemmas 1 and 2) is key to our short proof of Theorem 8.1.
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Lemma 8.1. Let ¢ > 0. If S C Z"™ be e-uniformly distributed with 6 := 6*(S) > 0, then there exists an
integer L = L(S,€) > 0 and cubes Q of arbitrarily large side length 1(Q) with 1(Q) > e~ *L such that

I1s —8lolluz @) = O).

Let A® = {v; = 0,vs,...,v;} be a fixed non-degenerate simplex of k points in Z" with n = 2k + 3 and
define ¢;; :=v; - v; for 2 < 4,5 < k. We now define a function which counts isometric copies of AAO,

Recall, see [17], that a simplex A = {my = 0,...,m;} C Z" is isometric to AA? if and only if m;-m; = A\?t;;
for all 2 < i,j < k. For any A € VN we define Syao(ma,...,my) : Z"*~1 — {0,1} be the function whose
value is 1 if m; - m; = )\Qtij for all 2 <4, < k and is equal to 0 otherwise. It is a well-known fact in number
theory, see [11] or [17], that for n > 2k + 1 we have that

ST Saao(ma,..mg) = p(A%) ARED (1L O(AT))

for some absolute constant 7 > 0 and constant p(A%) > 0, the so-called singular series, which can be
interpreted as the product of the densities of the solutions of the above system of equations among the p-adics
and among the reals. Thus if we define

oan0 = p(A%)TIAT (RN G,
then oyao0 is normalized in so much that
> oaao(ma, ... my) =14+ 0(AT)
mo,...,Mg
for some absolute constant 7 > 0.
Let Q@ C Z"™ be a fixed cube and let [(Q) denotes its side length. For any family of functions
fh"')fk‘ : Q_> [_1’1]
and 0 < A < [(Q) we define
(8.2) Ninoo(fts o fu) =Emieq >, filmy)... fr(mi) orao(ma —ma, ... mg —my).
ma,..., Mk

It is clear that if f; = --- = fi = 1g restricted to @, then the above expression is a normalized count
of the isometric copies of AMA? in S N Q. Thus, Theorem 8.1 will follow from Lemma 8.1 and the following
special case (with ¢ = 1) of Lemma 6.1.

Lemma 8.2 (A Generalized von Neumann inequality). Let 0 < ¢ < 1.

If X € VN with A < 1(Q) and 1 < L < €'\ then for any collection of functions f1,..., fr: Q — [~1,1]
we have

(83 Na gt oSl < min, 15l (@ + 0.
This compares with the purely number theoretic fact that the number of simplices A = {v; = 0,v2,..., v} C

Z™ isometric to AA? is asymptotic to p(A°) A=k)(k=1) Thus, under the same conditions as in Lemma 8.2,
we have

(8.4) Niroo(lg,---,19) =1+ O T) + O(e)
provided one also has A < €l(Q).

Proof of Theorem 8.1. Let 0 < ¢ < 6% and S C Z" be a set of upper Banach density 4.

We assume first that S is e-uniformly distributed. Select a scale L = L(e,S) and a sufficiently large cube
Q so that the conclusion of Lemma 8.1 holds. For a given A € v'N with A < el(Q) and L < 'O\ write

1lg = d1g + ¢ and substitute this decomposition into the multi-linear expression NiAo_’Q(ls, ...y 1g). Then
by Lemma 8.2 and (8.3)-(8.4), we have that
(8.5) Niroo(ls, ... 1g) > 6" = O(e)

and we can conclude that S must contain an isometric copy of AA°.
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If S is not e-uniformly distributed, then its upper Banach density is increased to at least d; := (1 + £2)§
when restricted to a residue class s+ (g-Z)". Identify s+ (g-Z)" with Z" and simultaneously the set S|, (4.7)»
with a set S; C Z", via the map y — ¢-*(y — s). Note that if S; is e-uniformly distributed then it contains
an isometric copy of AA for all sufficiently large A € v/N and hence S contains an isometric copy of g-AA°.

Repeating the above procedure one arrives to a set S; = 7S — sj) € Z" for some s; € Z™ in
j = O(log 1) steps which contains an isometric copy of AA? for all sufficiently large \ € VN. |
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