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Abstract. In [4] Katznelson and Weiss establish that all sufficiently large distances can always be attained
between pairs of points from any given measurable subset of R2 of positive upper (Banach) density. A second

proof of this result, as well as a stronger “pinned variant”, was given by Bourgain in [2] using Fourier analytic
methods. In [9] the second author adapted Bourgain’s Fourier analytic approach to established a result
analogous to that of Katznelson and Weiss for subsets Zd provided d ≥ 5. We present a new direct proof of

this discrete distance set result and generalize this to arbitrary trees. Using appropriate discrete spherical
maximal function theorems we ultimately establish the natural “pinned variants” of these results.

1. Introduction

1.1. Distance sets and existing results. A result of Katznelson and Weiss [4] states that all sufficiently
large distances can always be attained between pairs of points from any given measurable subset of R2 of
positive upper (Banach) density. Specifically, if A is a measurable subset of R2 of positive upper Banach
density, they established the existence of a threshold λ0 = λ0(A) such that the distance set

dist(A) = {|x− y| : x, y ∈ A} ⊇ [λ0,∞).

Recall that the upper Banach density δ∗(A) of a set A ⊆ Rd is defined by

δ∗(A) := lim
N→∞

sup
t∈Rd

|A ∩ (t+QN )|
|QN |

,

where | · | denotes Lebesgue measure on Rd and QN denotes the cube [−N/2, N/2]d.

This result was later established using Fourier analytic methods by Bourgain in [2]. Bourgain also
established a “pinned variant”, namely that for any λ1 ≥ λ0 there is a fixed x ∈ A such that

dist(A;x) = {|x− y| : y ∈ A} ⊇ [λ0, λ1].

In [9] the second author adapted Bourgain’s Fourier analytic approach to established a result analogous to
that of Katznelson and Weiss for subsets Zd, namely that if A ⊆ Zd of positive upper Banach density and
d ≥ 5, then there exists λ0 = λ0(A) and an integer q, depending on d and the density of A, such that

dist2(A) = {|x− y|2 : x, y ∈ A} ⊇ [λ0,∞) ∩ q2Z.

Recall that the upper Banach density δ∗(A) of a set A ⊆ Zd is analogously defined by

δ∗(A) := lim
N→∞

sup
t∈Zd

|A ∩ (t+QN )|
|QN |

,

where | · | now denotes counting measure on Zd and QN the discrete cube [−N/2, N/2]d ∩ Zd.

Note that since A could fall entirely into a fixed congruence class of some integer 1 ≤ r ≤ δ∗(A)−1/d the
value of q in the result above must be divisible by the least common multiple of all integers 1 ≤ r ≤ δ∗(A)−1/d.
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1.2. New results. We will denote, for any integer λ, the discrete sphere of radius
√
λ by Sλ, namely

Sλ := {x ∈ Rd : |x|2 = λ} ∩ Zd.

In this paper we will present a new direct proof of the following discrete distance set result from [9].

Theorem 1 (Unpinned Distances). Let A ⊆ Zd with d ≥ 5 and δ∗(A) > 0.

There exist q = q(δ∗(A)) and λ0 = λ0(A) such that for any integer λ ≥ λ0 there exist a pair of points

{x, x+ x1} ⊆ A with |x1|2 = q2λ.

In fact, for any ε > 0 there exist q = q(ε, d) and Λ0 = Λ0(A, ε) such that for any integer λ ≥ Λ0 one has

|A ∩ (x+ qSλ)|
|Sλ|

> δ∗(A)− ε for some x ∈ A.

It is impossible to take λ0 above to depend only on δ∗(A) since for any positive integers q and M the set
(QqM ∩ Zd) + (4dqMZ)d will have density (4d)−d but never contain pairs {x, x+ x1} with |x1| = qdM .

By considering sets A of the form
⋃
s∈{1,...,q}d As with each set As a “random” subset of the congruence

class s+ (qZ)d one can further easily see that the second conclusion above is best possible or “ε-optimal”.

The first main new result of this paper is the following “pinned variant” of Theorem 1 above, in other
words a discrete analogue of Bourgain’s pinned distances theorem in [2].

Theorem 2 (Pinned Distances). Let ε > 0 and A ⊆ Zd with d ≥ 5.

There exist q = q(ε, d) and Λ0 = Λ0(A, ε) such that for any Λ1 ≥ Λ0 there exists a fixed x ∈ A such that

|A ∩ (x+ qSλ)|
|Sλ|

> δ∗(A)− ε for all integers Λ0 ≤ λ ≤ Λ1.

Our approach to Theorems 1 and 2 allows us to establish generalizations to arbitrary finite trees.

Definition 1 (Trees and Down-Labeled Trees). A tree Γ = Γ(V,E) is a connected acyclic graph. It is easy
to verify that the vertex set V and edge set E of any given finite tree Γ = Γ(V,E) must satisfy |E| = |V | − 1
and that there exists an enumeration of V = {v0, v1, . . . , vn} so that each edge ej from E = {e1, . . . , en} takes
the form ej = {vi, vj} for some unique 0 ≤ i < j. We shall refer to a tree Γ on n+ 1 vertices as down-labeled
if its vertex set {v0, v1, . . . , vn} has been enumerated as described above and use, for each 1 ≤ j ≤ n, the
convenient notation iΓ(j) to denote the unique 0 ≤ i < j for which {vi, vj} ∈ E.

Figure 1. A tree

The following result gives the aforementioned generalizations of Theorem 1 to arbitrary finite trees.
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Theorem 3 (Unpinned Trees). Let Γ be a down-labeled tree on n+ 1 vertices.

If A ⊆ Zd with d ≥ 5 and δ∗(A) > 0, then there exist q = q(δ∗(A)) and Λ0 = Λ0(A,n) such that for any
integers λ1, . . . , λn ≥ Λ0 there exists

{x+ x0, x+ x1, . . . , x+ xn} ⊆ A with x0 = 0 and |xj − xiΓ(j)|2 = q2λj for all 1 ≤ j ≤ n.

In fact, for any ε > 0 there exist q = q(ε, d) and Λ0 = Λ0(A,n, ε) such that for any integers λ1, . . . , λn ≥ Λ0∣∣{{x1, . . . , xn} ⊆ A− x : xj − xiΓ(j) ∈ qSλj for 1 ≤ j ≤ n
}∣∣

|Sλ1
| · · · |Sλn |

> δ∗(A)n − ε

for some x ∈ A, with the understanding that x0 = 0.

We remark that no result of this type can possibly hold with a threshold Λ0 independent of n and that a
quantitatively weaker (and non-optimal) version of Theorem 3, in which the parameter q also depended on
n, was previously established by Bulinski in [3] using methods from Ergodic theory. Related results on the
embedding of specific distance graphs in subsets of Rd of positive density have recently been obtained by the
authors in [8], for subsets of Rd of measure zero but large Hausdorff dimension by Bennett, Iosevich, and
Taylor in [1], and in the setting of finite field geometries by Iosevich and Parshall in [6].

Our main result, which we stress does not follow from the arguments presented in [3], is the following
“pinned variant” of Theorem 3 which generalizes Theorem 2 above.

Theorem 4 (Pinned Trees). Let Γ be a down-labeled tree on n+ 1 vertices, ε > 0, and A ⊆ Zd with d ≥ 5.

There exist q = q(ε, d) and Λ0 = Λ0(A,n, ε) such that for any Λ1 ≥ Λ0 there exists a fixed x ∈ A such that∣∣{{x1, . . . , xn} ⊆ A− x : xj − xiΓ(j) ∈ qSλj for 1 ≤ j ≤ n
}∣∣

|Sλ1
| · · · |Sλn |

> δ∗(A)n − ε

for any choice of integers λ1, . . . , λn that satisfy Λ0 ≤ λ1, . . . , λn ≤ Λ1, with the understanding that x0 = 0.

1.3. Outline of paper.

In Section 2 we state analogues of Theorems 1-4 for uniformly distributed subsets of Zd and reduce their
proofs to that of analogous results for uniformly distributed compact subsets of Zd.

In Section 3 we complete the proofs of Theorems 1 and 3 by proving the analogous result for uniformly
distributed compact subsets of Zd, namely Proposition 1. To do this we introduce a norm which measures the
uniformity of distribution within residue classes modulo q with respect to a scale L. We then prove that this
norm controls the frequency with which certain distances appear in compact subset of Zd, this is analogous
to the so-called von-Neumann type inequalities in additive combinatorics. We ultimately demonstrate that
this control on the frequency with which certain distances appear allows us to actually control the frequency
with which trees with certain prescribed edge lengths appear in compact subset of Zd.

In Sections 4 and 5 we complete the proofs of Theorems 2 and 4 by proving the analogous result for
uniformly distributed compact subsets of Zd, namely Proposition 2. In Section 4 we reduce matters to
the Discrete Spherical Maximal Function Theorem of Magyar, Stein and Wainger [10] and a closely related
“mollified variant” thereof, namely Proposition 5, whose statement and proof we presented in Section 5.

2. Reduction to Uniformly Distributed Compact Subsets of Zd

2.1. Distances and Trees in Uniformly Distributed Subsets of Zd.

Definition 2 (Definition of qη and η-uniform distribution). For any η > 0 we define

qη := lcm{1 ≤ q ≤ Cη−2}
with C > 0 a (sufficiently) large absolute constant and A ⊆ Zd to be η-uniformly distributed (modulo qη) if
its relative upper Banach density on any residue class modulo qη never exceeds (1 + η4) times its density on
Zd, namely if for all s ∈ {1, . . . , qη}d one has

δ∗(A | s+ (qηZ)d) ≤ (1 + η4) δ∗(A).
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Theorems 1 and 3 are immediate consequences, via an easy density increment argument which we sketch
in Section 2.2 below, of the following analogous result for uniformly distributed sets.

Theorem 5 (Theorems 1 and 3 for Uniformly Distributed Sets).

Let ε > 0 and A ⊆ Zd with d ≥ 5 be η-uniformly distributed for some η > 0.

(i) If 0 < η � ε2, then there exists Λ0 = Λ0(A, η) such that for any integer λ ≥ Λ0 one has

|A ∩ (x+ Sλ)|
|Sλ|

> δ∗(A)− ε for some x ∈ A

(ii) If 0 < η � ε2/n, then for any down-labeled tree Γ on n+ 1 vertices there exists Λ0 = Λ0(A,n, η) such
that for any integers λ1, . . . , λn ≥ Λ0 there exist x ∈ A for which∣∣{{x1, . . . , xn} ⊆ A− x : |xj − xiΓ(j)|2 = λj for 1 ≤ j ≤ n

}∣∣
|Sλ1
| · · · |Sλn |

> δ∗(A)n − ε

with the understanding that x0 = 0.

In Theorem 5 above, and throughout the paper, we use the notation α � β to denote that α ≤ cβ for
some suitably small constant c > 0.

Theorems 2 and 4 likewise reduce to the following analogous result for uniformly distributed sets.

Theorem 6 (Theorems 2 and 4 for Uniformly Distributed Sets).

Let ε > 0 and A ⊆ Zd with d ≥ 5 be η-uniformly distributed.

(i) If 0 < η � ε3, then there exist Λ0 = Λ0(A, η) such that for any Λ1 ≥ Λ0 there exists a fixed x ∈ A
such that

|A ∩ (x+ Sλ)|
|Sλ|

> δ∗(A)− ε for all integers Λ0 ≤ λ ≤ Λ1.

(ii) If 0 < η � ε3/n3, then for any down-labeled tree Γ on n+ 1 vertices there exist Λ0 = Λ0(A,n, η) such
that for any Λ1 ≥ Λ0 there exists a fixed x ∈ A such that∣∣{{x1, . . . , xn} ⊆ A− x : |xj − xiΓ(j)|2 = λj for 1 ≤ j ≤ n

}∣∣
|Sλ1
| · · · |Sλn |

> δ∗(A)n − ε

for all integers λ1, . . . , λn that satisfy Λ0 ≤ λ1, . . . , λn ≤ Λ1, with the understanding that x0 = 0.

2.2. Proof that Theorem 5 (i) implies Theorem 1. Let 0 < ε ≤ α ≤ 1 and A ⊆ Zd with d ≥ 5. To
prove Theorem 1 it is enough to prove that if δ∗(A) ≥ α then there exists Λ0 = Λ0(A, ε) and q = q(ε, d) such
that for any integer λ ≥ Λ0 one has

(1)
|A ∩ (x+ qSλ)|

|Sλ|
> α− ε for some x ∈ A.

Let 0 < η � ε2. We prove the above for αk := (1 + η4)−k inductively for all k ≥ 0, using Theorem 5 (i). For
k = 0 the statement is trivial as δ∗(A) = α0 = 1 and hence A contains arbitrarily large cubic grids. Suppose
it holds for α = αk and assume that δ∗(A) ≥ αk+1. If A is η-uniformly distributed then the result holds for
α = αk+1 by Theorem 5. In the opposite case there is an s ∈ Zd so that δ∗(A | s+ (qηZ)d) > (1 + η4)α . Let
φ : s+ (qηZ)d → Zd be defined by φ(m) := q−1

η (m− s) and let A′ := φ(A). Then δ∗(A′) ≥ αk thus (1) holds
for A′ and α = αk, with some q′ = q′(ε, d) and x′ ∈ A′. Note that |A′∩(x′+q′Sλ)| = |A∩((qηx

′+s)+qηq
′Sλ)|

which implies that (1) holds for A, α = αk+1 with q = qηq
′ and x = qηx

′ + s. �

2.3. Compact variants of Theorems 5 and 6. We shall now show that Theorems 5 and 6 can in turn
be directly deduced from analogous compact variants, namely Corollary 1 and Proposition 2 below.

In what follows we shall use 1B to denote the characteristic function of any B ⊆ Zd and define

σλ = |Sλ|−11Sλ .

First we introduce a second related notion of uniformity.
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Definition 3 (Definition of (η, L)-uniform distribution). Let η > 0 and qη � η2L� η6N.

We define A ⊆ QN to be (η, L)-uniformly distributed if

1

|QN |
∑
t∈QN

∣∣∣∣ |A ∩ (t+Qqη,L)|
|Qqη,L|

− |A|
|QN |

∣∣∣∣2 ≤ η2,

where as before QN denotes the discrete cube [−N/2, N/2]d ∩ Zd and now Qq,L := QL ∩ (qZ)d.

Proposition 1 (Average count of distances and trees in uniformly distributed subsets of QN ).

Let Γ be a down-labeled tree on n+ 1 vertices. If η > 0 and A ⊆ QN ⊆ Zd with d ≥ 5 is (η, L)-uniformly
distributed, then for all integers λ1, . . . , λn that satisfy η−4L2 ≤ λ1, . . . , λn ≤ η4N2 one has

1

|QN |
∑
x∈Zd

1A(x)
∑

x1,...,xn∈Zd

n∏
j=1

1A(x− xj)σλj (xj − xiΓ(j)) =

(
|A|
|QN |

)n+1

+ O(n η)

with the understanding that x0 = 0.

In particular, by taking n = 1 above, one obtains that

1

|QN |
∑
x∈Zd

1A(x)
∑
x1∈Zd

1A(x− x1)σλ(x1) =

(
|A|
|QN |

)2

+O(η)

for all integers λ that satisfy η−4L2 ≤ λ ≤ η4N2.

It is easy to see that Proposition 1 immediately implies the following

Corollary 1 (Unpinned distances and trees in uniformly distributed subsets of QN ).

Let ε > 0 and A ⊆ QN ⊆ Zd with d ≥ 5 be (η, L)-uniformly distributed for some η > 0.

(i) If 0 < η � ε2, then for all integers λ that satisfy η−4L2 ≤ λ ≤ η4N2 there exists x ∈ A such that

|A ∩ (x+ Sλ)|
|Sλ|

=
∑
x1∈Zd

1A(x− x1)σλ(x1) >
|A|
|QN |

− ε.

(ii) If 0 < η � ε2/n, then for any down-labeled tree Γ on n + 1 vertices and integers λ1, . . . , λn that
satisfy η−4L2 ≤ λ1, . . . , λn ≤ η4N2 there exist x ∈ A for which∑

x1,...,xn∈Zd

n∏
j=1

1A(x− xj)σλj (xj − xiΓ(j)) >

(
|A|
|QN |

)n
− ε

with the understanding that x0 = 0.

We will ultimately also establish the following “pinned” variant of Corollary 1.

Proposition 2 (Pinned distances and trees in uniformly distributed subsets of QN ).

Let ε > 0 and A ⊆ QN ⊆ Zd with d ≥ 5 be (η, L)-uniformly distributed.

(i) If 0 < η � ε3, then there exists x ∈ A such that

|A ∩ (x+ Sλ)|
|Sλ|

>
|A|
|QN |

− ε

for all integers λ that satisfy η−4L2 ≤ λ ≤ η4N2.

(ii) If 0 < η � ε3/n3, then for any down-labeled tree Γ on n+ 1 vertices there exist x ∈ A such that∑
x1,...,xn∈Zd

n∏
j=1

1A(x− xj)σλj (xj − xiΓ(j)) >

(
|A|
|QN |

)n
− ε

for all integers λ1, . . . , λn satisfying η−4L2 ≤ λ1, . . . , λn ≤ η4N2, with the understanding that x0 = 0.
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2.4. Reduction of Theorems 5 and 6 to Corollary 1 and Proposition 2.

The task of deducing Theorems 5 and 6 from Corollary 1 and Proposition 2 respectively simply amounts
to establishing the following precise relationship between our two notions of uniform distribution.

Lemma 1. Let η > 0. If A ⊆ Zd with δ∗(A) > 0 is η-uniformly distributed, then there exists a positive
integer L = L(A, η) and an arbitrarily large integer N with N ≥ η−4L such that the set (A− t0)∩QN satisfies

|(A− t0) ∩QN |
|QN |

> (1− 2η4) δ∗(A)

for some t0 ∈ Zd and simultaneously has the property that it is (Cη,L)-uniformly distributed for some C > 0.

Proof. Since A ⊆ Zd is η-uniformly distributed we know there exists a positive integer L = L(A, η) such that

(2)
|A ∩ (t+Qqη,L)|

|Qqη,L|
≤ (1 + 2η4) δ∗(A)

for all t ∈ Zd. Since δ∗(A) > 0 we further know that there exist arbitrarily large N ∈ N such that

(3)
|A ∩ (t0 +QN )|

|QN |
≥ (1− 2η4) δ∗(A)

for some t0 ∈ Zd. Combining (2) and (3) we see there exist N ∈ N with N ≥ η−4L and t0 ∈ Zd such that

|A ∩ (t+Qqη,L)|
|Qqη,L|

≤ (1 + 5η4)
|A ∩ (t0 +QN )|

|QN |

for all t ∈ Zd. Setting A′ := (A− t0) ∩QN we further note that since A′ ∩ (t+Qqη,L) is only supported in
QN +QL it follows that

|A′|
|QN |

=
1

|QN |
∑
t∈Zd

|A′ ∩ (t+Qqη,L)|
|Qqη,L|

=
1

|QN |
∑
t∈QN

|A′ ∩ (t+Qqη,L)|
|Qqη,L|

+O(L/N),

from which one can easily deduce that

1

|QN |

∣∣∣{t ∈ QN :
|A′ ∩ (t+Qqη,L)|

|Qqη,L|
≤ (1− η2)

|A′|
|QN |

}∣∣∣ = O(η2)

provided L/N � η2 and hence that A′ is (Cη,L)-uniformly distributed for some C > 0. �

We are thus left with proving Propositions 1 and 2. These proofs are presented in Sections 3 and 4 below.

3. Proof of Proposition 1

3.1. Reduction to a Generalized von-Neumann Inequality.

Let QN denote the discrete cube [−N/2, N/2]d ∩ Zd with d ≥ 5.

Definition 4 (Counting Function for Distances and Trees).

(i) For 1� λ� N2 and functions f0, f1 : QN → [−1, 1] we define

T (f0, f1)(λ) =
1

|QN |
∑
x∈Zd

f0(x)
∑
x1∈Zd

f1(x− x1)σλ(x1).

(ii) While, for any given down-labeled tree Γ on n+ 1 vertices, 1 ≤ m ≤ n, 1� λ1, . . . , λm � N2 and
functions f0, f1, . . . , fm : QN → [−1, 1], we define

TΓ,m(f0, f1, . . . , fm)(λ1, . . . , λm) =
1

|QN |
∑
x∈Zd

f0(x)
∑

x1,...,xm∈Zd

m∏
j=1

fj(x− xj)σλj (xj − xiΓ(j))

with the understanding that x0 = 0.
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Definition 5 (U1(q, L)-norm). For 1� q � L� N and functions f : QN → R we define

(4) ‖f‖U1(q,L) =
( 1

|QN |
∑
t∈Zd
|f ∗ χq,L(t)|2

)1/2

where χq,L denotes the normalized characteristic function of the cubes Qq,L := QL ∩ (qZ)d, namely

(5) χq,L(x) =

{(
q
L

)d
if x ∈ (qZ)d ∩ [−L2 ,

L
2 ]d

0 otherwise
.

In (4) above and in the sequel we denote the convolution f ∗ g of two functions f and g by

f ∗ g(x) :=
∑
y∈Zd

f(x− y)g(y).

We note that the U1(q, L)-norm measures the mean square oscillation of a function with respect to cubic
grids of size L and gap q. It is a simple observation, that we record precisely below, that sets A ⊆ QN that
are (η, L)-uniformly distributed have the property that their “balance functions” have small U1(qη, L)-norm.

Lemma 2. Let η > 0 and 1� L� η4N .

If A ⊆ QN is (η, L)-uniformly distributed, then ‖fA‖U1(qη,L) ≤ 2η where fA = 1A − |A|
|QN |1QN .

In light of Lemma 2 we see that the engine that drives our proof of Proposition 1 for n = 1, and thus our
short proof of Theorem 1, via Part (i) of Corollary 1, is the following “generalized von-Neumann inequality”.

Lemma 3 (Generalized von-Neumann). Let η > 0, and λ, L, and N be integers with η−4L2 ≤ λ ≤ η4N2.

Given any functions f0, f1 : QN → [−1, 1] on QN ⊆ Zd with d ≥ 5 we have

|T (f0, f1)(λ)| ≤ ‖f1‖U1(qη,L) +O(η).

In fact, as we shall see below, this result is also sufficient to establish Proposition 1 for any n and hence
Theorem 3 via Part (ii) of Corollary 1.

Proof of Proposition 1. Let η > 0 and A ⊆ QN ⊆ Zd with d ≥ 5 be (η, L)-uniformly distributed.

We let α = |A|/|QN | and note that Lemma 2 ensures that ‖fA‖U1(qη,L) ≤ 2η where fA = 1A − α1QN .

Case n = 1: In this case Proposition 1 follows immediately from Lemma 3 since

T (1A, 1A)(λ) = αT (1A, 1QN ) + T (1A, fA)(λ) = α2 + ‖fA‖U1(qη,L) +O(η)

for all integers λ that satisfy η−4L2 ≤ λ ≤ η4N2.

Case n ≥ 2: We first fix 2 ≤ m ≤ n and make two key observations.

Since 0 ≤ iΓ(j) < j and fj : QN → [−1, 1] for all 1 ≤ j ≤ m, and no function σλj involves the variable x,
it follows that

(6) |TΓ,m(f0, f1, . . . , fm)(λ1, . . . , λm)| ≤
∑

x1,...,xm−1∈Zd

m−1∏
j=1

σλj (xj − xiΓ(j))
∣∣∣T (τxiΓ(m)

f0, fm)(λm)
∣∣∣

where τxiΓ(m)
f0(x) = f0(x+ xiΓ(m)). We also note that

(7) TΓ,m(f0, f1, . . . , fm−1, 1QN )(λ1, . . . , λm) = TΓ,m−1(f0, f1, . . . , fm−1)(λ1, . . . , λm−1) +O(
√
λm/N).

It then follows from Lemma 3, together with observations (6) and (7) above, that

TΓ,n(1A, . . . , 1A)(λ1, . . . , λn) = αn TΓ,1(1A, 1QN )(λ1)

+

n∑
m=1

αn−m TΓ,m(1A, . . . , 1A, fA)(λ1, . . . , λm) +O(nη2)(8)

= αn+1 +O(n ‖fA‖U1(qη,L)) +O(n η)

for all integers λ1, . . . , λn that satisfy η−4L2 ≤ λ1, . . . , λn ≤ η4N2. �
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In order to prove Proposition 1 we thus left with the final task of establishing Lemma 3.

3.2. Proof of Lemma 3. For any f : QN → [−1, 1] we define its Fourier transform f̂ : Td → C by

f̂(ξ) =
∑
x∈Zd

f(x)e−2πix·ξ

noting that the support assumption on f ensures that the series defining f̂ converges uniformly to a continuous
function on the torus Td, which we will freely identify with the unit cube [0, 1)d in Rd.

It is easy to verify, using Cauchy-Schwarz and basic properties of the Fourier transform, that

|T (f0, f1)(λ)|2 ≤ 1

|QN |

∫
|f̂1(ξ)|2|σ̂λ(ξ)|2 dξ

where

(9) σ̂λ(ξ) :=
1

|Sλ|
∑
x∈Sλ

e−2πix·ξ.

It is clear that whenever |ξ|2 � λ−1 there can be no cancellation in the exponential sum (9), in fact it is
easy to verify that the same is also true whenever ξ is close to a rational point with small denominator. The
following proposition is a precise formulation of the fact that this is the only obstruction to cancellation.

Proposition 3 (Key exponential sum estimates, Proposition 1 in [9]). Let η > 0. If λ ≥ Cη−4 and

ξ /∈
(
q−1
η Z

)d
+ {ξ ∈ Rd : |ξ|2 ≤ η−1λ−1},

then ∣∣∣ 1

|Sλ|
∑
x∈Sλ

e−2πix·ξ
∣∣∣ ≤ η.

We now define ψqη,L indirectly via the identity

ψ̂qη,L(ξ) := χ̂qη,L(ξ)2.

Since the definition of χqη,L in (5) above clearly implies that

(i) 0 ≤ ψ̂qη,L(ξ) ≤ 1 for all ξ ∈ Td and (ii) ψ̂qη,L(`/qη) = 1 for all ` ∈ Zd

it follows that

0 ≤ 1− ψ̂qη,L(ξ) ≤
∑
x∈Zd

ψqη,L(x)
∣∣1− e2πix·(ξ−`/qη)

∣∣� L|ξ − `/qη|

for all ξ ∈ Td and ` ∈ Zd. In particular we note that

(10) |1− ψ̂qη,L(ξ)| � η if |ξ − `/qη| ≤ η−1/2λ−1/2 for some ` ∈ Zd.

while Proposition 3 ensures that

(11) |σ̂λ(ξ)| ≤ η if |ξ − `/qη| > η−1/2λ−1/2 for all ` ∈ Zd.

Hence, if we write

|σ̂λ(ξ)|2 = |σ̂λ(ξ)|2ψ̂qη,L(ξ) + |σ̂λ(ξ)|2(1− ψ̂qη,L(ξ))

use the fact that |σ̂λ(ξ)| ≤ 1 for all ξ ∈ Td and appeal to Plancherel we can deduce that

|T (f0, f1)(λ)|2 ≤ 1

|QN |

∫
|f̂1(ξ)|2 χ̂qη,L(ξ)2 dξ +O(η2) = ‖f1‖2U1(qη,L) +O(η2)

which completes the proof of Lemma 3. �



DISTANCES AND TREES IN DENSE SUBSETS OF Zd 9

4. Proof of Proposition 2

Let QN denote the discrete cube [−N/2, N/2]d ∩ Zd.

Definition 6 (Discrete Spherical Averages). Let f : QN → R be any function.

For any integer λ with 1� λ� N2 we define the discrete spherical average

Aλ(f)(x) := f ∗ σλ(x) =
1

|Sλ|
∑
y∈Sλ

f(x− y).

In Sections 4.1 and 4.2 below we reduce Proposition 2 to the Discrete Spherical Maximal Function
Theorem of Magyar, Stein and Wainger [10], see Proposition 4, and a new “mollified variant” thereof, namely
Proposition 5. The statement and proof of Proposition 5 is presented in Section 5.

4.1. Proof of Part (i) of Proposition 2.

Let ε > 0 and 0 < η � ε3. Suppose, contrary to Part (i) of Proposition 2, that there exists a set
A ⊆ QN ⊆ Zd with d ≥ 5 and α = |A|/|QN | > 0 that it is (η, L)-uniformly distributed, but has the property
that for every x ∈ A there exists an integer λ with η−4L2 ≤ λ ≤ η4N2 such that

Aλ(1A)(x) =
|A ∩ (x+ Sλ)|

|Sλ|
≤ α− ε.

It easily follows that for every x ∈ A′ := A ∩QN−√λ there exists an integer λ with η−4L2 ≤ λ ≤ η4N2

such that

Aλ(fA)(x) ≤ −ε
where fA = 1A − α1QN . Hence for every x ∈ A′ we may conclude that

(12) A∗(fA)(x) ≥ ε

where for any function f : Zd → R, A∗(f) denotes the discrete spherical maximal function defined by

A∗(f)(x) := sup
η−4L2≤λ≤η4N2

|Aλ(f)(x)| .

Proposition 4 (`2-Boundedness of the Discrete Spherical Maximal Function [10]). If d ≥ 5, then∑
x∈Zd

|A∗(f)(x)|2 ≤ C
∑
x∈Zd

|f(x)|2.

Since (12) implies, after an application of Cauchy-Schwarz, the inequality

(13)
α ε

2
≤ 1

|QN |
∑
x∈Zd

1A(x)A∗(fA)(x) ≤ α1/2
( 1

|QN |
∑
x∈Zd

|A∗(fA)(x)|2
)1/2

it follows that

(14)
α1/2 ε

2
≤
( 1

|QN |
∑
x∈Zd

|A∗(fA ∗ χqη,L)(x)|2
)1/2

+
( 1

|QN |
∑
x∈Zd

|A∗(fA − fA ∗ χqη,L)(x)|2
)1/2

.

In light of Proposition 4 it follows that the first sum above satisfies( 1

|QN |
∑
x∈Zd

|A∗(fA ∗ χqη,L)(x)|2
)1/2

≤ C
( 1

|QN |
∑
t∈Zd
|fA ∗ χq,L(t)|2

)1/2

= C ‖fA‖U1(qη,L) ≤ 2Cη.

Estimate (14) will therefore lead to a contradiction, if η is chosen sufficiently small with respect to ε3, and
hence complete the proof of Proposition 2 if we establish that the second sum in (14) satisfies

(15)
( 1

|QN |
∑
x∈Zd

|A∗(fA − fA ∗ χqη,L)(x)|2
)1/2

≤ Cη1/3α1/2

for some absolute constant C > 0. Estimate (15) follows immediately from Proposition 5 in Section 5 below.
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4.2. Proof of Part (ii) of Proposition 2.

Let ε > 0 and 0 < η � ε3/n3. Suppose, contrary to Part (ii) of Proposition 2, that there exists a set
A ⊆ QN ⊆ Zd with d ≥ 5 and α = |A|/|QN | > 0 that it is (η, L)-uniformly distributed, but has the property
that for every x ∈ A there exist integers λ1, . . . , λn satisfying η−4L2 ≤ λ1, . . . , λn ≤ η4N2 such that

(16)
∑

x1,...,xn∈Zd

n∏
j=1

1A(x− xj)σλj (xj − xiΓ(j)) ≤ αn − ε

where x0 = 0. As in (8) we may write the left hand side of (16) for every x ∈ A′ := A ∩Q(1−nη2)N as

αn +

n∑
m=1

αn−m

 ∑
x1,...,xm−1∈Zd

m−1∏
j=1

1A(x− xj)σλj (xj − xiΓ(j))
∑

xm∈Zd
fA(x− xm)σλm(xm − xiΓ(m))


where fA = 1A − α1QN . It therefore follows, from the pigeonhole principle, that for every x ∈ A′ there must
exist 2 ≤ m ≤ n and integers λ1, . . . , λm−1 satisfying η−4L2 ≤ λ1, . . . , λm−1 ≤ η4N2 such that

∑
x1,...,xm−1∈Zd

m−1∏
j=1

σλj (xj − xiΓ(j))
∣∣A∗(fA)(x− xiΓ(m))

∣∣ ≥ ε/n.
Since ∑

x∈Zd

∑
x1,...,xm−1∈Zd

m−1∏
j=1

σλj (xj − xiΓ(j))
∣∣A∗(fA)(x− xiΓ(m))

∣∣2 =
∑
x∈Zd

|A∗(fA)(x)|2

for any choice of integers λ1, . . . , λm−1, it follows by Cauchy-Schwarz that

1

|QN |
∑
x∈Zd

1A(x)
∑

x1,...,xm−1∈Zd

m−1∏
j=1

σλj (xj − xiΓ(j))
∣∣A∗(fA)(x− xiΓ(m))

∣∣ ≤ α1/2
( 1

|QN |
∑
x∈Zd

|A∗(fA)(x)|2
)1/2

.

We can therefore conclude that

(17)
1

|QN |
∑
x∈Zd

|A∗(fA)(x)|2 ≥ α ε2

n2

an estimate which, in light of Proposition 5 below, leads to a contradiction if η is chosen sufficiently small
with respect to ε3/n3 (as described after estimate (13) in Section 4.1 above).

5. A “Mollified” Discrete Spherical Maximal Function Theorem

Let η > 0 and λ, L, and N be integers that satisfy η−4L2 ≤ λ ≤ η4N2. For functions f : QN → [−1, 1] we
now define

Aλ,η(f)(x) := Aλ(f − f ∗ χqη,L)(x) = f ∗ (σλ − σλ ∗ χqη,L)(x)

where σλ =
1

|Sλ|
1Sλ , and introduce the corresponding “mollified” discrete spherical maximal function

(18) A∗,η(f)(x) := sup
η−4L2≤λ≤η4N2

|Aλ,η(f)(x)| .

We note that the convolution operator Aλ,η corresponds to the Fourier multiplier σ̂λ,η := σ̂λ(1− χ̂qη,L).

Proposition 5 (`2-Decay of the “Mollified” Discrete Spherical Maximal Function). If d ≥ 5, then for any
η > 0 we have

(19)
∑
x∈Zd

|A∗,η(f)(x)|2 ≤ Cη2/3
∑
x∈Zd

|f(x)|2.
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Proof of Proposition 5. We follow the proof of Proposition 4 as given in [10]. For each x ∈ Zd we now define

Bλ(f)(x) = Aλ2(f)(x)

noting that when considering Bλ we are now allowing all values of λ for which λ2 is an integer, and that

B∗(f)(x) := sup
η−2L≤λ≤η2N

Bλ(f)(x) = A∗(f)(x) and B∗,η(f)(x) = B∗(f − f ∗ χqη,L)(x).

We now recall the approximation to Bλ given in Section 3 of [10] as a convolution operator Mλ acting on
functions on Zd of the form

Mλ = cd

∞∑
q=1

∑
1≤a≤q
(a,q)=1

e−2πiλa/qMa/q
λ

where for each reduced fraction a/q the corresponding convolution operator Ma/q
λ has Fourier multiplier

m
a/q
λ (ξ) :=

∑
`∈Zk

G(a/q, `)ϕq(ξ − `/q)σ̃λ(ξ − `/q)

with ϕq(ξ) = ϕ(qξ) a standard smooth cut-off function, G(a/q, l) a normalized Gauss sum, and σ̃λ(ξ) = σ̃(λξ)
where σ̃(ξ) is the Fourier transform (on Rd) of the measure on the unit sphere in Rd induced by Lebesgue
measure and normalized to have total mass 1. By Proposition 4.1 in [10] we have∥∥∥ sup

Λ≤λ≤2Λ
|Bλ(f)−Mλ(f)|

∥∥∥
`2(Zd)

≤ CΛ−1/2‖f‖`2(Zd)

provided d ≥ 5. Writing

M∗(f) := sup
η−2L≤λ≤η2N

|Mλ(f)| and M∗,η(f) :=M∗(f − f ∗ χqη,L)

this implies

‖B∗,η(f)−M∗,η(f)‖`2 ≤ C ηL−1/2 ‖f − f ∗ χqη,L‖`2 ≤ C ηL−1/2 ‖f‖`2
thus matters reduce to showing (19) for the operator M∗,η.

For a given reduced fraction a/q we now define the maximal operator

Ma/q
∗ (f) := sup

η−2L≤λ≤η2N

|Ma/q
λ (f)|

where Ma/q
λ is the convolution operator with multiplier m

a/q
λ (ξ). It is proved in Lemma 3.1 of [10] that

(20) ‖Ma/q
∗ (f)‖`2 ≤ Cq−d/2‖f‖`2 .

We will show here that if q ≤ Cη−2/3, then

(21) ‖Ma/q
∗ (f − f ∗ χqη,L)‖`2 ≤ Cη1/3q−d/2‖f‖`2 .

Taking estimates (20) and (21) for granted, one obtains

‖M∗(f − f ∗ χqη,L)‖`2 �
(
η1/3

∑
1≤q≤Cη−2/3

q−d/2+1 +
∑

q≥Cη−2/3

q−d/2+1
)
‖f‖`2 � η1/3‖f‖`2

as required. It thus remains to prove (21).

Writing ϕq(ξ) = ϕ′q(ξ)ϕq(ξ), with a suitable smooth cut-off function ϕ′, we can introduce the decomposition

m
a/q
λ (ξ) =

(∑
`∈Zk

G(a/q, `)ϕ′q(ξ − `/q)
)(∑

`∈Zk
ϕq(ξ − `/q)σ̃(ξ − `/q)

)
=: ga/q(ξ)nqλ(ξ),

since for each ξ at most one term in each of the above sums is non-vanishing. Accordingly

Ma/q
∗ (f − f ∗ χqη,L) = Ga/q N q

∗ (f − f ∗ χqη,L)

where the maximal operator N q
∗ and the convolution operator Ga/q correspond to the multipliers nqλ and

ga/q respectively. Now by the standard Gauss sum estimate we have |ga/q(ξ)| � q−d/2 uniformly in ξ, hence

‖Ga/q N q
∗ (f − f ∗ χqη,L)‖`2 � q−d/2‖N q

∗ (f − f ∗ χqη,L)‖`2 .
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Thus by our choice qη := lcm{1 ≤ q ≤ Cη−2} it remains to show that if q divides qη then

(22) ‖N q
∗ (f − f ∗ χqη,L)‖`2 � η1/3‖f‖`2 .

As before we write N q
∗,η(f) = N q

∗ (f − f ∗ χqη,L), and note that this is a maximal operator with multiplier

nqλ(ξ)(1− χ̂qη,L)(ξ) =
∑
`∈Zd

ϕq(ξ − `/q)(1− χ̂qη,L)(ξ − `/q)σ̃λ(ξ − `/q).

For a fixed q, the multiplier ϕq(1− χ̂qη,L)σ̃λ is supported on the cube [− 1
2q ,

1
2q ]d thus by Corollary 2.1 in [10]

‖N q
∗,η‖`2→`2 ≤ C ‖Ñ q

∗,η‖L2→L2

where Ñ q
∗,η is the maximal operator corresponding to the multipliers ϕq(1− χ̂qη,L)σ̃λ, for η−2L ≤ λ ≤ η2N ,

acting on L2(Rd). By the definition of the function χqη,L

|1− χ̂qη,L(ξ)| � min{1, L|ξ|},
thus from Theorem 6.1 (with j = 1) in [5] we obtain

‖Ñ q
∗,η‖L2→L2 �

(
L

η−2L

)1/6

= η1/3

which establishes (22) and completes the proof. �
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