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measure-preserving transformations on σ -finite measure spaces. We also
establish corresponding maximal inequalities on L p for 1 < p ≤ ∞ and
ρ-variational inequalities on L2 for 2 < ρ < ∞. This gives an affirmative
answer to the Furstenberg–Bergelson–Leibman conjecture in the linear case
for all polynomial ergodic averages in discrete nilpotent groups of step two.Our
proof is based on almost-orthogonality techniques that go far beyond Fourier
transform tools, which are not available in the non-commutative, nilpotent
setting. In particular, we develop what we call a nilpotent circle method that
allows us to adapt some of the ideas of the classical circle method to the setting
of nilpotent groups.
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1 Introduction

1.1 The Furstenberg–Bergelson–Leibman conjecture

Assume that (X,B(X), μ) denotes a σ -finite measure space. Let Z[n] denote
the space of all polynomials P(n) with one indeterminate n and integer coef-
ficients. Given any family of invertible measure-preserving transformations
T1, . . . , Td : X → X , d ≥ 1, a measurable function f ∈ L p(X), p ≥ 1, poly-
nomials P1, . . . , Pd ∈ Z[n], and an integer N ≥ 1, we define the polynomial
ergodic averages

AP1,...,Pd
N ;X,T1,...,Td ( f )(x)

:= 1

|[−N , N ] ∩ Z|
∑

n∈[−N ,N ]∩Z

f (T P1(n)
1 · · · T Pd (n)

d x), x ∈ X. (1.1)

A fundamental problem in ergodic theory is to establish convergence in
norm and pointwise almost everywhere for the polynomial ergodic averages
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(1.1) as N → ∞ for functions f ∈ L p(X), 1 ≤ p ≤ ∞. The problem
goes back to at least the early 1930’s with von Neumann’s mean ergodic
theorem [55] and Birkhoff’s pointwise ergodic theorem [10] and led to pro-
found extensions such as Bourgain’s polynomial pointwise ergodic theorem
[11–13] and Furstenberg’s ergodic proof [24] of Szemerédi’s theorem [53] in
particular. Furstenberg’s proof was also the starting point of ergodic Ramsey
theory, which resulted in many natural generalizations of Szemerédi’s theo-
rem, including a polynomial Szemerédi theorem of Bergelson and Leibman
[7] that motivates the following far reaching conjecture:

Conjecture 1.1 (Furstenberg–Bergelson–Leibman conjecture [8, Section 5.5,
p. 468]) Given integers d, k,m, N ∈ Z+, let T1, . . . , Td : X → X be a fam-
ily of invertible measure-preserving transformations of a probability measure
space (X,B(X), μ) that generates a nilpotent group of step k. Assume that
P1,1, . . . , Pi, j , . . . , Pd,m ∈ Z[n] are such that Pi, j (0) = 0. Then for any
f1, . . . , fm ∈ L∞(X), the non-conventional multiple polynomial averages

A
P1,1,...,Pd,m
N ;X,T1,...,Td ( f1, . . . , fm)(x)

= 1

|[−N , N ] ∩ Z|
∑

n∈[−N ,N ]∩Z

m∏

j=1

f j (T
P1, j (n)
1 · · · T Pd, j (n)

d x) (1.2)

converge for μ-almost every x ∈ X as N → ∞.

Conjecture 1.1 is a major open problem in ergodic theory that was promoted
in person by Furstenberg, see [1, p. 6662] and [36], before being published
in [8]. Bergelson–Leibman [8] showed that convergence may fail if the trans-
formations T1, . . . , Td generate a solvable group, so the nilpotent setting is
probably the appropriate setting for Conjecture 1.1. Our main goal in this
paper is to establish this conjecture in the linear m = 1 setting in the case
when T1, . . . , Td generate a nilpotent group of step two.

A few remarks about this conjecture and the current state of the art are in
order.

1. The averages (1.2) are multilinear generalizations of the averages (1.1)
in the case m = 1 and Pj,1 = Pj for all j ∈ {1, . . . , d}. The basic case
d = k = m = 1with P1,1(n) = n follows fromBirkhoff’s ergodic theorem
[10].

2. The case d = k = m = 1 with an arbitrary polynomial P1,1 ∈ Z[n]
was a famous open problem of Bellow [3] and Furstenberg [25] solved by
Bourgain in his breakthrough papers [11–13].

3. Some particular examples of averages (1.2) with m = 1 and polynomial
mappings with degree at most two in the step two nilpotent setting were
studied in [32,43].
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4. The multilinear theory, in contrast to the commutative linear theory, is
widely open. Only a few results in the bilinear m = 2 and commutative
d = k = 1 setting are known. Bourgain [14] proved pointwise convergence
when P1,1(n) = an and P1,2(n) = bn, a, b ∈ Z. More recently, the
third author with Krause and Tao [38] established pointwise convergence
for the polynomial Furstenberg–Weiss averages [26,27] corresponding to
P1,1(n) = n and P1,2(n) = P(n), deg P ≥ 2.

5. Except for these few cases, there are no other results concerning pointwise
convergence for the averages (1.2). The situation is completely different,
however, for the question of norm convergence. A breakthrough paper of
Walsh [56] (see also [1]) gives a complete picture of L2(X) norm conver-
gence of the averages (1.2) for any T1, . . . , Td ∈ G where G is a nilpotent
group of transformations of a probability space. Prior to this, there was an
extensive body of research towards establishing L2(X) norm convergence,
including groundbreaking works of Host–Kra [28], Ziegler [57], Bergelson
[4], and Leibman [40]. See also [2,20,23,29,54] and the survey articles
[5,6,22] for more details and references, including a comprehensive histor-
ical background.

1.2 Statement of the main results

We can now state the main result of this paper.

Theorem 1.2 (Main result) Let d1 ∈ Z+ be given and let T1, . . . , Td1 : X →
X be a family of invertible measure-preserving transformations of a σ -finite
measure space (X,B(X), μ) that generates a nilpotent group of step two.
Assume that P1, . . . , Pd1 ∈ Z[n] are such that Pj (0) = 0, 1 ≤ j ≤ d1, and
let d2 := max{deg Pj : j ∈ {1, . . . , d1}}. Assume f ∈ L p(X), 1 ≤ p ≤ ∞,

and let A
P1,...,Pd1
N ;X ( f ) = A

P1,...,Pd1
N ;X,T1,...,Td1 ( f ) be the averages defined in (1.1).

(i) (Mean ergodic theorem) If 1 < p < ∞, then the averages A
P1,...,Pd1
N ;X ( f )

converge in the L p(X) norm as N → ∞.
(ii) (Pointwise ergodic theorem) If 1 < p < ∞, then the averages

A
P1,...,Pd1
N ;X ( f ) converge pointwise almost everywhere as N → ∞.

(iii) (Maximal ergodic theorem) If 1 < p ≤ ∞, then one has

∥∥ sup
N∈Z+

|AP1,...,Pd1
N ;X ( f )|∥∥L p(X) �d1,d2,p ‖ f ‖L p(X). (1.3)

The implicit constant in (1.3) may depend on d1, d2, and p, but is inde-
pendent of the coefficients of the underlying polynomials.
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The restriction p > 1 is necessary in the case of nonlinear polynomials as
was shown in [15,39]. We provide now a few remarks about Theorem 1.2.

1. Parts (ii) and (iii) of Theorem 1.2 are completely new even in the case
p = 2 and extend Bourgain’s polynomial ergodic theorems [11–13] to the
non-commutative nilpotent setting. In particular, Theorem 1.2 (ii) gives an
affirmative answer to Conjecture 1.1 for all polynomials P1, . . . , Pd1 ∈
Z[n] and all measure-preserving transformations T1, . . . , Td1 : X → X
generating a nilpotent group of step two. Moreover, Theorem 1.2 gives
affirmative answers to [33, Problems 1, 2] for nilpotent groups of step two.

2. If (X,B(X), μ) is a probability space and the family of measure preserv-
ing transformations (T1, . . . , Td1) is totally ergodic, then Theorem 1.2(ii)
implies that

lim
N→∞ A

P1,...,Pd1
N ;X ( f )(x) =

∫

X
f (y)dμ(y) (1.4)

μ-almost everywhere on X . We recall that a family of measure preserving
transformations (T1, . . . , Td1) is called ergodic on X if T−1

j (B) = B for
all j ∈ {1, . . . , d1} implies μ(B) = 0 or μ(B) = 1 and is called totally
ergodic if the family (T n

1 , . . . , T
n
d1
) is ergodic for all n ∈ Z+. In view of

(1.4), we see that the polynomial orbits

Ox := {
T P1(n)
1 · · · T Pd1 (n)

d1
x : n ∈ Z

}

have a limiting distribution and, in fact, are uniformly distributed for μ-
almost every x ∈ X when the family (T1, . . . , Td1) is totally ergodic.

3. The conclusion of the mean ergodic Theorem 1.2(i) follows from [56] if
(X,B(X), μ) has finite measure, but our proof allows one to deal with the
more general σ -finite setting.

1.3 The universal step-two group G0

Theproof ofTheorem1.2will follow fromour secondmain result, Theorem1.3
below, for averages on universal nilpotent groups of step two. We start with
some definitions. For integers d ≥ 1, we define

Yd := {(l1, l2) ∈ Z × Z : 0 ≤ l2 < l1 ≤ d}

and the “universal” step-two nilpotent Lie groups G
#
0 = G

#
0(d)

G
#
0 := {(xl1l2)(l1,l2)∈Yd : xl1l2 ∈ R}, (1.5)
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with the group multiplication law

[x · y]l1l2
:=

{
xl10 + yl10 if l1 ∈ {1, . . . , d} and l2 = 0,

xl1l2 + yl1l2 + xl10yl20 if l1 ∈ {1, . . . , d} and l2 ∈ {1, . . . , l1 − 1}.
(1.6)

Alternatively, we can also define the group G
#
0 as the set of elements

g = (g(1), g(2)), g(1) = (gl10)l1∈{1,...,d} ∈ R
d ,

g(2) = (gl1l2)(l1,l2)∈Y ′
d

∈ R
d ′
, (1.7)

where d ′ := d(d − 1)/2 and Y ′
d := {(l1, l2) ∈ Yd : l2 ≥ 1}. Letting

R0 : R
d × R

d → R
d ′

denote the bilinear form [R0(x, y)]l1l2 := xl10yl20,

(1.8)

we notice that the product rule in the group G
#
0 is given by

[g · h](1) := g(1) + h(1), [g · h](2) := g(2) + h(2) + R0(g
(1), h(1)) (1.9)

if g = (g(1), g(2)) and h = (h(1), h(2)). For any g = (g(1), g(2)) ∈ G
#
0, its

inverse is given by

g−1 = ( − g(1),−g(2) + R0(g
(1), g(1))

)
.

The second variable of g = (g(1), g(2)) ∈ G
#
0 is called the central variable.

Based on the product structure (1.9) of the group G
#
0, it is not difficult to see

that g · h = h · g for any g = (g(1), g(2)) ∈ G
#
0 and h = (0, h(2)) ∈ G

#
0.

Let G0 = G0(d) denote the discrete subgroup

G0 := G
#
0 ∩ Z

|Yd |. (1.10)

Let A0 : R → G
#
0 denote the canonical polynomial map (or the moment curve

on G
#
0)

[A0(x)]l1l2 :=
{
xl1 if l2 = 0,

0 if l2 
= 0,
(1.11)
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and notice that A0(Z) ⊆ G0. For x = (xl1l2)(l1,l2)∈Yd ∈ G
#
0 and � ∈ (0,∞),

we define

� ◦ x := (�l1+l2xl1l2)(l1,l2)∈Yd ∈ G
#
0. (1.12)

Notice that the dilations �◦ are group homomorphisms on the group G0 that
are compatible with the map A0, i.e. � ◦ A0(x) = A0(�x).

Let χ : R → [0, 1] be a smooth function supported on the interval [−2, 2].
Given any real number N ≥ 1 and a finitely supported function f : G0 → C,
we can define a smoothed average along the moment curve A0 by the formula

Mχ
N ( f )(x) :=

∑

n∈Z

N−1χ(N−1n) f (A0(n)
−1 · x), x ∈ G0. (1.13)

The main advantage of working on the group G0 with the polynomial map
A0 is the presence of the compatible dilations �◦ defined in (1.12), which
lead to a natural family of associated balls. This can be efficiently exploited
by noting that Mχ

N is a convolution operator on G0.
The convolution of functions on the group G0 is defined by the formula

( f ∗ g)(x) :=
∑

y∈G0

f (y−1 · x)g(y) =
∑

z∈G0

f (z)g(x · z−1). (1.14)

Then it is not difficult to see that Mχ
N ( f )(x) = f ∗ GχN (x), where

GχN (x) :=
∑

n∈Z

N−1χ(N−1n)1{A0(n)}(x), x ∈ G0. (1.15)

We are now ready to state our second main result.

Theorem 1.3 (Boundedness on G0) Let G0 = G0(d), d ≥ 1, be the discrete
nilpotent group defined in (1.10). For any f ∈ �p(G0), 1 ≤ p ≤ ∞, let
Mχ

N ( f ) be the average defined in (1.13)with a smooth functionχ : R → [0, 1]
supported on the interval [−2, 2].
(i) (Maximal estimates) If 1 < p ≤ ∞, then one has

∥∥ sup
N≥1

|Mχ
N ( f )|

∥∥
�p(G0)

�d,p,χ ‖ f ‖�p(G0). (1.16)

(ii) (Long variational estimates) If 1 < p < ∞, ρ > max
{
p, p

p−1

}
, and

τ ∈ (1, 2], then
∥∥V ρ

(
Mχ

N ( f ) : N ∈ Dτ

)∥∥
�p(G0)

�d,p,ρ,τ,χ ‖ f ‖�p(G0), (1.17)
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where Dτ := {τ n : n ∈ N}. See (2.3) for the definition of the ρ-variation
seminorms V ρ .

Some comments are in order.

1. Theorem 1.3 will be used to prove Theorem 1.2. The main tool in this
reduction will be the Calderón transference principle [16], and the details
will be given in Sect. 3.

2. Theorem 1.3 extends the results of [44,47] to the non-commutative, nilpo-
tent setting. Its conclusions remain true for rough averages, i.e. when
χ = 1[−1,1] in (1.13), but it is more convenient to work with smooth
averages.

3. The restriction p > 1 in Theorem 1.3 is sharp due to [15,39]. However, the
range of ρ > max

{
p, p

p−1

}
is only sharp when p = 2 due to Lépingle’s

inequality [41]. One could hope to improve this to the full range ρ > 2
for exponents p 
= 2, but only at the expense of additional complexity
in the proof. We do not address this here since the limited range ρ >

max
{
p, p

p−1

}
is already sufficient for us to establish Theorem 1.2.

1.4 Overview of the proof

We will show in Sect. 3 that Theorem 1.2 is a consequence of Theorem 1.3
upon performing lifting arguments and adapting the Calderón transference
principle. Our main goal therefore is to prove Theorem 1.3, which takes up
the bulk of this paper.

Bourgain’s seminal papers [11–13] generated a large amount of research
and progress in the field. Many other discrete operators have been analyzed
by many authors motivated by problems in Analysis and Ergodic Theory. See,
for example, [15,32,34,37–39,42–44,46,47,49,50,52] for some results of this
type andmore references. A common feature of all of these results, which plays
a crucial role in the proofs, is that one can use Fourier analysis techniques, in
particular, the powerful framework of the classical circle method, to perform
the analysis.

Our situation in Theorem 1.3 is different as new difficulties arise. The main
issue is that there is no good Fourier transform on nilpotent groups that is
compatible with the structure of the underlying convolution operators and at
the level of analytical precision of the classical circle method. The second
obstacle is the absence of a good delta function compatible with the group
multiplication on (G0, ·) (defined in (1.6)). This prevents us from using a
naive implementation of the circle method. The classical delta function
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1{0}(x−1 · y) =
∫

Td×Td′ e((y
(1) − x (1)).θ (1))e((y(2) − x (2)).θ (2)) dθ(1)dθ(2),

(1.18)

does not detect the group multiplication correctly, see Sect. 2 and (2.2) for
notation.

These two issues lead to very significant difficulties in the proof and require
substantial new ideas. We developed the following tools to circumvent these
problems:

(i) Classical Fourier techniques will be replaced with almost-orthogonality
methods based on exploiting high order T T ∗ arguments for operators
defined on the discrete group G0 which arise in the proof of Theorem 1.3.
Studying high powers of T T ∗ (i.e. (T T ∗)r for a large r ∈ Z+) allows for
a simple heuristic lying behind the proof of Waring-type problems to be
used efficiently (and rigorously) in the context of our proof. This heuristic
says that, the more variables that occur in the Waring-type equation, the
easier is to find a solution. Manipulating the parameter r (usually taking r
to be very large), we can always decide howmany variables we have at our
disposal, making the operators in our questions “smoother and smoother”.

(ii) Our main new construction in this paper is what we call a nilpotent circle
method, an iterative procedure, starting from the center of the group and
moving down along its central series, that allows us to use some of the
ideas of the classical circlemethod recursively at every stage. In our case of
nilpotent groups of step two, the procedure consists of two basic iterations
and one additional step corresponding to “major arcs”. The key feature
of this approach is that it is adapted to the classical delta function as in
(1.18). The minor arcs analysis needs two types of Weyl’s inequalities:
the classical one as well as the nilpotent one in the spirit of Davenport
[21] and Birch [9], which was proved in [33]. The major arcs analysis
brings into play some tools that combine continuous harmonic analysis
on groups G

#
0 with arithmetic harmonic analysis over finite integer rings

modulo Q ∈ Z+.

We outline the argument in Sect. 1.4.1 below.

1.4.1 A nilpotent circle method and �2 theory

To illustrate our main iterative procedure, it suffices to consider the bounded-
ness of the maximal function Mχ

N on �2(G0). We would like to prove that

∥∥ sup
k≥0

| f ∗ Gχ
2k

|∥∥
�2(G0)

� ‖ f ‖�2(G0)
. (1.19)
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Inequality (1.19) involves a genuinely sublinear operator, preventing a naive
implementation of high order T T ∗ arguments. This contrasts sharply with the
situation of singular integral operators studied in [33].We beginwith a delicate
decomposition of the kernels Gχ

2k
adjusted to the nilpotent structure of the

underlying group G0. Notice that these kernels have a product structure

Gχ
2k
(g) := Lk(g

(1))1{0}(g(2)),

Lk(g
(1)) :=

∑

n∈Z

2−kχ(2−kn)1{0}(g(1) − A(1)0 (n)), (1.20)

where A(1)0 (n) := (n, . . . , nd) ∈ Z
d and g = (g(1), g(2)) ∈ G0 as in (1.7).

First stage.We start by decomposing the kernelsGχ
2k
in the central variable.

For any integers s ≥ 0 and m ≥ 1, we define the set of rational fractions

Rm
s := {a/q : a = (a1, . . . , am) ∈ Z

m,

q ∈ [2s, 2s+1 − 1] ∩ Z, gcd(a1, . . . , am, q) = 1}. (1.21)

We define alsoRm≤a := ⋃
0≤s≤a Rm

s . For x
(1) = (x (1)l10

) ∈ R
d , x (2) = (x (2)l1l2

) ∈
R
d ′
and � ∈ (0,∞), we define the partial dilations

� ◦ x (1) = (�l1x (1)l10
)l1∈{1,...,d} ∈ R

d ,

� ◦ x (2) = (�l1+l2x (2)l1l2
)(l1,l2)∈Y ′

d
∈ R

d ′
, (1.22)

which are induced by the group-dilations defined in (1.12). We fix a small
constant δ = δ(d) � 1, a large constant D = D(d) � δ−8, and a smooth
even cutoff function η0 : R → [0, 1] such that 1[−1,1] ≤ η0 ≤ 1[−2,2]. For
k ≥ D2 and s ≤ δk, we define the periodic Fourier multipliers

�k,s(ξ
(2)) :=

∑

a/q∈Rd′
s

η≤δk(2k ◦ (ξ (2) − a/q)),

�c
k := 1 −

∑

s∈[0,δk]
�k,s, (1.23)

where η≤�(x) := η0(|x |/2���) and ��� := max{n ∈ Z : n ≤ �}. Then we
decompose

1{0}(g(2)) =
∑

s∈[0,δk]

∫

Td′ e(g
(2).ξ (2))�k,s(ξ

(2)) dξ (2)

+
∫

Td′ e(g
(2).ξ (2))�c

k(ξ
(2)) dξ (2), (1.24)
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where g(2).ξ (2) denotes the usual scalar product of vectors in R
d ′
and e(z) :=

e2π i z . This induces our first stage decomposition Gχ
2k

= Kc
k +∑

s∈[0,δk] Kk,s ,
where, with the notation in (1.20),

Kk,s(g) := Lk(g
(1))Nk,s(g

(2)), Kc
k (g) := Lk(g

(1))Nc
k (g

(2)), (1.25)

and

Nk,s(g
(2)) := η≤δk(2−k ◦ g(2))

∫

Td′ e(g
(2).ξ (2))�k,s(ξ

(2)) dξ (2),

Nc
k (g

(2)) := η≤δk(2−k ◦ g(2))
∫

Td′ e(g
(2).ξ (2))�c

k(ξ
(2)) dξ (2).

(1.26)

Themain boundswe prove in the first stage are the first minor arcs estimate,

‖ f ∗ Kc
k‖�2(G0)

� 2−k/D2‖ f ‖�2(G0)
(1.27)

for any k ≥ D2 and f ∈ �2(G0), and the first transition estimate,

∥∥ sup
max(D2,s/δ)≤k≤κs

| f ∗ Kk,s |
∥∥
�2(G0)

� 2−s/D2‖ f ‖�2(G0)
(1.28)

for any s ≥ 0 and f ∈ �2(G0), κs := 22D(s+1)2 .
In the commutative setting, minor arcs estimates such as (1.27) follow using

Weyl estimates and the Plancherel theorem. As we do not have a useful Fourier
transform on the group G0, our main tool to prove the bounds (1.27) is a high
order T ∗T argument. More precisely, we analyze the kernel of the convolution
operator {(Kc

k)
∗Kc

k}r , where Kc
k f := f ∗ Kc

k and r is sufficiently large, and
show that its �1(G0) norm is � 2−k . The main ingredient in this proof is
the non-commutative Weyl estimate in Proposition 2.3 (i), which was proved
earlier in [33].

Toprove the transition estimates (1.28),we apply theRademacher–Menshov
inequality (2.7) with a logarithmic loss to reduce to proving the inequality

∥∥∥
∑

k∈[J,2J ]
�k( f ∗ Hk,s)

∥∥∥
�2(G0)

� 2−4s/D2∥∥ f
∥∥
�2(G0)

(1.29)

for any J ≥ max(D2, s/δ) and any coefficients �k ∈ [−1, 1], where Hk,s :=
Kk+1,s−Kk,s . For this, we use a high order version of the Cotlar–Stein lemma,
which relies again on precise analysis of the kernel of the convolution operator
{(Hk,s)

∗Hk,s}r , whereHk,s f := f ∗ Hk,s and r is sufficiently large. The key
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exponential gain of 2−4s/D2
in (1.29) is due to a non-commutative Gauss sums

estimate, see Proposition 2.3 (ii).
Second stage. In view of (1.27)–(1.28) it remains to prove that

∥∥ sup
k≥κs

| f ∗ Kk,s |
∥∥
�2(G0)

� 2−s/D2‖ f ‖�2(G0)
(1.30)

for any fixed integer s ≥ 0. For this, we have to decompose the kernels Kk,s
in the non-central variables. We examine the kernels Lk(g(1)) in (1.20) and
rewrite them as

Lk(g
(1)) = η≤δk(2−k ◦ g(1))

∫

Td
e(g(1).ξ (1))Sk(ξ

(1)) dξ (1) (1.31)

where g(1).ξ (1) denotes the usual scalar product of vectors in R
d and

Sk(ξ
(1)) :=

∑

n∈Z

2−kχ(2−kn)e(−A(1)0 (n).ξ
(1)). (1.32)

For any integers Q ≥ 1 and m ≥ 1, we define the set of fractions

R̃m
Q := {a/Q : a = (a1, . . . , am) ∈ Z

m}. (1.33)

We fix a large denominator Qs := (2Ds+D)! = 1 · 2 · . . . · 2Ds+D and define
the periodic multipliers

� low
k,s (ξ

(1)) :=
∑

a/q∈R̃d
Qs

η≤δ′k(2k ◦ (ξ (1) − a/q)),

�k,s,t (ξ
(1)) :=

∑

a/q∈Rd
t \R̃d

Qs

η≤δ′k(2k ◦ (ξ (1) − a/q)),

�c
k (ξ

(1)) := 1 −� low
k,s −

∑

t∈[0,δ′k]
�k,s,t

= 1 −
∑

a/q∈Rd
≤δ′k

η≤δ′k(2k ◦ (ξ (1) − a/q)),

(1.34)

where δ′ > δ is a suitable constant and the setsRd
t are as in (1.21). Since k ≥

κs = 22D(s+1)2 , it is easy to see that the cutoff functions η≤δ′k(2k◦(ξ (1)−a/q))
have disjoint supports and the multipliers � low

k,s , �k,s,t , �
c
k take values in the

interval [0, 1].
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We then define the kernels L low
k,s , Lk,s,t , Lc

k : Z
d → C by

L∗(g(1)) = φ
(1)
k (g(1))

∫

Td
e(g(1).ξ (1))Sk(ξ

(1))�∗(ξ (1)) dξ (1), (1.35)

where �∗ ∈ {� low
k,s , �k,s,t , �

c
k }, and, finally, our main kernels G low

k,s ,Gk,s,t ,

Gc
k,s : Z

d → C by

G∗(g) := L∗(g(1))Nk,s(g
(2)). (1.36)

The estimates we prove at this stage are the second minor arcs estimate,

‖ f ∗ Gc
k,s‖�2(G0)

� 2−k/D2‖ f ‖�2(G0)
(1.37)

for any s ≥ 0, k ≥ 22D(s+1)2 , and f ∈ �2(G0), and the second transition
estimate,

∥∥ sup
max(κs ,t/δ)≤k≤κt

| f ∗ Gk,s,t |
∥∥
�2(G0)

� 2−t/D2‖ f ‖�2(G0)
(1.38)

for any s ≥ 0, t ≥ Ds + D, and f ∈ �2(G0), where κt := 22D(t+1)2 .
The proofs of these estimates are similar to the proofs of the corresponding

first stage estimates (1.27)–(1.28), using high order T ∗T arguments. Surpris-
ingly, instead of using the non-commutative oscillatory sums estimates in
Proposition 2.3, we only use the classical ones from Proposition 2.2 here. We
emphasize, however, that the underlying nilpotent structure is very important
and that these estimates are only possible after performing the two reductions
in the first stage, namely, the restriction to major arcs corresponding to denom-
inators � 2s and the restriction to parameters k ≥ κs . We finally remark that,
if we applied the circle method simultaneously to both central and non-central
variables, we would encounter serious difficulties that do not allow for an effi-
cient control of the phase functions arising in the corresponding exponential
sums and oscillatory integrals, especially on major arcs.

Final stage. After these reductions, it remains to bound the contributions
of the “major arcs” in both the central and the non-central variables. More
precisely, we prove the bounds

∥∥ sup
k≥κs

| f ∗ G low
k,s |∥∥

�2(G0)
� 2−s/D2‖ f ‖�2(G0)

,

∥∥ sup
k≥κt

| f ∗ Gk,s,t |
∥∥
�2(G0)

� 2−t/D2‖ f ‖�2(G0)
,

(1.39)

123



A. D. Ionescu et al.

for any s ≥ 0, t ≥ Ds + D, and f ∈ �2(G0).
Themain idea here is different:wewrite the kernelsG low

k,s andGk,s,t as tensor
products of two components up to acceptable errors. One of these components
is essentially a maximal average operator on a continuous group, which can
be analyzed using the classical method of Christ [17]. The other component
is an arithmetic operator-valued analogue of the classical Gauss sums, which
generates the key exponential factors 2−s/D2

and 2−t/D2
in (1.39).

1.4.2 �p theory and variation norms

The problem of passing from �2 estimates to �p estimates in the context of
discrete polynomial averages has been investigated extensively in recent years
(see, for example, [44] and the references therein), and we will be somewhat
brief on this.

The full �p(G0) bounds in Theorem 1.3 rely on first proving �2(G0) bounds.
In fact, we first establish (1.17) for p = 2 and ρ > 2, by following essentially
the steps described above. Then we use the positivity of the operators Mχ

N (i.e.
Mχ

N ( f ) ≥ 0 if f ≥ 0) to prove the maximal operator bounds (1.16) for all
p ∈ (1,∞]. Finally, we use vector-valued interpolation between the bounds
(1.17) with p = 2 and ρ > 2 and (1.16) with p ∈ (1,∞] to complete the
proof of Theorem 1.3.

A new ingredient, which is interesting in its own right, is Proposition 9.4,
which provides �p(HQ) bounds for the so-called shifted maximal inequality,
see [51, Section 5.10, p. 78] as well as [48, Section 4.2.4, p. 148] for similar
results in the commutative setting. Tools of these kinds are not apparent in the
commutative theory as the delta function (1.18) correctly detects the underlying
convolution structure. In our case, as we mentioned above, there is no delta
function that would be compatible with the convolution structure on G0. This
is a serious obstruction, which forced us to establish Proposition 9.4. This
completes the outline of the proof of Theorem 1.3.

1.4.3 General nilpotent groups

The primary goal is, of course, to establish the full Conjecture 1.1 in the
linear m = 1 case for arbitrary invertible measure-preserving transformations
T1, . . . , Td that generate a nilpotent group of any step k ≥ 2. The iterative
argument we have outlined in Sect. 1.4.1 could, in principle, be extended to
higher step groups, at least as long as the group and the polynomial sequence
have suitable “universal”-type structure, as one could try to go down along
the central series of the group and prove minor arcs and transition estimates
at every stage.
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However, this is only possible if one can prove suitable analogues of the
nilpotent Weyl’s inequalities in Proposition 2.3 on general nilpotent groups of
step k ≥ 3. The point is to have a small (not necessarily optimal, but nontrivial)
gain for bounds on oscillatory sums over many variables, corresponding to the
kernels of high power (T ∗T )r operators, whenever frequencies are restricted
to theminor arcs. In our case, the formulas are explicit, see the identities (2.23),
and we can use ideas of Davenport [21] and Birch [9] for Diophantine forms
in many variables to control the induced oscillatory sums, but the analysis
seems to be more complicated for the higher step nilpotent groups. This is an
interesting problem in its own right, corresponding to Waring-type problems
on nilpotent groups, which may be interpreted as a question about solutions
of suitable systems of Diophantine equations induced by the moment curve
on G0. A qualitative variant of the Waring problem in the context of nilpotent
groupswas recently investigated in [30,31], see also the references given there.

Nevertheless, we hope that the methods of the proof of Theorem 1.3 will be
useful to establish a quantitative variant of the Waring problem on G0 in the
spirit of the asymptotic formula of Hardy and Littlewood as in the classical
Waring problem.We plan to investigate this question as well as its connections
with Conjecture 1.1 in the near future.

1.5 Organization

In Sect. 2, we summarize our main notation and collect some important lem-
mas. In Sect. 3, we show how to use the conclusions of Theorem 1.3 to prove
Theorem 1.2. In Sect. 4, we outline the main �2(G0) argument in the proof
of Theorem 1.3 and divide this argument into five lemmas. In Sects. 5, 6,
7, and 8, we prove these lemmas, starting with the minor arcs estimates in
Lemmas 4.2 and 4.4, the major arcs estimates in Lemma 4.5, and the (more
difficult) transition estimates in Lemmas 4.3 and 4.6 . In Sect. 9, we prove
the maximal �p(G0) estimates (1.16), p ∈ (1,∞), using some of the more
technical estimates in Appendices A and B.

2 Notation and preliminaries

In this section we set up most of our notation and state some important lemmas
that will be used in the rest of the paper.

2.1 Basic notation

The sets of positive integers and nonnegative integers will be denoted by
Z+ := {1, 2, . . .} and N := {0, 1, 2, . . .}. For d ∈ Z+ the sets Z

d , R
d , C

d
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and T
d := R

d/Zd have standard meaning. We denote R+ := (0,∞) and
Zq := {1, . . . , q} for q ∈ Z+.

For any x ∈ R we let �x� denote its integer part, �x� := max{n ∈ Z :
n ≤ x}. For any a ∈ C

d we will use the Japanese bracket notation 〈a〉 :=
(1 + |a|2)1/2. For any sequence (ak)k∈Z of complex numbers we define the
difference operator by

�kak := ak+1 − ak . (2.1)

We use 1A to denote the indicator function of a set A. We let C > 0 denote
general constants which may change from occurrence to occurrence. For two
nonnegative quantities A, B we write A � B if there is an absolute constant
C > 0 such that A ≤ CB. We will write A � B when A � B � A. For two
quantities A, B we will use A � B to indicate that there is a small constant
C > 0 such that |A| ≤ CB. We will write �δ or �δ or �δ to emphasize that
the implicit constants may depend on the parameter δ.

2.1.1 Function spaces

For an open setU ⊆ R
d letC(U ) denote the space of continuous functions f :

U → C. LetCn(U ) ⊂ C(U ) denote the space of continuous functions f onU
whose partial derivatives of order ≤ n ∈ Z+ all exist and are continuous, and
C∞(U ) := ⋂

n∈Z+ Cn(U ). The partial derivatives of a function f : R
d → C

will be denoted by ∂x j f = ∂ j f ; for any multi-index α ∈ N
d let ∂α f denote

the derivative operator ∂α11 . . . ∂
αd
d f of total order |α| := α1 + · · · + αd .

Given a measure space Y we let L p(Y ), p ∈ [1,∞], denote the standard
Lebesgue spaces of complex-valued functions on Y . These spaces can be
extended to functions taking values in a finite dimensional normed vector
space (B, ‖ · ‖B),

L p(Y ; B) := {
F : Y → B measurable : ‖F‖L p(Y ;B):= ‖‖F‖B‖L p(Y ) < ∞}

.

In our case wewill usually have X = G
#
0 or X = R

d or X = T
d equippedwith

the Lebesgue measure, and X = G0 or X = Z
d endowed with the counting

measure. If X is endowed with counting measure we will shorten L p(X) to
�p(X) and L p(X; B) to �p(X; B).
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2.1.2 The Fourier transform

The standard inner product on R
m , m ≥ 1, is denoted by

x .ξ :=
m∑

k=1

xkξk (2.2)

for every x = (x1, . . . , xm), ξ = (ξ1, . . . , ξm) ∈ R
m . Letting e(z) := e2π i z ,

z ∈ C, the (Euclidean) Fourier transform and inverse Fourier transform of
functions f ∈ L1(Rm) will be denoted by

FRm f (ξ) :=
∫

Rm
f (x)e(−x .ξ ) dx, F−1

Rm f (x) :=
∫

Rm
f (ξ)e(x .ξ ) dξ.

We shall also abbreviate f̂ = FRm f .

2.2 ρ-Variations

For any family (at : t ∈ I) of elements of C indexed by a totally ordered set
I, and any exponent 1 ≤ ρ < ∞, the ρ-variation seminorm is defined by

V ρ(at )t∈I = V ρ(at : t ∈ I) := sup
J∈Z+

sup
t0<···<tJ

t j∈I

( J−1∑

j=0

|a(t j+1)− a(t j )|ρ
)1/ρ

,

(2.3)

where the supremum is taken over all finite increasing sequences in I.
It is easy to see that ρ �→ V ρ is non-increasing, and for every t0 ∈ I one

has

sup
t∈I

|at | ≤ |at0 | + V ρ(at : t ∈ I) ≤ sup
t∈I

|at | + V ρ(at : t ∈ I)

=: Ṽ ρ(at : t ∈ I). (2.4)

Notice that Ṽ ρ clearly defines a norm on the space of functions from I to C.
Moreover

Ṽ ρ(at : t ∈ I) � Ṽ ρ(at : t ∈ I1)+ Ṽ ρ(at : t ∈ I2) (2.5)
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whenever I = I1 ∪ I2 is an ordered partition of I, that is max I1 = min I2.
Finally, if I is at most countable, then

Ṽ ρ(at : t ∈ I) �
(∑

t∈I

|at |ρ
)1/ρ

. (2.6)

We also recall from [46, Lemma 2.5] the Rademacher–Menshov inequality,
which asserts that for any 2 ≤ ρ < ∞ and j0,m ∈ N so that j0 < 2m and any
sequence of complex numbers (ak : k ∈ N) we have

V ρ(a j : j0 ≤ j ≤ 2m) ≤ √
2

m∑

i=0

( ∑

j∈[ j02−i ,2m−i−1]∩Z

∣∣∣a( j+1)2i − a j2i )

∣∣∣
2
)1/2

. (2.7)

Finally, for every family of measurable functions (at : t ∈ I) ⊆ C by a slight
abuse of notation we continue to write

‖V ρ(at : t ∈ I)‖L p(X) = ‖(at )t∈I‖L p(X;V ρ).

2.3 Products and convolutions on the group G0

We now establish formulas that will be repeatedly used in the proof of Theo-
rem 1.3.

Many of our �2(G0) estimates will be based on high order T ∗T arguments.
Let S1, T1, . . . , Sr , Tr : �2(G0) → �2(G0) be convolution operators defined
by some �1(G0) kernels L1, K1, . . . , Lr , Kr : G0 → C, i.e. S j f = f ∗ L j
and Tj f = f ∗ K j for j ∈ {1, . . . , r}. Then the adjoint operators S∗

1 , . . . , S
∗
r

are also convolution operators, defined by the kernels L∗
1, . . . , L

∗
r given by

L∗
j (g) := L j (g−1). Moreover, using (1.14), for any f ∈ �2(G0) and x ∈ G0,

we have

(S∗
1T1 . . . S

∗
r Tr f )(x)

=
∑

h1,g1,...,hr ,gr∈G0

{ r∏

j=1

L∗
j (h j )K j (g j )

}
f (g−1

r · h−1
r · . . . · g−1

1 · h−1
1 · x). (2.8)

In other words (S∗
1T1 . . . S

∗
r Tr f )(x) = ( f ∗ Ar )(x), where the kernel Ar is

given by

Ar (y) :=
∑

h1,g1,...,hr ,gr∈G0

{ r∏

j=1

L j (h j )K j (g j )
}
1{0}(g−1

r · hr · . . . · g−1
1 · h1 · y).

(2.9)
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To use these formulas we decompose h j = (h(1)j , h
(2)
j ), g j = (g(1)j , g

(2)
j ) as

in (1.7). Then

[h−1
1 · g1 · . . . · h−1

r · gr ](1) =
∑

1≤ j≤r

(−h(1)j + g(1)j ), (2.10)

[h−1
1 · g1 · . . . · h−1

r · gr ](2) =
∑

1≤ j≤r

{ − (h(2)j − g(2)j )+ R0(h
(1)
j , h

(1)
j − g(1)j )

}

+
∑

1≤l< j≤r

R0(−h(1)l + g(1)l ,−h(1)j + g(1)j ),
(2.11)

as a consequence of applying (1.9) inductively. In most of our applications
the operators S1, T1, . . . , Sr , Tr are equal and defined by a kernel K that has
product structure, i.e.

S1 f = T1 f = · · · = Sr f = Tr f = f ∗ K ,

K (g) = K (g(1), g(2)) = K (1)(g(1))K (2)(g(2)). (2.12)

In this case we can derive an additional formula for the kernel Ar . We use the
identity

1{0}(x−1 · y) =
∫

Td×Td′ e((y
(1) − x (1)).θ (1))e((y(2) − x (2)).θ (2)) dθ(1)dθ(2)

and the formula (2.9) to write

Ar (y) =
∫

Td×Td′ e
(
y(1).θ (1)

)
e
(
y(2).θ (2)

)
�r (θ(1), θ (2)

)
dθ(1)dθ(2), (2.13)

where

�r (θ(1), θ (2)
) :=

∑

h j ,g j∈G0

{ r∏

j=1

K (h j )K (g j )
}

2∏

i=1

e
( − [h−1

1 · g1 · . . . · h−1
r · gr ](i).θ (i)

)
.

Recalling the product formula (2.12) we can write

�r (θ(1), θ (2)
) = �r (θ(1), θ (2)

)
�r (θ(2)

)
, (2.14)
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for any (θ(1), θ (2)) ∈ T
d × T

d ′
, where

�r (θ(1), θ (2)
) :=

∑

h(1)j ,g
(1)
j ∈Zd

{ r∏

j=1

K (1)(h(1)j )K
(1)(g(1)j )

}

× e
(
θ(1).

∑

1≤ j≤r

(h(1)j − g(1)j )
)

× e
(

− θ(2).{
∑

1≤ j≤r

R0(h
(1)
j , h

(1)
j − g(1)j )

+
∑

1≤l< j≤r

R0(−h(1)l + g(1)l ,−h(1)j + g(1)j )
})

(2.15)

and

�r (θ(2)
) :=

∑

h(2)j ,g
(2)
j ∈Zd′

{ r∏

j=1

K (2)(h(2)j )K
(2)(g(2)j )

}

× e
(
θ(2).

∑

1≤ j≤r

(h(2)j − g(2)j )
)

=
∣∣∣

∑

g(2)∈Zd′
K (2)(g(2))e

( − θ(2).g(2))
∣∣∣
2r
.

(2.16)

2.4 Exponential sums and oscillatory integrals

We will often use the following estimates, which follow easily using the Pois-
son summation formula and integration by parts.

Lemma 2.1 Assume that m,M ∈ Z+ satisfy M ≥ m + 1, and f : R
m → C

is a CM(R) compactly supported function. Then, for any ξ ∈ [−1/2, 1/2]m,
we have

∣∣∣
∑

n∈Zm

f (n)e(n.ξ )−
∫

Rm
f (x)e(x .ξ ) dx

∣∣∣ �M

∫

Rm

m∑

n=1

|∂Mn f (x)| dx .

(2.17)

As a consequence, for any j ∈ {1, . . . ,m} we have
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∣∣∣
∑

x∈Zm

f (x)e(x .ξ )
∣∣∣ �M |ξ j |−M

∫

Rm
|∂Mj f (x)| dx +

∫

Rm

m∑

n=1

|∂Mn f (x)| dx . (2.18)

Many of our arguments will rely on estimates of exponential sums and oscil-
latory integrals involving polynomial phases. We record first some classical
Weyl-type estimates, which are proved for example in [52, Proposition 1]:

Proposition 2.2 (i) Assume that P ≥ 1 is an integer and φP : R → R is a
C1(R) function satisfying

|φP | ≤ 1[−P,P],
∫

R

∣∣φ′
P(x)

∣∣ dx ≤ 1. (2.19)

Assume that ε > 0 and θ = (θ1, . . . , θd) ∈ R
d has the property that there is

l ∈ {1, . . . , d} and an irreducible fraction a/q ∈ Q with q ∈ Z+, such that

|θl − a/q| ≤ 1/q2 and q ∈ [Pε, Pl−ε]. (2.20)

Then there is a constant C = Cd ≥ 1 such that

∣∣∣
∑

n∈Z

φP(n)e
( − (θ1n + · · · + θdnd)

)∣∣∣ �ε P1−ε/C . (2.21)

(ii)Forany irreducible fraction θ = a/q ∈ (Z/q)d , a = (a1, . . . , ad) ∈ Z
d ,

q ∈ Z+, we have
∣∣∣q−1

∑

n∈Zq

e
( − (θ1n + · · · + θdnd)

)∣∣∣ � q−1/C . (2.22)

We will also need non-commutative versions of these Weyl estimates. With
the notation in Sect. 1.3, for r ∈ Z+ let D, D̃ : R

r × R
r → G

#
0, given by

D((n1, . . . , nr ), (m1, . . . ,mr )) := A0(n1)
−1 · A0(m1) · . . . · A0(nr )

−1 · A0(mr ),

D̃((n1, . . . , nr ), (m1, . . . ,mr )) := A0(n1) · A0(m1)
−1 · . . . · A0(nr ) · A0(mr )

−1.

(2.23)

By definition, we have

[A0(n)]l1l2 =
{
nl1 if l2 = 0,

0 if l2 ≥ 1,
[A0(n)

−1]l1l2 =
{

−nl1 if l2 = 0,

nl1+l2 if l2 ≥ 1.
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Thus, using (2.10) and (2.11), for x = (x1, . . . , xr ) ∈ R
r and y =

(y1, . . . , yr ) ∈ R
r one has

[D(x, y)]l1l2

=

⎧
⎪⎪⎨

⎪⎪⎩

r∑
j=1
(yl1j − xl1j ) if l2 = 0,

∑
1≤ j1< j2≤r

(yl1j1 − xl1j1)(y
l2
j2

− xl2j2)+
r∑
j=1
(xl1+l2

j − xl1j y
l2
j ) if l2 ≥ 1,

(2.24)

and

[D̃(x, y)]l1l2

=

⎧
⎪⎪⎨

⎪⎪⎩

r∑
j=1
(xl1j − yl1j ) if l2 = 0,

∑
1≤ j1< j2≤r

(xl1j1 − yl1j1)(x
l2
j2

− yl2j2)+
r∑
j=1
(yl1+l2

j − xl1j y
l2
j ) if l2 ≥ 1.

(2.25)

For P ∈ Z+ assume φ( j)P , ψ
( j)
P : R → R, j ∈ {1, . . . , r}, are C1(R)

functions with the properties

sup
1≤ j≤r

[∣∣φ( j)P

∣∣ + ∣∣ψ( j)P

∣∣] ≤ 1[−P,P],

sup
1≤ j≤r

∫

R

∣∣[φ( j)P ]′(x)∣∣ + ∣∣[ψ( j)P ]′(x)∣∣ dx ≤ 1. (2.26)

For θ = (θl1l2)(l1,l2)∈Yd ∈ R
|Yd |, r ∈ Z+, and P ∈ Z+ let

SP,r (θ) =
∑

n,m∈Zr

e(−D(n,m).θ)
{ r∏

j=1

φ
( j)
P (n j )ψ

( j)
P (m j )

}

and

S̃P,r (θ) =
∑

n,m∈Zr

e(−D̃(n,m).θ)
{ r∏

j=1

φ
( j)
P (n j )ψ

( j)
P (m j )

}
,

where D and D̃ are defined as in (2.24)–(2.25).
The following key estimates are proved in [33, Proposition 5.1 and Lemma

3.1]:
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Proposition 2.3 (i) For any ε > 0 there is r = r(ε, d) ∈ Z+ sufficiently large
such that for all P ∈ Z+ we have

|SP,r (θ)| + |S̃P,r (θ)| �ε P2r P−1/ε, (2.27)

provided that there is (l1, l2) ∈ Yd and an irreducible fraction a/q ∈ Q,
q ∈ Z+, such that

|θl1l2 − a/q| ≤ 1/q2 and q ∈ [Pε, Pl1+l2−ε]. (2.28)

(ii) For any irreducible fraction a/q ∈ Q, a = (al1l2)(l1,l2)∈Yd ∈ Z
|Yd |,

q ∈ Z+, we define the arithmetic coefficients

G(a/q) := q−2r
∑

v,w∈Zr
q

e
( − D(v,w).(a/q)

)
,

G̃(a/q) := q−2r
∑

v,w∈Zr
q

e
( − D̃(v,w).(a/q)

)
. (2.29)

Then for any ε > 0 there is r = r(ε, d) ∈ Z+ sufficiently large such that

|G(a/q)| + |G̃(a/q)| �ε q−1/ε. (2.30)

We will also use a related integral estimate, see Lemma 5.4 in [33]:

Proposition 2.4 Given ε > 0 there is r = r(ε, d) sufficiently large as in
Proposition 2.3 such that

∣∣∣
∫

Rr×Rr

{ r∏

j=1

φ j (x j )ψ j (y j )
}
e(−D(x, y).β

)
dxdy

∣∣∣ � 〈β〉−1/ε,

∣∣∣
∫

Rr×Rr

{ r∏

j=1

φ j (x j )ψ j (y j )
}
e(−D̃(x, y).β

)
dxdy

∣∣∣ � 〈β〉−1/ε,

(2.31)

for any β ∈ R
|Yd | and for any C1(R) functions φ1, ψ1, . . . , φr , ψr : R → C

satisfying, for any j ∈ {1, . . . , r}, the following bound
|φ j (x)| + |∂xφ j (x)| + |ψ j (x)| + |∂xψ j (x)| � 1[−1,1](x).

3 Ergodic theorems: Proof of Theorem 1.2

Assuming momentarily that Theorem 1.3 has been proved we will illustrate
how to use it to establish Theorem 1.2. For this purpose we introduce a
smoothed variant of average (1.1).
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Let d1 ∈ Z+. Given any family T1, . . . , Td1 : X → X of invertiblemeasure-
preserving transformations, a measurable function f ∈ L p(X), p ∈ [1,∞],
polynomials P1, . . . , Pd1 ∈ Z[n], a real number N ≥ 1, and a smooth function
χ : R → [0, 1] supported on the interval [−2, 2] we can define a smoothed

polynomial ergodic average A
P1,...,Pd1
N ;X,χ ( f ) ∈ L p(X) by the formula

A
P1,...,Pd1
N ;X,χ ( f )(x) :=

∑

n∈Z

N−1χ(N−1n) f (T P1(n)
1 · · · T Pd1 (n)

d1
x), x ∈ X.

(3.1)

3.1 Calderón transference principle

We now establish a variant of the Calderón transference principle [16], which
will allow us to deduce maximal and ρ-variational estimates for smoothed
averages (3.1) from the corresponding estimates for the averages Mχ

N along
the moment curve A0 on the group G0, see Theorem 1.3.

Proposition 3.1 Let d1 ∈ Z+ be given and let T1, . . . , Td1 : X → X
be a family of invertible measure-preserving transformations of a σ -finite
measure space (X,B(X), μ) that generates a nilpotent group of step two.
Let P1, . . . , Pd1 ∈ Z[n] be such that Pj (0) = 0, 1 ≤ j ≤ d1, and let
d2 := max{degPj : j ∈ {1, . . . , d1}}. Assume f ∈ L p(X) for some

1 ≤ p ≤ ∞, and let A
P1,...,Pd1
N ;X,χ ( f ) be the average defined in (3.1) corre-

sponding to a smooth function χ : R → [0, 1] supported on the interval
[−2, 2]. Let Mχ

N be the average from Theorem 1.3.

(i) If Mχ
N satisfies (1.16) for some 1 < p ≤ ∞ then

∥∥ sup
N∈Z+

|AP1,...,Pd1
N ;X,χ ( f )|∥∥L p(X) �d1,d2,p,χ ‖ f ‖L p(X). (3.2)

(ii) If Mχ
N satisfies (1.17) for some 1 < p < ∞, ρ > max

{
p, p

p−1

}
and

τ ∈ (1, 2], then
∥∥V ρ

(
A
P1,...,Pd1
N ;X,χ ( f ) : N ∈ Dτ

)∥∥
L p(X) �d1,d2,p,ρ,τ,χ ‖ f ‖L p(X), (3.3)

where Dτ = {τ n : n ∈ N}.
Proof We proceed in two steps. We perform first a lifting procedure, which
allows us to replace the polynomials P1, . . . , Pd1 with the moment curve A0
from (1.11). Then we can employ the ideas from the transference principle
[16] to complete the proof.
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Step 1. Let G := G[T1, . . . , Td1] be a nilpotent group of step two generated
by T1, . . . , Td1 , so

[[Ti , Tj ], Tl] = Id, for all i, j, l ∈ {1, . . . , d1}, (3.4)

where [S, T ] := S−1T−1ST denotes the commutator of any two invertible
maps S, T : X → X . Define Si j := [Ti , Tj ] = T−1

i T−1
j Ti Tj , for i, j ∈

{1, . . . , d1}, then by (3.4) note that Ti Tj = Tj Ti Si j , and TkSi j = Si j Tk for all
i, j, k ∈ {1, . . . , d1}. Hence

d1∏

i=1

Tmi
i

d1∏

j=1

T
n j
j =

d1∏

j=1

T
m j+n j
j

∏

1≤i< j≤d1

S
m jni
j i . (3.5)

Formula (3.5) gives rise to a homomorphism T : G0(d1) → G defined by

T (g) :=
d1∏

l1=1

T
ml10

l1

∏

1≤l2<l1≤d1

S
ml1l2
l1l2

, for any g = (ml1l2)(l1,l2)∈Yd1 ∈ G0(d1).

Let A : Z → G0(d1) be defined by A(n) := (P1(n), . . . , Pd1(n), 0, . . . , 0)
−1

and note that

T (A(n)−1) = T P1(n)
1 · · · T Pd1 (n)

d1
. (3.6)

In view of [33, Lemma 2.2] there exists d ∈ Z+ depending only on the integers
d1, d2 ∈ Z+, and a homomorphism � : G0(d) → G

#
0(d1) such that for all

n ∈ Z one has

A(n) = �(A0(n)). (3.7)

From the proof of [33, Lemma 2.2] one can easily deduce that for every g ∈
G0(d)we have�(g) ∈ Z

d1 × (Z/2)d ′
1 . Combining (3.6) with (3.7) we see that

the group�−1[G0(d1)] acts on X via�−1[G0(d1)]×X � (g, x) �→ g�x ∈ X
defined by g � x = (T ◦�(g))x , which allows us to write

A
P1,...,Pd1
N ;X,χ ( f )(x) =

∑

n∈Z

N−1χ(N−1n) f (A0(n)
−1 � x). (3.8)

Step 2. We now prove (3.2) and (3.3). We will only prove (3.3), since the
proof of (3.2) is similar and we omit the details. Define f xL (g) := f (g �
x)1[−1,1]d+d′ (L−1 ◦ g)1�−1[G0(d1)](g) for L > 0, x ∈ X and g ∈ G0(d).
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Using (3.8) and the fact that g2 ∈ �−1[G0(d1)], g ∈ G0(d), observe that for
g ∈ G0(d) obeying L−1 ◦ g ∈ [−1, 1]d+d ′

one has

V ρ
(
A
P1,...,Pd1
N ;X,χ ( f )(g2 � x) : N ∈ Dτ ∩ [1, L])

= V ρ
(
Mχ

N ( f
x
CL)(g

2) : N ∈ Dτ ∩ [1, L])

for some large absolute constant C > 0 depending only on d.
Summingover all g ∈ G0(d)obeying L−1◦g ∈ [−1, 1]d+d ′

, and integrating
over X , we have
( ∏

(l1,l2)∈Yd
Ll1+l2

)∥∥V ρ
(
A
P1,...,Pd1
N ;X,χ ( f ) : N ∈ Dτ ∩ [1, L])∥∥p

L p(X)

�
∫

X

∥∥V ρ
(
Mχ

N ( f
x
CL) : N ∈ Dτ

)∥∥p
�p(G0)

dμ(x)

�
∫

X
‖ f xCL‖p

�p(G0)
dμ(x)

�
( ∏

(l1,l2)∈Yd
Ll1+l2

)
‖ f ‖p

L p(X),

(3.9)

using also (1.17) in the second estimate. Dividing both sides of (3.9) by∏
(l1,l2)∈Yd L

l1+l2 and letting L → ∞ we obtain (3.3). ��
Having proven estimates (3.2) and (3.3) we can easily complete the proof

of Theorem 1.2.

3.2 Proof of Theorem 1.2(iii)

Let χ : R → [0, 1] be a smooth function such that 1[−1,1] ≤ χ ≤ 1[−2,2].
Note that

sup
N∈Z+

|AP1,...,Pd1
N ;X ( f )(x)| ≤ sup

N∈Z+
A
P1,...,Pd1
N ;X,χ (| f |)(x).

Appealing to (3.2) we conclude (1.3). ��

3.3 Proof of Theorem 1.2(ii)

By a simple density argument, using themaximal inequality (1.3), it suffices to
establish pointwise convergence for f ∈ L p(X) ∩ L∞(X) with 1 < p < ∞.
Invoking ρ-variational inequality (3.3) one has

lim
Dτ�M,N→∞ |AP1,...,Pd1

N ;X,χ ( f )(x)− A
P1,...,Pd1
M;X,χ ( f )(x)| = 0
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μ-almost everywhere on X . The same is true for the operators

Ã
P1,...,Pd1
N ;X,χ ( f )(x)

:= 1

|[−N , N ] ∩ Z|
∑

n∈Z

χ(N−1n) f (T P1(n)
1 . . . T

Pd1 (n)
d1

x), x ∈ X.

Let ε > 0 and pick a smooth function χ : R → [0, 1] such that ‖1[−1,1] −
χ‖L1(R) < ε. Fix f ∈ L p(X) ∩ L∞(X) such that ‖ f ‖L∞(X) = 1 and f ≥ 0,
and note that

lim sup
Dτ�M,N→∞

|AP1,...,Pd1
N ;X ( f )(x)− A

P1,...,Pd1
M;X ( f )(x)|

≤ 2 lim sup
Dτ�N→∞

|AP1,...,Pd1
N ;X ( f )(x)− Ã

P1,...,Pd1
N ;X,χ ( f )(x)|

� lim sup
Dτ�N→∞

1

|[−N , N ] ∩ Z|
∑

n∈Z

∣∣χ(N−1n)− 1[−1,1](N−1n)
∣∣

� ‖1[−1,1] − χ‖L1(R)

� ε,

(3.10)

for μ-almost all x ∈ X . Letting ε → 0+ we obtain that the limit

lim
Dτ�N→∞ A

P1,...,Pd1
N ;X ( f )(x)

existsμ-almost everywhere on X for every τ ∈ (1, 2]. Using thiswith τ = 21/s

for s ∈ Z+ we obtain that there exists a function f ∗
s ∈ L p(X) such that

lim
n→∞ A

P1,...,Pd1
2n/s;X ( f )(x) = f ∗

s (x) (3.11)

μ-almost everywhere on X for every s ∈ Z+. Since D2 ⊆ D21/s we conclude
that f ∗

1 = f ∗
s for all s ∈ Z+. Now for each s ∈ Z+ and each N ∈ Z+ let

(nm)m∈N ⊆ N be a sequence such that 2nN /s ≤ N < 2(nN+1)/s . Then by
(3.11) for f ≥ 0 we have

2−1/s f ∗
1 (x) ≤ lim inf

N→∞ A
P1,...,Pd1
N ;X ( f )(x) ≤ lim sup

N→∞
A
P1,...,Pd1
N ;X ( f )(x) ≤ 21/s f ∗

1 (x).

123



A. D. Ionescu et al.

Letting s → ∞ we obtain

lim
N→∞ A

P1,...,Pd1
N ;X ( f )(x) = f ∗

1 (x)

μ-almost everywhere on X . This completes the proof of Theorem 1.2(ii). ��

3.4 Proof of Theorem 1.2(i)

Finally pointwise convergence from Theorem 1.2(ii) combined with maximal
inequality (1.3) and dominated convergence theorem gives norm convergence
for any f ∈ L p(X) with 1 < p < ∞ and the proof of Theorem 1.2 is
completed. ��

4 Maximal and variational estimates on G0: �2 theory

In this section we discuss the nilpotent circle method on the discrete group
G0, and outline the proof of the key ρ-variational inequality (1.17) for p = 2
and 2 < ρ < ∞.

Assume that τ ∈ (1, 2] is a fixed parameter. The basic case is τ = 2, but we
need slightly stronger bounds for the ergodic theory application, see (3.10).
We also fix a smooth function χ : R → [0, 1] supported on [−2, 2]. For
simplicity of notation, for k ∈ N and x ∈ G0, let

Mk f (x) := Mχ

τ k
f (x) =

∑

n∈Z

τ−kχ(τ−kn) f (A0(n)
−1 · x) = ( f ∗ Kk)(x),

Kk(x) := Gχ
τ k
(x) =

∑

n∈Z

τ−kχ(τ−kn)1{A0(n)}(x),
(4.1)

see (1.13) and (1.15) for the definitions Mχ
N and GχN respectively.

Our aim is to establish (1.17) for p = 2 and 2 < ρ < ∞, which with the
new notation can be rewritten as follows:

Theorem 4.1 Let τ ∈ (1, 2] and 2 < ρ < ∞ be given. Then for any f ∈
�2(G0) one has

∥∥V ρ
(Mk( f ) : k ≥ 0

)∥∥
�2(G0)

�d,ρ,τ,χ ‖ f ‖�2(G0)
. (4.2)

In particular, one also has

∥∥ sup
k≥0

|Mk f |
∥∥
�2(G0)

�d,τ,χ ‖ f ‖�2(G0)
. (4.3)
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The proof of Theorem 4.1 will take up Sect. 4, 5, 6, 7, and 8. For simplicity
of notation, all the implied constants in this proof are allowed to depend on
d, τ, χ, ρ.

We fix η0 : R → [0, 1] a smooth even function such that 1[−1,1] ≤ η0 ≤
1[−2,2]. For t ∈ R and integers j ≥ 1 we define

η j (t) := η0(τ
− j t)− η0(τ− j+1t), 1 =

∞∑

j=0

η j . (4.4)

For any A ∈ [0,∞) we define

η≤A :=
∑

j∈[0,A]∩Z

η j . (4.5)

By a slight abuse of notation we also let η j and η≤A denote the smooth radial
functions onR

m ,m ∈ Z+, definedbyη j (x) = η j (|x |) andη≤A(x) = η≤A(|x |)
To prove Theorem 4.1 we need to decompose the kernels defining the oper-

atorsMk . The kernels Kk have product structure

Kk(g) := Lk(g
(1))1{0}(g(2)),

Lk(g
(1)) :=

∑

n∈Z

τ−kχ(τ−kn)1{0}(g(1) − A(1)0 (n)), (4.6)

where A(1)0 (n) := (n, . . . , nd) ∈ Z
d and g = (g(1), g(2)) ∈ G0 as in (1.7).

4.1 The main decomposition

We first decompose the singular kernel 1{0}(g(2)) in the central variable g(2)

into smoother kernels. For any s ∈ N andm ∈ Z+ we define the set of rational
fractions

Rm
s := {a/q : a = (a1, . . . , am) ∈ Z

m,

q ∈ [τ s, τ s+1) ∩ Z, gcd(a1, . . . , am, q) = 1}. (4.7)

We define alsoRm≤a := ⋃
0≤s≤a Rm

s . For x
(1) = (x (1)l10

)l1∈{1,...,d} ∈ R
d , x (2) =

(x (2)l1l2
)(l1,l2)∈Y ′

d
∈ R

d ′
and � ∈ (0,∞) we define the partial dilations
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� ◦ x (1) = (�l1x (1)l10
)l1∈{1,...,d} ∈ R

d , � ◦ x (2) = (�l1+l2 x (2)l1l2
)(l1,l2)∈Y ′

d
∈ R

d ′
,

(4.8)

which are induced by the group-dilations defined in (1.12).
We fix two small constants δ = δ(d) � δ′ = δ′(d) such that δ′ ∈

(0, (10d)−10] and δ ∈ (0, (δ′)4], and a large constant D = D(d) � δ−8.
These constants depend on arithmetic properties of the polynomial sequence
A0, more precisely on the structural constants in Propositions 2.2–2.4. For
example, we could take δ′ = (10d)−10, then take δ = δ′/C1, where C1 is a
large constant depending on the constant C in Proposition 2.2. Then we fix
an integer r = r(δ) ≥ δ−4 such that the bounds in Propositions 2.3–2.4 hold
with ε = δ4, and then take D := �rδ−4� + 1. To summarize

1 � 1/δ′ � 1/δ � r � D. (4.9)

For k ≥ (D/ ln τ)2 we fix two cutoff functions φ(1)k : R
d → [0, 1], φ(2)k :

R
d ′ → [0, 1], such that

φ
(1)
k (g(1)) := η≤δk(τ−k ◦ g(1)), φ

(2)
k (g(2)) := η≤δk(τ−k ◦ g(2)). (4.10)

For k, w ∈ N so that k ≥ (D/ ln τ)2 and 0 ≤ w ≤ k and for any 1-periodic
sets of rationals A ⊆ Q

d , B ⊆ Q
d ′
we define the periodic Fourier multipliers

by

�k,w,A(ξ (1)) :=
∑

a/q∈A
η≤δ′w(τ k ◦ (ξ (1) − a/q)), ξ (1) ∈ T

d ,

�k,w,B(ξ (2)) :=
∑

b/q∈B
η≤δw(τ k ◦ (ξ (2) − b/q)), ξ (2) ∈ T

d ′
.

(4.11)

For k ≥ (D/ ln τ)2 and s ∈ [0, δk] ∩ Z we define the periodic Fourier multi-
pliers �k,s : R

d ′ → [0, 1],

�k,s(ξ
(2)) := �k,k,Rd′

s
(ξ (2)) =

∑

a/q∈Rd′
s

η≤δk(τ k ◦ (ξ (2) − a/q)).

(4.12)
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For k ≥ (D/ ln τ)2 we write

1{0}(g(2)) =
∫

Td′ e(g
(2).ξ (2)) dξ (2)

=
∑

s∈[0,δk]∩Z

∫

Td′ e(g
(2).ξ (2))�k,s(ξ

(2)) dξ (2)

+
∫

Td′ e(g
(2).ξ (2))�c

k(ξ
(2)) dξ (2),

(4.13)

where g(2).ξ (2) denotes the usual scalar product of vectors in R
d ′
and

�c
k := 1 −

∑

s∈[0,δk]∩Z

�k,s . (4.14)

Then we decompose Kk = Kc
k + ∑

s∈[0,δk]∩Z
Kk,s , where, with the notation

in (4.6), we have

Kk,s(g) := Lk(g
(1))Nk,s(g

(2)), Kc
k (g) := Lk(g

(1))Nc
k (g

(2)), (4.15)

and

Nk,s(g
(2)) := φ

(2)
k (g(2))

∫

Td′ e(g
(2).ξ (2))�k,s(ξ

(2)) dξ (2),

Nc
k (g

(2)) := φ
(2)
k (g(2))

∫

Td′ e(g
(2).ξ (2))�c

k(ξ
(2)) dξ (2).

(4.16)

We first show that we can bound the contributions of the minor arcs in the
central variables:

Lemma 4.2 For any integer k ≥ (D/ ln τ)2 and f ∈ �2(G0) we have

‖ f ∗ Kc
k‖�2(G0)

� τ−k/D2‖ f ‖�2(G0)
.

(4.17)

This is proved in Sect. 5.1 below.
We now turn to the operators Kk,s , and show first that we can bound the con-

tributions corresponding to scales k ≥ 0 being not very large. More precisely,
for any s ≥ 0 we define

κs := 2(D/ ln τ)(s+1)2 . (4.18)
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Lemma 4.3 For any integer s ≥ 0 and f ∈ �2(G0) we have

∥∥V ρ( f ∗ Kk,s : max((D/ ln τ)2, s/δ) ≤ k < 2κs)
∥∥
�2(G0)

� τ−s/D2‖ f ‖�2(G0)
(4.19)

and

∥∥ sup
max((D/ ln τ)2,s/δ)≤k<2κs

| f ∗ Kk,s |
∥∥
�2(G0)

� τ−s/D2‖ f ‖�2(G0)
. (4.20)

This is proved in Sect. 7 below.
After these reductions, it remains to prove that

∥∥V ρ( f ∗ Kk,s : k ≥ κs)
∥∥
�2(G0)

� τ−s/D2‖ f ‖�2(G0)
for any integer s ≥ 0.

(4.21)

The kernels Kk,s are now reasonably well adapted to a natural family of non-
isotropic balls in the central variables, at least when τ s � 1, and we need
to start decomposing in the non-central variables. We examine the kernels
Lk(g(1)) defined in (4.6), and rewrite them in the form

Lk(g
(1)) =

∑

n∈Z

τ−kχ(τ−kn)1{0}(−A(1)0 (n)+ g(1))

= φ
(1)
k (g(1))

∫

Td
e(g(1).ξ (1))Sk(ξ

(1)) dξ (1),

(4.22)

where g(1).ξ (1) denotes the usual scalar product of vectors in R
d , and

Sk(ξ
(1)) :=

∑

n∈Z

τ−kχ(τ−kn)e(−A(1)0 (n).ξ
(1)). (4.23)

For any integers Q ∈ Z+ and m ∈ Z+ we define the set of fractions

R̃m
Q := {a/Q : a = (a1, . . . , am) ∈ Z

m}. (4.24)

For any integer s ≥ 0 we fix a large denominator

Qs := (⌊
τ D(s+1)⌋)! = 1 · 2 · . . . · ⌊τ D(s+1)⌋, (4.25)

and using (4.11) define the periodic multipliers
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� low
k,s (ξ

(1)) := �k,k,R̃d
Qs
(ξ (1)) =

∑

a/q∈R̃d
Qs

η≤δ′k(τ k ◦ (ξ (1) − a/q)),

�k,s,t (ξ
(1)) := �k,k,Rd

t \R̃d
Qs
(ξ (1)) =

∑

a/q∈Rd
t \R̃d

Qs

η≤δ′k(τ k ◦ (ξ (1) − a/q)),

�c
k (ξ

(1)) := 1 −� low
k,s (ξ

(1))−
∑

t∈[0,δ′k]∩Z

�k,s,t (ξ
(1))

= 1 −
∑

a/q∈Rd
≤δ′k

η≤δ′k(τ k ◦ (ξ (1) − a/q)). (4.26)

Since k ≥ κs = 2(D/ ln τ)(s+1)2 we see that Qs ≤ τ δ
2k . Therefore the supports

of the cutoff functionsη≤δ′k(τ k◦(ξ (1)−a/q)) are all disjoint and themultipliers
� low

k,s , �k,s,t , �
c
k take values in the interval [0, 1]. Notice also that �k,s,t ≡ 0

unless t ≥ D(s + 1), and that the cutoffs used in these definitions depend on
δ′k not on δk as in the case of the central variables.

We examine the formula (4.22) and define the kernels L low
k,s , Lk,s,t , Lc

k :
Z
d → C by

L∗(g(1)) = φ
(1)
k (g(1))

∫

Td
e(g(1).ξ (1))Sk(ξ

(1))�∗(ξ (1)) dξ (1), (4.27)

where (L∗, �∗) ∈ {(L low
k,s , �

low
k,s ), (Lk,s,t , �k,s,t ), (Lc

k, �
c
k )}. For any k ≥

κs we obtain Kk,s = G low
k,s + ∑

t≤δ′k Gk,s,t + Gc
k,s , where the kernels

G low
k,s ,Gk,s,t ,Gc

k,s : Z
|Yd | → C are defined by

G low
k,s (g) := L low

k,s (g
(1))Nk,s(g

(2)),

Gk,s,t (g) := Lk,s,t (g
(1))Nk,s(g

(2)),

Gc
k,s(g) := Lc

k(g
(1))Nk,s(g

(2)).

(4.28)

To prove (4.21) we need to establish Lemmas 4.4–4.6.
Our next lemma shows that the contribution of theminor arcs can be suitably

bounded:

Lemma 4.4 For any integers s ≥ 0 and k ≥ κs , and for any f ∈ �2(G0) we
have

‖ f ∗ Gc
k,s‖�2(G0)

� τ−k/D2‖ f ‖�2(G0)
. (4.29)
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It remains to bound the contributions of the major arcs in both the central
and the non-central variables. We start with the contributions corresponding
to averages over large k.

Lemma 4.5 (i) For any integer s ≥ 0 and f ∈ �2(G0) we have

∥∥V ρ( f ∗ G low
k,s : k ≥ κs)

∥∥
�2(G0)

� τ−s/D2‖ f ‖�2(G0)
. (4.30)

In particular, we have

∥∥ sup
k≥κs

| f ∗ G low
k,s |∥∥

�2(G0)
� τ−s/D2‖ f ‖�2(G0)

. (4.31)

(ii) For any integers s ≥ 0, t ≥ D(s + 1), and f ∈ �2(G0) we have

∥∥V ρ( f ∗ Gk,s,t : k ≥ κt )
∥∥
�2(G0)

� τ−t/D2‖ f ‖�2(G0)
. (4.32)

where κt := 2(D/ ln τ)(t+1)2 as in (4.18). In particular, we have

∥∥ sup
k≥κt

| f ∗ Gk,s,t |
∥∥
�2(G0)

� τ−t/D2‖ f ‖�2(G0)
. (4.33)

Finally, we deal with the operators defined by the kernels Gk,s,t for inter-
mediate values of k.

Lemma 4.6 For any integers s ≥ 0, and t ≥ D(s + 1), and f ∈ �2(G0) we
have

∥∥V ρ( f ∗ Gk,s,t : max(κs, t/δ
′) ≤ k < 2κt )

∥∥
�2(G0)

� τ−t/D2‖ f ‖�2(G0)
.

(4.34)

In particular, we have

∥∥ sup
max(κs ,t/δ′)≤k<2κt

| f ∗ Gk,s,t |
∥∥
�2(G0)

� τ−t/D2‖ f ‖�2(G0)
. (4.35)

We will prove these lemmas in Sects. 5–8. Theorem 4.1 follows from Lem-
mas 4.2–4.6.

For later use in the �p theory, we will sometimes need to work with slightly
more general kernels on G0. Given two 1-periodic sets of rationals A ⊆ Q

d

and B ⊆ Q
d ′
, we define

Kk,w,A,B(g) := Lk,w,A(g(1))Nk,w,B(g(2)),

K ′
k,w,A,B(g) := L ′

k,w,A(g
(1))Nk,w,B(g(2)),

(4.36)
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where

Lk,w,A(g(1)) := φ
(1)
k (g(1))

∫

Td
e(g(1).ξ (1))�k,w,A(ξ (1))Sk(ξ (1)) dξ (1),

L ′
k,w,A(g

(1)) := φ
(1)
k (g(1))

∫

Td
e(g(1).ξ (1))�k,w,A(ξ (1))[�k Sk](ξ (1)) dξ (1),

Nk,w,B(g(2)) := φ
(2)
k (g(2))

∫

Td′ e(g
(2).ξ (2))�k,w,B(ξ (2)) dξ (2). (4.37)

The multipliers �k,w,A and �k,w,B are defined in (4.11) and �k Sk =
Sk+1 − Sk as in (2.1). Using the definitions, it is easy to see, for exam-
ple, that L low

k,s (g
(1)) = Lk,k,R̃d

Qs
(g(1)), Lk,s,t (g(1)) = Lk,k,Rd

t \R̃d
Qs
(g(1)), and

Nk,s(g(2)) = Nk,k,Rd′
s
(g(2)) as in (4.28).

5 Minor arcs contributions: Proofs of Lemmas 4.2 and 4.4

In this section we use high order T ∗T arguments to bound the minor arcs
contributions.

5.1 Proof of Lemma 4.2

We proceed in two steps:
Step 1.Wedefine the operatorsKc

k f := f ∗Kc
k . Set ε = δ4 and fix a positive

integer r = r(d) large enough such that the bounds as in Propositions 2.3 and
2.4 hold. Then

{(Kc
k)

∗Kc
k}r f (x) = ( f ∗ Ac,r

k )(x),

where, using the formulas (2.13)–(2.16) and (4.15), one has

Ac,r
k (y) = η≤3δk(τ

−k ◦ y)
∫

Td×Td′ e
(
y.θ

)
�

c,r
k

(
θ(1), θ (2)

)
�

c,r
k

(
θ(2)

)
dθ(1)dθ(2), (5.1)

where

�
c,r
k

(
θ(1), θ (2)

) :=
∑

h(1)j ,g
(1)
j ∈Zd

{ r∏

j=1

Lk(h
(1)
j )Lk(g

(1)
j )

}

×e
(
θ(1).

∑

1≤ j≤r

(h(1)j − g(1)j )
)
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×e
(

− θ(2).{
∑

1≤ j≤r

R0(h
(1)
j , h

(1)
j − g(1)j )

+
∑

1≤l< j≤r

R0(−h(1)l + g(1)l ,−h(1)j + g(1)j )
})

and

�
c,r
k

(
θ(2)

) :=
∣∣∣

∑

g(2)∈Zd′
Nc
k (g

(2))e
( − θ(2).g(2))

∣∣∣
2r
.

Using the defining formula (4.6) we can write

�
c,r
k

(
θ
) = τ−2rk

∑

n j ,m j∈Z

{ r∏

j=1

χ(τ−kn j )χ(τ
−km j )

}

× e
(

− θ(1).
∑

1≤ j≤r

(A(1)0 (m j )− A(1)0 (n j ))
)

× e
(

− θ(2).{
∑

1≤ j≤r

R0(A
(1)
0 (n j ), A

(1)
0 (n j )− A(1)0 (m j ))

})

× e
(

− θ(2).{
∑

1≤l< j≤r

R0(A
(1)
0 (nl)− A(1)0 (ml),

A(1)0 (n j )− A(1)0 (m j ))
})
.

Using (2.24) it is easy to see that

θ(1).
∑

1≤ j≤r

(A(1)0 (m j )− A(1)0 (n j ))

+ θ(2).{
∑

1≤ j≤r

R0(A
(1)
0 (n j ), A

(1)
0 (n j )− A(1)0 (m j ))

}

+ θ(2).{
∑

1≤l< j≤r

R0(A
(1)
0 (nl)− A(1)0 (ml), A

(1)
0 (n j )− A(1)0 (m j ))

} = θ.D(n,m).

Therefore

�
c,r
k

(
θ
) = τ−2kr

∑

n,m∈Zr

{ r∏

j=1

χ(τ−kn j )χ(τ
−km j )

}
e
( − θ.D(n,m)).

(5.2)
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We can also derive a good formula for the kernel �c,r
k . Letting

Fk(β
(2)) :=

∑

g(2)∈Zd′
η≤δk(τ−k ◦ g(2))e(−g(2).β(2)) (5.3)

and recalling the definition in (4.16), we have

�
c,r
k (θ

(2)) =
∣∣∣
∫

Td′ Fk(θ
(2) − ξ (2))�c

k(ξ
(2)) dξ (2)

∣∣∣
2r
. (5.4)

Step 2. We now prove that ‖Ac,r
k ‖�1(G0)

� τ−k . Using also the formula
(5.1) for this it suffices to prove that if k ≥ (D/ ln τ)2 then

∣∣�c,r
k

(
θ(1), θ (2)

)
�

c,r
k

(
θ(2)

)∣∣ � τ−k/δ for any (θ(1), θ (2)) ∈ T
d × T

d ′
.

(5.5)

We examine the formula (5.3) and apply Lemma 2.1 with M ∈ Z+ sufficiently
large to conclude that, for any β(2) ∈ [−1/2, 1/2]d ′

, we have

|Fk(β(2))| �M

∏

(l1,l2)∈Y ′
d

{
τ k(l1+l2+δ)(1 + ∣∣β(2)l1l2

∣∣τ k(l1+l2+δ))−M
}
. (5.6)

To prove (5.5) we use the formulas (5.2) and (5.4), and consider two cases
depending on the location of θ(2). Assume first that θ(2) is far from the support
of �c

k , i.e.

there is an irreducible fraction a/q with q ≤ τ δk−4 and a = (al1l2)(l1,l2)∈Y ′
d

such that |θ(2)l1l2
− al1l2/q| ≤ τ δk/2τ−k(l1+l2) for any (l1, l2) ∈ Y ′

d . (5.7)

In view of the definitions (4.12) and (4.14) it follows that for any ξ (2) in the
support of the function �c

k there is (l1, l2) ∈ Y ′
d such that |ξ (2)l1l2

− θ
(2)
l1l2

| ≥
τ δk/2τ−k(l1+l2). Then |Fk(θ(2)−ξ (2))| � τ−2k/δ if ξ (2) is in the support of�c

k ,
as a consequence of (5.6). The bounds (5.5) follow using (5.4) if θ(2) satisfies
(5.7).

On the other hand, assume that θ(2) does not satisfy (5.7). By the Dirichlet
principle, for any (l1, l2) ∈ Y ′

d there is an irreducible fraction al1l2/ql1l2 such
that

∣∣∣θ(2)l1l2
− al1l2

ql1l2

∣∣∣ ≤ 1

ql1l2τ
k(l1+l2)−δ2k and ql1l2 ∈ [1, τ k(l1+l2)−δ2k] ∩ Z.
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Since θ(2) does not satisfy the property (5.7), it follows that at least one of
the denominators ql1l2 is larger than τ

δ2k . In particular, the property (2.28) is
verified if P � τ k . Recalling the formula (5.2),we can apply Proposition 2.3 (i)
to conclude that

∣∣�c,r
k (θ

(1), θ (2))
∣∣ � τ−2k/δ .Moreover,‖Fk‖L1(Td′

)
� 1due to

(5.6), therefore
∣∣�c,r

k (θ
(2))

∣∣ � 1 as a consequence of (5.4). The desired bounds
(5.5) follow in this case as well, which completes the proof of Lemma 4.2. ��

5.2 Proof of Lemma 4.4

For later use we prove a slightly more general version of Lemma 4.4. For
1-periodic set of rationals B ⊆ Rd ′

≤δk , we define new kernels

Gc
k,B(g) := Lc

k(g
(1))Nk,k,B(g(2)), (5.8)

where Nk,k,B is defined in (4.37). We now prove the following lemma:

Lemma 5.1 For any 1-periodic set of rationals B ⊆ Rd ′
≤δk , k ≥ (D/ ln τ)2,

and any f ∈ �2(G0) we have

‖ f ∗ Gc
k,B‖�2(G0)

� τ−k/D2‖ f ‖�2(G0)
. (5.9)

Since Gc
k,Rd′

s
= Gc

k,s , see (4.28), Lemma 4.4 follows from Lemma 5.1.

Proof of Lemma 5.1 As before, we shall proceed in several steps.
Step 1. We define the operators Gc

k,B f := f ∗ Gc
k,B. Since Gc

k,B(x) =
Lc
k(x

(1))Nk,k,B(x (2)) we have

{(Gc
k,B)

∗Gc
k,B}r f (x) = ( f ∗ Ar

k,B)(x),

where

Ar
k,B(y) = η≤3δk(τ

−k ◦ y)
∫

Td×Td′ e
(
y.θ

)
�r

k

(
θ(1), θ (2)

)
�r

k,B
(
θ(2)

)
dθ(1)dθ(2),

�r
k

(
θ(1), θ (2)

) :=
∑

h(1)j ,g
(1)
j ∈Zd

{ r∏

j=1

Lc
k(h

(1)
j )L

c
k(g

(1)
j )

}
e
(
θ(1).

∑

1≤ j≤r

(h(1)j − g(1)j )
)

× e
(

− θ(2).{
∑

1≤ j≤r

R0(h
(1)
j , h

(1)
j − g(1)j )

+
∑

1≤l< j≤r

R0(−h(1)l + g(1)l ,−h(1)j + g(1)j )
})

(5.10)
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and, with Fk defined as in (5.3), we may write

�r
k,B

(
θ(2)

) :=
∣∣∣
∫

Td′ Fk(θ
(2) − ξ (2))�k,k,B(ξ (2)) dξ (2)

∣∣∣
2r
. (5.11)

To prove Lemma 5.1 it suffices to show that for any (θ(1), θ (2)) ∈ T
d × T

d ′

we have

∣∣∣�r
k

(
θ(1), θ (2)

)
�r

k,B
(
θ(2)

)∣∣∣ � τ−k/δ′ . (5.12)

Step 2. Assume first that θ(2) is far from the support of �k,k,B, in the sense
that

|τ k ◦ (θ(2) − a/Q)| ≥ τ 2δk for any a/Q ∈ B ⊆ Rd ′
≤δk .

Using (5.6) it follows that
∣∣�r

k,B
(
θ(2)

)∣∣ � τ−2r2k . Moreover

∣∣�r
k

(
θ(1), θ (2)

)∣∣ � ‖Lc
k‖2r�1(Zd )

�
{ ∏

1≤l≤d

τ k(l+δ)
}2r
,

and the desired bounds (5.12) follow in this case.
Step 3. On the other hand, assume that

|τ k ◦ (θ(2) − a/Q)| ≤ τ 2δk for some irreducible fraction

a/Q ∈ B ⊆ Rd ′
≤δk . (5.13)

In this case we prove the stronger bounds

∣∣∣�r
k

(
θ(1), θ (2)

)∣∣∣ � τ−k/δ′ for any θ(1) ∈ T
d ′
. (5.14)

We examine the formulas (5.10) and (4.27) to rewrite

�r
k

(
θ(1), θ (2)

) =
∫

(Td )2r
Vr
k (θ

(1), θ (2); ζ (1)1 , ξ
(1)
1 , . . . , ζ (1)r , ξ (1)r )

×
∏

1≤ j≤r

{
Sk(ζ

(1)
j )�

c
k (ζ

(1)
j )Sk(ξ

(1)
j )�

c
k (ξ

(1)
j )

}

× dζ (1)1 dξ (1)1 . . . dζ (1)r dξ (1)r ,

(5.15)
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where ζ (1)1 , ξ
(1)
1 , . . . , ζ

(1)
r , ξ

(1)
r ∈ T

d and

Vr
k (θ

(1), θ (2); ζ (1)1 , ξ
(1)
1 , . . . , ζ (1)r , ξ (1)r )

:=
∑

h j ,g j∈Zd

∏

1≤ j≤r

{
φ
(1)
k (h j )

e
(
(θ(1) − ζ (1)j ).h j

)
φ
(1)
k (g j )e

( − (θ(1) − ξ (1)j ).g j
)}

× e
(

− θ(2).{
∑

1≤ j≤r

R0(h j , h j − g j )

+
∑

1≤l< j≤r

R0(−hl + gl,−h j + g j )
})
.

(5.16)

We will show below that

∣∣Sk(β(1))�c
k (β

(1))
∣∣ � τ−kδ′/(2dC) for any β(1) ∈ T

d , (5.17)

where C is a constant from Proposition 2.2. We will also show that

∣∣Vr
k (θ

(1), θ (2); ζ (1)1 , ξ
(1)
1 , . . . , ζ (1)r , ξ (1)r )

∣∣

�
{ ∏

1≤l≤d

τ k(l+δ)
}2r

min
1≤ j≤r
1≤l≤d

[
1 + τ k(l−8δ)‖θ(1)l − ζ (1)j,l ‖Q

+ τ k(l−8δ)‖θ(1)l − ξ (1)j,l ‖Q
]−D2

,

(5.18)

for any θ(1) = (θ
(1)
l )l∈{1,...,d} ∈ T

d , ζ (1)j = (ζ
(1)
j,l )l∈{1,...,d} ∈ T

d , and ξ (1)j =
(ξ
(1)
j,l )l∈{1,...,d} ∈ T

d . Here Q ≤ τ δk+1 and θ(2) are as in (5.13), and

‖μ‖Q := inf
m∈Z

|μ− m/Q| for any μ ∈ R. (5.19)

The desired estimates (5.14) would clearly follow from these bounds and the
identity in (5.15). Here the assumption δ � δ′ in (4.9) plays an important role.

Step 4. The bound in (5.18) follows from the more precise formulas in
Lemma 5.2 below, using repeated integration by parts in the variables x j , y j
to prove bounds on the function Zr

k defined in (5.25) and using the trivial
bound |Wr

Q | ≤ 1 for the function defined in (5.24). We prove now the bounds

(5.17). Assume β(1) = (β
(1)
l )l∈{1,...,d}. By the Dirichlet principle for any l ∈
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{1, . . . , d} there is an irreducible fraction al/ql such that

∣∣β(1)l − al/ql
∣∣ ≤ 1

qlτ lk−δ′k/2
and ql ∈ [1, τ lk−δ′k/2] ∩ Z. (5.20)

If ql ≤ τ δ
′k/(2d) for all l ∈ {1, . . . , d} then �c

k (β
(1)) = 0 due to the definition

(4.26). On the other hand, if ql ∈ [τ δ′k/(2d), τ lk−δ′k/2] ∩ Z for some l ∈
{1, . . . , d} then we apply Proposition 2.2 with P � τ k and ε = δ′/(2d).
Recalling the definition (4.23) it follows that

∣∣Sk(β(1))
∣∣ � τ−kδ′/(2dC), and the

desired bound in (5.17) follow. ��

For later use, in Sect. 8, we prove an approximate formula for the multiplier
Vr
k .

Lemma 5.2 Assume that k ≥ D/ ln τ and 1 ≤ Q ≤ τ 2δk . Assume also that

θ(2) = a(2)/Q + α(2), a(2) ∈ Z
d ′
, |τ k ◦ α(2)| ≤ τ 4δk (5.21)

and

θ(1) − ξ (1)j = b j/Q + β j , θ
(1) − ζ (1)j = c j/Q + γ j , b j , c j ∈ Z

d ,

Qβ j , Qγ j ∈ [−1/2, 1/2]d , (5.22)

for any j ∈ {1, . . . , r}. Then we have the approximate identity

Vr
k (θ

(1), θ (2); ζ (1)1 , ξ
(1)
1 , . . . , ζ (1)r , ξ (1)r )

= Wr
Q(a

(2); b1, c1, . . . , br , cr ) · Zr
k (α

(2);β1, γ1, . . . , βr , γr )+ O(τ−D3k),
(5.23)

where

Wr
Q(a

(2);b1, c1, . . . , br , cr )
:=

{
Q−2rd

∑

μ j ,ν j∈Z
d
Q

( ∏

1≤ j≤r

e
( − (b j/Q).μ j

)
e
(
(c j/Q).ν j

))

× e
(

− (a(2)/Q).{
∑

1≤ j≤r

R0(ν j , ν j − μ j )

+
∑

1≤l< j≤r

R0(−νl + μl,−ν j + μ j )
})}

,

(5.24)
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and

Zr
k (α

(2);β1, γ1, . . . , βr , γr ) :=
∫

R2rd

{ ∏

1≤l≤d

τ kl
}2r

×
∏

1≤ j≤r

{
η≤δk(x j )e

( − (τ k ◦ β j ).x j
)
η≤δk(y j )e

(
(τ k ◦ γ j ).y j

)}

× e
(

− (τ k ◦ α(2)).{
∑

1≤ j≤r

R0(y j , y j − x j )

+
∑

1≤l< j≤r

R0(−yl + xl,−y j + x j )
})

dx jdy j .

(5.25)

Proof We decompose g j = Qm j + μ j , h j = Qn j + ν j , m j , n j ∈ Z
d ,

μ j , ν j ∈ Z
d
Q and then rewrite the formula (5.16) in the form

Vr
k (θ

(1), θ (2); ζ (1)1 , ξ
(1)
1 , . . . , ζ (1)r , ξ (1)r )

=
∑

μ j ,ν j∈Zd
Q

∑

n j ,m j∈Zd

∏

1≤ j≤r

{
η≤δk(τ−k ◦ (Qn j + ν j ))

× e
(
γ j .(Qn j + ν j )

)
e
(
(c j/Q).ν j

)

× η≤δk(τ−k ◦ (Qm j + μ j ))e
( − β j .(Qm j + μ j )

)
e
( − (b j/Q).μ j

)}

× e
(

− α(2).{
∑

1≤ j≤r

R0(h j , h j − g j )+
∑

1≤l< j≤r

R0(−hl + gl ,−h j + g j )
})

× e
(

− (a(2)/Q).{
∑

1≤ j≤r

R0(ν j , ν j − μ j )

+
∑

1≤l< j≤r

R0(−νl + μl ,−ν j + μ j )
})
.

We fix the variables μ j , ν j and use the Poisson summation formula to replace
the sum over m j , n j with integrals. Using (2.17) with ξ = (−Qβ, Qγ ) and
M large we see that the difference is rapidly decreasing in τ k , due to the
assumptions (5.21)–(5.22). Therefore

Vr
k (θ(1), θ (2); ζ (1)1 , ξ

(1)
1 , . . . , ζ (1)r , ξ (1)r )

=
∑

μ j ,ν j∈Z
d
Q

{ ∏

1≤ j≤r

e
( − (b j/Q).μ j

)
e
(
(c j/Q).ν j

)}

×e
(

− (a(2)/Q).{
∑

1≤ j≤r

R0(ν j , ν j − μ j )

+
∑

1≤l< j≤r

R0(−νl + μl,−ν j + μ j )
})
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×
∫

R2rd

∏

1≤ j≤r

{
η≤δk(τ−k ◦ (Qn j + ν j ))e

(
γ j .(Qn j + ν j )

)

×η≤δk(τ−k ◦ (Qm j + μ j ))e
( − β j .(Qm j + μ j )

)}

×e
(

− α(2).{
∑

1≤ j≤r

R0(h j , h j − g j )

+
∑

1≤l< j≤r

R0(−hl + gl,−h j + g j )
})

dm jdn j + O(τ−D3k),

where h j = Qn j + ν j and g j = Qm j + μ j in the last line. We make the
changes of variables x j = τ−k ◦ (Qm j + μ j ), y j = τ−k ◦ (Qn j + ν j ), and
the desired formulas (5.23)–(5.25) follow. ��

6 Major arcs contributions: Proof of Lemma 4.5

Our primary goal in this section is to prove the bounds (4.30)–(4.33). For later
use in the �p theory, we will prove in fact slightly stronger bounds at several
stages.

6.1 Arithmetic decompositions

We will write the kernels G low
k,s and Gk,s,t as tensor products plus error terms.

For any integer Q ∈ Z+ we define the subgroup

HQ := {h = (Qhl1l2)(l1,l2)∈Yd ∈ G0 : hl1,l2 ∈ Z}. (6.1)

Clearly HQ ⊆ G0 is a normal subgroup. Let JQ denote the coset

JQ := {b = (bl1l2)(l1,l2)∈Yd ∈ G0 : bl1,l2 ∈ Z ∩ [0, Q − 1]}, (6.2)

with the natural induced group structure. Notice that

the map (b, h) �→ b · h defines a bijection from JQ × HQ to G0. (6.3)

Assume that Q ∈ Z+ and τ k ≥ Q. For any a ∈ Z
d and ξ ∈ R

d let

Jk(ξ) := τ−k
∫

R

χ(τ−k x)e[−A(1)0 (x).ξ ] dx =
∫

R

χ(y)e[−A(1)0 (y).(τ
k ◦ ξ)] dy,

J ′
k(ξ) := τ−k

∫

R

χ ′(τ−k x)e[−A(1)0 (x).ξ ] dx =
∫

R

χ ′(y)e[−A(1)0 (y).(τ
k ◦ ξ)] dy,

S(a/Q) := Q−1
∑

n∈ZQ

e[−A(1)0 (n).a/Q], (6.4)
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where χ ′(x) := (1/τ)χ(x/τ)− χ(x). For any ι ∈ {0, 1} we also let

Sιk :=
{
Sk if ι = 0,

�k Sk if ι = 1,
χι :=

{
χ if ι = 0,

χ ′ if ι = 1,
J ιk :=

{
Jk if ι = 0,

J ′
k if ι = 1.

(6.5)

where Sk : R
d → R are defined as in (4.23). We first prove an approximation

formula for the functions Sιk .

Lemma 6.1 If k ≥ D/ ln τ , |τ k ◦ ξ | ≤ τ k/4, 1 ≤ Q ≤ τ k/4, a ∈ Z
d , and

ι ∈ {0, 1} then

|Sιk(a/Q + ξ)− S(a/Q)J ιk(ξ)| � τ−Dk . (6.6)

Proof We write

Sιk(a/Q + ξ) =
∑

n∈Z,m∈ZQ

τ−kχι(τ−k(Qn + m))e[−A(1)0 (Qn + m).(a/Q + ξ)]

=
∑

m∈ZQ

e[−A(1)0 (m).a/Q]
{∑

n∈Z
τ−kχι(τ−k(Qn + m))

e[−A(1)0 (Qn + m).ξ ]
}
.

For any m ∈ ZQ we apply the estimates (2.17) (with m = 1, ξ = 0, and
M large) to replace the sum over n with the corresponding integral, at the
expense of an acceptable error. The desired approximate identity (6.6) follows
by a linear change of variables. ��

Wenowprove an approximate formula for the kernels Kk,w,A,B from (4.36).

Lemma 6.2 Assume that k, w ∈ N, k ≥ D/ ln τ , 0 ≤ w ≤ k and let 1 ≤ Q ≤
τ δk . LetA ⊆ R̃d

Q and B ⊆ R̃d ′
Q be 1-periodic sets of rationals. If h ∈ HQ and

b1, b2 ∈ G0 satisfy |b j | ≤ Q4, j ∈ {1, 2}, then we can decompose

Kk,w,A,B(b1 · h · b2) = Wk,w,Q(h)VA,B,Q(b1 · b2)+ Ek,w,A,B(h, b1, b2),
(6.7)

where, for any h = (h(1), h(2)) ∈ HQ and b = (b(1), b(2)) ∈ G0, one has

Wk,w,Q(h) := Qd+d ′
φk(h)

∫

Rd×Rd′ η≤δ′w(τ k ◦ ξ)η≤δw(τ k ◦ θ)
×e(h.(ξ, θ))Jk(ξ) dξdθ, (6.8)
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VA,B,Q(b) := Q−d−d ′{ ∑

σ (1)∈A∩[0,1)d
S(σ (1))e[b(1).(σ (1))]

}

×
{ ∑

σ (2)∈B∩[0,1)d′
e[b(2).(σ (2))]

}
. (6.9)

Here φk(h) := φ
(1)
k (h(1))φ(2)k (h(2)) and the error terms Ek,A,B satisfy the

bounds

∣∣Ek,w,A,B(h, b1, b2)
∣∣ � τ−k/2

{ ∏

(l1,l2)∈Yd
τ−(l1+l2)k

}

×η≤2δk(τ
−k ◦ h(1))η≤2δk(τ

−k ◦ h(2)). (6.10)

Proof We start from the formula Kk,w,A,B(g) = Lk,w,A(g(1))Nk,w,B(g(2)),
and recall the definitions (4.11) and (4.37). Letting b1 = (b(1)1 , b

(2)
1 ), b2 =

(b(1)2 , b
(2)
2 ), h = (h(1), h(2)) we have

b1 · h · b2 = (g(1), g(2)),

g(1) := h(1) + b(1)1 + b(1)2 ,

g(2) := h(2) + b(2)1 + b(2)2 + R0(b
(1)
1 , h

(1))+ R0(h
(1) + b(1)1 , b

(1)
2 ).

(6.11)

Using (4.11) and (4.37) we have

Lk,w,A(g(1)) = φ
(1)
k (g(1))

∫

Td
e(g(1).ξ (1))Sk(ξ

(1))�k,w,A(ξ (1)) dξ (1)

= η≤δk(τ−k ◦ g(1))
∑

σ (1)∈A∩[0,1)d

∫

Rd
η≤δ′w(τ k ◦ ξ)Sk(σ (1) + ξ)

× e[(h(1) + b(1)1 + b(1)2 ).(σ
(1) + ξ)] dξ,

and

Nk,w,B(g(2)) = φ
(2)
k (g(2))

∫

Td′ e(g
(2).ξ (2))�k,w,B(ξ (2)) dξ (2)

= η≤δk(τ−k ◦ g(2))
∑

σ (2)∈B∩[0,1)d′

∫

Rd′ η≤δw(τ k ◦ θ)

× e
{[h(2) + b(2)1 + b(2)2 + R0(b

(1)
1 , h

(1))

+ R0(h
(1) + b(1)1 , b

(1)
2 )].(σ (2) + θ)

}
dθ.
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We notice that if h(1) ∈ (QZ)d , b(1)1 , b
(1)
2 ∈ Z

d , σ (1) ∈ A ⊆ R̃d
Q , |τ−k ◦

h(1)| � τ δk , |b(1)1 | + |b(1)2 | � Q4, Q ≤ τ δk , ξ ∈ R
d , and |τ k ◦ ξ | � τ δ

′k then

η≤δk(τ−k ◦ g(1)) = η≤δk(τ−k ◦ h(1))+ O(τ−3k/4), (6.12)
e[(h(1) + b(1)1 + b(1)2 ).(σ (1) + ξ)] = e[(b(1)1 + b(1)2 ).(σ (1))]e[(h(1) + b(1)1 + b(1)2 ).ξ ]

= e[(b(1)1 + b(1)2 ).(σ (1))]e(h(1).ξ )+ O(τ−3k/4).

(6.13)

Using also Lemma 6.1 we have

∣∣∣Lk,w,A(g(1))− η≤δk(τ−k ◦ h(1))
∑

σ (1)∈A∩[0,1)d
S(σ (1))e[(b(1)1 + b(1)2 ).(σ

(1))]

×
∫

Rd
η≤δ′w(τ k ◦ ξ)Jk(ξ)e(h(1).ξ ) dξ

∣∣∣ � τ−2k/3
∏

1≤l1≤d

τ−l1k . (6.14)

Moreover, assuming also that h(2) ∈ (QZ)d
′
, b(2)1 , b

(2)
2 ∈ Z

d ′
, σ (2) ∈ B ⊆

R̃d ′
Q , |τ−k ◦ h(2)| � τ δk , |b(2)1 | + |b(2)2 | � Q4, θ ∈ R

d ′
, and |τ k ◦ θ | � τ δk , we

have

η≤δk(τ−k ◦ g(2)) = η≤δk(τ−k ◦ h(2))+ O(τ−3k/4), (6.15)

e
{[h(2) + b(2)1 + b(2)2 + R0(b

(1)
1 , h

(1))+ R0(h
(1) + b(1)1 , b

(1)
2 )].(σ (2) + θ)

}

= e
{[b(2)1 + b(2)2 + R0(b

(1)
1 , b

(1)
2 )].(σ (2))

}
e(h(2).θ)+ O(τ−3k/4).

(6.16)

Therefore

∣∣∣Nk,w,B(g(2))− η≤δk(τ−k ◦ h(2))

×
∑

σ (2)∈B∩[0,1)d′
e
{[b(2)1 + b(2)2 + R0(b

(1)
1 , b

(1)
2 )].(σ (2))

}

×
∫

Rd′ η≤δw(τ k ◦ θ)e(h(2).θ) dθ
∣∣∣ � τ−2k/3

∏

(l1,l2)∈Y ′
d

τ−(l1+l2)k .

(6.17)

The conclusion of the lemma follows from (6.14) and (6.17). ��

6.2 Gauss sums operators

We consider now the convolution operators defined by the kernels VA,B,Q on
the quotient groups JQ (see (6.2)). The convolution of two functions on the
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group JQ is defined by a formula similar to (1.14), namely

( f ∗JQ g)(x) :=
∑

y∈JQ

g(y) f (y−1 · x) =
∑

y∈JQ

g(x · y−1) f (y). (6.18)

Lemma 6.3 Assume that Q ∈ Z+ and A ⊆ R̃d
Q and B ⊆ R̃d ′

Q are 1-periodic
sets of rationals and let VA,B,Q be the kernels defined in (6.9).

(i) Let qB := min{q ∈ Z+ : a/q ∈ B and gcd(a1, . . . , ad ′, q) = 1}, then
for f ∈ �2(JQ) we have

∥∥ f ∗JQ VR̃d
Q ,B,Q

∥∥
�2(JQ)

� q−1/D
B ‖ f ‖�2(JQ). (6.19)

In particular, if s ≥ 0 then for V low
s := VR̃d

Qs
,Rd′

s ,Qs
inequality (6.19)

ensures

∥∥ f ∗JQs
V low
s

∥∥
�2(JQs )

� τ−s/D‖ f ‖�2(JQs )
. (6.20)

(ii) Let qA := min{q ∈ Z+ : a/q ∈ A and gcd(a1, . . . , ad , q) = 1}. If
q1 � qA for every a1/q1 ∈ A, and 1 ≤ q2 � q1/DA for every a2/q2 ∈ B, then
for f ∈ �2(JQ) we have

∥∥ f ∗JQ VA,B,Q
∥∥
�2(JQ)

� q−1/D
A ‖ f ‖�2(JQ). (6.21)

In particular, if s ≥ 0, t ≥ D(s + 1), then for Vs,t := VRd
t \R̃d

Qs
,Rd′

s ,Qt
we

have

∥∥ f ∗JQt
Vs,t

∥∥
�2(JQt )

� τ−t/D‖ f ‖�2(JQt )
. (6.22)

Proof As in Sect. 5 we will use a high order T ∗T argument.
Step 1. Define the operator VA,B,Q f := f ∗JQ VA,B,Q . For the integer

r = r(d) as before we have

{(VA,B,Q)∗VA,B,Q}r f (x) = ( f ∗JQ V r
A,B,Q)(x),

where, as in Sect. 5, we have

V r
A,B,Q(y) :=

∑

h1,g1,...,hr ,gr∈JQ

{ r∏

j=1

VA,B,Q(h j )VA,B,Q(g j )
}

×1{0}(g−1
r · hr · . . . · g−1

1 · h1 · y). (6.23)
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Using the formula

1{0}(x−1 · y)
= Q−(d+d ′) ∑

a∈Z
d
Q×Z

d′
Q

e
[
(y(1) − x (1)).(a(1)/Q)

]
e
[
(y(2) − x (2)).(a(2)/Q)

]

and the definition (6.23) we obtain

V r
A,B,Q(y) = Q−(d+d ′) ∑

a∈Z
d
Q×Z

d′
Q

e
[
y(1).(a(1)/Q)

]

×e
[
y(2).(a(2)/Q)

]
ϒr

A,B,Q
(
a(1)/Q, a(2)/Q

)
,

where

ϒr
A,B,Q

(
θ(1), θ (2)

) :=
∑

h1,g1,...,hr ,gr∈JQ

{ r∏

j=1

VA,B,Q(h j )VA,B,Q(g j )
}

× e
( − [h−1

1 · g1 · . . . · h−1
r · gr ](1).θ (1)

)
e
( − [h−1

1 · g1 · . . . · h−1
r · gr ](2).θ (2)

)
.

(6.24)

Step 2. Taking into account (6.9) we may write

VA,B,Q(y(1), y(2)) := Q−(d+d ′) ∑

α(1)∈(ZQ/Q)d , α(2)∈(ZQ/Q)d
′
mA(α(1))mB(α(2))

×e[y(1).α(1)]e[y(2).α(2)],

where mA(α(1)) := S(α(1))1A∩[0,1)d (α(1)) and mB(α(2)) := 1B∩[0,1)d′ (α(2)).
Using formulas (2.10)–(2.11) we may simplify (6.24). We notice that the sum
over the variables h(2)j , g

(2)
j , j ∈ {1, . . . , r} leads to δ-functions in the variables

θ(2) − β(2)j and θ(2) − α(2)j . Thus

ϒr
A,B,Q

(
θ(1), θ (2)

) = ∣∣mB(θ(2))
∣∣2r Q−2rd

{ ∑

β
(1)
1 ,α

(1)
1 ,...,β

(1)
r ,α

(1)
r ∈(ZQ/Q)d

∑

h(1)1 ,g(1)1 ,...,h(1)r ,g(1)r ∈Z
d
Q

×
r∏

j=1

{
mA(β

(1)
j )e

[
h(1)j .(θ

(1) − β(1)j )
] · mA(α

(1)
j )e

[ − g(1)j .(θ
(1) − α(1)j )

]}

×e
[

− θ(2).
( ∑

1≤ j≤r

R0(h
(1)
j , h

(1)
j − g(1)j )
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+
∑

1≤l< j≤r

R0(−h(1)l + g(1)l ,−h(1)j + g(1)j )
)]}

. (6.25)

Step 3. Our aim now is to show that

∥∥V r
R̃d

Q ,B,Q
∥∥
�1(JQ)

� q−1
B . (6.26)

This will establish (6.19) and (6.20), by taking Q = Qs and B = Rd ′
s . To

prove (6.26) it suffices to show

∣∣ϒr
R̃d

Q ,B,Q
(
θ(1), θ (2)

)∣∣ � (q1 + q2)
−1/δ41B∩[0,1)d′ (θ(2)), (6.27)

where q1|Q, q2|Q are the denominators of the irreducible representation of
the fractions θ(1) and θ(2) respectively.

Inserting the formula S(γ (1)) = Q−1∑
n∈ZQ

e[−A(1)0 (n).γ
(1)], see (6.4),

into the identity (6.25)withA = R̃d
Q ,we notice that the sumsover the variables

α
(1)
j and β(1)j lead to δ-functions. More precisely,

ϒr
R̃d

Q ,B,Q
(
θ(1), θ (2)

) = 1B∩[0,1)d′ (θ(2))Q−2r

×
{ ∑

n j ,m j∈ZQ

e
[
θ(1).

( ∑

1≤ j≤r

A(1)0 (n j )− A(1)0 (m j )
)]

× e
[

− θ(2).
( ∑

1≤ j≤r

R0
(
A(1)0 (n j ), A

(1)
0 (n j )− A(1)0 (m j )

)

+
∑

1≤l< j≤r

R0
(
A(1)0 (ml)− A(1)0 (nl), A

(1)
0 (m j )− A(1)0 (n j )

))]}

= 1B∩[0,1)d′ (θ(2))Q−2r
∑

n,m∈Zr
Q

e
[ − D(n,m).(θ(1), θ (2))

]
,

where D(n,m) is defined in (2.24). Using Proposition 2.3 (ii) we obtain (6.27)
as desired.

Step 4. To prove (6.21) as well as (6.22) with Q = Qt andA = Rd
t \ R̃d

Qs
,

B = Rd ′
s we show

∥∥V r
A,B,Q

∥∥
�1(JQ)

� q−1
A . (6.28)

We still use the formula (6.25), withA ⊆ R̃d
Q andB ⊆ R̃d ′

Q satisfying q1 � qA
for every a1/q1 ∈ A, and 1 ≤ q2 � q1/DA for every a2/q2 ∈ B. We would

like to first evaluate the sums over the variables h(1)j and g(1)j ; these sums

would lead to δ-functions if θ(2) = 0, but there is an obstruction for other
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values of θ(2). However, we can exploit the fact that the denominators of
fractions θ(2) are small. Indeed, assume that a(2)/q2 = θ(2) is the irreducible
representation of the fraction θ(2), where 1 ≤ q2 � q1/DA and q2 divides Q.

For j ∈ {1, . . . , r} we decompose h(1)j = q2y j + y′
j , g

(1)
j = q2x j + x ′

j ,

y′
j , x

′
j ∈ Z

d
q2 , y j , x j ∈ Z

d
Q/q2

. Then we notice that

(Q/q2)
−2rd

∑

y1,x1,...,yr ,xr∈Zd
Q/q2

r∏

j=1

e
[
q2y j .(θ

(1) − β(1)j )
]
e
[ − q2x j .(θ

(1) − α(1)j )
]

=
r∏

j=1

1Zd

[
q2(θ

(1) − β(1)j )
]
1Zd

[
q2(θ

(1) − α(1)j )
]
.

Therefore, using formula (6.25), one sees

∣∣ϒr
A,B,Q

(
θ(1), θ (2)

)∣∣ ≤1B∩[0,1)d′ (θ(2))
{ ∑

β
(1)
1 ,α

(1)
1 ,...,β

(1)
r ,α

(1)
r ∈(ZQ/Q)d

r∏

j=1

1Zd

[
q2(θ

(1) − β(1)j )
]

× 1Zd

[
q2(θ

(1) − α(1)j )
]|mA(β

(1)
j )||mA(α

(1)
j )|

}
.

Recall that mA(γ ) = S(γ )1A∩[0,1)d (γ ). It follows from Proposition 2.2 (ii)

that for any γ ∈ A we have |mA(γ )| � q−1/C
A , since q1 � qA for every

a1/q1 ∈ A. Therefore

∣∣ϒr
A,B,Q

(
θ(1), θ (2)

)∣∣ � 1B∩[0,1)d′ (θ(2))1(A+(Z/q2)d )∩[0,1)d (θ(1))q
−2r/C
A q2dr2 ,

where A + (Z/q2)d := {a/q2 + θ : θ ∈ A, a ∈ Z
d}. The desired bound

(6.28) follows since 1 ≤ q2 � q1/DA for every a2/q2 ∈ B, and r ∈ Z+ is
sufficiently large. ��

6.3 Maximal and variational operators on the group HQ

The main result of this subsection is the following lemma:

Lemma 6.4 Assume that 2 < ρ < ∞, τ ∈ (1, 2], and k, k0, w ∈ N satisfy
0 ≤ w ≤ k and k ≥ k0 ≥ D/ ln τ . Assume that 1 ≤ Q ≤ τ δk and let
Wk,w,Q : HQ → C be defined as in (6.8). Then, for any f ∈ �2(HQ) and
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D ⊆ N one has

∥∥V ρ( f ∗HQ Wk,k,Q : k ∈ Dk0,Q)
∥∥
�2(HQ)

� ‖ f ‖�2(HQ)
, (6.29)

uniformly in Q, where Dk0,Q := {k ∈ D : k ≥ k0, τ δk ≥ Q}.
Moreover, for every w ∈ N and every sequence {�k}k∈N ⊆ C satisfying

supk∈N |�k | ≤ 1,

∥∥∥
∑

k∈Dk0,Q , k>w

�k f ∗HQ (Wk,w+1,Q − Wk,w,Q)

∥∥∥
�2(HQ)

� τ−w/D2‖ f ‖�2(HQ)
,

(6.30)

for any f ∈ �2(HQ), uniformly in Q.

The main idea to prove (6.29)–(6.30) is to compare our operators with
suitable operators on the Lie group G

#
0. More precisely for 0 ≤ w ≤ k we

define the kernels W̃k,w : G
#
0 → C by

W̃k,w(x) := φk(x)
∫

Rd×Rd′ η≤δ′w(τ k ◦ ξ)η≤δw(τ k ◦ θ)e(x .(ξ, θ))Jk(ξ) dξdθ,
(6.31)

where x = (x (1), x (2)) ∈ R
d × R

d ′ = G
#
0 and φk(x) = φ

(1)
k (x (1))φ(2)k (x (2)).

Then we have a continuous version of Lemma 6.4:

Proposition 6.5 Assume that 2 < ρ < ∞, τ ∈ (1, 2], and k, w ∈ N satisfy
0 ≤ w ≤ k. With W̃k,w : G

#
0 → C defined as in (6.31), for any f ∈ L2(G#

0)

one has

∥∥V ρ( f ∗
G
#
0
W̃k,k : k ≥ 0)

∥∥
L2(G#

0)
� ‖ f ‖L2(G#

0)
. (6.32)

In particular, one has

∥∥ sup
k≥0

| f ∗
G
#
0
W̃k,k |

∥∥
L2(G#

0)
� ‖ f ‖L2(G#

0)
. (6.33)

Moreover, for any w ∈ N, any sequence {�k}k∈N ⊆ C satisfying
supk∈N |�k | ≤ 1, and any f ∈ L2(G#

0) one has

∥∥∥
∑

k>w

�k f ∗
G
#
0
(W̃k,w+1 − W̃k,w)

∥∥∥
L2(G#

0)
� τ−w/D‖ f ‖L2(G#

0)
. (6.34)
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Continuousmaximal operators such as (6.33) have been extensively studied,
see for example the conclusive work of Christ–Nagel–Stein–Wainger [19].
However, the variational estimates in the nilpotent setting in the spirit of [19]
appear to be new. For the convenience of the readerwe provide a self-contained
proof of Proposition 6.5 in Appendix A. Assuming that Proposition 6.5 holds,
we show how to use it to deduce Lemma 6.4.

Proof of Lemma 6.4 We define the Q-cubes

CQ := [0, Q)d × [0, Q)d ′ ⊆ G
#
0, (6.35)

and notice that the map (μ, h) �→ μ ·h defines a measure-preserving bijection
from CQ × HQ to G

#
0. Let 1 ≤ p < ∞. Given f ∈ �p(HQ) we define

f #(μ · h) := f (h) for any (μ, h) ∈ CQ × HQ,

f # ∈ L p(G#
0), ‖ f #‖L p(G#

0)
= Q(d+d ′)/p‖ f ‖�p(HQ).

(6.36)

We now prove the following bounds: for any 1 ≤ p < ∞ and 2 < ρ < ∞ we
have

∥∥V ρ( f ∗HQ Wk,k,Q : k ∈ Dk0,Q)
∥∥
�p(HQ)

� Q−(d+d ′)/p∥∥V ρ( f # ∗
G
#
0
W̃k,k : k ≥ 0)

∥∥
L p(G#

0)

+ ‖ f ‖�p(HQ), (6.37)

and
∥∥∥

∑

k∈Dk0,Q , k>w

�k f ∗HQ (Wk,w+1,Q − Wk,w,Q)

∥∥∥
�p(HQ)

� Q−(d+d ′)/p
∥∥∥

∑

k∈Dk0,Q , k>w

�k f
# ∗

G
#
0
(W̃k,w+1 − W̃k,w)

∥∥∥
L p(G#

0)

+ τ−w/8‖ f ‖�p(HQ).

(6.38)

It is easy to see that the inequalities (6.37)–(6.38) with p = 2 can be
combined with (6.32), (6.34), and (6.36) to complete the proof of Lemma 6.4.

It remains to prove the bounds (6.37)–(6.38). For this we compare the func-
tions f ∗HQ Wk,w,Q : HQ → C and f # ∗

G
#
0
W̃k,w : G

#
0 → C. By (6.8) and

(6.31), we have Qd+d ′
W̃k,w(h) = Wk,w,Q(h) for any h ∈ HQ . Moreover, by

(6.31) notice that

∣∣W̃k,w(μ1 · h · μ2)− W̃k,w(h)
∣∣ � Ek(h), (6.39)
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where

Ek(h) := τ−k/2
{ ∏

(l1,l2)∈Yd
τ−(l1+l2)k

}
η≤2δk(τ

−k ◦ h(1))η≤2δk(τ
−k ◦ h(2)),

for any h, μ1, μ2 ∈ G
#
0 with |μ1| + |μ2| � Q4, provided that k ≥ D/ ln τ ,

0 ≤ w ≤ k and 1 ≤ Q ≤ τ δk . Thus

( f # ∗
G
#
0
W̃k,w)(μ · h) =

∑

h1∈HQ

∫

CQ
f #(μ1 · h1)W̃k,w(μ · h · h−1

1 · μ−1
1 ) dμ1

=
∑

h1∈HQ

f (h1)
∫

CQ
W̃k,w(μ · h · h−1

1 · μ−1
1 ) dμ1,

for any (μ, h) ∈ CQ × HQ . Using (6.39) we have

∣∣∣
∫

CQ
W̃k,w(μ · h · h−1

1 · μ−1
1 ) dμ1 − Wk,w,Q(h · h−1

1 )

∣∣∣ � Ek(h · h−1
1 )Q

d+d ′
.

Therefore, for any f ∈ �p(HQ), h ∈ HQ and μ ∈ CQ , one has

( f ∗HQ Wk,w,Q)(h) = ( f # ∗
G
#
0
W̃k,w)(μ · h)+ O

(
τ k/4(| f | ∗HQ Ek)(h)

)
,

provided that k ≥ D/ ln τ , 0 ≤ w ≤ k and 1 ≤ Q ≤ τ δk . The desired
bounds (6.37) and (6.38) follow from the last identity and the observation that∑

k≥w τ k/4‖Ek‖�1(HQ)
� τ−w/8 for any w ∈ N. ��

6.4 Proof of Lemma 4.5

We begin with a transference lemma which will be used repeatedly.

Lemma 6.6 As in Lemma 6.4, assume that 2 < ρ < ∞, τ ∈ (1, 2], k ≥ k0,
and 1 ≤ Q ≤ τ δk . Assume that KG0

k : G0 → C are given kernels such that

KG0
k (b1 · h · b2) := W

HQ
k (h)V JQ (b1 · b2)+ Ek(h, b1, b2), (6.40)
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for any h ∈ HQ and b1, b2 ∈ G0 satisfying |b j | ≤ Q4, j ∈ {1, 2}, for some
kernels W

HQ
k : HQ → C and V JQ : JQ → C, where the error terms satisfy

the estimates

sup
|b1|,|b2|≤Q4

‖Ek(·, b1, b2)‖�1(HQ)
� τ−k/3. (6.41)

LetD ⊆ N andDk0,Q = {k ∈ D : k ≥ k0, τ δk ≥ Q} as in Lemma 6.4. Let also
KG0
k f := f ∗G0 K

G0
k , and WHQ

k g := g ∗HQ W
HQ
k , and VJQh := h ∗JQ V JQ

denote the convolution operators corresponding to the kernels KG0
k , W

HQ
k ,

and V JQ .
Then for any 1 ≤ p < ∞ and either B = V ρ or B = �∞

∥∥(KG0
k

)
k∈Dk0,Q

∥∥
�p(G0)→�p(G0;B)

�
∥∥(WHQ

k

)
k∈Dk0,Q

∥∥
�p(HQ)→�p(HQ;B)

∥∥VJQ
∥∥
�p(JQ)→�p(JQ)

+ τ−k0/8Q−1/(8δ). (6.42)

Moreover, for any sequence {�k}k∈N ⊆ C satisfying supk∈N |�k | ≤ 1

∥∥ ∑

k∈Dk0,Q

�kKG0
k

∥∥
�p(G0)→�p(G0)

�
∥∥ ∑

k∈Dk0,Q

�kWHQ
k

∥∥
�p(HQ)→�p(HQ)

× ∥∥VJQ
∥∥
�p(JQ)→�p(JQ)

+ τ−k0/8Q−1/(8δ).

(6.43)

Proof Using (6.40) for b ∈ JQ and h ∈ HQ we may write

( f ∗ KG0
k )(b · h) =

∑

h1∈HQ , b1∈JQ

f (b1 · h1)KG0
k (b · h · h−1

1 · b−1
1 )

=
∑

h1∈HQ , b1∈JQ

f (b1 · h1)
{
W

HQ
k (h · h−1

1 )V
JQ (b · b−1

1 )

+Ek(h · h−1
1 , b, b

−1
1 )

}
. (6.44)

For any h′ ∈ HQ and b ∈ JQ let FJQ (b, h
′) := ∑

b1∈JQ
f (b1 ·h′)V JQ (b ·b−1

1 ).
We also take
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Fk(h, b) :=
∑

h1∈HQ

FJQ (b, h1)W
HQ
k (h · h−1

1 )

Gk(h, b, b1) :=
∑

h1∈HQ

| f (b1 · h1)Ek(h · h−1
1 , b, b

−1
1 )|.

Then by (6.44) we have

∥∥V ρ( f ∗ KG0
k : k ∈ Dk0,Q)

∥∥
�p(G0)

≤
( ∑

h∈HQ , b∈JQ

V ρ
(
Fk(h, b) : k ∈ Dk0,Q

)p)1/p

+ 2
∑

b,b1∈JQ

( ∑

h∈HQ

( ∑

k∈Dk0,Q

|Gk(h, b, b1)|ρ
)p/ρ)1/p

=: I1 + I2.

(6.45)

For the first sum in (6.45) we now see that

I1 ≤ ∥∥(WHQ
k

)
k∈Dk0,Q

∥∥
�p(HQ)→�p(HQ;V ρ)

∥∥VJQ
∥∥
�p(JQ)→�p(JQ)

‖ f ‖�p(G0),

whereas for the second onewe use (6.41) to conclude that I2 � τ−k0/8Q−1/(8δ)

‖ f ‖�p(G0). This proves (6.42) when B = V ρ . The remaining conclusions of
the lemma follow in a similar way. ��

We now establish a slightly more general result for the kernels Kk,w,A,B :
G0 → C as in (6.7). Let VA,B,Q f := f ∗JQ VA,B,Q denote the convolution
operator corresponding to the kernel VA,B,Q : JQ → C from (6.9).

Lemma 6.7 As in Lemma 6.4, assume that ρ ∈ (2,∞), τ ∈ (1, 2], and
k, k0, w, Q ∈ N satisfy 0 ≤ w ≤ k, k ≥ k0 ≥ D/ ln τ , and 1 ≤ Q ≤ τ δk .
Assume thatA ⊆ R̃d

Q and B ⊆ R̃d ′
Q are 1-periodic sets of rationals. Then, for

any f ∈ �2(G0) and D ⊆ N we have

∥∥V ρ( f ∗ Kk,k,A,B : k ∈ Dk0,Q)
∥∥
�2(G0)

�
(‖VA,B,Q‖�2(JQ)→�2(JQ)

+ τ−k0/8Q−1/(8δ))‖ f ‖�2(G0)
,

(6.46)

uniformly in Q and k0 ≥ D/ ln τ , where as before Dk0,Q = {k ∈ D :
k ≥ k0, τ δk ≥ Q}. Moreover for any sequence {�k}k∈N ⊆ C satisfying
supk∈N |�k | ≤ 1, any f ∈ �2(G0), and any Q ∈ Z+, w ∈ N we have

123



A. D. Ionescu et al.

∥∥∥
∑

k∈Dk0,Q , k>w

�k f ∗ (Kk,w+1,A,B − Kk,w,A,B)
∥∥∥
�2(G0)

�
(
τ−w/D2‖VA,B,Q‖�2(JQ)→�2(JQ)

+ τ−max(k0,w)/8Q−1/(8δ))‖ f ‖�2(G0)
.

(6.47)

Proof To prove (6.46) we use Lemma 6.6 with KG0
k = Kk,k,A,B, W

HQ
k =

Wk,k,Q and V JQ = VA,B,Q as in Lemma 6.2. The assumptions (6.40)–(6.41)
in Lemma 6.6 follow from (6.7) and (6.10). The bounds (6.46) follow from
(6.42) with p = 2 and (6.29).

On the other hand, taking KG0
k = Kk,w+1,A,B − Kk,w,A,B, W

HQ
k =

Wk,w+1,Q − Wk,w,Q , and V JQ = VA,B,Q , the bounds (6.47) follow from
(6.43) and (6.30). ��

We are now finally ready to complete the proof of Lemma 4.5.

Proof of Lemma 4.5 Notice that G low
k,s = Kk,k,R̃d

Qs
,Rd′

s
. We use (6.46) with

Q = Qs and k0 = κs ; in view of (6.20) we have ‖VR̃d
Qs
,Rd′

s ,Qs
‖�2(JQs )→�2(JQs )

� τ−s/D , and the bounds (4.30)–(4.31) follow from (6.46).
Assuming that s ≥ 0, t ≥ D(s+1) and takingA ⊆ Rd

t \R̃d
Qs

andB ⊆ Rd ′
≤s

we conclude, using (6.21) and (6.46) with Q = Qt and k0 = κt , that

∥∥V ρ( f ∗ Kk,k,A,B : k ≥ κt )
∥∥
�2(G0)

� τ−t/D‖ f ‖�2(G0)
(6.48)

for any 2 < ρ < ∞, as well as

∥∥ sup
k≥κt

| f ∗ Kk,k,A,B|∥∥
�2(G0)

� τ−t/D‖ f ‖�2(G0)
, (6.49)

The desired bounds (4.32)–(4.33) follow since Gk,s,t = Kk,k,Rd
t \R̃d

Qs
,Rd′

s
. ��

7 Transition estimates I: Proof of Lemma 4.3

In this section we prove the bounds (4.19)–(4.20). Let Hk,s := Kk+1,s − Kk,s
for k ≥ j0 := max((D/ ln τ)2, s/δ) and apply the Rademacher–Menshov
inequality (2.7) with m = �(D/ ln τ)(s + 1)2� + 4. For (4.19) it suffices to
prove for any fixed i ∈ [0,m] that

∥∥∥∥
( ∑

j∈[ j02−i ,2m−i−1]

∣∣ ∑

k∈[ j2i ,( j+1)2i−1]
f ∗ Hk,s

∣∣2
)1/2∥∥∥∥

�2(G0)

� τ−2s/D2∥∥ f
∥∥
�2(G0)

.
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Using Khintchine’s inequality and dividing again dyadically, for (4.19) it suf-
fices to prove that

∥∥∥
∑

k∈[J,2J ]
�k( f ∗ Hk,s)

∥∥∥
�2(G0)

� τ−4s/D2∥∥ f
∥∥
�2(G0)

(7.1)

for any J ≥ max((D/ ln τ)2, s/δ) and any coefficients �k ∈ [−1, 1].
To prove (7.1) we examine the definition (4.15) and the further decompose

Hk,s = H1
k,s + H2

k,s + H3
k,s,

H1
k,s(g) := [�k Lk](g(1))φ(2)k (g(2))

∫

Td′ e(g
(2).ξ (2))�k,s(ξ

(2)) dξ (2),

H2
k,s(g) := Lk+1(g

(1))�k[φ(2)k ](g(2))}
∫

Td′ e(g
(2).ξ (2))�k,s(ξ

(2)) dξ (2),

H3
k,s(g) := Lk+1(g

(1))φ
(2)
k+1(g

(2))

∫

Td′ e(g
(2).ξ (2))[�k�k,s](ξ (2)) dξ (2).

(7.2)

We will prove that, for any k ≥ max((D/ ln τ)2, s/δ) and ι ∈ {2, 3},
∥∥ f ∗ H ι

k,s

∥∥
�2(G0)

� τ−k/D
∥∥ f

∥∥
�2(G0)

. (7.3)

We will also prove that

∥∥∥
∑

k∈[J,2J ]
�k( f ∗ H1

k,s)

∥∥∥
�2(G0)

� τ−s/D
∥∥ f

∥∥
�2(G0)

(7.4)

for any J ≥ max((D/ ln τ)2, s/δ) and any coefficients �k ∈ [−1, 1]. These
two bounds would clearly imply the bounds (7.1).

7.1 Proof of (7.3)

Step 1.Assume first that ι = 2 and recall the definition of the functions φ(2)k in
(4.10). Notice that if g = (g(1), g(2)) is in the support of the kernel H2

k,s then

there is (l1, l2) ∈ Y ′
d such that |g(2)l1l2

| � τ k(l1+l2). Therefore we can integrate

by parts many times in the variable ξ (2)l1l2
(recall the definition (4.12)) to prove

that the kernels H2
k,s decay rapidly in k, i.e. |H2

k,s(g)| � τ−k/δ for any g ∈ G0.
The desired bounds (7.3) follow.

Step 2. Assume now that ι = 3. In this case we use a high order T ∗T
argument as in Sect. 5. Notice that the kernels H3

k,s have product structure,
so we can apply the identities (2.13)–(2.16). With r being a sufficiently large
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integer such that the bounds in Propositions 2.3 and 2.4 hold with ε = δ4, it
suffices to prove that

∣∣�c,r
k+1

(
θ(1), θ (2)

)
!r
k,s

(
θ(2)

)∣∣ � τ−k/δ for any (θ(1), θ (2)) ∈ T
d × T

d ′
,

k ≥ (D/ ln τ)2, (7.5)

where �c,r
k is as in (5.2) and

!r
k,s(θ

(2)) =
∣∣∣
∫

Td′ Fk+1(θ
(2) − ξ (2)){�k+1,s(ξ

(2))−�k,s(ξ
(2))} dξ (2)

∣∣∣
2r
.

(7.6)

The functions Fk : T
d ′ → C are defined in (5.3) and satisfy the bounds (5.6).

The proof of (7.5) is similar to the proof of (5.5). Indeed, if θ(2) is close
to a fraction with small denominator, in the sense of (5.7), then |Fk+1(θ

(2) −
ξ (2))| � τ−2k/δ if ξ (2) is in the support of �k+1,s − �k,s , due to (5.6). The
bounds (7.5) follow in this case. Otherwise, if θ(2) does not satisfy (5.7), then
there is (l1, l2) ∈ Y ′

d and an irreducible fraction al1l2/ql1l2 such that

∣∣∣θ(2)l1l2
− al1l2

ql1l2

∣∣∣ ≤ 1

ql1l2τ
k(l1+l2)−δ2k and ql1l2 ∈ [τ δ2k, τ k(l1+l2)−δ2k] ∩ Z.

Using Proposition 2.3 with P � τ k we conclude that
∣∣�c,r

k+1(θ
(1), θ (2))

∣∣ �
τ−2k/δ . The desired bounds (7.5) follow in this case as well.

7.2 Proof of (7.4)

To prove the more difficult bounds (7.4) we will use a high order almost
orthogonality argument. For this we need a good description of the operators
{(H1

k,s)
∗H1

k,s}r and {H1
k,s(H1

k,s)
∗}r , whereH1

k,s f := f ∗ H1
k,s and, as before,

r ∈ Z+ is a sufficiently large integer such that the bounds in Propositions 2.3
and 2.4 hold with ε = δ4. More precisely:

Lemma 7.1 For any k ≥ max((D/ ln τ)2, s/δ) and f ∈ �2(G0) we have

{(H1
k,s)

∗H1
k,s}r f = f ∗ {Br

k + Er
k }, {H1

k,s(H1
k,s)

∗}r f = f ∗ {B̃r
k + Ẽr

k },
(7.7)
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where

Br
k (h) :=

{ ∏

(l1,l2)∈Yd
τ−k(l1+l2)

}

×
{ ∑

a/Q=(a(1)/q1,a(2)/q2)∈Rd≤δk×Rd′
s ∩[0,1)d+d′

e(h.a/Q)G(a/Q)
}

× η≤3δk(τ
−k ◦ h)

∫

Rd×Rd′ η≤δk/2(ζ (1))η≤δk/2(ζ (2))P ′(ζ )e[(τ−k ◦ h).ζ ] dζ,

(7.8)

B̃r
k (h) :=

{ ∏

(l1,l2)∈Yd
τ−k(l1+l2)

}

×
{ ∑

a/Q=(a(1)/q1,a(2)/q2)∈Rd≤δk×Rd′
s ∩[0,1)d+d′

e(h.a/Q)G̃(a/Q)
}

× η≤3δk(τ
−k ◦ h)

∫

Rd×Rd′ η≤δk/2(ζ (1))η≤δk/2(ζ (2))P̃ ′(ζ )e[(τ−k ◦ h).ζ ] dζ,

(7.9)

and

‖Er
k‖�1(G0)

+ ‖Ẽr
k‖�1(G0)

� τ−k/4. (7.10)

Here G(a/Q) and G̃(a/Q) are as in (2.29), χ ′(x) = (1/τ)χ(x/τ) − χ(x),
and

P ′(ζ ) :=
∫

Rr×Rr

{ ∏

1≤ j≤r

χ ′(w j )χ
′(y j )

}
e[−ζ.D(w, y)] dwdy,

P̃ ′(ζ ) :=
∫

Rr×Rr

{ ∏

1≤ j≤r

χ ′(w j )χ
′(y j )

}
e[−ζ.D̃(w, y)] dwdy.

(7.11)

For later use we also define the functions P(ζ ) and P̃(ζ ) as in (7.11),
using however the cutoff function χ(w j )χ(y j ) instead of χ ′(w j )χ

′(y j ). For
ι ∈ {0, 1} we also let

P ι :=
{
P if ι = 0,

P ′ if ι = 1,
P̃ ι :=

{
P̃ if ι = 0,

P̃ ′ if ι = 1.
(7.12)

Using Proposition 2.4 we may estimate

∣∣Dαζ P ι(ζ )
∣∣ + ∣∣Dαζ P̃ ι(ζ )

∣∣ �|α| 〈ζ 〉−1/δ2 (7.13)

for any ζ ∈ R
d × R

d ′
, any multi-index α ∈ N

d+d ′
, and any ι ∈ {0, 1}.
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Proof of Lemma 7.1 We only prove in detail the claims for the operators
{(H1

k,s)
∗H1

k,s}r , since the claims for the operators {H1
k,s(H1

k,s)
∗}r follow by

analogous arguments. In view of (2.13)–(2.16) we have

{(H1
k,s)

∗H1
k,s}r = f ∗ Hr

k,s

where

Hr
k,s(y) := η≤3δk(τ

−k ◦ y)
∫

Td×Td′

e
(
y.θ

)
�

r,1
k

(
θ(1), θ (2)

)
�

r,2
k,s

(
θ(2)

)
dθ(1)dθ(2). (7.14)

The multipliers�r,1
k and�r,2

k,s can be calculated as in the proof of Lemma 4.2.
Namely,

�
r,1
k

(
θ
) = τ−2kr

∑

n,m∈Zr

{ ∏

1≤ j≤r

χ ′(τ−kn j )χ
′(τ−km j )

}
e
( − θ.D(n,m)),

(7.15)

and, with Fk defined as in (5.3), one has

�
r,2
k,s(θ

(2)) =
∣∣∣
∫

Td′ Fk(θ
(2) − ξ (2))�k,s(ξ

(2)) dξ (2)
∣∣∣
2r
. (7.16)

We now show that the kernels Hr
k,s are equivalent to the kernels B

r
k defined

in (7.8) up to acceptable �1 errors satisfying (7.10). We accomplish this in
several steps:

Step 1. We first replace the multiplier �r,2
k,s(θ

(2)) with �k,s(θ
(2)), at the

expense of acceptable �1 errors. For this we show that

∣∣�r,2
k,s(θ

(2))−�k,s(θ
(2))

∣∣

�
{
1 if there is a/q ∈ Rd ′

s such that |τ k ◦ (θ(2) − a/q)| ∈ [τ δk/2, τ 2δk],
τ−k/δ otherwise.

(7.17)

Indeed, since the functions Fk satisfy the bounds (5.6), we have ‖Fk‖L1(Td′
)
�

1, so
∣∣�r,2

k,s(θ
(2))

∣∣ + ∣∣�k,s(θ
(2))

∣∣ � 1 for any θ(2) ∈ T
d ′
. On the other hand,

if |τ k ◦ (θ(2) − a/q)| ≤ τ δk/2 for some a/q ∈ Rd ′
s then �k,s(θ

(2)) = 1 and,
in fact, �k,s(ξ

(2)) = 1 for all ξ (2) ∈ T
d ′

with |τ k ◦ (θ(2) − ξ (2))| ≤ τ δk/2.
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Therefore, using (5.6) with M large enough and the definition (5.3) we have

∣∣∣
∫

Td′ Fk(θ
(2) − ξ (2))�k,s(ξ

(2)) dξ (2) − 1
∣∣∣

� τ−k/δ +
∣∣∣
∫

Td′ Fk(θ
(2) − ξ (2)) dξ (2) − 1

∣∣∣ = τ−k/δ.

Thus
∣∣�r,2

k,s(θ
(2))−�k,s(θ

(2))
∣∣ � τ−k/δ , as claimed in (7.17).

Finally, if |τ k ◦ (θ(2)− a/q)| � τ 2δk for all a/q ∈ Rd ′
s then�k,s(θ

(2)) = 0
and, in fact,�k,s(ξ

(2)) = 0 for all ξ (2) ∈ T
d ′
with |τ k ◦ (θ(2)− ξ (2))| ≤ τ δk/2.

The desired bounds (7.17) follow as before in this case.
Given (7.17) we can define

Hr,1
k,s (y) := η≤3δk(τ

−k ◦ y)
∫

Td×Td′ e
(
y.θ

)
�

r,1
k

(
θ(1), θ (2)

)

×�k,s
(
θ(2)

)
dθ(1)dθ(2), (7.18)

and the difference Hr
k,s − Hr,1

k,s is an acceptable �
1 error.

Step 2.We now restrict to major arcs in the variable θ(1), so we define

Hr,2
k,s (y) := η≤3δk(τ

−k ◦ y)
∫

Td×Td′ e
(
y.θ

)
�

r,1
k

(
θ(1), θ (2)

)

×�k,≤δk
(
θ(1)

)
�k,s

(
θ(2)

)
dθ(1)dθ(2), (7.19)

where

�k,≤δk
(
θ(1)

) :=
∑

a/q∈Rd≤δk

η≤δk(τ k ◦ (θ(1) − a/q)). (7.20)

We will show that ‖Hr,1
k,s − Hr,2

k,s ‖�1(G0)
� τ−k . Indeed, if θ(1) is in the support

of 1−�k,≤δk then we apply Dirichlet’s principle to find an irreducible fraction
(al0/ql0)l∈{1,...,d} such that

∣∣∣θ(1)l0 − al0
ql0

∣∣∣ ≤ 1

ql0τ kl−δ2k
and ql0 ∈ [1, τ kl−δ2k] ∩ Z,

and at least one of the denominators ql0 is larger than τ δ
2k . But then we

examine the definition (7.15) and apply Proposition 2.3 (i) to conclude that∣∣�r,1
k

(
θ(1), θ (2)

)∣∣ � τ−k/δ . The desired error bounds follow.

Step 3.We now approximate the sum in the definition of�r,1
k . Assume that

θ = (
θ(1), θ (2)

)
is a point in R

|Yd | and a/Q ∈ Q
|Yd | is an irreducible fraction
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such that

∣∣τ k ◦ (
θ − a/Q

)∣∣ ≤ 2τ δk+4, Q ≤ τ 2δk+2. (7.21)

We examine the sum in the formula (7.15). For any j ∈ {1, . . . , r} we decom-
pose n j = Qw j + x j , m j = Qyj + z j , x j , z j ∈ {0, . . . , Q − 1}, w j , y j ∈ Z.
Letting β = θ − a/Q we notice that

e
( − θ.D(n,m)) = e

( − β.D(Qw + x, Qy + z)
)
e
( − (a/Q).D(x, z)).

Moreover, if
∣∣τ k ◦ β∣∣ � τ δk and |Qw| + |Qy| � τ k then

β.D(Qw + x, Qy + z) = β.D(Qw, Qy)+ O(Qτ−k+δk)
= (Q ◦ β).D(w, y)+ O(Qτ−k+δk),

as one can see easily from the formula (2.24). In addition

∏

1≤ j≤r

χ ′(τ−kn j )χ
′(τ−km j ) =

∏

1≤ j≤r

χ ′(τ−k Qw j )χ
′(τ−k Qy j )+ O(Qτ−k).

Therefore

�
r,1
k (θ) = τ−2kr

{ ∑

|w|,|y|�τ k/Q

{ ∏

1≤ j≤r

χ ′(τ−k Qw j )χ
′(τ−k Qy j )

}

× e
[ − (Q ◦ β).D(w, y)]

}

×
{ ∑

x,z∈Z
r
Q

e
( − (a/Q).D(x, z))

}
+ O(Qτ−k+δk).

(7.22)

Recall the definition (2.29). Using the Poisson summation formula we may
replace the sum overw, y ∈ Z

r with the corresponding integral, at the expense
of O(τ−2k) errors, and then change variables to reach the formula (7.11).
Therefore

�
r,1
k (θ) = P ′(τ k ◦ β)G(a/Q)+ O(τ−k+8δk). (7.23)

The contribution of the error term can be incorporated into the kernel Er
k ,

while the main term can be substituted into the formula (7.19), leading to
the desired formula (7.8) after changes of variables. We have established
(7.8) and (7.9) with η≤δk(ζ (1))η≤δk(ζ (2)) in place of η≤δk/2(ζ (1))η≤δk/2(ζ (2)).
Finally we can use (7.13) to replace cutoff functions η≤δk(ζ (1))η≤δk(ζ (2))with
η≤δk/2(ζ (1))η≤δk/2(ζ (2)). This completes the proof of the lemma. ��
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We return now to the proof of the main bounds (7.4). In view of the Cotlar–
Stein lemma it suffices to prove the following:

Lemma 7.2 If k, j ≥ max((D/ ln τ)2, s/δ) and j ∈ [k/2, k] then

‖H1
j,s(H1

k,s)
∗‖�2(G0)→�2(G0)

+‖(H1
j,s)

∗H1
k,s‖�2(G0)→�2(G0)

� τ−2s/Dτ−2| j−k|/D. (7.24)

Proof Step 1. We prove these bounds first when j = k, so we prove that
the operators H1

k,s are suitably bounded on �2(G0). In view of Lemma 7.1, it
suffices to prove that

‖Br
k‖�1(G0)

� τ−2rs/D. (7.25)

We notice that

∣∣∣
∑

a/Q=(a(1)/q1,a(2)/q2)∈Rd≤δk×Rd′
s ∩[0,1)d+d′

e(h.a/Q)G(a/Q)
∣∣∣ � τ−s

for any h ∈ G0, as a consequence of Proposition 2.3 (ii). For ι ∈ {0, 1} we let

X ι,rk (h) :=
{ ∏

(l1,l2)∈Yd
τ−k(l1+l2)

}
η≤3δk(τ

−k ◦ h)

×
∫

Rd×Rd′ η≤δk/2(ζ (1))η≤δk/2(ζ (2))P ι(ζ )e[(τ−k ◦ h).ζ ] dζ.
(7.26)

Notice that

‖X ι,rk ‖�1(G0)
� 1 for any k ∈ N. (7.27)

Indeed, invoking (7.13) and integrating by parts in (7.26) we conclude that

∣∣X ι,rk (h)
∣∣ �

{ ∏

(l1,l2)∈Yd
τ−k(l1+l2)

}
(1 + |τ−k ◦ h|)−1/δ

for any h ∈ G0. Now we see that inequality (7.25) follows from (7.27) with
ι = 1.
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Step 2. Since we have already proved that ‖(H1
j,s)

∗‖�2→�2 � τ−s/D � 1,
we can estimate

‖H1
j,s(H1

k,s)
∗‖�2→�2 = ‖H1

j,s(H1
k,s)

∗H1
k,s(H1

j,s)
∗‖1/2
�2→�2

� ‖H1
j,s[(H1

k,s)
∗H1

k,s]‖1/2�2→�2

� ‖H1
j,s[(H1

k,s)
∗H1

k,s]2‖1/4�2→�2

� . . . � ‖H1
j,s[(H1

k,s)
∗H1

k,s]2
a‖1/2a+1

�2→�2
,

(7.28)

for any j ≤ k, where 2a is the smallest dyadic number ≥ r . The norm
‖(H1

j,s)
∗H1

k,s‖�2→�2 can be estimated in the same way, so it suffices to prove

that for any j ∈ [k/2, k] such that k, j ≥ max((D/ ln τ)2, s/δ) we have

‖H1
j,s[(H1

k,s)
∗H1

k,s]r‖�2→�2 + ‖(H1
j,s)

∗[H1
k,s(H1

k,s)
∗]r‖�2→�2

� τ−8rs/Dτ−8r | j−k|/D. (7.29)

The bounds on the two terms in the left-hand side of (7.29) are similar,
and we only provide the proof for the first term. We use Lemma 7.1. The
contribution of the error kernel Er

k is bounded byCτ
−k/4, due to (7.10), which

is better than needed. It remains to prove that

∥∥Br
k ∗ H1

j,s

∥∥
�1(G0)

� τ−8rs/Dτ−8r | j−k|/D. (7.30)

We examine the formula (7.8) and decompose the kernel Br
k

Br
k =

∑

a/Q=(a(1)/q1,a(2)/q2)∈Rd≤δk×Rd′
s ∩[0,1)d+d′

G(a/Q)Xr
k,a/Q,

Xr
k,a/Q(h) := Xr

k(h)e(h.a/Q),

(7.31)

where the kernels Xr
k := X1,r

k have been defined in (7.26). In view of the rapid
decay of the coefficients G(a/Q) (see (2.30)), for (7.30) it suffices to prove
that

∥∥Xr
k,a/Q ∗ H1

j,s

∥∥
�1(G0)

� Q8/δτ−8r | j−k|/D (7.32)

for any irreducible fraction a/Q ∈ Q
|Yd | with denominator Q ∈ [τ s, τ 2δk+2].
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We examine now the definition (7.2) and decompose

H1
j,s(g) =

∑

b(2)/q2∈Rd′
s ∩[0,1)d′

H1,b(2)/q2
j (g)

=
∑

b(2)/q2∈Rd′
s ∩[0,1)d′

[� j L j ](g(1))e(g(2).b(2)/q2)Y j (g
(2)),

Y j (g
(2)) := φ

(2)
j (g

(2))

∫

Rd′ e(g
(2).β(2))η≤δ j (τ j ◦ β(2)) dβ(2),

(7.33)

For (7.32) it suffices to prove that

∥∥Xr
k,a/Q ∗ H1,b(2)/q2

j

∥∥
�1(G0)

� Q4/δτ−8r | j−k|/D (7.34)

for any b(2)/q2 ∈ Rd ′
s , as the sum over b(2)/q2 contains at most τ s/δ terms

and Q ≥ τ s .
Step 3. Using the definitions we estimate

∥∥Xr
k,a/Q ∗ H1,b(2)/q2

j

∥∥
�1(G0)

=
∑

h=(h(1),h(2))∈G0

∣∣∣
∑

g=(g(1),g(2))∈G0

H1,b(2)/q2
j (g)Xr

k,a/Q(g
−1 · h)

∣∣∣

≤
∑

h=(h(1),h(2))∈G0, g(2)∈Zd′
|Y j (g

(2))|
∣∣∣

∑

g(1)∈Zd

[� j L j ](g(1))Xr
k(g

−1 · h)

e
[
(g−1 · h).(a/Q)]

∣∣∣.

(7.35)

To get decay in |k − j | the main point is to bound efficiently the sum over g(1)

in the expression above, using the cancellation of the kernel� j L j . We rewrite
this sum in the form

∣∣∣
∑

n∈Z

τ− jχ ′(τ− j n)Xr
k

(
(A(1)0 (n), g

(2))−1 · h)

× e
[ − A(1)0 (n).(a

(1)/Q)+ R0(A
(1)
0 (n), A

(1)
0 (n)− h(1)).(a(2)/Q)

]∣∣∣,

for any h = (h(1), h(2)) ∈ G0 and g(2) ∈ Z
d ′
, where χ ′(x) = (1/τ)χ(x/τ)−

χ(x) as before. It follows easily from the definition (7.33) that ‖Y j‖�1(Zd′
)
� 1

uniformly in j ∈ Z. Therefore, for (7.34) it suffices to prove that
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∑

h=(h(1),h(2))∈G0

∣∣∣
∑

n∈Z

τ− jχ ′(τ− j n)Xr
k

(
h(1) − A(1)0 (n),

h(2) + R0(A
(1)
0 (n), A

(1)
0 (n)− h(1))

)

× e
[ − A(1)0 (n).(a

(1)/Q)+ R0(A
(1)
0 (n),

A(1)0 (n)− h(1)).(a(2)/Q)
]∣∣∣

� Q4/δτ−8r | j−k|/D.

(7.36)

We further decompose n = mQ+ρ,m ∈ Z, ρ ∈ [0, Q−1]∩Z, and notice
that the oscillatory factor in the sum above does not depend on m. For (7.36)
it suffices to prove that

∑

h∈G0

∣∣∣
∑

m∈Z

τ− jχ ′(τ− j (mQ + ρ))Xr
k

(
A0(mQ + ρ)−1 · h)

∣∣∣ � τ−8r | j−k|/D

(7.37)

for any Q ∈ [1, τ 2δk+2] and ρ ∈ [0, Q − 1] ∩ Z, as the sum over ρ contains
only Q terms.

Finally, we examine the kernels Xr
k . These kernels can be extended to the

continuous Lie group G
#
0 � R

|Yd |, according to the defining formula (7.26).
Using (7.13) and integration by parts it follows that

|Xr
k(h)| +

∑

(l1,l2)∈Yd
τ k(l1+l2)

∣∣(∂hl1l2 X
r
k)(h)

∣∣

�
{ ∏

(l1,l2)∈Yd
τ−k(l1+l2)

}
(1 + |τ−k ◦ h|)−2/δ (7.38)

for any h ∈ R
|Yd |. Therefore, for any g ∈ G

#
0 with |τ− j ◦ g| � 1, we have

|Xr
k(h)− Xr

k(g
−1 · h)| � τ j−k

{ ∏

(l1,l2)∈Yd
τ−k(l1+l2)

}
(1 + |τ−k ◦ h|)−1/δ.

(7.39)

Therefore

∑

h∈G0

∣∣∣
∑

m∈Z
τ− jχ ′(τ− j (mQ + ρ))[Xr

k

(
A0(mQ + ρ)−1 · h) − Xr

k

(
h
)]∣∣∣ � τ j−k .
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Moreover, since
∫

R
χ ′(x) dx = 0, we have

∑

h∈G0

∣∣∣
∑

m∈Z

τ− jχ ′(τ− j (mQ + ρ))Xr
k

(
h
)∣∣∣

=
( ∑

h∈G0

∣∣Xr
k

(
h
)∣∣
)∣∣∣

∑

m∈Z

τ− jχ ′(τ− j (mQ + ρ))
∣∣∣ � Qτ− j .

The desired bounds (7.37) follow since j ∈ [k/2, k] and Q ≤ τ 2δk+2. This
completes the proof of the lemma. ��

7.3 Proof of (4.20)

Given that we already proved the variational inequality (4.19), in view of (2.4)
it suffices to prove that

‖ f ∗ Kk0,s‖�2(G0)
� τ−s/D2‖ f ‖�2(G0)

, (7.40)

where k0 in an integer satisfying |k0 − 3κs/2| ≤ 1. We decompose Kk0,s =
G low

k0,s
+∑

t≤δ′k0 Gk0,s,t +Gc
k0,s

as in (4.28). The contributions of the operators

defined by the kernels G low
k0,s

and Gc
k0,s

are suitably bounded due to Lemma 4.4
and Lemma 4.5 (i) proved in the previous sections. The contributions of the
operators defined by the kernels Gk0,s,t are bounded due to Lemma 4.5 (ii)
and Lemma 4.6 proved in Sect. 8 below. The bounds (7.40) follow.

8 Transition estimates II: Proof of Lemma 4.6

In this sectionweprove bounds (4.34) and (4.35). In factwe establish a stronger
result which will be used in �p(G0) theory in Sect. 9.

Lemma 8.1 Assume that s ≥ 0, and t ≥ D(s + 1), and let A ⊆ Rd
t \ R̃d

Qs
,

B ⊆ Rd ′
≤s be 1-periodic sets of rationals. Then for any 2 < ρ < ∞ and for

any f ∈ �2(G0) we have

∥∥V ρ( f ∗ Kk,k,A,B : max(κs, t/δ
′) ≤ k < 2κt )

∥∥
�2(G0)

� τ−t/D2‖ f ‖�2(G0)
,

(8.1)

where Kk,w,A,B is the kernel defined in (4.36). In particular, we have

∥∥ sup
max(κs ,t/δ′)≤k<2κt

| f ∗ Kk,k,A,B|∥∥
�2(G0)

� τ−t/D2‖ f ‖�2(G0)
. (8.2)
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The estimates (8.1)–(8.2) imply (4.34)–(4.35), sinceGk,s,t = Kk,k,Rd
t \R̃d

Qs
,Rd′

s
.

Moreover, the bounds (8.2) follow from (4.35) and (6.49). Thus our main goal
is to prove the bounds (8.1).

As in Sect. 7 we let Gk,k,A,B := �k Kk,k,A,B = Kk+1,k+1,A,B − Kk,k,A,B
for k ≥ max(κs, t/δ′), apply the Rademacher–Menshov inequality (2.7) and
then Khintchine’s inequality. As in Sect. 7, for (8.1) it suffices to prove that

∥∥∥
∑

k∈[J,2J ]
�k( f ∗ Gk,k,A,B)

∥∥∥
�2(G0)

� τ−4t/D2∥∥ f
∥∥
�2(G0)

(8.3)

for any J ≥ max(κs, t/δ′) and any coefficients �k ∈ [−1, 1].
We examine the definitions (4.36) and (4.37), and further decompose

Gk,k,A,B = G1
k,k,A,B + G2

k,k,A,B + G3
k,k,A,B + G4

k,k,A,B,

G1
k,k,A,B(g) := φk(g)

∫

Td×Td′ e(g.ξ )�k,k,A(ξ (1))

×�k,k,B(ξ (2))[�k Sk](ξ (1)) dξ (1)dξ (2),
G2

k,k,A,B(g) := [�kφk](g)
∫

Td×Td′ e(g.ξ )�k,k,A(ξ (1))

×�k,k,B(ξ (2))Sk+1(ξ
(1)) dξ (1)dξ (2),

G3
k,k,A,B(g) := φk+1(g)

∫

Td×Td′ e(g.ξ )�k,k,A(ξ (1))

× [�k�k,k,B](ξ (2))]Sk+1(ξ
(1)) dξ (1)dξ (2),

G4
k,k,A,B(g) := φk+1(g)

∫

Td×Td′ e(g.ξ )[�k�k,k,A](ξ (1))
×�k+1,k+1,B(ξ (2))Sk+1(ξ

(1)) dξ (1)dξ (2),

(8.4)

where φk(g) = φ
(1)
k (g(1))φ(2)k (g(2)) as before. As in Sect. 7 we will prove that

∥∥∥
∑

k∈[J,2J ]
�k( f ∗ G1

k,k,A,B)
∥∥∥
�2(G0)

� τ−t/D
∥∥ f

∥∥
�2(G0)

, (8.5)

for any J ≥ max(κs, t/δ′) and any coefficients �k ∈ [−1, 1]. We will also
prove that

∥∥ f ∗ Gιk,k,A,B
∥∥
�2(G0)

� τ−k/D
∥∥ f

∥∥
�2(G0)

, (8.6)

for any k ≥ max(κs, t/δ′) and ι ∈ {2, 3, 4}. These two estimates would clearly
imply the bounds (8.3), thus completing the proof of Lemma 8.1.
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8.1 Proof of the bounds (8.5)

As in Sect. 7, we will use a high order almost orthogonality argument. For this
purpose we need a good description of the operators

{
(G1

k,k,A,B)
∗G1

k,k,A,B
}r

and
{G1

k,k,A,B(G1
k,k,A,B)

∗}r , where G1
k,k,A,B f := f ∗ G1

k,k,A,B. We note that

G1
k,k,A,B = K ′

k,k,A,B, see the definitions in (4.36) and (4.37). For ι ∈ {0, 1} let

K ιk,w,A,B :=
{
Kk,w,A,B if ι = 0,

K ′
k,w,A,B if ι = 1,

L ιk,w,A :=
{
Lk,w,A if ι = 0,

L ′
k,w,A if ι = 1.

(8.7)

For later usewe consider both operatorsKιk,k,A,B f := f ∗K ιk,k,A,B, ι ∈ {0, 1}.
Lemma 8.2 Assume that A ⊆ Q

d , B ⊆ Q
d ′
are 1-periodic sets and assume

that {q ∈ Z+ : a/q ∈ A and gcd(a1, . . . , ad , q) = 1} ⊆ [qA, 4qA] for some
qA ∈ Z+. Assume that qA ≥ QD for any irreducible fraction a/Q ∈ B, and
k ≥ (D/ ln τ)2 satisfies τ δ

′k ≥ qA. If r ∈ Z+ is sufficiently large then for
every f ∈ �2(G0) we have

{
(Kιk,k,A,B)∗Kιk,k,A,B

}r
f = f ∗ {F ι,rk + O ι,rk },

{Kιk,k,A,B(Kιk,k,A,B)∗
}r

f = f ∗ {F̃ ι,rk + Õ ι,rk }, (8.8)

where

F ι,rk (h) :=
{ ∑

a(2)/Q∈B∩[0,1)d′

∑

σ∈[A+(Z/Q)d ]∩[0,1)d
C(a(2)/Q, σ )

× e(h(1).σ )e
(
h(2).(a(2)/Q)

)}

×
{ ∏

(l1,l2)∈Yd
τ−k(l1+l2)

}
η≤3δk(τ

−k ◦ h)
∫

Rd×Rd′

{ 2∏

i=1

η≤δk/2(ζ (i))
}

× P ι(ζ )e[(τ−k ◦ h).ζ ] dζ,

(8.9)

F̃ ι,rk (h) :=
{ ∑

a(2)/Q∈B∩[0,1)d′

∑

σ∈[A+(Z/Q)d ]∩[0,1)d
C̃(a(2)/Q, σ )

× e(h(1).σ )e
(
h(2).(a(2)/Q)

)}

×
{ ∏

(l1,l2)∈Yd
τ−k(l1+l2)

}
η≤3δk(τ

−k ◦ h)
∫

Rd×Rd′

{ 2∏

i=1

η≤δk/2(ζ (i))
}

× P̃ ι(ζ )e[(τ−k ◦ h).ζ ] dζ,

(8.10)

and

‖O ι,rk ‖�1(G0)
+ ‖Õ ι,rk ‖�1(G0)

� τ−k . (8.11)
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The functions P ι and P̃ ι are as in (7.12) (see also (7.11)), and the coefficients
C and C̃ satisfy

|C(a(2)/Q, σ )| + |C̃(a(2)/Q, σ )| � q−1/δ
A (8.12)

for any a(2)/Q ∈ B ∩ [0, 1)d ′
and σ ∈ [A + (Z/Q)d ] ∩ [0, 1)d .

Proof Weonlyprove indetail the claims for the operators
{
(Kιk,k,A,B)∗Kιk,k,A,B

}r ,
since the claims for the operators

{Kιk,k,A,B(Kιk,k,A,B)∗
}r , followby analogous

arguments.
Step 1. By (4.36) notice that the kernels K ιk,k,A,B have product structure.

Thus in view of (2.13)–(2.16) we have

{
(Kιk,k,A,B)∗Kιk,k,A,B

}r
f = f ∗ K ι,rk,k,A,B,

where

K ι,rk,k,A,B(y) := η≤3δk(τ
−k ◦ y)

∫

Td×Td′ e
(
y.θ

)
�
ι,r
k,k,A

(
θ(1), θ (2)

)

×�r
k,k,B

(
θ(2)

)
dθ(1)dθ(2), (8.13)

and the multipliers�ι,rk,k,A and �r
k,k,B are given by

�
ι,r
k,k,A

(
θ(1), θ (2)

) :=
∑

h(1)j ,g
(1)
j ∈Zd

{ r∏

j=1

L ιk,k,A(h
(1)
j )L

ι
k,k,A(g

(1)
j )

}

e
(
θ(1).

∑

1≤ j≤r

(h(1)j − g(1)j )
)

× e
(

− θ(2).{
∑

1≤ j≤r

R0(h
(1)
j , h

(1)
j − g(1)j )

+
∑

1≤l< j≤r

R0(−h(1)l + g(1)l ,−h(1)j + g(1)j )
})

(8.14)

and, with Fk defined as in (5.3),

�r
k,k,B

(
θ(2)

) :=
∣∣∣
∫

Td′ Fk(θ
(2) − ξ (2))�k,k,B(ξ (2)) dξ (2)

∣∣∣
2r
. (8.15)

As in the proof of Lemma 7.1, our goal is to show that the kernels K ι,rk,k,A,B
are equivalent to the kernels F ι,rk in (8.9), up to acceptable �1 errors. For this
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we need to replace the multipliers �ι,rk,k,A
(
θ(1), θ (2)

)
�r

k,k,B
(
θ(2)

)
with more

explicit multipliers, at the expense of acceptable errors.
Step 2.We will follow the ides from Sects. 5–7. As in (5.15) we may write

�
ι,r
k,k,A

(
θ(1), θ (2)

) =
∫

(Td )2r
Vr
k (θ

(1), θ (2); ζ (1)1 , ξ
(1)
1 , . . . , ζ (1)r , ξ (1)r )

×
∏

1≤ j≤r

{
Sιk(ζ

(1)
j )�k,k,A(ζ

(1)
j )S

ι
k(ξ

(1)
j )�k,k,A(ξ

(1)
j )

}

dξ (1)1 dζ (1)1 . . . dξ (1)r dζ (1)r , (8.16)

where (see also in (5.16)) we have

Vr
k (θ

(1), θ (2); ζ (1)1 , ξ
(1)
1 , . . . , ζ (1)r , ξ (1)r )

=
∑

h j ,g j∈Zd

∏

1≤ j≤r

{
φ
(1)
k (h j )e

(
(θ(1) − ζ (1)j ).h j

)
φ
(1)
k (g j )e

( − (θ(1) − ξ (1)j ).g j
)}

× e
(

− θ(2).{
∑

1≤ j≤r

R0(h j , h j − g j )+
∑

1≤l< j≤r

R0(−hl + gl ,−h j + g j )
})
.

In view of (5.6) we have a rapid decay |�r
k,k,B(θ

(2))| � τ−Dk unless |τ k ◦
(θ(2) − a(2)/Q)| ≤ τ 2δk for some a(2)/Q ∈ B. Hence, we may assume that
θ(2) = α(2) + a(2)/Q for some a(2)/Q ∈ B and |τ k ◦ α(2)| ≤ τ 2δk . The
condition (5.21) is then verified so we can use Lemma 5.2.

We now define new projections

�k,A+(Z/Q)d (θ(1)) :=
∑

σ∈A+(Z/Q)d
η≤2δ′k(τ

k ◦ (θ(1) − σ)),

where A + (Z/Q)d := {σ + a/Q : σ ∈ A, a ∈ Z
d}. Examining (5.18)

we conclude that Vr
k decays rapidly unless τ kl‖θ(1)l − ξ

(1)
j,l ‖Q ≤ τ 10δk and

τ kl‖θ(1)l − ζ
(1)
j,l ‖Q ≤ τ 10δk for all j ∈ {1, . . . , r} and l ∈ {1, . . . , d}, thus

we may replace �ι,rk,k,A
(
θ(1), θ (2)

)
with �ι,rk,k,A

(
θ(1), θ (2)

)
�k,A+(Z/Q)d

(
θ(1)

)

at the expense of O(τ−Dk) error term.
Expanding the cutoff functions �k,k,A, invoking rapid decay from (5.18)

of Vr
k as above and using Lemma 5.2 we may replace �ι,rk,k,A

(
θ(1), θ (2)

)

�k,A+(Z/Q)d
(
θ(1)

)
with
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∑

σ∈A+(Z/Q)d

∑

b,c∈(Zd
Q)

r

ιQ(σ ; b, c)

×Wr
Q(a

(2), b1, c1, . . . , br , cr )η≤2δ′k(τ
k ◦ (θ(1) − σ))

×
∫

(Rd )2r

{ r∏

j=1

η≤δ′k(τ k ◦ (ξ (1)j − σ + b j/Q))

×η≤δ′k(τ k ◦ (ζ (1)j − σ + c j/Q))
}

×Zr
k (α

(2); θ(1) − ξ (1)1 − b1/Q, θ
(1) − ζ (1)1 − c1/Q, . . . ,

θ (1) − ξ (1)r − br/Q, θ
(1) − ζ (1)r − cr/Q)

×
∏

1≤ j≤r

{
Sιk(ζ

(1)
j )S

ι
k(ξ

(1)
j )

}
dξ (1)1 dζ (1)1 . . . dξ (1)r dζ (1)r

at the expenses of O(τ−Dk/2) errors, where Zr
k andWr

Q have been defined in

(5.24)–(5.25), b = (b1, . . . , br ) ∈ (Zd
Q)

r , c = (c1, . . . , cr ) ∈ (Zd
Q)

r , and the
coefficients ιQ are defined by

ιQ(σ ; b, c) :=
{
1 if σ − b j/Q, σ − c j/Q ∈ A for any j ∈ {1, . . . , r};
0 otherwise.

(8.17)

We make the changes of variables ξ (1)j = β j + σ − b j/Q and ζ (1)j =
γ j +σ −c j/Q in the latter integral. In view of Lemma 6.1 we can also replace

Sιk(ξ
(1)
j ) and Sιk(ζ

(1)
j ) with S(σ − b j/Q)J ιk(β j ) and S(σ − c j/Q)J ιk(γ j ), at

the expense of acceptable errors. Therefore, the integral formula above shows
that if θ(2) = α(2) + a(2)/Q for some a(2)/Q ∈ B and |τ k ◦ α(2)| ≤ 2τ 2δk ,
then

�
ι,r
k,k,A

(
θ(1), θ (2)

) =
∑

σ∈A+(Z/Q)d

∑

b,c∈(Zd
Q )

r

ιQ(σ ; b, c)

× Wr
Q(a

(2), b, c)η≤2δ′k(τ
k ◦ (θ(1) − σ))

×
∏

1≤ j≤r

{
S(σ − b j/Q)S(σ − c j/Q)

}

×
∫

R2rd

{ ∏

1≤ j≤r

η≤δ′k(τ k ◦ β j )η≤δ′k(τ k ◦ γ j )J ιk(β j )J ιk(γ j )
}

× Zr
k (α

(2); θ(1) − σ − β1, θ(1) − σ − γ1, . . . ,
θ (1) − σ − βr , θ(1) − σ − γr ) dβ1dγ1 . . . dβr dγr
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+ O(τ−Dk/3), (8.18)

where Wr
Q(a

(2), b, c) = Wr
Q(a

(2), b1, c1, . . . , br , cr ).
Step 3.Using the definitions (6.4)–(6.5) and (5.25), the integral over β j , γ j

in (8.18) is equal to

∫

R2rd

∫

R2r
e
(

− (τ k ◦ α(2)).{
∑

1≤ j≤r

R0(y j , y j − x j )

+
∑

1≤l< j≤r

R0(−yl + xl ,−y j + x j )
})

×
∏

1≤ j≤r

{
η≤δk(x j )e

( − (τ k ◦ α(1)).x j
)
η≤δk(y j )e

(
(τ k ◦ α(1)).y j

)

× χι(u j )χ
ι(v j )η̂≤δ′k(A(1)0 (u j )− x j )η̂≤δ′k(−A(1)0 (v j )+ y j )

}
du jdv j dx j dy j ,

(8.19)

where η̂≤δ′k denotes the Euclidean Fourier transform of η≤δ′k and α(1) :=
θ(1) − σ .

We notice that we may replace the factors η≤δk(x j ) and η≤δk(y j ) with 1
in the formula (8.19), at the expense of O(τ−Dk) errors, due to the stronger
localizations induced by the factors in the last line. Then we make the changes
of variables x j = A(1)0 (u j )+ x ′

j , y j = A(1)0 (v j )+ y′
j to rewrite the remaining

integral in the form

I ιk(α
(1), α(2)) :=

∫

R2rd

∏

1≤ j≤r

{
η̂≤δ′k(−x ′

j )η̂≤δ′k(y′
j )e

( − (τ k ◦ α(1)).(x ′
j − y′

j )
)}

(8.20)

×
{ ∫

R2r
e
( − (τ k ◦ α(2)).T (x ′, y′, u, v)

) ∏

1≤ j≤r

{
χι(u j )χ

ι(v j )
}

× e
( − (τ k ◦ α).D(v, u)) dudv

}
dx ′dy′,

where α = (α(1), α(2)), the function D : R
r ×R

r → R is defined as in (2.24),
and

T (x ′, y′, u, v) := T1(x
′, y′, u, v)+ T2(x

′, y′),

T1(x
′, y′, u, v) :=

∑

1≤ j≤r

[
R0(A

(1)
0 (v j ), y

′
j − x ′

j )+ R0(y
′
j , A

(1)
0 (v j )− A(1)0 (u j ))

]

+
∑

1≤l< j≤r

[
R0(A

(1)
0 (ul)− A(1)0 (vl), x

′
j − y′

j )+ R0(x
′
l − y′

l , A
(1)
0 (u j )− A(1)0 (v j ))

]
,

T2(x
′, y′) :=

∑

1≤ j≤r

R0(y
′
j , y

′
j − x ′

j )+
∑

1≤l< j≤r

R0(x
′
l − y′

l , x
′
j − y′

j ). (8.21)
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To summarize, we have proved that if θ(2) = α(2) + a(2)/Q for some
a(2)/Q ∈ B and |τ k ◦ α(2)| ≤ 2τ 2δk , then

∣∣∣�ι,rk,k,A
(
θ(1), θ (2)

) −
∑

σ∈A+(Z/Q)d
C(a(2)/Q, σ )η≤2δ′k(τ

k ◦ (θ(1) − σ))

× I ιk(θ
(1) − σ, α(2))

∣∣∣ � τ−Dk/3,

(8.22)

where the multipliers I ιk are defined as in (8.20), and

C(a(2)/Q, σ ) := ∑

b,c∈(Zd
Q)

r

ιQ(σ ; b, c)Wr
Q(a

(2), b, c)

× ∏
1≤ j≤r

{
S(σ − b j/Q)S(σ − c j/Q)

}
. (8.23)

Notice that the coefficients C(a(2)/Q, σ ) satisfy the desired bounds (8.12)
because QD ≤ qA, and

∣∣S(")
∣∣ � q−δ

A for any " ∈ A, as a consequence of
(2.22).

Step 4.We now show that if |τ k ◦ α(1)| + |τ k ◦ α(2)| ≥ τ δk/2 then

|I ιk(α(1), α(2))| � τ−k/δ. (8.24)

We shall apply Proposition 2.4. For this we rewrite

e
( − (τ k ◦ α(2)).T1(x ′, y′, u, v)

) ∏

1≤ j≤r

{
χι(u j )χ

ι(v j )
} =

∏

1≤ j≤r

{
ψ j (u j )φ j (v j )

}
,

where, using the formulas (8.21), we obtain

ψ j (u j ) :=χι(u j )e
{

− (τ k ◦ α(2)).[ − R0(y
′
j , A

(1)
0 (u j ))

+
∑

j<l≤r

R0(A
(1)
0 (u j ), x

′
l − y′

l )+
∑

1≤l< j

R0(x
′
l − y′

l , A
(1)
0 (u j ))

]}
,

φ j (v j ) :=χι(v j )e
{

− (τ k ◦ α(2)).[R0(A
(1)
0 (v j ), y

′
j − x ′

j )+ R0(y
′
j , A

(1)
0 (v j ))

−
∑

j<l≤r

R0(A
(1)
0 (v j ), x

′
l − y′

l )−
∑

1≤l< j

R0(x
′
l − y′

l , A
(1)
0 (v j ))

]}
.

Then we notice that the contribution to the integral in (8.20) coming from the
points (x ′, y′) outside the ball Br := {(x ′, y′) ∈ R

dr × R
dr : |x ′| + |y′| ≤

τ−δ′k/2} is negligible, due to the rapid decay of the function η̂≤δ′k . On the other
hand, if |x ′| + |y′| ≤ τ−δ′k/2 and |τ k ◦ α(2)| ≤ 2τ 2δk , then the functions ψ j

and φ j defined above have bounded C1(R) norms, ‖ψ j‖C1 + ‖φ j‖C1 � 1, so
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we can apply Proposition 2.4 for any (x ′, y′) ∈ Br . The desired bounds (8.24)
follow.

On the other hand, if |τ k ◦ α(1)| + |τ k ◦ α(2)| � τ δk/2 then we observe that

∫

Rd
η̂≤δ′k(z)zβ dz = 0, (8.25)

for any multi-index β = (β1, . . . , βd) ∈ N
d \ {0}. Since T (x ′, y′, u, v) is a

polynomial in the variables x j , y j , we can use a Taylor expansion to see that

∣∣∣
∫

R2rd

∏

1≤ j≤r

{
η̂≤δ′k(−x ′

j )η̂≤δ′k(y′
j )
}[
e
( − (τ k ◦ α(1)).

∑

1≤ j≤r

(x ′
j − y′

j )
)

× e
( − (τ k ◦ α(2)).T (x ′, y′, u, v)

) − 1
]
dx ′dy′

∣∣∣ � τ−Dk,

provided that |τ k ◦ α(1)| + |τ k ◦ α(2)| � τ δk/2 and |u| + |v| � 1. Recalling
also the definition (7.11), we have the approximate identity

I ιk(α) = P ι(τ k ◦ α)η≤δk/2(τ k ◦ α(1))η≤δk/2(τ k ◦ α(2))+ O(τ−k/δ).

(8.26)

Step 5.We examine the functions�r
k,k,B defined in (8.15). Using (5.6) it is

easy to see that

∣∣�r
k,k,B(a

(2)/Q + α(2))− 1
∣∣ � τ−Dk if |τ k ◦ α(2)| ≤ 2τ δk/2 and a(2)/Q ∈ B.

(8.27)

Compare (8.27) with the bounds from (7.17). Combining this with (8.22),
(8.24), and (8.26) we derive our main approximate identity for multipliers,

∣∣∣�ι,rk,k,A
(
θ(1), θ (2)

)
�r

k,k,B(θ
(2))−

∑

a(2)/Q∈B

∑

σ∈A+(Z/Q)d
C(a(2)/Q, σ )

× η≤δk/2(τ k ◦ (θ(1) − σ))η≤δk/2(τ k ◦ (θ(2) − a(2)/Q))

× P ι(τ k ◦ (θ(1) − σ, θ(2) − a(2)/Q))
∣∣∣ � τ−k/δ. (8.28)

The desired conclusions (8.8)–(8.9) follow using the identity (8.13). ��
We now return to the proof of the bounds (8.5). In view of the Cotlar–Stein

lemma it suffices to prove the following:
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Lemma 8.3 Assume that s ≥ 0, t ≥ D(s + 1), and let A ⊆ Rd
t \ R̃d

Qs
, B ⊆

Rd ′
≤s be 1-periodic sets of rationals. If k, j ≥ max(κs, t/δ′) and j ∈ [k/2, k],

then

‖G1
j, j,A,B(G1

k,k,A,B)
∗‖�2(G0)→�2(G0)

+‖(G1
j, j,A,B)

∗G1
k,k,A,B‖�2(G0)→�2(G0)

� τ−2t/Dτ−2| j−k|/D. (8.29)

Proof We will use Lemma 8.2 with ι = 1, since G1
k,k,A,B = K ′

k,k,A,B. The
proof will proceed in several steps as the proof of Lemma 7.2.

Step 1.We will abbreviate F1,r
k (h) to Fr

k (h), where

Fr
k (h) :=

{ ∑

a(2)/Q∈B∩[0,1)d′

∑

σ∈[A+(Z/Q)d ]∩[0,1)d
C(a(2)/Q, σ )

×e(h(1).σ )e
(
h(2).(a(2)/Q)

)}
Xr
k(h),

where Xr
k := X1,r

k are the kernels defined in (7.26). In view of (7.27) and
(8.12) we have

‖Fr
k ‖�1(G0)

� τ−t/(2δ).

This shows that ‖G1
k,k,A,B‖�2(G0)→�2(G0)

� τ−t/r , and bound (8.29) follows
if j = k.

To prove the bounds (8.29) in the general case j ≤ k we use first a high
order T ∗T argument, as in (7.28), so it suffices to prove that

‖G1
j, j,A,B[(G1

k,k,A,B)
∗G1

k,k,A,B]r‖�2→�2 + ‖(G1
j, j,A,B)

∗[G1
k,k,A,B(G1

k,k,A,B)
∗]r‖�2→�2

� τ−8r t/Dτ−8r | j−k|/D, (8.30)

for any j ∈ [k/2, k] such that k, j ≥ max(κs, t/δ′). The two bounds are
similar, so we will focus on bounding the first term. We use Lemma 8.2, and
notice that the contribution of the error kernel O1,r

k is controlled by O(τ−k),
which is better than needed. It remains to prove that

∥∥Fr
k ∗ G1

j, j,A,B
∥∥
�1(G0)

� τ−8r t/Dτ−8r | j−k|/D. (8.31)

Step 2.Using Lemma 6.1 the kernelsG1
j, j,A,B = K ′

j, j,A,B = L ′
j, j,AN j, j,B,

can be rewritten as
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∑

b(1)/q1∈A∩[0,1)d , b(2)/q2∈B∩[0,1)d′
S(b(1)/q1)e(g

(1).(b(1)/q1))e(g
(2).(b(2)/q2))Y j (g),

Y j (g) := φ j (g)
∫

Rd×Rd′ e(g.ζ )J
′
j (ζ

(1))η≤δ′ j (τ j ◦ ζ (1))η≤δ j (τ j ◦ ζ (2)) dζ (1)dζ (2),
(8.32)

up to rapidly decreasing errors. Here φ j (g) = φ
(1)
j (g

(1))φ
(2)
j (g

(2)) as before,
and the functions J ′

j are defined as in (6.4).
As in (7.31), we define Xr

k,a/q(h) = Xr
k(h)e(h.a/q). We define also

Y j,a/q(g) = Y j (g)e(g.a/q), with Y j as in (8.32). By the definition of Fr
k

and the rapid exponential decay |C(a(2)/Q, σ )| � τ−t/δ (see (8.12) with
A ⊆ Rd

t \ R̃d
Qs

and B ⊆ Rd ′
≤s), for (8.31) it suffices to prove that

∥∥Xr
k,a/q ∗ Y j,a′/q ′

∥∥
�1(G0)

� τ−8r | j−k|/D (8.33)

for any irreducible fractions a/q, a′/q ′ ∈ Q
d+d ′

with denominators q, q ′ ≤
τ 2t+2.

Step 3. Let Q = qq ′ ∈ [1, τ 4t+4] and recall the definitions (6.1)–(6.2).
Since e((g · h · g′).a/q) = e((g · g′).a/q) and e((g · h · g′).a′/q ′) = e((g ·
g′).a′/q ′) if h ∈ HQ and g, g′ ∈ G0, we have

∥∥Xr
k,a/q ∗ Y j,a′/q ′

∥∥
�1(G0)

=
∑

μ∈JQ , h∈HQ

∣∣∣
∑

μ1∈JQ , h1∈HQ

Xr
k,a/q(μ

−1
1 · h−1

1 · h · μ)Y j,a′/q ′(h1 · μ1)

∣∣∣

≤
∑

μ,μ1∈JQ , h∈HQ

∣∣∣
∑

h1∈HQ

Xr
k(μ

−1
1 · h−1

1 · h · μ)Y j (h1 · μ1)

∣∣∣.

Therefore
∥∥Xr

k,a/q ∗ Y j,a′/q ′
∥∥
�1(G0)

�
∑

μ,μ1∈JQ , h,h1∈HQ

∣∣Xr
k(μ

−1
1 · h−1

1 · h · μ)− Xr
k(h · μ)∣∣∣∣Y j (h1 · μ1)

∣∣

+
∑

μ,μ1∈JQ , h∈HQ

|Xr
k(h · μ)|

∣∣∣
∑

h1∈HQ

Y j (h1 · μ1)

∣∣∣.

(8.34)

Using (7.38), for any g, g1 ∈ G0 we have

|Xr
k(g

−1
1 · g)− Xr

k(g)
∣∣ � τ j−k(1 + |τ− j ◦ g1|)2/δ+2

×
{ ∏

(l1,l2)∈Yd
τ−k(l1+l2)

}
(1 + |τ−k ◦ g|)−1/δ+1,
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which is a stronger version of (7.39). Moreover, using the definition of the
kernel Y j in (8.32),

|Y j (g1)| �
{ ∏

(l1,l2)∈Yd
τ− j (l1+l2−δl1l2 )

}

×
∫

R

|χ ′(u)|
(
1 + ∣∣τ δ̃ j

(
A0(u)− τ− j ◦ g1

)∣∣
)−4/δ

du,

uniformly in g1 ∈ G0. Here δ̃ = (δl1l2)(l1,l2)∈Yd and δl1l2 = δ if (l1, l2) ∈ Y ′
d

and δl1l2 = δ′ otherwise. Since

1 + |τ− j ◦ g1| � 1 + ∣∣τ δ̃ j
(
A0(u)− τ− j ◦ g1

)∣∣,

we obtain the desired bound for the first term in the right-hand side of (8.34).
Next, we focus on the second term in the right-hand side of (8.34). Notice

that using (2.17) we are able to prove that
∣∣∣

∑

h1∈HQ

φ j (h1 · μ1)e
(
(h1 · μ1).ζ

)∣∣∣

� Q−d−d ′{ ∏

(l1,l2)∈Yd
τ j (l1+l2+δ)

}(
1 + τ δ j |τ j ◦ ζ |

)−D
,

uniformly in |τ j ◦ζ | � τ j/4, Q � τ j/8 andμ1 ∈ JQ . Further, since J ′
j (0) = 0,

it follows from the definition of J ′
j (see (6.4)) that |J ′

j (ζ
(1))| � min(1, |τ j ◦

ζ (1)|) for any ζ (1) ∈ R
d . Combining the above with (7.38) we bound the

second term in the right-hand side of (8.34) by

∑

μ1∈JQ

∣∣∣
∑

h1∈HQ

Y j (h1 · μ1)

∣∣∣

≤
∑

μ1∈JQ

∫

Rd×Rd′

∣∣∣
∑

h1∈HQ

φ j (h1 · μ1)e
(
(h1 · μ1).ζ

)∣∣∣
∣∣J ′

j (ζ
(1))

∣∣

× ∣∣η≤δ′ j (τ j ◦ ζ (1))η≤δ j (τ j ◦ ζ (2))∣∣ dζ (1)dζ (2)

�
∫

Rd×Rd′

{ ∏

(l1,l2)∈Yd
τ j (l1+l2+δ)

}(
1 + τ δ j |τ j ◦ ζ |

)−D

× ∣∣τ j ◦ ζ (1)∣∣ dζ (1)dζ (2)
� τ−δ j .

Recalling that j ∈ [k/2, k] we see that the desired estimates (8.33) follow. ��
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8.2 Proof of the bounds (8.6) for ι = 2

Notice that if g is in the support of the kernelG2
k,k,A,B then there is (l1, l2) ∈ Yd

such that |gl1l2 | � τ δkτ k(l1+l2). Therefore we can integrate by partsmany times
in the variable ξl1l2 to prove that the kernels G2

k,k,A,B have rapid decay, i.e.

|G2
k,k,A,B(g)| � τ−k/δ for any g ∈ G0. The desired bounds (8.6) follow. ��

8.3 Proofs of the bounds (8.6) for ι = 3 and ι = 4

As before, we use a high order T ∗T argument. Notice that the kernelsG3
k,k,A,B

and G4
k,k,A,B defined in (8.4) have product structure

G3
k,k,A,B(g) = I 3k,k,A(g

(1))J 3k,k,B(g
(2)),

I 3k,k,A(g
(1)) := φ

(1)
k+1(g

(1))

∫

Td
e(g(1).ξ (1))�k,k,A(ξ (1))Sk+1(ξ

(1)) dξ (1),

J 3k,k,B(g
(2)) := φ

(2)
k+1(g

(2))

∫

Td′ e(g
(2).ξ (2))[�k�k,k,B](ξ (2)) dξ (2), (8.35)

and

G4
k,k,A,B(g) = I 4k,k,A(g

(1))J 4k,k,B(g
(2)),

I 4k,k,A(g
(1)) := φ

(1)
k+1(g

(1))

∫

Td
e(g(1).ξ (1))[�k�k,k,A](ξ (1))Sk+1(ξ

(1)) dξ (1),

J 4k,k,B(g
(2)) := φ

(2)
k+1(g

(2))

∫

Td′ e(g
(2).ξ (2))�k+1,k+1,B(ξ (2)) dξ (2). (8.36)

We define the operators Gιk,k,A,B by Gιk,k,A,B f := f ∗ Gιk,k,A,B, ι ∈ {3, 4}.
Using (2.13)–(2.16) we have

{
(Gιk,k,A,B)∗Gιk,k,A,B

}r
f = f ∗ Gι,rk,k,A,B,

for a sufficiently large integer r ∈ Z+ and ι ∈ {3, 4}, where the kernels
Gι,rk,k,A,B are given by

Gι,rk,k,A,B(y)

:= η≤3δk(τ
−k ◦ y)

∫

Td×Td′ e
(
y.θ

)
�
ι,r
k,k,A

(
θ(1), θ (2)

)
�
ι,r
k,k,B

(
θ(2)

)
dθ(1)dθ(2).
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The multipliers�ι,rk,k,A are given by

�
ι,r
k,k,A

(
θ(1), θ (2)

) :=
∑

h(1)j ,g
(1)
j ∈Zd

{ r∏

j=1

I ιk,k,A(h
(1)
j )I

ι
k,k,A(g

(1)
j )

}
(8.37)

× e
(
θ(1).

∑

1≤ j≤r

(h(1)j − g(1)j )
)

× e
(

− θ(2).{
∑

1≤ j≤r

R0(h
(1)
j , h

(1)
j − g(1)j )

+
∑

1≤l< j≤r

R0(−h(1)l + g(1)l ,−h(1)j + g(1)j )
})
.

Moreover, with Fk+1 defined as in (5.3), the multipliers �ι,rk,k,B are given by

�
3,r
k,k,B

(
θ(2)

) :=
∣∣∣
∫

Td′ Fk+1(θ
(2) − ξ (2))[�k�k,k,B](ξ (2)) dξ (2)

∣∣∣
2r
,

�
4,r
k,k,B

(
θ(2)

) :=
∣∣∣
∫

Td′ Fk+1(θ
(2) − ξ (2))�k+1,k+1,B(ξ (2)) dξ (2)

∣∣∣
2r
.

(8.38)

For (8.6) it suffices to prove that for ι ∈ {3, 4} we have the multiplier bounds
∣∣∣�ι,rk,k,A

(
θ(1), θ (2)

)
�
ι,r
k,k,B

(
θ(2)

)∣∣∣ � τ−k/δ for any (θ(1), θ (2)) ∈ T
d × T

d ′
.

(8.39)

The proof of (8.39) follows by similar arguments as in Lemma8.2.We consider
two cases:

Case 1. Assume first that ι = 3. Notice that we have rapid decay
|�3,r

k,k,B(θ
(2))| � τ−Dk unless |τ k ◦ (θ(2) − a(2)/Q)| ≤ τ 2δk for some

a(2)/Q ∈ B. In this case the symbols �3,r
k,k,A satisfy similar bounds as the

symbols�0,r
k,k,A analyzed in the proof of Lemma 8.2. In particular, we have

∣∣∣�3,r
k,k,A

(
θ(1), θ (2)

) −
∑

σ∈A+(Z/Q)d
C(a(2)/Q, σ )η≤2δ′k(τ

k ◦ (θ(1) − σ))

× I 3k (θ
(1) − σ, α(2))

∣∣∣ � τ−Dk/3,

which is analogous to the approximate identity (8.22). The coefficients
C(a(2)/Q, σ ) are as in (8.23), while the functions I 3k are similar to the
functions I ιk defined in (8.20) (with the factor χι(u j )χ

ι(v j ) replaced by
χ(u j/2)χ(v j/2)/4). We still have the key bounds
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|I 3k (α(1), α(2))| � τ−k/δ if |τ k ◦ α(1)| + |τ k ◦ α(2)| ≥ τ δk/2,

which are similar to (8.24). The main difference is that the bounds (8.27) are
replaced by

∣∣�3,r
k,k,B(a

(2)/Q + α(2))∣∣ � τ−Dk if |τ k ◦ α(2)| ≤ 2τ δk/2 and a(2)/Q ∈ B,

due to the presence of the difference factor [�k�k,k,B](ξ (2)) in the definition
(8.38) of the multipliers �3,r

k,k,B. The desired estimate (8.39) for ι = 3 follows
from the last three bounds.

Case 2. Assume now that ι = 4. As in (8.16) we rewrite

�
4,r
k,k,A

(
θ(1), θ (2)

) =
∫

(Td )2r
Vr
k+1(θ

(1), θ (2); ζ (1)1 , ξ
(1)
1 , . . . , ζ (1)r , ξ (1)r )

(8.40)

×
∏

1≤ j≤r

{
Sk+1(ζ

(1)
j ) [�k�k,k,A](ζ (1)j )Sk+1(ξ

(1)
j )

× [�k�k,k,A](ξ (1)j )
}
dξ (1)1 dζ (1)1 . . . dξ (1)r dζ (1)r ,

where Vr
k+1(θ

(1), θ (2); ζ (1)1 , ξ
(1)
1 , . . . , ζ

(1)
r , ξ

(1)
r ) is as in (5.16).

In view of (5.6) we have a rapid decay |�4,r
k,k,B(θ

(2))| � τ−Dk unless |τ k ◦
(θ(2) − a(2)/Q)| ≤ τ 2δk for some a(2)/Q ∈ B. On the other hand, in this case
we can use similar arguments as in the proof of Lemma 8.2 to simplify the
multipliers�4,r

k,k,A, at the expense of acceptable errors. After several reductions
we derive an approximate formula similar to (8.22), namely

∣∣∣�4,r
k,k,A

(
θ(1), θ (2)

) −
∑

σ∈A+(Z/Q)d
C(a(2)/Q, σ )η≤2δ′k(τ

k ◦ (θ(1) − σ))

× I 4k (θ
(1) − σ, α(2))

∣∣∣ � τ−Dk/3, (8.41)

provided that θ(2) = α(2)+a(2)/Q for some a(2)/Q ∈ B and |τ k◦α(2)| ≤ τ 2δk .
The coefficients C(a(2)/Q, σ ) are the same as in (8.23), and I 4k is defined as
in (8.20), namely

I 4k (α
(1), α(2)) :=

∫

R2rd

∏

1≤ j≤r

{
η̂′

≤δ′k(−x ′
j )η̂

′
≤δ′k(y

′
j )e

( − (τ k ◦ α(1)).(x ′
j − y′

j )
)}

×
{ ∫

R2r
e
( − (τ k ◦ α(2)).T (x ′, y′, u, v)

) ∏

1≤ j≤r

{
χ(u j )χ(v j )

}

× e
( − (τ k ◦ α).D(2v, 2u)) dudv

}
dx ′dy′, (8.42)
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where η′
≤δ′k(z) := η≤δ′(k+1)(τ ◦ z)− η≤δ′k(z), and η̂′

≤δ′k denotes the Fourier
transform of the function η′

≤δ′k , and the function T is defined as in (8.21).

The functions I 4k still satisfy the bounds |I 4k (α(1), α(2))| � τ−k/δ if |τ k ◦
α(1)| + |τ k ◦α(2)| ≥ τ δk/2, which are similar to (8.24). The main difference is
that the identities (8.25) are replaced by the stronger identities

∫

Rd
η̂′

≤δ′k(z)z
β dz = 0,

for any multi-index β, including β = 0. Therefore we can use a Taylor
expansion (as in the proof of (8.26)) to see that |I 4k (α(1), α(2))| � τ−Dk if
|τ k ◦α(1)|+ |τ k ◦α(2)| � τ δk/2. The desired bound in (8.39) follows for ι = 4.

��

9 Maximal estimates on � p(G0): Proof of Theorem 1.3

In this section we complete the proof of the �p theory in Theorem 1.3.

Theorem 9.1 With Mk defined as in (4.1) for τ = 2, and for any p ∈
(1,∞]we have

∥∥ sup
k≥0

|Mk f |
∥∥
�p(G0)

�p ‖ f ‖�p(G0), f ∈ �p(G0). (9.1)

Notice that the maximal inequality (9.1) for τ = 2 implies the full maximal
inequality for any τ > 1. By interpolation with the variational �2 estimates in
Theorem 4.1, this completes the proof of the main Theorem 1.3.

To prove Theorem 9.1 we will use Lemma 9.2 and Propositions 9.3 and 9.4
below.

Lemma 9.2 Assume that there is a constant γ > 0 such that for every u ∈
(1, 2], ρ ∈ (0, 1), and λ > 0 there is a sequence of linear operators (Aλ,ρk )k≥0
such that

∥∥ sup
k≥0

|Aλ,ρk f |∥∥
�u(G0)

�ρ,u λρ‖ f ‖�u(G0), for any f ∈ �u(G0), (9.2)

and

∥∥ sup
k≥0

|Mk f − Aλ,ρk f |∥∥
�2(G0)

�ρ λ−γ ‖ f ‖�2(G0)
, for any f ∈ �2(G0).

(9.3)

Then the estimate (9.1) holds true for every p > 1.
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Proof This is a general interpolation result. See for example [34, Lemma 7.1]
or [32, Lemma 4.4] for proofs of such results. ��

We will need the following logarithmic maximal estimates.

Proposition 9.3 For every p ∈ (1,∞), f ∈ �p(G0), and J ∈ N we have

∥∥ sup
j∈[J+1,2J ]

|M j f |
∥∥
�p(G0)

�p log(J + 2)‖ f ‖�p(G0).

Proposition 9.3 will be proved in Sect. 9.2. The idea of using restricted
�p(G0) estimates as in Proposition 9.3 together with �2(G0) bounds to prove
the full �p(G0) estimates (9.1) originates in Bourgain’s paper [13].

Finally, we will also need the following shifted maximal inequality for the
kernels Wk,w,Q with 0 ≤ w ≤ k defined in (6.8).

Proposition 9.4 For any p ∈ (1,∞), Q ≥ 1, and w ∈ N we have

∥∥ sup
2k/4≥Q, k≥w

∣∣ f ∗HQ Wk,w,Q
∣∣∥∥
�p(HQ)

�p (w + 1)‖ f ‖�p(HQ), f ∈ �p(HQ).

We prove Proposition 9.4 in Appendix B. For now we show how to use the
conclusions of Propositions 9.3 and 9.4 to complete the proof of Theorem 9.1.

9.1 Proof of Theorem 9.1

We divide the proof in several steps:
Step 1. In view Lemma 9.2, in order to prove (9.1) it suffices to find a

sequence of linear operators (Aλ,ρk )k∈N, ρ ∈ (0, 1) and λ > 0 satisfying

(9.2) and (9.3). For λ ≤ eD we can just set Aλ,ρk ≡ 0 and the bounds (9.3)
follow from the already established �2(G0) theory for the maximal operator
supk≥0 |Mk f |.

Therefore from now on we may focus only on λ ≥ eD . Let us define

S := �ln λ� ≥ D. (9.4)

Recall from (4.18) and (4.25) that for S as in (9.4) we have respectively

κS = 2(D/ ln 2)(S+1)2 and QS = (2D(S+1))!.

If λ ≥ eD and k ≤ κS then we just define Aλ,ρk = Mk . The bounds (9.3) are
trivial, whereas the bounds (9.2) follow from Proposition 9.3. Indeed, since
S4 � (ln λ)4 we have
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∥∥ sup
1≤k≤κS

|Mk f |
∥∥
�u(G0)

≤
2D(S+1)2∑

j=1

∥∥ sup
2 j−1≤k≤2 j

|Mk f |
∥∥
�u(G0)

�
2D(S+1)2∑

j=0

( j + 1)‖ f ‖�u(G0) � (log λ)4‖ f ‖�u(G0).

Step 2. Assume now that λ ≥ eD and k ≥ κS . We set Aλ,ρk f = f ∗
Kk,S,R̃d

QS
,R̃d′

QS

, where the kernels Kk,w,A,B are defined as in (4.36). In view of

Lemma 9.2 it suffices to show that

∥∥ sup
k≥κS

| f ∗ Kk,S,R̃d
QS
,R̃d′

QS

|∥∥
�p(G0)

�p (ln λ)‖ f ‖�p(G0), f ∈ �p(G0)

(9.5)
∥∥ sup
k≥κS

|Mk f − f ∗ Kk,S,R̃d
QS
,R̃d′

QS

|∥∥
�2(G0)

� λ−δ/D3‖ f ‖�2(G0)
, f ∈ �2(G0).

(9.6)

for every p ∈ (1, 2].
Let Kk,w,A,B, Wk,w,Q and VA,B,Q denote the convolution operators corre-

sponding respectively to the kernels Kk,w,A,B, Wk,w,Q and VA,B,Q defined in
Lemma 6.2. Let Q = QS , A = R̃d

QS
, B = R̃d ′

QS
, k0 = �κS�, and w = S.

Notice that 1 ≤ QS ≤ 2δk0 , so the decomposition (6.7) and the error term
estimate (6.10) of Lemma 6.2 hold.

We prove first the bounds (9.5). We apply Lemma 6.6 with KG0
k =

Kk,S,R̃d
QS
,R̃d′

QS

, WHQS
k = Wk,S,QS and VJQS = VR̃d

QS
,R̃d′

QS
,QS

and conclude

from (6.42) (with B = �∞) that

∥∥ sup
k≥κS

| f ∗ Kk,S,R̃d
QS
,R̃d′

QS

|∥∥
�p(G0)

� ‖(Wk,S,QS )k≥κS‖�p(HQS )→�p(HQS ;�∞)

× ‖VR̃d
QS
,R̃d′

QS
,QS

‖�p(JQS )→�p(JQS )
‖ f ‖�p(G0) + 2−κS/8‖ f ‖�p(G0). (9.7)

From Proposition 9.4 we know that

‖(Wk,S,QS )k≥κS‖�p(HQS )→�p(HQS ;�∞) � S. (9.8)

We also know that

‖VR̃d
QS
,R̃d′

QS
,QS

‖�p(JQS )→�p(JQS )
≤ ∥∥VR̃d

QS
,R̃d′

QS
,QS

∥∥
�1(JQS )

� 1, (9.9)
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which follows from the direct computation

VR̃d
QS
,R̃d′

QS
,QS
(b)

= Q−d−d ′
S

{ ∑

a∈Z
d
QS

S(a/QS)e(b
(1).a/QS)

}{ ∑

c∈Z
d′
QS

e(b(2).c/QS)
}

= Q−1
S

∑

n∈ZQS

1{A0(n)}(b).

The bounds (9.5) follow from (9.7)–(9.9).
Step 3. Finally, we prove the bounds (9.6). Observe that for k ≥ κS we have

the following decomposition, with the notation in Sect. 4,

Mk f − f ∗ Kk,S,R̃d
QS
,R̃d′

QS

= Mk f − f ∗
[ ∑

s∈[0,δk]
Kk,s

]

+ f ∗
[ ∑

s∈(δS,δk]
Kk,s

]
+ f ∗

[ ∑

s∈[0,δS]
Gc

k,s

]

+ f ∗ Kk,k,Rd
≤δ′k\R̃d

QS
,Rd′

≤δS
− f ∗ Kk,k,R̃d

QS
,R̃d′

QS
\Rd′

≤δS

+ f ∗
[
Kk,k,R̃d

QS
,R̃d′

QS

− Kk,S,R̃d
QS
,R̃d′

QS

]
.

Therefore, to prove (9.6) it is enough to show that for every λ ≥ eD and
f ∈ �2(G0)

∥∥∥ sup
k≥κS

∣∣∣Mk f − f ∗
[ ∑

s∈[0,δk]
Kk,s

]∣∣∣
∥∥∥
�2(G0)

� λ−1‖ f ‖�2(G0)
, (9.10)

∥∥∥ sup
k≥κS

∣∣∣ f ∗
[ ∑

s∈(δS,δk]
Kk,s

]∣∣∣
∥∥∥
�2(G0)

� λ−δ/D3‖ f ‖�2(G0)
, (9.11)

∥∥∥ sup
k≥κS

∣∣∣ f ∗
[ ∑

s∈[0,δS]
Gc

k,s

]∣∣∣
∥∥∥
�2(G0)

� λ−1‖ f ‖�2(G0)
, (9.12)

∥∥ sup
k≥κS

| f ∗ Kk,k,Rd
≤δ′k\R̃d

QS
,Rd′

≤δS
|∥∥
�2(G0)

� λ−1/D2‖ f ‖�2(G0)
, (9.13)

∥∥ sup
k≥κS

| f ∗ Kk,k,R̃d
QS
,R̃d′

QS
\Rd′

≤δS
|∥∥
�2(G0)

� λ−δ/D2‖ f ‖�2(G0)
, (9.14)

∥∥∥ sup
k≥κS

∣∣∣ f ∗
[
Kk,k,R̃d

QS
,R̃d′

QS

− Kk,S,R̃d
QS
,R̃d′

QS

]∣∣∣
∥∥∥
�2(G0)

� λ−δ/D2‖ f ‖�2(G0)
.

(9.15)
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Step 4.We now establish inequalities (9.10)–(9.15). Notice thatMk f − f ∗[∑
s∈[0,δk] Kk,s

]
= f ∗ Kc

k , and the bounds (9.10) follow from Lemma 4.2.

Similarly, the bounds (9.12) follow from Lemma 5.1 with B = Rd ′
≤δS . In

addition, combining (4.20) with (4.21) we obtain
∥∥∥ sup
k≥κS

∣∣∣ f ∗
[ ∑

s∈(δS,δk]
Kk,s

]∣∣∣
∥∥∥
�2(G0)

≤
∑

s>δS

∥∥ sup
k≥max(κS ,s/δ)

| f ∗ Kk,s |
∥∥
�2(G0)

�
∑

s>δS

2−s/D2‖ f ‖�2(G0)
� λ−δ/D3‖ f ‖�2(G0)

.

This proves (9.11). Moreover, using (6.49) and (8.2) withA = Rd
t \ R̃d

QS
and

B = Rd ′
≤δS ,
∥∥ sup
k≥κS

| f ∗ Kk,k,Rd
≤δ′k\R̃d

QS
,Rd′

≤δS
|∥∥
�2(G0)

≤
∑

t≥D(S+1)

∥∥ sup
k≥max(κS,t/δ′)

| f ∗ Kk,k,Rd
t \R̃d

QS
,Rd′

≤δS
|∥∥
�2(G0)

�
∑

t≥D(S+1)

2−t/D2‖ f ‖�2(G0)
� λ−1/D2‖ f ‖�2(G0)

.

This completes the proof of (9.13).
We prove now the bounds (9.14). We apply Lemma 6.2 with Q = QS ,

A = R̃d
QS

, B = R̃d ′
QS

\ Rd ′
≤δS , k0 = �κS� and w = k. Then we apply

Lemma 6.6 and conclude from (6.42) that

∥∥ sup
k≥κS

| f ∗ Kk,k,R̃d
QS
,R̃d′

QS
\Rd′

≤δS
|∥∥
�2(G0)

� ‖(Wk,k,QS )k≥κS‖�2(HQS )→�2(HQS ;�∞)

× ∥∥VR̃d
QS
,R̃d′

QS
\Rd′

≤δS ,QS

∥∥
�2(JQS )→�2(JQS )

‖ f ‖�2(G0)
+ 2−λ/8‖ f ‖�2(G0)

.

By (6.19) we may conclude that

∥∥VR̃d
QS
,R̃d′

QS
\Rd′

≤δS,QS

∥∥
�2(JQS )→�2(JQS )

� 2−δS/D‖ f ‖�2(JQS )
.

The bounds (9.14) follow using also Lemma 6.4.
Finally, we prove the bounds (9.15). By a simple square function argument

and Khinchine’s inequality it suffices to prove that for every w ≥ S, every
sequence (�k)k∈N ⊆ [−1, 1] and any f ∈ �2(G0) we have

∥∥∥
∑

k≥max{κS,w+1}
�k f ∗ [

Kk,w+1,R̃d
QS
,R̃d′

QS

− Kk,w,R̃d
QS
,R̃d′

QS

]∥∥∥
�2(G0)
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� 2−w/D2‖ f ‖�2(G0)
. (9.16)

We apply again Lemma 6.2 with Q = QS , A = R̃d
QS

, B = R̃d ′
QS

and

w ≥ S. Then we apply Lemma 6.6 with k0 = max{κS, w + 1}, KG0
k =

Kk,w+1,R̃d
QS
,R̃d′

QS

− Kk,w,R̃d
QS
,R̃d′

QS

, W
HQS
k = Wk,w+1,QS − Wk,w,QS and

V JQS = VR̃d
QS
,R̃d′

QS
,QS

and conclude from (6.43) that the left-hand side of

(9.16) is controlled by

∥∥∥
∑

k≥max{κS,w+1}
�k

[Wk,w+1,QS − Wk,w,QS

]∥∥∥
�2(HQS )→�2(HQS )

‖ f ‖�2(G0)

+ 2−w/8‖ f ‖�2(G0)
,

since ‖VR̃d
QS
,R̃d′

QS
,QS

‖�2(JQS )→�2(JQS )
� 1 by (9.9). Finally, using (6.30) we

obtain

∥∥∥
∑

k≥max{κS,w+1}
�k

[Wk,w+1,QS − Wk,w,QS

]∥∥∥
�2(HQS )→�2(HQS )

� 2−w/D2

as desired and the proof of (9.15) is finished. This also completes the proof of
Theorem 9.1.

9.2 Proof of Proposition 9.3

To prove Proposition 9.3 we exploit the positivity of the operator Mk f , i.e.,
Mk f ≥ 0 whenever f ≥ 0.Wewill extend the ideas of Bourgain [13, Lemma
7.32] (see also [32, Lemmas 4.2 and 4.3]) to the nilpotent setting.Wewill need
the following technical result, to approximate the original operator.

Lemma 9.5 For every μ ∈ Z+ there is a constant Cμ > 0 such that for every
f ∈ �2(G0) the following inequality

∥∥Mk f − f ∗Uk,J,S,μ
∥∥
�2(G0)

≤ CμS
−1/D2‖ f ‖�2(G0)

,
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holds uniformly in 1 ≤ J ≤ k ≤ 2J , 1 ≤ S ≤ 2δk satisfying SD ≤ 2δ
′k and

S ≤ Jμ. Here

Uk,J,S,μ(g)

:= φk(g)
∑

σ (1)∈Rd≤D log2 S∩[0,1)d

∑

σ (2)∈Rd′
≤log2 S∩[0,1)d′

e
(
g.(σ (1), σ (2))

)
S(σ (1))

×
{ ∏

(l1,l2)∈Yd
2−k(l1+l2)

}

×
∫

Rd+d′η≤δ′Dμ�log2 J�(ξ (1))η≤δDμ�log2 J�(ξ (2))Jk(2−k ◦ ξ (1))
× e[(2−k ◦ g).ξ ] dξ.

(9.17)

We show first how to use Lemma 9.5 to prove Proposition 9.3. We proceed
in several steps.

Step 1. Since the result is clear for p = ∞ it suffices to consider only p ∈
(1, 2] and nonnegative functions f : G0 → [0,∞). Let K̃ j (x) = K j (x−1).
By a general abstract argument, involving duality and a separation in scales j
(see [13] and [32, Lemma 4.2]), it suffices to show that

∥∥
∑

j∈S
h j ∗ K̃ j

∥∥
�R(G0)

�R |F |1/R, (9.18)

for any even integer R ≥ 2, any subset F ⊆ G0, any functions h j satisfying

h j = g j1F , g j : G0 → [0, 1],
∑

j∈S
g j (x) ≤ 1 for any x ∈ G0, (9.19)

and any subset S ⊆ [J + 1, 2J ] satisfying the sparseness property |l − l ′| ≥
Dμ log2 J if l 
= l ′ ∈ S. Here μ = μ(R) is a sufficiently large constant to be
determined later (in (9.22)).

Indeed, by a duality argument there are functions 0 ≤ g j ≤ 1 for J < j ≤
2J , such that

∑
J< j≤2J g j (x) = 1, x ∈ G0, and

sup
J< j≤2J

| f ∗ K j (x)| =
∑

J< j≤2J

f ∗ K j (x)g j (x), x ∈ G0, J ≥ 1.

Then, we have
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∥∥ sup
J< j≤2J

| f ∗ K j |
∥∥
�p(G0)

= ∥∥ ∑

J< j≤2J

( f ∗ K j )g j
∥∥
�p(G0)

≤ sup
‖h‖

�p
′
(G0)

≤1

∥∥ ∑

J< j≤2J

(hg j ) ∗ K̃ j
∥∥
�p

′
(G0)

‖ f ‖�p(G0).

Using interpolation it suffices to show that the latter operator is of restricted
weak type (R, R) for any integer R ≥ 2, with norm �R log(J + 2). This
means that we need to show that for every fixed integer R ≥ 2, every finite
subset F ⊆ G0 and every J ≥ 1 we have

∥∥ ∑

J< j≤2J

h j ∗ K̃ j
∥∥
�R(G0)

�R log(J + 2)|F |1/R,

where h j = g j1F for every J < j ≤ 2J . Finally, we partition the set (J, 2J ]
into at most Dμ log2 J + 1 subsets S with the sparseness property mentioned
above. Therefore, we reduced our task to showing (9.18). We prove (9.18) by
induction over R. The case R = 2 follows from the �2(G0) boundedness of
the maximal function sup j≥0 |M j |. The case of general R can be reduced to
proving that

∥∥∥
( R∏

n=2

h jn ∗ K̃ jn

)
∗ (K j1 − K j0)

∥∥∥
�2(G0)

�R J−R|F |1/2, (9.20)

uniformly in J = j0 < j1 < · · · < jR ≤ 2J satisfying

jn+1 − jn ≥ Dμ log2 J, 1 ≤ n ≤ R − 1. (9.21)

See [32, Lemma 4.2] for the details of this reduction, which apply in our case
as well.

Step 2. To prove (9.20) we first define some constants

A := D4 + R, μ := D2AR + R, Sn := J An
, 1 ≤ n ≤ R. (9.22)

We may assume that J �μ 1, so 1 ≤ Sn ≤ 2δ J/2, SD
n ≤ 2δ

′ J/2 and Sn ≤ Jμ,
1 ≤ n ≤ R. For simplicity of notation, in the rest of this subsection the implicit
constants are allowed to depend on R. Using Lemma 9.5 we obtain for every
f ∈ �2(G0) that

∥∥ f ∗ K̃ jn − f ∗ Ũn,J,μ
∥∥
�2(G0)

� S−1/D2

n ‖ f ‖�2(G0)
, 1 ≤ n ≤ R, J ≥ J0,

(9.23)
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where Ũn,J,μ(x) := Ujn,J,Sn,μ(x
−1), see (9.17). Here we use the fact that if

T f = f ∗ K and T̃ f = f ∗ K̃ , then ‖T ‖�2(G0)→�2(G0)
= ‖T̃ ‖�2(G0)→�2(G0)

.
We show that

∥∥∥
R∏

n=2

h jn ∗ K̃ jn −
R∏

n=2

h jn ∗ Ũn,J,μ

∥∥∥
�2(G0)

� J−R|F |1/2, (9.24)

uniformly in J = j0 < j1 < · · · < jR ≤ 2J satisfying (9.21). Indeed, notice
that

‖h jn ∗ Ũn,J,μ‖�∞(G0) ≤ ‖Ũn,J,μ‖�1(G0)
‖h jn‖�∞(G0) � S2D(d+d ′)

n , 1 ≤ n ≤ R.
(9.25)

Since Un,J,μ = Ujn,J,Sn,μ, see (9.17), this follows from the identity

Un,J,μ(g) = φ jn (g)
∑

σ (1)∈Rd≤D log2 Sn
∩[0,1)d

∑

σ (2)∈Rd′
≤log2 Sn

∩[0,1)d′

e
(
g.(σ (1), σ (2))

)
S(σ (1))

×
∫

R

χ(u)
{ ∏

(l1,l2)∈Yd
2− jn(l1+l2)

}
η≤δ′Dμ�log2 J�
∧(

A(1)0 (u)− 2− jn ◦ g(1)
)

× η≤δDμ�log2 J�
∧( − 2− jn ◦ g(2)

)
du,

(9.26)

see also (6.4). Using (9.23) and (9.25) we can estimate the left-hand side of
(9.24) by

C
R∑

n=2

( n−1∏

k=2

‖h jk ∗ Ũk,J,μ‖�∞(G0)

)( R∏

k=n+1

‖h jk ∗ K̃ jk‖�∞(G0)

)

× ∥∥h jn ∗ K̃ jn − h jn ∗ Ũn,J,μ
∥∥
�2(G0)

�
R∑

n=2

( n−1∏

k=2

S2D(d+d ′)
k

)
S−1/D2

n |F |1/2

�
R∑

n=2

J 4D(d+d ′)An−1−AnD−2 |F |1/2 � J−R|F |1/2,

since 4D(d + d ′)An−1 − AnD−2 ≤ −An−1 ≤ −R, see (9.22). The bounds
(9.24) follow.
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Step 3. In view of (9.24), for (9.20) it is enough to prove that

∥∥∥
( R∏

n=2

h jn ∗ Ũn,J,μ

)
∗ (K j1 − K j0)

∥∥∥
�2(G0)

� J−R|F |1/2, (9.27)

uniformly in J = j0 < j1 < · · · < jR ≤ 2J satisfying (9.21). Let us define

Xn,J,μ(g) := φ jn (g)
∫

R

χ(u)
{ ∏

(l1,l2)∈Yd
2− jn(l1+l2)

}

η≤δ′Dμ�log2 J�
∧(

A(1)0 (u)− 2− jn ◦ g(1)
)

× η≤δDμ�log2 J�
∧( − 2− jn ◦ g(2)

)
du, (9.28)

Xn,J,μ,σ (g) := Xn,J,μ(g)e(g.σ ). (9.29)

Using (9.26) we have

h jn ∗ Ũn,J,μ =
∑

σ
(1)
n ∈Rd≤D log2 Sn

∩[0,1)d , σ (2)n ∈Rd′
≤log2 Sn

∩[0,1)d′
S(σ (1)n ) · h jn ∗ X̃n,J,μ,σn .

In view of (9.22), for (9.27) it suffices to show that

∥∥∥
( R∏

n=2

h jn ∗ X̃n,J,μ,σn

)
∗ (K j1 − K j0)

∥∥∥
�2(G0)

� J−2μ|F |1/2, (9.30)

for any σ (1)n ∈ Rd
≤D log2 Sn

∩ [0, 1)d , σ (2)n ∈ Rd ′
≤log2 Sn

∩ [0, 1)d ′
, 2 ≤ n ≤ R.

Observe that

f ∗ (K j1 − K j0)(g) =
∑

u∈Z

χ j0, j1(u) f (A0(u)
−1 · g),

where χ j0, j1(v) = 2− j1χ(2− j1v)− 2− j0χ(2− j0v). Notice that

∣∣∣
∑

v∈Z

χ j0, j1(Qv + b)
∣∣∣ � 2− j0, Q ∈ Z+, b ∈ ZQ . (9.31)

Therefore we have
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( R∏

n=2

h jn ∗ X̃n,J,μ,σn

)
∗ (K j1 − K j0)(g)

=
∑

v∈Z

χ j0, j1(v)
∑

y2,...,yR∈G0

( R∏

n=2

Xn,J,μ,σn

(
yn · g−1 · A0(v)

)
h jn (yn)

)

=
∑

y2,...,yR∈G0

( R∏

n=2

h jn (yn)
)
H(y2 · g−1, . . . , yR · g−1), (9.32)

where

H(y2, . . . , yR) :=
∑

v∈Z

χ j0, j1(v)
( R∏

n=2

Xn,J,μ,σn

(
yn · A0(v)

))
. (9.33)

For (9.30) it suffices to show that there are functions Hn = Hn,J,μ ≥ 0,
2 ≤ n ≤ R, such that

‖Hn‖�1(G0)
� 1 for 2 ≤ n ≤ R and |H(y2, . . . , yR)| � J−2μ

R∏

n=2

Hn(yn).

(9.34)

Indeed, assuming (9.34) and using (9.32) we can bound the left-hand side of
(9.30) by

C J−2μ
∥∥∥

R∏

n=2

h jn ∗ H̃n

∥∥∥
�2(G0)

≤ C J−2μ
R∏

n=2

‖h jn ∗ H̃n‖�2(R−1)(G0)
� J−2μ|F |1/2.

Step 4. It remains to prove (9.34). Let qn be the denominator of σn . By
(9.22) one has

Q :=
R∏

n=2

qn �
R∏

n=2

S2Dd ′
n ≤ Jμ. (9.35)

Splitting the summation in v in (9.33) into classes modulo Q and using (9.29)
we obtain

|H(y2, . . . , yR)| ≤
∑

b∈ZQ

∣∣∣
∑

v∈Z
χ j0, j1(Qv + b)

( R∏

n=2

Xn,J,μ
(
yn · A0(Qv + b)

))∣∣∣

�
∑

b∈ZQ

∣∣∣
∑

v∈Z
χ j0, j1(Qv + b)

( R∏

n=2

Xn,J,μ
(
yn · A0(Qv + b)

) −
R∏

n=2

Xn,J,μ(yn)
)∣∣∣
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+
∑

b∈ZQ

∣∣∣
∑

v∈Z
χ j0, j1(Qv + b)

( R∏

n=2

Xn,J,μ(yn)
)∣∣∣ =: I1 + I2. (9.36)

Using the definition (9.28) it is easy to see that for every y ∈ G
#
0 and 2 ≤ n ≤ R

one has

|Xn,J,μ(y)| +
∑

(l1,l2)∈Yd
2 jn(l1+l2) J−δl1l2Dμ

∣∣(∂yl1l2 Xn,J,μ)(y)
∣∣

�
{ ∏

(l1,l2)∈Yd
2− jn(l1+l2) J δl1l2Dμ

} ∫

R

χ(u)
〈
J δ̃Dμ

(
A0(u)− 2− jn ◦ y

)〉−2D
du,

(9.37)

where δ̃ = (δl1l2)(l1,l2)∈Yd and δl1l2 = δ if (l1, l2) ∈ Y ′
d and δl1l2 = δ′ otherwise.

Since 2 j1− jn � J−Dμ (the separation condition (9.21)), for every y, h ∈ G0
satisfying |2− j1 ◦ h| � 1 we have

|Xn,J,μ(y · h)− Xn,J,μ(y)|
� J−3μ

{ ∏

(l1,l2)∈Yd
2− jn(l1+l2) J δl1l2Dμ

}

×
∫

R

χ(u)
〈
J δ̃Dμ

(
A0(u)− 2− jn ◦ y

)〉−D
du.

(9.38)

Using (9.37)–(9.38) if |Qv + b| � 2 j1 then we have

∣∣∣
R∏

n=2

Xn,J,μ
(
yn · A0(Qv + b)

) −
R∏

n=2

Xn,J,μ(yn)
∣∣∣

� J−3μ
R∏

n=2

(∫

R

χ(un)
{ ∏

(l1,l2)∈Yd
2− jn(l1+l2) J δl1l2Dμ

}

×
〈
J δ̃Dμ

(
A0(un)− 2− jn ◦ yn

)〉−D
dun

)
.

Since
∑

b∈ZQ

∑
v∈Z

|χ j0, j1(Qv + b)| � 1, we see that the required decom-
position (9.34) for the first term I1 in (9.36) follows. The decomposition for
I2 also follows using (9.31), (9.35) and (9.37). This completes the proof of
Proposition 9.3.
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9.3 Proof of Lemma 9.5

Observe that wemay assume that k ≥ D2μ, otherwise the conclusion is trivial.
Observe that we have a decomposition

Mk f − f ∗Uk,J,S,μ = Mk f − f ∗
[ ∑

s∈[0,δk]
Kk,s

]

+ f ∗
[ ∑

s∈(log2 S,δk]
Kk,s

]
+ f ∗

[ ∑

s∈[0,log2 S]
Gc

k,s

]

+ f ∗ Kk,k,Rd
≤δ′k\Rd≤D log2 S,Rd′

≤log2 S

+ f ∗
[
Kk,k,Rd≤D log2 S,Rd′

≤log2 S
−Uk,J,S,μ

]
.

To prove Lemma 9.5 it remains to show that for any f ∈ �2(G0), k ≥ D2μ,
J ≤ k ≤ 2J , and S ≤ Jμ we have the following estimates:

∥∥∥Mk f − f ∗
[ ∑

s∈[0,δk]
Kk,s

]∥∥∥
�2(G0)

� 2−k/D2‖ f ‖�2(G0)
, (9.39)

∥∥∥ f ∗
[ ∑

s∈(log2 S,δk]
Kk,s

]∥∥∥
�2(G0)

� S−1/D2‖ f ‖�2(G0)
, (9.40)

∥∥ f ∗ Gc
k,Rd′

≤log2 S

∥∥
�2(G0)

� 2−k/D2‖ f ‖�2(G0)
, (9.41)

∥∥ f ∗ Kk,k,Rd
≤δ′k\Rd≤D log2 S,Rd′

≤log2 S

∥∥
�2(G0)

� S−1/D‖ f ‖�2(G0)
, (9.42)

∥∥∥ f ∗
[
Kk,k,Rd≤D log2 S,Rd′

≤log2 S
−Uk,J,S,μ

]∥∥∥
�2(G0)

� S−1‖ f ‖�2(G0)
. (9.43)

Here and in the rest of this subsection the implicit constants are allowed to
depend on μ. The bounds (9.39) follow from Lemma 4.2. The bounds (9.40)
follow from (4.20)–(4.21). The bounds (9.41) follow from Lemma 5.1 with
B = Rd ′

≤log2 S
.

To prove the bounds (9.42) we use Lemma 8.2 with ι = 0, so we have the
decomposition

{(Kk,k,Rd
p\Rd≤D log2 S,Rd′

≤log2 S
)∗Kk,k,Rd

p\Rd≤D log2 S,Rd′
≤log2 S

}r f
= f ∗ {F0,r

k + O0,r
k }, (9.44)
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for any p ∈ (D log2 S, δ
′k]. Here ‖O0,r

k ‖�1(G0)
� 2−k , A = Rd

p \Rd≤D log2 S
,

B = Rd ′
≤log2 S

, and

F0,r
k (h) :=

{ ∑

a(2)/Q∈B∩[0,1)d′

∑

σ∈[A+(ZQ/Q)d ]∩[0,1)d
C(a(2)/Q, σ )

× e(h(1).σ )e
(
h(2).(a(2)/Q)

)}

×
{ ∏

(l1,l2)∈Yd
2−k(l1+l2)

}
η≤3δk(2

−k ◦ h)

×
∫

Rd×Rd′ η≤δk/2(ζ (1))η≤δk/2(ζ (2))P(ζ )e[(2−k ◦ h).ζ ] dζ.

The function P was defined in (7.12), and the coefficients C satisfy the bounds

|C(a(2)/Q, σ )| � 2−p/δ,

for any a(2)/Q ∈ Rd ′
≤log2 S

∩[0, 1)d ′
and σ ∈ [Rd

p \Rd
≤D log2 S

+ (ZQ/Q)d ]∩
[0, 1)d . Using this estimate and (7.27) (with ι = 0), we see that ‖F0,r

k ‖�1(G0)
�

2−p/(2δ). The desired bounds (9.42) follow by summation over p ≥ D log2 S.
Finally, to prove the bounds (9.43) we use first Lemma 6.1 to see that

‖Kk,Dμ�log2 J�,Rd≤D log2 S,Rd′
≤log2 S

−Uk,J,S,μ‖�1(G0)
� 2−k .

Therefore it remains to establish the following:

Lemma 9.6 Assume μ ≥ 1, k ≥ D2μ, J ≤ k ≤ 2J , and S ≤ Jμ. Then for
any f ∈ �2(G0),

∥∥∥ f ∗
[
Kk,k,Rd≤D log2 S,Rd′

≤log2 S
− Kk,Dμ�log2 J�,Rd≤D log2 S,Rd′

≤log2 S

]∥∥∥
�2(G0)

� S−1‖ f ‖�2(G0)
. (9.45)

Proof For w ∈ N and I ⊆ {1, 2} we define the auxiliary functions

ϒ
(1)
w,I =

{
η≤δ′(w+1) − η≤δ′w if 1 ∈ I,
η≤δ′w if 1 /∈ I,

ϒ
(2)
w,I =

{
η≤δ(w+1) − η≤δw if 2 ∈ I,
η≤δw if 2 /∈ I.

(9.46)
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Then we define the projections �k,w,A,I and �k,w,B,I as in (4.11),

�k,w,A,I(ξ (1)) :=
∑

a/q∈A
ϒ
(1)
w,I(τ

k ◦ (ξ (1) − a/q)),

�k,w,B,I(ξ (2)) :=
∑

b/q∈B
ϒ
(1)
w,I(τ

k ◦ (ξ (2) − b/q)),

whereA ⊆ Q
d andB ⊆ Q

d ′
are 1-periodic sets. Thenwe define the associated

kernels

Kk,w,A,B,I(g) = Lk,w,A,I(g(1))Nk,w,B,I(g(2)),

Lk,w,A,I(g(1)) := φ
(1)
k (g(1))

∫

Td
e(g(1).ξ (1))�k,w,A,I(ξ (1))Sk(ξ (1)) dξ (1),

Nk,w,B,I(g(2)) := φ
(2)
k (g(2))

∫

Td′ e(g
(2).ξ (2))�k,w,B,I(ξ (2)) dξ (2).

Let w0 := Dμ�log2 J� and observe that
Kk,k,Rd≤D log2 S,Rd′

≤log2 S
− Kk,w0,Rd≤D log2 S,Rd′

≤log2 S

=
k−1∑

w=w0

(Kk,w+1,Rd≤D log2 S,Rd′
≤log2 S

− Kk,w,Rd≤D log2 S,Rd′
≤log2 S

)

=
k−1∑

w=w0

∑

∅
=I⊆{1,2}
Kk,w,Rd≤D log2 S,Rd′

≤log2 S,I
.

Therefore (9.45) is reduced to prove that for any w ∈ [w0, k − 1] and I 
= ∅
‖ f ∗ Kk,w,Rd≤D log2 S,Rd′

≤log2 S,I
‖�2(G0)

� 2−w/D‖ f ‖�2(G0)
. (9.47)

We examine the definition of the kernels Kk,w,Rd≤D log2 S,Rd′
≤log2 S,I

and notice

that we can replace the cutoff function φk by the cutoff function

φk,0(g) = η≤D(2
−k ◦ g(1))η≤D(2

−k ◦ g(2)).

Indeed, letting Kk,w,S,I denote the corresponding kernel we have

Kk,w,Rd≤D log2 S,Rd′
≤log2 S,I

(g)− Kk,w,S,I(g)

= (
φk(g)− φk,0(g)

) ∑

σ∈Rd≤D log2 S∩[0,1)d×Rd′
≤log2 S∩[0,1)d′
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× e(g.σ )2−k
∑

n∈Z

e
( − A0(n).σ

)
χ(2−kn)

{ ∏

(l1,l2)∈Yd
2−k(l1+l2)

}

× ̂
ϒ
(1)
w,I(A

(1)
0 (2

−kn)− 2−k ◦ g(1))
̂
ϒ
(2)
w,I(−2−k ◦ g(2)),

which shows that

‖Kk,w,Rd≤D log2 S,Rd′
≤log2 S,I

− Kk,w,S,I‖�1(G0)
� SD2

2−D2w � 2−w.

To bound the operators defined by the kernels Kk,w,S,I we use again a high
order T ∗T argument, so it suffices to prove that

‖{(Kk,w,S,I)∗Kk,w,S,I}r f ‖�2(G0)
� 2−w‖ f ‖�2(G0)

. (9.48)

The proof of (9.48) proceeds along the same lines as the proof of Lemma 8.2.
However, there are some subtle differences arising from the fact that we can
only hope for a rapid decay with respect to w, which might be much smaller
than k. In particular, this is the reason why we had to replace the function φk
by φk,0. For the convenience of the reader we shall provide the details.

In view of (2.13)–(2.16) we have

{(Kk,w,S,I)∗Kk,w,S,I}r f = f ∗ Kr
k,w,S,I,

where

Kr
k,w,S,I(y) := 1|2−k◦y|�1

∫

Td×Td′ e
(
y.θ

)
�r

k,w,S,I
(
θ
)
�r

k,w,S,I
(
θ(2)

)
dθ(1)dθ(2),

and the multipliers�r
k,w,S,I and �r

k,w,S,I are given by

�r
k,w,S,I

(
θ
) :=

∑

h(1)j ,g
(1)
j ∈Zd

{ r∏

j=1

Lk,w,Rd≤D log2 S,I,0(h
(1)
j )Lk,w,Rd≤D log2 S,I,0(g

(1)
j )

}

× e
(
θ(1).

∑

1≤ j≤r

(h(1)j − g(1)j )
)

× e
(

− θ(2).{
∑

1≤ j≤r

R0(h
(1)
j , h

(1)
j − g(1)j )

+
∑

1≤l< j≤r

R0(−h(1)l + g(1)l ,−h(1)j + g(1)j )
})
,

where Lk,w,A,I,0 is defined as Lk,w,A,I except that we replace φ(1)k by φ(1)k,0.
With Fk,0 defined in a similar way as in (5.3) (we replace η≤δk by η≤D) we
have
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�r
k,w,S,I

(
θ(2)

) :=
∣∣∣
∫

Td′ Fk,0(θ
(2) − ξ (2))�k,w,Rd′

≤log2 S,I
(ξ (2)) dξ (2)

∣∣∣
2r
.

We first analyze the kernel �r
k,w,S,I . Note that

∫

Td′ Fk,0(θ
(2) − ξ (2))�k,w,Rd′

≤log2 S,I
(ξ (2)) dξ (2)

=
∑

a(2)/Q∈Rd′
≤log2 S∩[0,1)d′

∑

g(2)∈Zd′
η≤D(2

−k ◦ g(2))e
( − g(2).(θ (2) − a(2)/Q)

)

×
{ ∏

(l1,l2)∈Y ′
d

2−k(l1+l2)
}

̂
ϒ
(2)
w,I(−2−k ◦ g(2)).

Notice that we may replace the factor η≤D(2−k ◦ g(2)) by 1 above, at the
expence of �1 error term O(S2r D

2
2−D2w) � 2−w (here we have used the fact

that integration with respect to θ produces a delta and trivializes summation
in y). After this replacement we can use the Poisson summation formula and
we end up with

∑

a(2)/Q∈Rd′
≤log2 S∩[0,1)d′

∑

M∈Zd′
ϒ
(2)
w,I

(
2k ◦ (θ(2) − a(2)/Q − M)

)
.

This means that we can deal with a simpler kernel

Kr,1
k,w,S,I(y) := 1|2−k◦y|�1

∑

a(2)/Q∈Rd′
≤log2 S∩[0,1)d′

e
(
y(2).a(2)/Q

) ∫

Td×Rd′ e
(
y.θ

)

×�r
k,w,S,I

(
θ(1), θ (2) + a(2)/Q

)(
ϒ
(2)
w,I

(
2k ◦ θ(2)))2r dθ(1)dθ(2).

We now focus on �r
k,w,S,I . As in (5.15)–(5.16) we may write

�r
k,w,S,I

(
θ(1), θ (2)

) =
∫

(Td )2r
Vr
k,0(θ

(1), θ (2); ζ (1)1 , ξ
(1)
1 , . . . , ζ (1)r , ξ (1)r )

×
∏

1≤ j≤r

{
Sk(ζ

(1)
j )�k,w,Rd≤D log2 S,I(ζ

(1)
j )Sk(ξ

(1)
j )�k,w,Rd≤D log2 S,I(ξ

(1)
j )

}

×dξ (1)1 dζ (1)1 . . . dξ (1)r dζ (1)r , (9.49)

123



Polynomial averages and pointwise ergodic theorems

where

Vr
k,0(θ

(1), θ (2); ζ (1)1 , ξ
(1)
1 , . . . , ζ (1)r , ξ (1)r )

=
∑

h j ,g j∈Zd

∏

1≤ j≤r

{
φ
(1)
k,0(h j )e

(
(θ(1) − ζ (1)j ).h j

)

× φ(1)k,0(g j )e
( − (θ(1) − ξ (1)j ).g j

)}

× e
(

− θ(2).{
∑

1≤ j≤r

R0(h j , h j − g j )

+
∑

1≤l< j≤r

R0(−hl + gl,−h j + g j )
})
.

Further, proceeding as in the proof of Lemma 5.2 we see that for |2k ◦ θ(2)| �
2δw and a(2)/Q ∈ Rd ′

≤log2 S
∩ [0, 1)d ′

we have

Vr
k,0(θ

(1), θ (2) + a(2)/Q; ζ (1)1 , ξ
(1)
1 , . . . , ζ (1)r , ξ (1)r )

= Wr
Q(a

(2); b, c)Zr
k,0(θ

(2);β1, γ1, . . . , βr , γr )+ O(2−D3k),

where b, c ∈ Z
rd and β j , γ j ∈ [−1/(2Q), 1/(2Q)]d are defined in (5.22).

Here Wr
Q(a

(2); b, c) is defined in (5.24) and Zr
k,0 is a modification of (5.25),

i.e.

Zr
k,0(θ

(2);β1, γ1, . . . , βr , γr ) :=
∫

R2rd

{ d∏

l=1

2kl
}2r

×
∏

1≤ j≤r

{
η≤D(x j )e

( − (2k ◦ β j ).x j
)
η≤D(y j )e

(
(2k ◦ γ j ).y j

)}

× e
(

− (2k ◦ θ(2)).{
∑

1≤ j≤r

R0(y j , y j − x j )

+
∑

1≤l< j≤r

R0(−yl + xl,−y j + x j )
})

dx jdy j .

Further, we have an analogue of (5.18), namely

∣∣Vr
k,0(θ

(1), θ (2) + a(2)/Q; ζ (1)1 , ξ
(1)
1 , . . . , ζ (1)r , ξ (1)r )

∣∣

�
{ ∏

1≤l≤d

2kl
}2r

min
1≤ j≤r
1≤l≤d

[
1 + 2kl−δw‖θ(1)l − ζ (1)j,l ‖Q + 2kl−δw‖θ(1)l − ξ (1)j,l ‖Q

]−D
,
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for any θ(1) = (θ
(1)
l )l∈{1,...,d} ∈ T

d , ζ (1)j = (ζ
(1)
j,l )l∈{1,...,d} ∈ T

d , and

ξ
(1)
j = (ξ

(1)
j,l )l∈{1,...,d} ∈ T

d . Using this we proceed as in Step 2 of the proof

of Lemma 8.2. Having a rapid decay unless 2kl‖θ(1)l − ξ
(1)
j,l ‖Q ≤ 22δw and

2kl‖θ(1)l − ζ (1)j,l ‖Q ≤ 22δw for all j ∈ {1, . . . , r} and l ∈ {1, . . . , d} we expand
the cutoff functions�k,w,Rd≤D log2 S,I in (9.49) and we use Lemma 6.1 to obtain

‖Kr,1
k,w,S,I − Kr,2

k,w,S,I‖�1(G0)
� S4r D(d+d ′)2−Dw/4 � 2−w,

where

Kr,2
k,w,S,I(y) := 1|2−k◦y|�1

∑

a(2)/Q∈Rd′
≤log2 S∩[0,1)d′

∑

σ∈[Rd≤D log2 S+(ZQ/Q)d ]∩[0,1)d
C(a(2)/Q, σ )

× e
(
y(2).a(2)/Q

) ∫

Rd+d′ e
(
y.θ

)
η≤2δ′w+D(2

k ◦ (θ(1) − σ))

×
∫

R2rd
Zr
k,0

(
θ(2); θ(1) − ξ (1)j − σ, θ(1) − ζ (1)j − σ )

×
{ r∏

j=1

ϒ
(1)
w,I(2

k ◦ ξ (1)j )ϒ
(1)
w,I(2

k ◦ ζ (1)j )Jk(ξ
(1)
j )Jk(ζ

(1)
j )

}

× dξ (1)1 dζ (1)1 . . . dξ (1)r dζ (1)r

× (
ϒ
(2)
w,I

(
2k ◦ θ(2)))2r dθ(1)dθ(2).

Here C(a(2)/Q, σ ) is defined as in (8.23) with

ιQ(σ ; b, c) :=
{
1 if σ − b j/Q, σ − c j/Q ∈ Rd

≤D log2 S
for any j ∈ {1, . . . , r};

0 otherwise.

Note that C(a(2)/Q, σ ) satisfies the estimate

|C(a(2)/Q, σ )| � Q3rd Q−2r/C
1 � Q3rd � S3rd , (9.50)

for any a(2)/Q ∈ Rd ′
≤log2 S

∩[0, 1)d ′
andσ ∈ [Rd

≤D log2 S
+(ZQ/Q)d ]∩[0, 1)d ,

where Q1 is a denominator of the first component of σ and C is the constant
from Proposition 2.2. Therefore it suffices to deal with the kernel Kr,2

k,w,S,I .
Next, we focus on the integral over ξ (1)j , ζ

(1)
j above. Proceeding as in Step 3 of
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the proof of Lemma 8.2 we are able to prove that up to an error term O(2−Dw)

this integral is equal to Ik,w(θ(1) − σ, θ(2)), where

Ik,w(θ
(1), θ (2)) :=

∫

R2rd

∏

1≤ j≤r

{̂
ϒ
(1)
w,I(−x ′

j )
̂
ϒ
(1)
w,I(y

′
j )e

( − (2k ◦ θ(1)).(x ′
j − y′

j )
)}

×
{ ∫

R2r
e
( − (2k ◦ θ(2)).T (x ′, y′, u, v)

) ∏

1≤ j≤r

{
χ(u j )χ(v j )

}

e
( − (2k ◦ θ).D(v, u)) dudv

}
dx ′dy′.

Therefore we have

‖Kr,2
k,w,S,I − Kr,3

k,w,S,I‖�1(G0)
� S4r D(d+d ′)2−Dw/2 � 2−w,

where

Kr,3
k,w,S,I(y) := 1|2−k◦y|�1

∑

a(2)/Q∈Rd′
≤log2 S∩[0,1)d′

∑

σ∈[Rd≤D log2 S+(ZQ/Q)d ]∩[0,1)d
C(a(2)/Q, σ )

× e
(
y.(σ, a(2)/Q)

) ∫

Rd+d′ e
(
y.θ

)
η≤2δ′w+D(2

k ◦ θ(1))

× (
ϒ
(2)
w,I

(
2k ◦ θ(2)))2r Ik,w(θ) dθ(1)dθ(2).

Next, proceeding as in Step 4 of the proof of Lemma 8.2 we conclude

η≤2δ′w+D(2
k ◦ θ(1))(ϒ(2)w,I

(
2k ◦ θ(2)))2r Ik,w(θ)

= η≤δw/2(2k ◦ θ(1))η≤δw/2(2k ◦ θ(2))(ϒ(2)w,I
(
2k ◦ θ(2)))2r

× (
ϒ
(1)
w,I(0)

)2r
P(2k ◦ θ)+ O(2−w/δ),

where P is defined in (7.12). Therefore using (9.50) we obtain

‖Kr,3
k,w,S,I − Kr,4

k,w,S,I‖�1(G0)
� 2−w/(2δ)S4r(d+d ′) � 2−w,

where
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Kr,4
k,w,S,I(y) := 1|2−k◦y|�1

∑

a(2)/Q∈Rd′
≤log2 S∩[0,1)d′

∑

σ∈[Rd≤D log2 S+(ZQ/Q)d ]∩[0,1)d
C(a(2)/Q, σ )

× e
(
y.(σ, a(2)/Q)

){ ∏

(l1,l2)∈Yd
2−k(l1+l2)

}

×
∫

Rd+d′ e
[
(2−k ◦ y).θ

]
η≤δw/2(θ(1))η≤δw/2(θ(2))

× (
ϒ
(2)
w,I(θ

(2))
)2r (

ϒ
(1)
w,I(0)

)2r
P(θ) dθ(1)dθ(2).

Finally, to prove (9.48) it suffices to show that

‖Kr,4
k,w,S,I‖�1(G0)

� 2−w.

If 1 ∈ I, then ϒ(1)w,I(0) = 0 and there is nothing to prove. Otherwise, since

I 
= ∅ we need to have 2 ∈ I. This means that |θ(2)| � 2δw and using (7.13)
with ι = 0 together with (9.50) we have

‖Kr,4
k,w,S,I‖�1(G0)

� S4r(d+d ′)2−w/(2δ) � 2−w.

This proves (9.48) and consequently the proof of Lemma 9.6 is completed.
��
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Appendix A. Proof of Proposition 6.5

In this section we prove the estimates (6.32) and (6.34).We begin with proving
(6.34), which will be needed in the proof of (6.32).

A.1. Proof of inequality (6.34)

We examine the definitions (6.31) and (6.4), and rewrite

W̃k,w+1(x)− W̃k,w(x) = φk(x)
∑

∅
=I⊆{1,2}
Sk,w,I(x),
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where for I ⊆ {1, 2} we define

Sk,w,I(x) := S(1)k,w,I(x
(1))S(2)k,w,I(x

(2)),

S(1)k,w,I(x
(1)) :=

{ ∏

l∈{1,...,d}
τ−kl

} ∫

R

χ(u)
̂
ϒ
(1)
w,I(A

(1)
0 (u)− τ−k ◦ x (1)) du,

S(2)k,w,I(x
(2)) :=

{ ∏

(l1,l2)∈Y ′
d

τ−k(l1+l2)
}

̂
ϒ
(2)
w,I(−τ−k ◦ x (2)),

(A.1)

andϒ(1)w,I andϒ(2)w,I are defined in (9.46). Let Sk,w,I f := f ∗
G
#
0
Sk,w,I . Notice

that

‖φk Sk,w,I − Sk,w,I‖L1(G#
0)

� τ−Dk, I 
= ∅, 0 ≤ w < k.

Therefore, to prove (6.34) it suffices to show that if w ≥ 0 and I 
= ∅ then

∥∥∥
∑

k>w

�kSk,w,I f
∥∥∥
L2(G#

0)
� τ−w/D‖ f ‖L2(G#

0)
,

provided that |�k | ≤ 1. In view of the Cotlar–Stein lemma it suffices to prove
that

‖S j,w,IS∗
k,w,I‖L2(G#

0)→L2(G#
0)

+ ‖S∗
j,w,ISk,w,I‖L2(G#

0)→L2(G#
0)

� τ−2w/Dτ−|k− j |/D, (A.2)

uniformly in 0 ≤ w < j ≤ k and I 
= ∅. We will prove the estimates only for
the first term in the left-hand side above, since the second term can be treated
in a similar way.

With δ̃ = (δl1l2)(l1,l2)∈Yd , δl1l2 = δ if (l1, l2) ∈ Y ′
d and δl10 = δ′ as before, it

is easy to see that

|Sk,w,I(x)| +
∑

(l1,l2)∈Yd
τ k(l1+l2)−δl1l2w

∣∣(∂xl1l2 Sk,w,I)(x)
∣∣

�
{ ∏

(l1,l2)∈Yd
τ−k(l1+l2)+δl1l2w

} ∫

R

χ(u)
〈
τ δ̃w

(
A0(u)− τ−k ◦ x

)〉−D
du,
(A.3)
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uniformly in x ∈ G
#
0, 0 ≤ w < k. Observe that for every θ ∈ R

d+d ′
we also

have

Ŝk,w,I(θ) = ϒ
(1)
w,I(τ

k ◦ θ(1))ϒ(2)w,I(τ k ◦ θ(2))
∫

R

χ(u)e
( − θ.A0(τ

ku)
)
du.

(A.4)

Step 1.We prove first the bounds (A.2) when k− j ≥ w. Using (A.4) we have∫
G
#
0
Sk,w,I(x) dx = 0 for I 
= ∅. Therefore the kernels Kk, j of S j,w,IS∗

k,w,I
satisfy the bounds

‖Kk, j‖L1(G#
0)

≤
∫

G
#
0

|S j,w,I(y)|
∫

G
#
0

|Sk,w,I(x · y)− Sk,w,I(x)| dx dy.
(A.5)

Using now the bounds (A.3) we obtain

|Sk,w,I(x · y)− Sk,w,I(x)| � τ−(k− j)/2
{ ∏

(l1,l2)∈Yd
τ−k(l1+l2)+δl1l2w

}
〈τ− j ◦ y〉

×
∫

R

χ(u)
〈
τ δ̃w

(
A0(u)− τ−k ◦ x

)〉−D/8+1
du

×
〈
τ δ̃w

(
τ−k ◦ y

)〉D/4
,

for any x, y ∈ G
#
0, provided that k − j ≥ w. Therefore, using (A.5),

‖Kk, j‖L1(G#
0)

� τ−(k− j)/2
∫

G
#
0

{ ∏

(l1,l2)∈Yd
τ− j (l1+l2)+δl1l2w

}

×
∫

R

χ(v)
〈
τ δ̃w

(
A0(v)− τ− j ◦ y

)〉−D/4
dv dy � τ−(k− j)/2.

This proves (A.2) provided that k − j ≥ w.
Step 2. Assume now that k − j ≤ w. Using a high order T ∗T argument it

suffices to prove that if 0 ≤ w < k and I 
= ∅ then

‖(S∗
k,w,ISk,w,I)r‖L2(G#

0)→L2(G#
0)

� τ−w. (A.6)

Using the formulas (2.13)–(2.16) we see that (S∗
k,w,ISk,w,I)r f = f ∗

G
#
0

K
r
k ,

where

K
r
k(z) =

∫

Rd×Rd′ e
(
θ.z

)(
ϒ
(2)
w,I(τ

k ◦ θ(2)))2r I rk,w,I(θ(1), θ (2)) dθ, (A.7)
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and

I rk,w,I(θ) :=
∫

R2rd

{ r∏

i=1

S(1)k,w,I(h
(1)
i )S

(1)
k,w,I(g

(1)
i )

}
e
(
θ(1).

∑

1≤i≤r

(h(1)i − g(1)i )
)

× e
(

− θ(2).{
∑

1≤i≤r

R0(h
(1)
i , h

(1)
i − g(1)i )

+
∑

1≤p<i≤r

R0(−h(1)p + g(1)p ,−h(1)i + g(1)i )
})

dh(1)i dg(1)i .

Using the definitions (A.1), (8.21), and (2.24), and making the changes of
variables h(1)i = τ k ◦ (A(1)0 (vi )+ yi ), g

(1)
i = τ k ◦ (A(1)0 (ui )+ xi ) we rewrite

I rk,w,I(θ) =
∫

R2rd

r∏

i=1

{̂
ϒ
(1)
w,I(yi )

̂
ϒ
(1)
w,I(−xi )e

( − (τ k ◦ θ(1)).(xi − yi )
)}

×
{ ∫

R2r
e
( − (τ k ◦ θ(2)).T (x, y, u, v))

r∏

i=1

{χ(u j )χ(v j )}

× e
( − (τ k ◦ θ).D(v, u)) dudv

}
dxdy.

(A.8)

In view of (A.3) we have

‖Sk,w,I(x)1|τ−k◦x |≥10dd10‖L1(G#
0)

� τ−δDw/2.

To prove (A.6) it suffices to show that for a large fixed constant Cr � 1 we
have

‖K
r
k(x)1|τ−k◦x |≤Cr

‖L1(G#
0)

� τ−w.

In view of (A.7), for this is suffices to show that for any (θ(1), θ (2)) ∈ R
d ×R

d ′

we have
∣∣(ϒ(2)w,I(τ

k ◦ θ(2)))2r I rk,w,I(θ(1), θ (2))
∣∣

�
∣∣ϒ(2)w,I(τ

k ◦ θ(2))∣∣2rτ−4w(1 + τ−2δ′w|τ k ◦ θ(1)|)−1/δ. (A.9)

This is similar to the proof in Steps 3 and 4 of Lemma 8.2. Indeed, first we
integrate by parts many times in xi (or in yi ) in the identity (A.8) to see that

∣∣(ϒ(2)w,I(τ
k ◦ θ(2)))2r I rk,w,I(θ(1), θ (2))

∣∣

�
∣∣ϒ(2)w,I(τ

k ◦ θ(2))∣∣2r (1 + τ−2δ′w|τ k ◦ θ(1)|)−D
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for any (θ(1), θ (2)) ∈ R
d×R

d ′
. It remains to prove (A.9) if |τ k◦θ(2)| ≤ 2τ δw+4

and |τ k ◦ θ(1)| ≤ τ 3δ
′w. In this case we can use Proposition 2.4 as in Step

4 in Lemma 8.2 to prove a suitable decay if |τ k ◦ θ | ≥ τ δw−4. Finally, if
|τ k ◦ θ | ≤ τ δw−4 then we may assume that 1 ∈ I, so

∫

Rd

̂
ϒ
(1)
w,I(x)x

β = 0

for any multi-index β = (β1, . . . , βd) ∈ N
d . This is similar to (8.25) and can

be used to show that
∣∣I rk,I(θ)

∣∣ � τ−Dw if |τ k ◦ θ | ≤ τ δw−4. This finishes the
proof of inequality (6.34). ��

A.2. Proof of inequality (6.32)

The space X = G
#
0 endowed with the Lebesgue measure μ

G
#
0

= | · | and the
quasi-metric

q
G
#
0
(x, y) := sup

(l1,l2)∈Yd

(∣∣[x · y−1]l1l2
∣∣1/(l1+l2)

)
, x, y ∈ G

#
0 (A.10)

defines a space of homogeneous type (G#
0,B(G#

0), μG
#
0
, q

G
#
0
). This in turn

allows us to associate a system of dyadic cubes for X in the sense of Christ
[18, Theorem 11].

Following [35, Section 3 and 4, pp. 6721–6726]we can define themartingale
sequenceEk f (x) = E[ f |Fk](x) for k ∈ Z, x ∈ G

#
0, and f ∈ L1

loc(G
#
0), whereFk is the filtration corresponding to the system of Christ’s dyadic cubes, see

[35, formula (27), p. 6721] and [35, Lemma 3.1, p. 6721].
An important ingredient in the proof of inequality (6.32) will be Lépingle’s

inequality [41,45], which asserts that for every 1 < p < ∞ and 2 < ρ < ∞
and every f ∈ L p(G#

0) one has

‖V ρ(Ek f : k ∈ Z)‖L p(G#
0)

�p,ρ ‖ f ‖L p(G#
0)
. (A.11)

We now establish certain variational estimates necessary to prove (6.32). In
a similar way as in (6.31), let us define new kernels on G

#
0 by setting

Wk(x) :=
∫

Rd×Rd′ η0(τ
k ◦ ξ (1))η0(τ k ◦ ξ (2))e(x .ξ )Jk(ξ (1)) dξ,

x ∈ G
#
0, τ > 1.
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Observe that

Wk(x) =
∫

R

τ−kχ(τ−ku)ψk(x − A0(u)) du, x ∈ G
#
0,

where for k ∈ Z and x ∈ G
#
0 we set

ψk(x) :=
{ ∏

(l1,l2)∈Yd
τ−k(l1+l2)

}
ψ(τ−k ◦ x), ψ(x) := η̂0(−x (1))̂η0(−x (2)).

The main result of this subsection is stated below.

Lemma A.1 Let 2 < ρ < ∞ be given. Then for any g ∈ L2(G#
0) one has

‖V ρ(g ∗
G
#
0
Wk : k ∈ Z)‖L2(G#

0)
�ρ,τ ‖g‖L2(G#

0)
. (A.12)

Proof We reduce the matters to Lépingle’s inequality for boundedmartingales
(A.11).

Step 1. Let μ0 := ∫
R
χ(x)dx and define

Tkg(x) := g ∗
G
#
0
Wk(x)− g ∗

G
#
0
(μ0ψk)(x) =: g ∗

G
#
0

Kk(x), x ∈ G
#
0.

Observe that

‖V ρ(g ∗
G
#
0
Wk : k ∈ Z)‖L2(G#

0)
� ‖V ρ(g ∗

G
#
0
ψk : k ∈ Z)‖L2(G#

0)

+
∥∥∥
(∑

k∈Z

|Tkg|2
)1/2∥∥∥

L2(G#
0)
.

(A.13)

As in the Jones–Seeger–Wright paper [35] we can conclude that

‖V ρ(g ∗
G
#
0
ψk : k ∈ Z)‖L2(G#

0)
�ρ,τ ‖g‖L2(G#

0)
. (A.14)

Indeed, let Ek f denote the martingale sequence, as above, and define the
martingale difference operator Dk = Ek − Ek−1 and proceeding as in the
proof of [35, Lemma 3.2, p. 6722] we are able to prove that there is a constant
γ > 0 such that for any f ∈ L2(G#

0) the estimate

‖(Dm f ) ∗
G
#
0
ψM0(k+m)+b − Ek+mDm f ‖L2(G#

0)
� τ−γ |k|‖Dm f ‖L2(G#

0)
,

holds uniformly in k,m ∈ Z, and b ∈ ZM0 ; here M0 ∈ N is fixed but large
constant such that δ = 2−M0 in the construction of Christ’s dyadic cubes, see
[18, Theorem 11]. This estimate and a simple square function argument (see

123



A. D. Ionescu et al.

[35, Section 4, p. 6724]) reduces (A.14) to Lépingle’s inequality (A.11) and
the claim follows.

Step 2. The proof will be completed if we estimate the square function
from (A.13). By Khintchine’s inequality it suffices to show that for every
f ∈ L2(G#

0) one has

∥∥∥
∑

k∈Z

�kTkg
∥∥∥
L2(G#

0)
� ‖g‖L2(G#

0)
,

for any coefficients �k ∈ [−1, 1]. Using the Cotlar–Stein lemma it remains to
prove that

‖K
∗
k ∗

G
#
0

K j‖L1(G#
0)

+ ‖K j ∗
G
#
0

K
∗
k‖L1(G#

0)
� τ−|k− j |, k ≥ j. (A.15)

We prove only the first estimate since the second one is analogous. Note that

|K∗
k ∗

G
#
0

K j (x)| ≤
∫

G
#
0

|K j (y)|
∣∣Kk(x

−1 · y)− Kk(x
−1)

∣∣ dy, (A.16)

since we have
∫

G
#
0
K j (x)dx = 0. Further, using the estimate

|ψk(x · y − z)− ψk(x − z)| � τ−|k− j |{ ∏

(l1,l2)∈Yd
τ−k(l1+l2)

}

× 〈τ− j ◦ y〉D+1〈τ−k ◦ x〉−D/2+1,

which holds uniformly in k ≥ j , |τ−k ◦ z| � 1, and x, y ∈ G
#
0, we obtain

∣∣Kk(x · y)− Kk(x)
∣∣

� τ−|k− j |{ ∏

(l1,l2)∈Yd
τ−k(l1+l2)

}
〈τ− j ◦ y〉D+1〈τ−k ◦ x〉−D/2+1.

Combining this with (A.16) and a simple estimate

|K j (y)| �
{ ∏

(l1,l2)∈Yd
τ− j (l1+l2)

}
〈τ− j ◦ y〉−4D,

we conclude

|K∗
k ∗

G
#
0

K j (x)| � τ−|k− j |{ ∏

(l1,l2)∈Yd
τ−k(l1+l2)

}
〈τ−k ◦ x〉−D/8, x ∈ G

#
0.

This shows (A.15) and the proof of Lemma A.1 is completed. ��
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We now prove inequality (6.32). Note that

∥∥V ρ( f ∗
G
#
0
W̃k,k : k ≥ 0)

∥∥
L2(G#

0)

≤ ∥∥V ρ( f ∗
G
#
0
Wk : k ∈ Z)

∥∥
L2(G#

0)

+
∥∥∥
(∑

k≥0

| f ∗
G
#
0
(W̃k,0 − Wk)|2

)1/2∥∥∥
L2(G#

0)

+
∑

w∈N

∥∥∥
( ∑

k>w

| f ∗
G
#
0
(W̃k,w+1 − W̃k,w)|2

)1/2∥∥∥
L2(G#

0)
.

The ρ-variations are bounded due to Lemma A.1. The first square function is
bounded due to the following pointwise bound

| f ∗
G
#
0
(W̃k,0 − Wk)(x)| � τ−k/2| f | ∗

G
#
0
Ek(x),

where

Ek(h) :=
{ ∏

(l1,l2)∈Yd
2−k(l1+l2)

}
〈2−k ◦ h〉−D, h ∈ G

#
0.

Appealing to Khintchine’s inequality and (6.34) we conclude that the second
square function is bounded by a constant multiple of 2−w/D‖ f ‖L2(G#

0)
, which

completes the proof of (6.32). ��

Appendix B. Proof of Proposition 9.4: shifted maximal function

Using the definition of Jk(ξ), (see (6.4)), and (6.8) we obtain

Wk,w,Q(h) = φk(h)
( ∏

(l1,l2)∈Yd
Qβl1l22

−k(l1+l2)
)

×
∫

R

χ(x )̂η0
(
β(1)

(
2−k ◦ h(1) − A(1)0 (x)

))

× η̂0
(
β(2)(2−k ◦ h(2))

)
dx,

where β = (β(1), β(2)) = (βl1l2) ∈ R
d+d ′

, βl1l2 = 2�δw� if l2 
= 0, βl1l2 =
2�δ′w� if l2 = 0. We define the quasi-norm on qβ : R

Yd → [0,∞) by

qβ(x) = sup
(l1,l2)∈Yd

(βl1l2 |xl1l2 |)1/(l1+l2). (B.1)
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Since qβ(λ ◦ x) = λqβ(x), we have

|Wk,w,Q(h)| �
∫

R

χ(u)
( ∏

(l1,l2)∈Yd
Qβl1l22

−k(l1+l2)
)

×
(
1 + 2−kqβ(h − A0(2

ku))
)−D

du. (B.2)

For Q ∈ Z+, h ∈ HQ , and u ∈ [−2, 2] we define

MQ,w,u f (h) := sup
k∈N, 2k/2≥8Q2w/8

( ∏

(l1,l2)∈Yd
Qβl1l22

−k(l1+l2)
)

×
∑

{y∈HQ :qβ(h·y−1−A0(2ku))<2k}
| f (y)|, (B.3)

and notice that, as a consequence of (B.2),

∣∣ f ∗HQ Wk,w,Q(h)
∣∣ �

∞∑

n=0

2−nD/2
∫ 2

−2
MQ,w,2−nu f (h) du,

for any h ∈ HQ , integer k satisfying 2k/2 ≥ 8Q2w/8, and f ∈ �p(HQ),
uniformly in Q and w. Therefore, for Proposition 9.4 it suffices to prove the
following:

Theorem B.1 For any Q ∈ Z+, w ∈ N, and u ∈ [−2, 2] we have

‖MQ,w,u‖�1(HQ)→�1,∞(HQ)
� (w + 1),

‖MQ,w,u‖�p(HQ)→�p(HQ) �p (w + 1), p ∈ (1,∞]. (B.4)

B.1. Proof of Theorem B.1

We begin with some simple observations related to the quasi-distance qβ and
the associated quasi-balls Bβ,HQ (x, r) defined for any x ∈ G

#
0 and r > 0 by

Bβ(x, r) = {y ∈ G
#
0 : qβ(x · y−1) < r},

Bβ,HQ (x, r) = {y ∈ HQ : qβ(x · y−1) < r} = Bβ(x, r) ∩ HQ .
(B.5)

We record first several simple properties, which follow directly from the defi-
nition (B.1) and the observation that 1 ≤ βl1l2 ≤ βl ′10 for any (l1, l2) ∈ Yd and
l ′1 ∈ {1, . . . , d}.
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Lemma B.2 The following relations holds uniformly for any x, y ∈ G
#
0:

(a) qβ(x) ≥ 0 for every x ∈ G
#
0 and qβ(x) = 0 if and only if x = 0,

(b) qβ(x + y)+ qβ(x · y) � qβ(x)+ qβ(y),
(c) qβ(x−1) � qβ(x),
(d) 1 + qβ(x) � 1 + |βx | � (1 + qβ(x))2d , where βx := (βl1l2xl1l2)l1l2 .

We start with a simple lemma concerning the cardinality of the quasi-balls
Bβ,HQ (x, r).

Lemma B.3 For any x ∈ G
#
0 and r ≥ 2Q2δ

′w we have

|Bβ,HQ (x, r)| �
∏

(l1,l2)∈Yd

rl1+l2

Qβl1l2
.

Proof Observe that for x, y ∈ G
#
0 we have

(x · y−1)(1) = x (1) − y(1), (x · y−1)(2) = x (2) − y(2) + R0(y
(1) − x (1), y(1)).

(B.6)

Therefore

Bβ,HQ (x, r) = {
y(1) ∈ (QZ)d , y(2) ∈ (QZ)d

′ :
βl0|xl0 − yl0| < rl for any l ∈ {1, . . . , d}
and βl1l2 |xl1l2 − yl1l2 + R0(y

(1) − x (1), y(1))l1l2 | < rl1+l2 for any (l1, l2) ∈ Y ′
d

}
.

(B.7)

This desired volume bounds follow. ��
Next, we prove two facts concerning the quasi-norm qβ and shifted balls.

Lemma B.4 There exists a universal constant C0 ≥ 1 such that for any x ∈
HQ, u ∈ [−2, 2], and any k ∈ N satisfying 2k/2 ≥ 2Q2δ

′w, there is z ∈ HQ
such that

{
y ∈ HQ : qβ

(
x · y−1 − A0(2

ku)
)
< 2k

} ⊆ Bβ,HQ (z,C02
k). (B.8)

Proof We choose z ∈ HQ satisfying the inequalities

βl10|zl10 − xl10 + (2ku)l1 | ≤ 2kl1, l1 ∈ {1, . . . , d}, (B.9)

βl1l2 |zl1l2 − xl1l2 + R0(x
(1) − z(1), x (1) − A(1)0 (2

ku))l1l2 |
≤ 2k(l1+l2), (l1, l2) ∈ Y ′

d . (B.10)
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This is indeed possible due to the assumption Q2δ
′w+1 ≤ 2k/2. Using (B.6)

we see that for any y ∈ HQ satisfying qβ
(
x · y−1 − A0(2ku)

)
< 2k we have

βl10|xl10 − yl10 − (2ku)l1 | < 2kl1, l1 ∈ {1, . . . , d}, (B.11)

βl1l2 |xl1l2 − yl1l2 + R0(y
(1) − x (1), y(1))l1l2 | < 2k(l1+l2), (l1, l2) ∈ Y ′

d .

(B.12)

We want to show that y ∈ Bβ,HQ (z,C02k) for some large constant C0. Using
(B.9) and (B.11)

βl10|zl10 − yl10| ≤ 2kl1+1, 1 ≤ l1 ≤ d.

To finish the proof of Lemma B.4 it is enough to show that

βl1l2 |zl1l2 − yl1l2 + R0(y
(1) − z(1), y(1))l1l2 | � 2k(l1+l2), (l1, l2) ∈ Y ′

d .

(B.13)

This follows by combining the bounds (B.9)–(B.12) and the identity

zl1l2 − yl1l2 + R0(y
(1) − z(1), y(1))l1l2 = xl1l2 − yl1l2 + R0(y

(1) − x (1), y(1))l1l2

+ zl1l2 − xl1l2 + R0(x
(1) − z(1), x (1) − A(1)0 (2

ku))l1l2

+ R0
(
x (1) − z(1) − A(1)0 (2

ku)+ A(1)0 (2
ku), y(1) − x (1) + A(1)0 (2

ku)
)
l1l2
.

This completes the proof of the lemma. ��
Lemma B.5 There is a constant C1 ≥ 1 such that for any u ∈ [−2, 2],
x ∈ HQ, and n ∈ Z satisfying 2n/2 ≥ Q2δ

′w+3 there is a sequence of points
{x0, x1, . . . , xw+10} ⊆ HQ, x = xw+10, with the following property: if z ∈
HQ, k ≤ n satisfies 2k/2 ≥ Q2δ

′w+1, and

{
y ∈ HQ : qβ

(
z · y−1 − A0(2

ku)
)
< 2k

} ⊆ Bβ,HQ (x, 2
n), (B.14)

then

Bβ,HQ (z, 2
k) ⊆

⋃

j∈{0,...,w+10}
Bβ,HQ (x j ,C12

n). (B.15)

Proof For any s ≥ 0 we define a point xs = x̃ ∈ HQ such that the inequalities

βl0 |̃xl0 − xl0 − (2n−su)l | ≤ 2nl,

βl1l2

∣∣̃xl1l2 − xl1l2 + R0
(
x (1) − x̃ (1), x (1) + A(1)0 (2

n−su)
)
l1l2

+ (2n−su)l1+l2
∣∣ ≤ 2n(l1+l2),

(B.16)
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for any l ∈ {1, . . . , d} and any (l1, l2) ∈ Y ′
d . Such a choice is possible because

of the assumption 2n/2 ≥ Q2δ
′w+4, and, in fact, we can set xs = x if s ≥

10 + w.
Given these points {x0, . . . , xw+10}, assume now that k = n − s, s ≥ 0, is

an integer and z ∈ HQ is a point such that the inclusion (B.14) holds. With
x̃ = xs we would like to show that Bβ,HQ (z, 2

k) ⊆ Bβ,HQ (̃x,C12n). In view
of Lemma B.2 it suffices to show that

qβ(z · x̃−1) � 2n. (B.17)

To see this we fix a point y ∈ HQ such that qβ
(
z · y−1 − A0(2ku)

) ≤ 2k , and
notice that z · x̃−1 = E + I , where qβ(E) � 2n and I = A0(2ku) · y · x̃−1

satisfies

I (1) = y(1) − x̃ (1) + A(1)0 (2
ku),

I (2) = y(2) − x̃ (2) + R0(̃x
(1), x̃ (1))+ R0(A

(1)
0 (2

ku), y(1))

− R0(A
(1)
0 (2

ku)+ y(1), x̃ (1)).

We would like to see that qβ(I ) � 2n . Since y ∈ Bβ,HQ (x, 2
n) we have

βl0|xl0 − yl0| < 2nl l ∈ {1, . . . , d}
βl1l2 |xl1l2 − yl1l2 + R0(y

(1) − x (1), y(1))l1l2 | < 2n(l1+l2) (l1, l2) ∈ Y ′
d ,

see (B.7). Combining these inequalities with (B.16) and recalling that βl0 �
βl1l2 ≥ 1 it follows easily that qβ(I ) � 2n , as desired. ��

Now we are ready to complete the proof of Theorem B.1.

Proof of Theorem B.1 Step 1.We define an auxiliary maximal function

M̃Q,w f (h) := sup
h∈Bβ,HQ (g,2

k), 2k/2≥Q2w/8
|Bβ,HQ (g, 2

k)|−1

×
∑

y∈Bβ,HQ (g,2
k)

| f (y)|, h ∈ HQ,

where the supremum is taken over all the quasi-balls Bβ,HQ (g, 2
k) that contain

h. For any f ∈ �1(HQ) and λ > 0 we define the set

Oλ := {h ∈ HQ : M̃Q,w f (h) ≥ λ}. (B.18)
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By a standard Vitali covering argument (using also Lemma B.2 (b)) we can
select a maximal finite family of disjoint balls B j

β,HQ
= Bβ,HQ (g j , 2k j ),

2k j/2 ≥ Q2w/8, j ∈ J (λ, f ), such that

|B j
β,HQ

|−1
∑

y∈B j
β,HQ

| f (y)| ≥ λ for any j ∈ J (λ, f ),

⋃

j∈J (λ, f )

B j
β,HQ

⊆ Oλ ⊆
⋃

j∈J (λ, f )

B̃ j
β,HQ

,

(B.19)

where B̃ j
β,HQ

= B j
β,HQ

(g j ,C22k j ) is a fixed multiple of the quasi-ball B j
β,HQ

for a suitable constant C2 ≥ 1. In particular,

|Oλ| �
∑

j∈J (λ, f )

|B̃ j
β,HQ

| �
∑

j∈J (λ, f )

|B j
β,HQ

| � ‖ f ‖�1(HQ)
/λ, (B.20)

so the operator M̃Q,w is a bounded operator from �1(HQ) to �1,∞(HQ), uni-
formly in Q and w.

Step 2. To complete the proof of the theorem it suffices to show that there
is a constant C3 ≥ 1 sufficiently large such that

|{h ∈ HQ : MQ,w,u f (h) ≥ C3λ}| � (1 + w)|{h ∈ HQ : M̃Q,w f (h) ≥ λ}|,
(B.21)

for every λ > 0. Using the definition (B.3), we see that if MQ,w,u f (z) ≥ C3λ

then there is an integer k satisfying 2k/2 ≥ 8Q2w/8 such that

( ∏

(l1,l2)∈Yd
Qβl1l22

−k(l1+l2)
) ∑

{y∈HQ : qβ(z·y−1−A0(2ku))<2k}
| f (y)| ≥ C3λ.

(B.22)

Using Lemma B.4 we know that there is z̃ ∈ HQ such that

{
y ∈ HQ : qβ(z · y−1 − A0(2

ku)) < 2k
} ⊆ Bβ,HQ (̃z,C02

k). (B.23)

Using Lemma B.3 and (B.22), and assuming that C3 is sufficiently large it
follows that

|Bβ,HQ (̃z, 2
k+a)|−1

∑

y∈Bβ,HQ (̃z,2
k+a)

| f (y)| ≥ 2λ, (B.24)
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where a is the smallest integer with the property that 2a ≥ C0. Therefore
Bβ,HQ (̃z, 2

k+a) ⊆ Oλ (see the definition (B.18)), so the ball Bβ,HQ (̃z, 2
k+a)

intersects one of the selected balls B j
β,HQ

for some j ∈ J (λ, f ). Therefore

Bβ,HQ (̃z, 2
k+a) ⊆ B̃ j

β,HQ
⊆ Bβ,HQ (g j , 2

k j+b) for some j ∈ J (λ, f ),

(B.25)

where b ∈ N is a universal constant such that C2 ≤ 2b and k + a ≤ k j + b.
On the other hand, we use Lemma B.5 (with n = k j + b and x = g j ),

starting from the inclusion (B.23), and (B.15), so

z ∈
⋃

i∈{0,...,w+10}
Bβ,HQ (g

i
j ,C12

k j+b),

for suitable points gij ∈ HQ (that do not depend on k). Consequently we get

{z ∈ HQ : MQ,w,u f (z) ≥ C3λ} ⊆
⋃

j∈J (λ, f )

⋃

i∈{0,...,w+10}
Bβ,HQ (g

i
j ,C12

k j+b),

The desired estimate (B.21) follows using also (B.20), which completes the
proof of the theorem. ��

References

1. Austin, T.: A proof of Walsh’s convergence theorem using couplings. Int. Math. Res. Not.
IMRN 15, 6661–6674 (2015)

2. Austin, T.: On the norm convergence of non-conventional ergodic averages. Ergod. Theory
Dyn. Syst. 30, 321–338 (2010)

3. Bellow, A.: Measure theory Oberwolfach 1981. In: Kölzow, D., Maharam-Stone, D. (eds.)
Proceedings of the Conference Held at Oberwolfach, June 21–27, 1981. Lecture Notes in
Mathematics, vol. 945, pp. 429–431. Springer, Berlin Heidelberg (1982) . Section: Two
problems submitted by A. Bellow

4. Bergelson, V.: Weakly mixing PET. Ergod. Theory Dyn Syst. 7(3), 337–349 (1987)
5. Bergelson, V.: Ergodic Ramsey Theory—an update. In: Pollicott, M., Schmidt, K. (eds.)

Ergodic Theory of Z
d -Actions. LondonMath. Soc. Lecture Note Series, vol. 228, pp. 1–61

(1996)
6. Bergelson, V.: Combinatorial and diophantine applications of ergodic theory (with appen-

dices by A. Leibman and by A. Quas and M. Wierdl). In: Hasselblatt, B., Katok, A. (eds.)
Handbook of Dynamical Systems, vol. 1B, pp. 745–841. Elsevier, Amsterdam (2006)

7. Bergelson, V., Leibman, A.: Polynomial extensions of van der Waerden’s and Szemerédi’s
theorems. J. Am. Math. Soc. 9, 725–753 (1996)

8. Bergelson, V., Leibman, A.: A nilpotent Roth theorem. Invent. Math. 147, 429–470 (2002)
9. Birch, B.J.: Forms in many variables. Proc. R. Soc. Lond. A 265, 245–263 (1962)
10. Birkhoff, G.: Proof of the ergodic theorem. Proc. Natl. Acad. Sci. U.S.A. 17(12), 656–660

(1931)

123



A. D. Ionescu et al.

11. Bourgain, J.: On the maximal ergodic theorem for certain subsets of the integers. Isr. J.
Math. 61, 39–72 (1988)

12. Bourgain, J.: On the pointwise ergodic theorem on L p for arithmetic sets. Isr. J. Math. 61,
73–84 (1988)

13. Bourgain, J.: Pointwise ergodic theorems for arithmetic sets,with an appendix by the author,
H. Furstenberg, Y. Katznelson and D.S. Ornstein. Inst. Hautes Études Sci. Publ. Math. 69,
5–45 (1989)

14. Bourgain, J.: Double recurrence and almost sure convergence. J. Reine Angew. Math. 404,
140–161 (1990)

15. Buczolich, Z., Mauldin, R.D.: Divergent square averages. Ann. Math. 171(3), 1479–1530
(2010)

16. Calderón, A.: Ergodic theory and translation invariant operators. Proc. Natl. Acad. Sci.
U.S.A. 59, 349–353 (1968)

17. Christ, M.: Hilbert transforms along curves: I. Nilpotent groups. Ann. Math. 122(3), 575–
596 (1985)

18. Christ, M.: A T (b) theorem with remarks on analytic capacity and the Cauchy integral.
Colloq. Math. 60(61), 601–628 (1990)

19. Christ, M., Nagel, A., Stein, E.M., Wainger, S.: Singular and maximal Radon transforms:
analysis and geometry. Ann. Math. (2) 150(2), 489–577 (1999)

20. Chu, Q., Frantzikinakis, N., Host, B.: Ergodic averages of commuting transformations with
distinct degree polynomial iterates. Proc. Lond. Math. Soc. 102(5), 801–842 (2011)

21. Davenport, H.: Cubic forms in thirty-two variables. Philos. Trans. R. Soc. Lond. A 251,
193–232 (1959)

22. Frantzikinakis, N.: Some open problems on multiple ergodic averages. Bull. Hell. Math.
Soc. 60, 41–90 (2016)

23. Frantzikinakis, N., Kra, B.: Polynomial averages converge to the product of integrals. Isr.
J. Math. 148, 267–276 (2005)

24. Furstenberg, H.: Ergodic behavior of diagonal measures and a theorem of Szemeredi on
arithmetic progressions. J. Anal. Math. 31, 204–256 (1977)

25. Furstenberg, H.: Problems session. In: Conference on Ergodic Theory and Applications.
University of New Hampshire, Durham (1982)

26. Furstenberg, H.: Nonconventional ergodic averages. In: The legacy of John von Neumann
(Hempstead, NY, 1988), Proceedings of a Symposium in Pure Mathematics, vol. 50, pp.
43–56. American Mathematical Society, Providence (1990)

27. Furstenberg, H., Weiss, B.: A mean ergodic theorem for 1
N

∑N
n=1 f (T nx)g(T n2 x). In:

Convergence in Ergodic Theory and Probability (Columbus, OH, 1993), Ohio State Univ.
Math. Res. Inst. Publ., vol. 5, pp. 193–227. de Gruyter, Berlin (1996)

28. Host, B., Kra, B.: Non-conventional ergodic averages and nilmanifolds. Ann. Math. 161,
397–488 (2005)

29. Host, B., Kra, B.: Convergence of polynomial ergodic averages. Isr. J. Math. 149, 1–19
(2005)

30. Hu, Y.-Q.: Polynomial maps and polynomial sequences in groups. Available at
arXiv:2105.08000

31. Hu, Y.-Q.: Waring’s Problem For Locally Nilpotent Groups: The Case of Discrete Heisen-
berg Groups. Available at arXiv:2011.06683

32. Ionescu, A., Magyar, Á., Stein, E.M., Wainger, S.: Discrete Radon transforms and appli-
cations to ergodic theory. Acta Math. 198, 231–298 (2007)

33. Ionescu, A., Magyar, Á., Wainger, S.: Averages along polynomial sequences in discrete
nilpotent Lie groups: singular Radon transforms. In: Advances in Analysis: The Legacy of
Elias M. Stein. Princeton Mathematical Series 50, , pp. 146–188. Princeton Univ. Press,
Princeton (2014)

123

http://arxiv.org/abs/2105.08000
http://arxiv.org/abs/2011.06683


Polynomial averages and pointwise ergodic theorems

34. Ionescu, A.D., Wainger, S.: L p boundedness of discrete singular Radon transforms. J. Am.
Math. Soc. 19(2), 357–383 (2005)

35. Jones, R.L., Seeger, A., Wright, J.: Strong variational and jump inequalities in harmonic
analysis. Trans. Am. Math. Soc. 360, 6711–6742 (2008)

36. Kra, B.: Private communication (2021)
37. Krause, B.: Discrete analogoues in harmonic analysis: maximally monomially modulated

singular integrals related to Carleson’s theorem. Available at arXiv:1803.09431
38. Krause, B., Mirek, M., Tao, T.: Pointwise ergodic theorems for non-conventional bilinear

polynomial averages. Ann. Math. 195(3), 997–1109 (2022)
39. LaVictoire, P.: Universally L1-bad arithmetic sequences. J. Anal. Math. 113(1), 241–263

(2011)
40. Leibman, A.: Convergence of multiple ergodic averages along polynomials of several vari-

ables. Isr. J. Math. 146, 303–315 (2005)
41. Lépingle, D.: La variation d’ordre p des semi-martingales. Z. Wahrscheinlichkeitstheorie

Verw. Gebiete 36, 295–316 (1976)
42. Magyar, Á., Stein, E.M., Wainger, S.: Discrete analogues in harmonic analysis: spherical

averages. Ann. Math. 155, 189–208 (2002)
43. Magyar, Á., Stein, E.M., Wainger, S.: Maximal operators associated to discrete subgroups

of nilpotent Lie groups. J. Anal. Math. 101, 257–312 (2007)
44. Mirek, M., Stein, E.M., Trojan, B.: �p(Zd )-estimates for discrete operators of Radon type:

variational estimates. Invent. Math. 209(3), 665–748 (2017)
45. Mirek, M., Stein, E.M., Zorin-Kranich, P.: Jump inequalities via real interpolation. Math.

Ann. 376(1–2), 797–819 (2020)
46. Mirek, M., Stein, E.M., Zorin-Kranich, P.: A bootstrapping approach to jump inequalities

and their applications. Anal. PDE 13(2), 527–558 (2020)
47. Mirek, M., Stein, E.M., Zorin-Kranich, P.: Jump inequalities for translation-invariant oper-

ators of Radon type on Z
d . Adv. Math. 365, 57 (2020)

48. Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis. Vol. II. Cambridge
Studies in Advanced Mathematics, vol. 138. Cambridge University Press, Cambridge
(2013)

49. Pierce, L.: Discrete fractional Radon transforms and quadratic forms. Duke Math. J. 161,
69–106 (2012)

50. Pierce, L., Yung, P.-L.: A polynomial Carleson operator along the paraboloid. Rev. Mat.
Iberoam. 35, 339–422 (2019)

51. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory
Integrals. With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43.
Monographs in Harmonic Analysis, III, Princeton University Press, Princeton (1993)

52. Stein, E.M., Wainger, S.: Discrete analogues in harmonic analysis, I: �2 estimates for
singular Radon transforms. Am. J. Math. 121, 1291–1336 (1999)

53. Szemerédi, E.: On sets of integers containing no k elements in arithmetic progression. Acta
Arith. 27, 199–245 (1975)

54. Tao, T.: Norm convergence of multiple ergodic averages for commuting transformations.
Ergod. Theory Dyn. Syst. 28, 657–688 (2008)

55. von Neumann, J.: Proof of the quasi-ergodic hypothesis. Proc. Natl. Acad. Sci. U.S.A. 18,
70–82 (1932)

56. Walsh, M.: Norm convergence of nilpotent ergodic averages. Ann. Math. 175(3), 1667–
1688 (2012)

57. Ziegler, T.: Universal characteristic factors and Furstenberg averages. J. Am. Math. Soc.
20, 53–97 (2007)

123

http://arxiv.org/abs/1803.09431


A. D. Ionescu et al.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript
versionof this article is solely governedby the termsof suchpublishing agreement and applicable
law.

123


	Polynomial averages and pointwise ergodic theorems on nilpotent groups
	Abstract
	1 Introduction
	2 Notation and preliminaries
	3 Ergodic theorems: Proof of Theorem 1.2
	4 Maximal and variational estimates on mathbbG0: ell2 theory
	5 Minor arcs contributions: Proofs of Lemmas 4.2 and 4.4
	6 Major arcs contributions: Proof of Lemma 4.5
	7 Transition estimates I: Proof of Lemma 4.3
	8 Transition estimates II: Proof of Lemma 4.6
	9 Maximal estimates on ellp(mathbbG0): Proof of Theorem 1.3
	Acknowledgements
	Appendix A. Proof of Proposition 6.5
	Appendix B. Proof of Proposition 9.4: shifted maximal function
	References




