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Abstract. We prove that any given subset of Zd of upper density δ > 0 will necessarily contain, in an
appropriate sense depending on δ, an isometric copy of all large dilates of any given non-degenerate k-simplex,

provided d ≥ 2k + 3. This provides an improvement in dimension, from d ≥ 2k + 5, on earlier work of

Magyar. We in fact establish a stronger pinned variant. Key to our approach are new `2 estimates for
certain discrete multilinear maximal operators associated to simplices. These operators are generalizations

the discrete spherical maximal operator and may be of independent interest.

1. Introduction

1.1. Simplices in dense subsets of Zd. Recall that the upper Banach density of a set A ⊆ Zd is defined
by

δ∗(A) = lim
N→∞

sup
t∈Zd

|A ∩ (t+Q(N))|
|Q(N)|

,

where | · | denotes counting measure on Zd and Q(N) the discrete cube [−N/2, N/2]d ∩ Zd.
In light of the fact that the square of the distance between any two distinct points in Zd is always a positive

integer we also introduce the convenient notation
√
N := {λ : λ > 0 and λ2 ∈ Z}.

In [14] the second author established the following result on the existence of unpinned two point configura-
tions (distances) in dense subsets of the integer lattice.

Theorem A (Magyar [14]). Let A ⊆ Zd with d ≥ 5. If δ∗(A) > 0, then there exist an integer q = q(δ∗(A))

and λ0 = λ0(A) such that for all λ ∈
√
N with λ ≥ λ0 there exist a pair of points {x, x+y} ⊆ A with |y| = qλ.

The approach taken in [14] was an adaptation of Bourgain’s in [3] to the analogous problem in the continuous
setting of Rd. In [15] the second author adapted this further to establish the following analogous result for non-
degenerate k-simplices. Recall that for any 1 ≤ k ≤ d we refer to a configuration ∆ = {v0 = 0, v1, . . . , vk} ⊆ Zd
as a non-degenerate k-simplex if the vectors v1, . . . , vk are linearly independent.

Theorem B (Magyar [15]). Let k ≥ 2, A ⊆ Zd with d ≥ 2k + 5, and ∆ = {0, v1, . . . , vk} ⊆ Zd be a
non-degenerate k-simplex. If δ∗(A) > 0, there exists an integer q = q(δ∗(A)) and λ0 = λ0(A,∆) such that for

all λ ∈
√
N with λ ≥ λ0 there exist x ∈ A with x+ ∆′ ⊆ A for some ∆′ = {0, y1, . . . , yk} ' λq∆.

In the theorem above, and throughout this article, we say that two configurations λ∆ = {0, λv1, . . . , λvk}
and ∆′ = {0, y1, . . . , yk} in Zd are isometric, and write ∆′ ' λ∆, if |yi − yj | = λ|vi − vj | for all 0 ≤ i, j ≤ k.

In this article we establish an improvement on the dimension condition in Theorem B above from d ≥ 2k+5
to d ≥ 2k + 3 and simultaneously establish a stronger pinned variant, namely

Theorem 1. Let k ≥ 1, A ⊆ Zd with d ≥ 2k+3, and ∆ = {0, v1, . . . , vk} ⊆ Zd be a non-degenerate k-simplex.
If δ∗(A) > 0, there exists an integer q = q(δ∗(A)) and λ0 = λ0(A,∆) such that for any λ1 ≥ λ0 there exists a

fixed x ∈ A such that for all λ ∈ [λ0, λ1] ∩
√
N one has x+ ∆′ ⊆ A for some ∆′ = {0, y1, . . . , yk} ' λq∆.

Remark. The threshold λ0 in the results above cannot be taken to depend on δ∗(A) only. Indeed, for
any positive integers q and M the set (QqM ∩ Zd) + (4dqMZ)d will have density (4d)−d but never contain
pairs {x, x + y} with |y| = qdM . Since A could fall entirely into a fixed congruence class of some integer
1 ≤ r ≤ δ∗(A)−1/d the value of q in the results above must be divisible by the least common multiple of all
integers 1 ≤ r ≤ δ∗(A)−1/d. Indeed if A = (rZ)d with 1 ≤ r ≤ δ−1/d then A will have upper Banach density

at least δ, but the distance between any two points x, y ∈ A will always take the form rλ for some λ ∈
√
N.
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The approach in [15] also established a quantitative Szemerédi-type variant of Theorem B, namely

Theorem B′ (Magyar [15]). Let k ≥ 2, d ≥ 2k + 5, ∆ = {0, v1, . . . , vk} ⊆ Zd be a non-degenerate k-simplex,
and 0 < δ ≤ 1. If N ≥ exp(C∆δ

−Ck), then any A ⊆ {1, . . . , N}d with cardinality |A| ≥ δNd will necessarily

contain a configuration of the form x+ ∆′ with ∆′ = {0, y1, . . . , yk} ' λq∆ for some λ ∈
√
N.

For an alternative approach to the proof of Theorem B′ that is more in line with the arguments in this
paper, see Section 6.1 in [11]. We note that by combining the main result of this current paper, namely
Theorem 2 below and its corollary (Lemma 2 in Section 1), with the arguments and ideas contained in Section
6.1 of [11] one can establish an improvement on the dimension condition above from d ≥ 2k+ 5 to d ≥ 2k+ 3
and also establish the analogous stronger pinned variant. However, for the sake of clarity and brevity we have
chosen not to pursue the details of these arguments or statements here and instead focus on just establishing
Theorem 1.

Let us remark that the dimension bound d ≥ 2k + 3 seems to be best possible even in case A = Zd, i.e.
when counting embeddings of isometric copies of λ∆ in Zd. Indeed, writing T to be the positive definite
integral k × k matrix with entries tij = vi · vj and Y for the k × d integral matrix with rows y1, . . . , yk the
condition ∆′ = {0, y1, . . . , yk} ' λ∆ translates to the matrix equation Y tY = λ2T which has been intesively
in the past [17, 16, 7]. The best known results are due to Kitaoka [7] in dimesnions d = 2k + 3, who also
mentions that this condition is best possible to count solutions to the above equation via analytic means, see
the remark after Theorem B in [7].

For k = 1 and d = 4, it is possible to count embeddings under restrictions of λ (say when λ2 is odd) via the
so-called Kloosterman refinement [9], however for our pinned results in sets of postive density one needs for
the discrete spherical maximal function which in dimension 4 has only been obtained for particular lacunary
sequenses of the radii λ, see [6]. The case k = 1 of Theorem 1 was already established by the first two authors
in [10]. To the best of our knowledge, there have been no previous results addressing pinned simplices in
dense subsets Zd in any dimension when k ≥ 2.

1.2. Discrete multilinear maximal averages associated to simplices. An important result in the
development of discrete harmonic analysis is the `p-boundedness of the so-called discrete spherical maximal
function [13]. For any λ ∈

√
N we let Sλ = {y ∈ Zd : |y| = λ} denote the discrete sphere of radius λ centered

at the origin. For f : Zd → R we then define the discrete spherical averages

Aλf(x) = |Sλ|−1
∑
y∈Sλ

f(x+ y).

noting that if d ≥ 5, then cdλ
d−2 ≤ |Sλ| ≤ Cdλd−2 for some constants 0 < cd < Cd <∞, see [18]. In [13] it

was shown that for p > d/(d− 2) one has the following maximal function estimate∥∥ sup
λ≥1
|Aλf |

∥∥
p
≤ Cp,d ‖f‖p

where ‖f‖p = (
∑
x |f(x)|p)1/p denotes the `p(Zd) norm of the function f .

In [12] the authors gave a new direct proof of `2-boundedness of the discrete spherical maximal function
that neither relies on abstract transference theorems nor on delicate asymptotic for the Fourier transform of
discrete spheres. Implicit in that paper is the fact that `2-boundedness follows as a consequence of stronger
refined “mollified” estimates in which one obtains gains in `2 over suitably large scales when applied to
functions whose Fourier transform is localized away from rational points with small denominators.

Recall that for f ∈ `1(Zd) we define its Fourier transform f̂ : Td → C by f̂(ξ) =
∑
x∈Zd f(x)e−2πix·ξ. For

each η > 0 we define

qη := lcm{1 ≤ q ≤ η−2}
and for any L ≥ qη we let

Ωη,L = {ξ ∈ Td : ξ ∈ [−L−1, L−1]d + (q−1
η Z)d}.

Key to the proof of Theorem 1 is an extension of the approach from [12] to multilinear maximal operators

associated to simplices. Given a non-degenerate k-simplex ∆ = {v0 = 0, v1, . . . , vk} ⊆ Zd and λ ∈
√
N, we let

Sλ∆ := {(y1, . . . , yk) ∈ Zdk : ∆′ = {0, y1, . . . , yk} ' λ∆}.
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For functions f1, . . . , fk : Zd → C we then define the multilinear averaging operator

Aλ∆(f1, . . . , fk)(x) = |Sλ∆|−1
∑

(y1,...,yk)∈Sλ∆

f1(x+ y1) · · · fk(x+ yk)

noting that if d ≥ 2k + 3 and λ ∈
√
N, then

(1) c∆ λdk−k(k+1) ≤ |Sλ∆| ≤ C∆ λdk−k(k+1)

for some constants 0 < c∆ < C∆ <∞, see [7] or [15].

Note that for k = 1 and v1 = (1, 0, . . . , 0) we have that Sλ∆ = Sλ and hence Aλ∆(f) = Aλ(f).

The `p mapping properties of the maximal operators corresponding to these averages were considered in
[2] and [4]. Here we establish the following particular `2-estimates, the first non-trivial estimates of any type
for such operators in dimensions lower that d = 2k + 5 when k ≥ 2. The stronger refined `2 estimate (3), in
addition to implying (2), plays a crucial role in our proof of Theorem 1.

Theorem 2. If k ≥ 1, d ≥ 2k + 3, and ∆ = {0, v1, . . . , vk} ⊆ Zd be a non-degenerate k-simplex, then

(2)
∥∥ sup
λ≥1
|Aλ∆(f1, . . . , fk)|

∥∥
2
≤ Cd,∆‖f1‖2 · · · ‖fk‖2.

In fact, for any η > 0, and L ≥ q4
η, we have

(3)
∥∥∥ sup
λ≥η−2L

|Aλ∆(f1, . . . , fk)|
∥∥∥

2
≤ Cd,∆

η

log η−1
‖f1‖2 · · · ‖fk‖2

whenever supp f̂j ⊆ Ωcη,L for some 1 ≤ j ≤ k, where Ωcη,L denotes the complement of Ωη,L.

Estimate (3) in the case k = 1 was originally established in joint work with Magyar [10] via an adaptation
of the transference methods from [13].

2. Proof of Theorem 1

2.1. Reduction to uniform distributed sets. In light of the observation made after Theorem 1 above
regarding the sensitivity of this problem to the local structure of A, it is natural to first consider the case
when A is, in a suitable sense, well distributed in small congruence classes. In fact, this approach ultimately
leads directly to a proof of Theorem 1.

Following [10] we define A ⊆ Zd to be η-uniformly distributed (modulo qη) if, for some η > 0, its relative
upper Banach density on any residue class modulo qη never exceeds (1 + η4) times its density on Zd, namely if

δ∗(A | s+ (qηZ)d) ≤ (1 + η4) δ∗(A)

for all s ∈ {1, . . . , qη}d. A straightforward density increment argument allows one to deduce Theorem 1 from
the following analogue for η-uniformly distributed subsets of Zd.

Proposition 1. Let ε > 0, 0 < η � ε2 and k ≥ 1.

If A ⊆ Zd with d ≥ 2k + 3 is η-uniformly distributed, and ∆ = {0, v1, . . . , vk} ⊆ Zd is a non-degenerate
k-simplex, then there exist λ0 = λ0(A,∆, η) such that for any λ1 ≥ λ0 there exists a fixed x ∈ A such that

Aλ∆(1A, . . . , 1A)(x) > δ∗(A)k − ε

for all λ ∈ [λ0, λ1] ∩
√
N, noting that

Aλ∆(1A, . . . , 1A)(x) = |Sλ∆|−1 |{(y1, . . . , yk) ∈ Zdk : x+ ∆′ ⊆ A with ∆′ = {0, y1, . . . , yk} ' λ∆}|.

In Proposition 1 above, and throughout this article, we use the notation α� β to denote that α ≤ cβ for
some suitably small constant c > 0.

Proposition 1 in fact implies the following stronger optimal formulation of Theorem 1.

Corollary 1. Let k ≥ 1, A ⊆ Zd with d ≥ 2k + 3, and ∆ = {0, v1, . . . , vk} ⊆ Zd be a non-degenerate
k-simplex. For any ε > 0, there exists an integer q = q(ε, d) and λ0(A,∆, ε) such that for any λ1 ≥ λ0 there
exists a fixed x such that

(4) |Sλ∆|−1 |{(y1, . . . , yk) ∈ (qZ)dk : x+ ∆′ ⊆ A with ∆′ = {0, y1, . . . , yk} ' λq∆}| > δ∗(A)k − ε

for all λ ∈ [λ0, λ1] ∩
√
N.
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Remark. By considering sets A of the form
⋃
s∈{1,...,q}d As with each set As a “random” subset of the

congruence class s+ (qZ)d one can further easily see that conclusion (4) above is in general best possible.

Proof that Proposition 1 implies Corollary 1. Let 0 < ε ≤ δ ≤ 1 and A ⊆ Zd with d ≥ 2k + 3. To prove
Corollary 1 it is enough to prove that if δ∗(A) ≥ δ then there exists λ0 = λ0(A,∆, ε) and q = q(ε, d) such

that for any λ1 ≥ λ0 there exists a fixed x ∈ A such that (4) holds for all λ ∈
√
N with λ0 ≤ λ ≤ λ1.

Let 0 < η � ε2. We prove the above for δm := (1+η4)−m inductively for all m ≥ 0, using Proposition 1. For
m = 0 the statement is trivial as δ∗(A) = δ0 = 1 and hence A contains arbitrarily large cubic grids. Suppose
it holds for δ = δm and assume that δ∗(A) ≥ δm+1. If A is η-uniformly distributed then the result holds for
δ = δm+1 by Proposition 1. In the opposite case there is an s ∈ Zd so that δ∗(A | s+ (qηZ)d) > (1 + η4) δ .
Let φ : s + (qηZ)d → Zd be defined by φ(x) := q−1

η (x − s) and let A′ := φ(A). Then δ∗(A′) ≥ δm thus (4)
holds for A′ and δ = δm, with some q′ = q′(ε, d) and x′ ∈ A′. Note that

|{(y1, . . . , yk) ∈ (q′Z)dk : x′ + ∆′ ⊆ A′ with ∆′ = {0, y1, . . . , yk} ' q′λ∆}|

= |{(y1, . . . , yk) ∈ (qηq
′Z)dk : qηx

′ + ∆′ ⊆ A′ with ∆′ = {0, y1, . . . , yk} ' qηq′λ∆}|

which implies that (4) holds for A, δ = δm+1 with q = qηq
′ and x = qηx

′ + s. �

2.2. Proof of Proposition 1. Before proving proving Proposition 1 we need two preparatory lemmas.

We refer to a subset Q ⊆ Zd as a cube of sidelength `(Q) = N if

Q = t0 +QN

for some t0 ∈ Zd, where as usual QN = [−N/2, N/2]d.

Definition (U1
q,L(Q)-norm). For any cube Q ⊆ Zd, integers 1� q � L� `(Q), and functions f : Q→ R

we define

(5) ‖f‖U1
q,L(Q) =

( 1

|Q|
∑
t∈Zd
|f ∗ χq,L(t)|2

)1/2

where χq,L denotes the normalized characteristic function of the cubes Qq,L := QL ∩ (qZ)d, namely

(6) χq,L(x) =

{(
q
L

)d
if x ∈ (qZ)d ∩ [−L2 ,

L
2 ]d

0 otherwise
.

In (5) above and in the sequel we denote the convolution f ∗ g of two functions f and g by

f ∗ g(x) :=
∑
y∈Zd

f(x− y)g(y).

We note that the U1
q,L(Q)-norm measures the mean square oscillation of a function with respect to cubic

grids of size L and gap q. The first key ingredient in our proof of Proposition 1 is the simple, yet significant,
observation from [10] that subsets of Zd with positive upper Banach density that are η-uniformly distributed
are also, in a precise sense, uniformly distributed at certain scales.

Lemma 1 (Consequence of Lemmas 1 and 2 in [10]). Let η > 0 and A ⊆ Zd be η-uniformly distributed with
δ := δ∗(A) > 0. There exists a positive integer L = L(A, η) and cubes Q ⊆ Zd of arbitrarily large sidelength
`(Q) with `(Q) ≥ η−4L such that

(7) |A ∩Q| ≥ (δ −O(η))|Q|

and

(8) ‖(1A − δ)1Q‖U1
qη,L

(Q) = O(η).

The second key ingredient in our proof of Proposition 1 is the following maximal variant of a so-called
generalized von-Neumann-type inequality, which follows in a straightforward manner from Theorem 2.
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Lemma 2 (Corollary of Theorem 2). Let k ≥ 1, d ≥ 2k + 3, and ∆ = {0, v1, . . . , vk} ⊆ Zd be a non-
degenerate k-simplex. For any η > 0, positive integer L, cube Q ⊆ Zd with sidelength N ≥ η−6L, and
functions f1, . . . , fk : Q→ [−1, 1] we have

1

|Q|
∑
x∈Zd

sup
η−3L≤λ≤η3N

∣∣Aλ∆(f1, . . . , fk)(x)
∣∣ ≤ Cd,∆ ( min

1≤j≤k
‖fj‖U1

qη,L
(Q) +O(η)

)
.

Proof. By Cauchy-Schwarz, it suffices to prove the stronger estimate(
1

|Q|
∑
x∈Zd

sup
η−3L≤λ≤η3N

∣∣Aλ∆(f1, . . . , fk)(x)
∣∣2)1/2

≤ Cd,∆
(

min
1≤j≤k

‖fj‖U1
qη,L

(Q) +O(η)
)
.

This follows from Theorem 2 by symmetry and sublinearity after decomposing fk = fk,1 + fk,2 + fk,3 with

fk,1 = fk ∗ χqη,L
where fk,2 and fk,3 satisfy

f̂k,2 = f̂k 1Ωη,η−1L
(1− χ̂qη,L) and f̂k,3 = f̂k 1Ωc

η,η−1L
(1− χ̂qη,L).

Indeed, estimate (2) implies that(
1

|Q|
∑
x∈Zd

sup
λ≥1

∣∣Aλ∆(f1, . . . , fk−1, g)(x)
∣∣2)1/2

≤ Cd,∆
(

1

|Q|
∑
x∈Zd

|g(x)|2
)1/2

for any g : Zd → C. Note that if g = fk,1 then(
1

|Q|
∑
x∈Zd

|fk,1(x)|2
)1/2

= ‖fk‖U1
qη,L

(Q).

In light of the fact that

χ̂qη,L(ξ) =
qdη
Ld

∑
x∈[−L2 ,

L
2 )d, qη|x

e−2πix·ξ

it is easy to see that χ̂q,L(`/q) = 1 for all ` ∈ Zd and that there exists some absolute constant C > 0 such that

(9) 0 ≤ 1− χ̂qη,L(ξ) ≤ C L |ξ − `/qη|

for all ξ ∈ Td and ` ∈ Zd, and hence that 1 − χ̂qη,L(ξ) = O(η) for all ξ ∈ Ωη,η−1L. It thus follows, by
Plancherel, that (

1

|Q|
∑
x∈Zd

|fk,2(x)|2
)1/2

= O(η).

Finally, since supp f̂k,3 ⊆ Ωcη,η−1L, it follows from estimate (3) that(
1

|Q|
∑
x∈Zd

sup
η−3L≤λ≤η3N

∣∣Aλ(f1, . . . , fk−1, fk,3)(x)
∣∣2)1/2

≤ Cd,∆ η. �

Proof of Proposition 1. Let 0 < ε ≤ δ ≤ 1 and 0 < η � ε2.

Suppose there exists a set A ⊆ Zd with d ≥ 2k + 3 with δ = δ∗(A) > 0 that is η-uniformly distributed but
for which the conclusion of Proposition 1 fails, namely that there exists arbitrarily large pairs (λ0, λ1) such
that for every x ∈ A one has

Aλ∆(1A, . . . , 1A)(x) ≤ δk − ε
for some λ ∈ [λ0, λ1] ∩

√
N.

Combining this with Lemma 1 we can conclude that there exists a positive integer L and a cube Q ∈ Zd
with sidelength N sufficiently large so that in addition to the properties (7) and (8) we also have the property
that

Aλ∆(1A∩Q, . . . , 1A∩Q)(x) ≤ δk − ε
for every x ∈ A for some λ ∈ [η−3L, η3N ] ∩

√
N.
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We now let A′ := A ∩Q′, where Q′ denotes the cube of sidelength (1− η3)N with the same center as Q.
It then follows, provided that N was chosen sufficiently large, that

Aλ∆(1Q, δ1Q, . . . , δ1Q)(x) = δk

for every x ∈ A′ and hence that for each such x one has

k−1∑
j=0

Aλ∆(1A∩Q, . . . 1A∩Q︸ ︷︷ ︸
j copies

, (1A − δ)1Q, δ1Q, . . . , δ1Q)(x) ≤ −ε

for some λ ∈ [η−3L, η3N ] ∩
√
N. Consequently, we have that

(10)

k−1∑
j=0

sup
η−3L≤λ≤η3N

∣∣∣∣Aλ(1A∩Q, . . . 1A∩Q︸ ︷︷ ︸
j copies

, (1A − δ)1Q, δ1Q, . . . , δ1Q)(x)

∣∣∣∣ ≥ ε
for every x ∈ A′.

Since η � δ and |A′| ≥ |A∩Q| − η3|Q| it follows from (7) that |A′|/|Q| ≥ δ/2. Combining this observation
with (10) we obtain

(11)

k−1∑
j=0

1

|Q|
∑
x∈Zd

sup
η−3L≤λ≤η3N

∣∣∣∣Aλ(1A∩Q, . . . 1A∩Q︸ ︷︷ ︸
j copies

, (1A − δ)1Q, δ1Q, . . . , δ1Q)(x)

∣∣∣∣ ≥ εδ/2.
However, Lemma 2 and (8) clearly imply that for each 0 ≤ j ≤ k − 1 one has

1

|Q|
∑
x∈Zd

sup
η−3L≤λ≤η3N

∣∣∣∣Aλ(1A∩Q, . . . 1A∩Q︸ ︷︷ ︸
j copies

, (1A − δ)1Q, δ1Q, . . . , δ1Q)(x)

∣∣∣∣ = O(η)

which leads to a contradiction if η is chosen sufficiently small with respect to ε2. �

3. Proof of Theorem 2

Following the approach in [12] we will deduce Theorem 2 from refined estimates for our maximal operators
at a single dyadic scale, namely Proposition 2 below. We first need to introduce some notation closely related
to that in Section 1.2. For any integer j ≥ 0 we let

qj = lcm{1, 2, . . . , 2j}

noting that qj � e2j , and for any non-negative integers j and l that satisfy 2j ≤ l , we let

(12) Ωj,l := {ξ ∈ Td : ξ ∈ [−2j−l, 2j−l]d + (q−1
j Z)d}.

Proposition 2. If k ≥ 1, d ≥ 2k + 3, and ∆ = {0, v1, . . . , vk} ⊆ Zd be a non-degenerate k-simplex, then

(13)
∥∥ sup

2l≤λ≤2l+1

|Aλ∆(f1, . . . , fk)|
∥∥

2
≤ Cd,∆ 2−j/2j−1 ‖f1‖2 · · · ‖fk‖2

whenever supp f̂i ⊆ Ωcj,l for some 1 ≤ i ≤ k, where Ωcj,l denotes the complement of Ωj,l.

It is easy to see that Proposition 2 is equivalent to estimate (3) of Theorem 2. Indeed, note that in proving
(3) one may restrict the sup to η−2L ≤ λ ≤ 2η−2L. Choosing l, j ∈ N such that 2l ≤ η−2L ≤ 2l+1 and
2j ≥ η−2 we have that 2l−j ≤ L and hence Ωj,l ⊆ Ωη,L. Applying Proposition 2 with j and l chosen as above

implies estimate (3) of Theorem 2, while applying estimate (3) of Theorem 2 with L = 2l−j and η = 2−j/2

immediately implies Proposition 2.

We are left with establishing that Proposition 2 implies estimate (2) of Theorem 2. Following the approach
in [12] we start by introducing a smooth sampling function supported on Ωj,l.
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3.1. A smooth sampling function supported on Ωj,l. Let ψ ∈ S(Rd) be a Schwartz function satisfying

1Q(ξ) ≤ ψ̃(ξ) ≤ 12Q(ξ)

where Q = [−1/2, 1/2]d and

ψ̃(ξ) :=

ˆ
Rd
ψ(x)e−2πix·ξdx

denote the Fourier transform of ψ on Rd. For a given q ∈ N and L > q we define ψq,L : Zd → R as

ψq,L(x) =

{(
q
L

)d
ψ
(
m
L

)
if x ∈ (qZ)d

0 otherwise

Writing x = qr + s with r ∈ Zd and s ∈ Zd/qZd, it follows from Poisson summation that

ψ̂q,L(ξ) =
∑
x∈Zd

ψ(x)e−2πix·ξ

is a q−1-periodic function on Td that satisfies

ψ̂q,L(ξ) =
∑
`∈Zd

ψ̃(L(ξ − `/q)).

For a given l ∈ N and 0 ≤ j ≤ Jl := [log2(l)]− 2, we now define the sampling function

(14) Ψl,j = ψqj ,2l−j

and note that supp Ψ̂l,j ⊆ Ωj,l.

Finally we define ∆Ψl,j = Ψl,j+1 −Ψl,j and note the important almost orthogonality property they enjoy.

Lemma 3 (Lemma 1 in [12]). There exists a constant C = CΨ > 0 such that∑
l≥2j

|∆̂Ψl,j(ξ)|2 ≤ C

uniformly in j ∈ N and ξ ∈ Td.

3.2. Proof that Proposition 2 implies estimate (2) of Theorem 2. Let k ≥ 1, d ≥ 2k + 3, and
∆ = {0, v1, . . . , vk} ⊆ Zd be a non-degenerate k-simplex. In [12] the authors gave a direct proof of estimate
(2) of Theorem 2 when k = 1, the `2-boundedness of the discrete spherical maximal function. We may thus,

without loss in generality assume that k ≥ 2, supp f̂k ⊆ Ωcj,l, and that

(15)
∥∥ sup
λ≥1
|Aλ∆̃(f1, . . . , fk−1)|

∥∥
2
≤ Cd,∆̃‖f1‖2 · · · ‖fk−1‖2

where ∆̃ = {0, v1, . . . , vk−1} ⊆ Zd.
Let

(16) Ml(f1, . . . , fk) := sup
2l≤λ≤2l+1

|Aλ∆(f1, . . . , fk)|.

Writing

fk = fk ∗Ψl,0 +

Jl−1∑
j=0

fk ∗∆Ψl,j + (fk − fk ∗Ψl,Jl)

it follows by subadditivity that

(17) Ml(f1, . . . , fk) ≤Ml(f1, . . . , fk ∗Ψl,0) +

Jl−1∑
j=0

Ml(f1, . . . , fk ∗∆Ψl,j) +Ml(f1, . . . , fk − fk ∗Ψl,Jl).

Estimate (2) of Theorem 2 will now follow from a few observations and applications of Proposition 2, in
light of the fact that

sup
λ≥1
|Aλ∆(f1, . . . , fk)| = sup

l
Ml(f1, . . . , fk).
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We first observe that the first term on the right in (17) above satisfies

Ml(f1, . . . , fk ∗Ψl,0) ≤ CΨH(fk) sup
λ≥1
|Aλ∆̃(f1, . . . , fk−1)|

uniformly in l, where

H(f)(x) = sup
N>0

1

|QN |

∣∣∣ ∑
y∈QN

f(x− y)
∣∣∣

with Q(N) the discrete cube [−N/2, N/2]d ∩ Zd denotes the discrete Hardy-Littlewood maximal operator,
which trivially satisfies ‖Hf‖∞ ≤ ‖f‖∞ ≤ ‖f‖2 by the nesting of discrete `p spaces. It therefore follows from
the inductive hypothesis (15) that

sup
l
‖Ml(f1, . . . , fk ∗Ψl,0)‖2 ≤ C‖f1‖2 · · · ‖fk‖2.

For the middle terms in (17) we first note that

sup
l

Jl−1∑
j=0

Ml(f1, . . . , fk ∗∆Ψl,j)�
( ∞∑
l=0

∣∣∣Jl−1∑
j=0

Ml(f1, . . . , fk ∗∆Ψl,j)
∣∣∣2)1/2

.

Taking `2 norms of both sides of the inequality above and applying Minkowski’s inequality, followed by an
application of Proposition 2, gives∥∥∥sup

l

∑
0≤j≤Jl

Ml(f1, . . . , fk ∗∆Ψl,j)
∥∥∥

2
≤
∑
j

(∑
l≥2j

‖Ml(f1, . . . , fk ∗∆Ψl,j)‖22
)1/2

≤ C‖f1‖2 · · · ‖fk−1‖2
∑
j

2−j/2
(∑
l≥2j

‖fk ∗∆Ψl,j‖22
)1/2

≤ C‖f1‖2 · · · ‖fk‖2
where the last inequality above follows from Lemma 3.

One more application of Proposition 2 with j = [log2 l]− 2 to the last term in (17) gives∥∥∥sup
l
Ml(f1, . . . , fk − fk ∗Ψl,Jl)

∥∥∥
2
≤
( ∞∑
l=1

‖Ml(f1, . . . , fk − fk ∗Ψl,Jl)‖22
)1/2

≤ C
( ∞∑
l=1

l−1(log2 l)
−2
)1/2

‖f1‖2 · · · ‖fk‖2

≤ C‖f1‖2 · · · ‖fk‖2. �

4. Proof of Proposition 2

Given any simplex ∆ = {v0 = 0, v1, . . . , vk} ⊆ Rd, we introduce the associated inner product matrix
T = T∆ = (tij)1≤i,j≤k with entries tij := vi · vj , where “·” stands for the dot product in Rd. Note that T is a
positive semi-definite matrix with integer entries and T is positive definite if and only if ∆ is non-degenerate.

It is easy to see that ∆′ ' λ∆, with ∆′ = {y0 = 0, y1, . . . , yk}, if and only if

(18) yi · yj = λ2tij for all 1 ≤ i, j ≤ k.

If we let M ∈ Zd×k be a matrix with column vectors y1, . . . , yk ∈ Zd, then the system of equations above can
be written as the matrix equation

(19) M tM = λ2T,

where M t is the transpose of the matrix M . It therefore follows that

Aλ∆(f1, . . . , fk)(x) = |Sλ∆|−1
∑

y1,...,yk∈Zd
f1(x+ y1) · · · fk(x+ yk)Sλ2T (M)

if we use Sλ2T (M) to denote the indicator function of relation (19).



DISCRETE MULTILINEAR MAXIMAL OPERATORS AND PINNED SIMPLICES 9

Let Ik = [0, 2]k(k+1)/2 denote the space of symmetric k × k matrices with entries in the interval [0, 2].
Using the fact that

tr(XtY ) = tr(Y Xt) =

k∑
i=1

k∑
j=1

xijyij ,

for any k × k matrices X = (xij), Y = (yij), one has

(20) Sλ2T (M) = 2−k
ˆ
Ik

eπi tr[(MtM−λ2T )X] dX

where dX =
∏

1≤i≤j≤k dxij . Moreover, if M tM = λ2T then

tr(T−1M tM) = tr(MT−1M t) = tr(λ2I) = kλ2.

Given l ∈ N write Λ = 2l and ε = 2−2l. We have

(21) Sλ2T (M) = 2−kekελ
2

ˆ
Ik

e−πiλ
2 tr(TX) eπi tr(M(X+iεT−1)Mt)dX.

Let

GX,ε(M) = GX,ε(y1, . . . , yk) = eπi tr(M(X+iεT−1)Mt)

be the Gaussian function, where y1, . . . , yk ∈ Zd are the column vectors of the matrix M , and define the
corresponding multi-linear operator

(22) BX,ε(f1, . . . , fk)(x) :=
∑

y1,...,yk∈Zd
f1(x+ y1) . . . fk(x+ yk)GX,ε(y1, . . . , yk).

It follows that

Aλ(f1, . . . , fk)(x) = 2−kekελ
2

|Sλ∆|−1

ˆ
Ik

e−πiλ
2 tr(TX)BX,ε(f1, . . . , fk)(x) dX.

Thus for the maximal function

Ml(f1, . . . , fk) := sup
2l≤λ≤2l+1

|Aλ∆(f1, . . . , fk)|

we have the pointwise estimate

(23) Ml(f1, . . . , fk)(x) ≤ Cd,∆ Λ−k(d−k−1)

ˆ
Ik

|BX,ε(f1, . . . , fk)(x)| dX,

as ε = Λ−2 = 2−2l and Λ ≤ λ ≤ 2Λ. Finally, by Minkowski’s inequality

(24) ‖Ml(f1, . . . , fk)‖2 ≤ Cd,∆ Λ−k(d−k−1)

ˆ
Ik

‖BX,ε(f1, . . . , fk)(x)‖2 dX.

Taking the Fourier transform of the expression in (22) we obtain B̂X,ε(f1, . . . , fk)(ξ) equals

(25)

ˆ
Tk−1

f̂1(ξ1) · · · f̂k−1(ξk−1)f̂k(ξ − ξ1 − · · · − ξk−1) ĜX,ε(ξ1, . . . , ξk−1, ξ − ξ1 − · · · − ξk−1) dξ1 · · · dξk−1.

Thus by the Cauchy-Schwarz inequality and Plancherel’s indentity, one has

(26) ‖BX,ε(f1, . . . , fk)‖22 ≤ ‖ĜX,ε‖2∞
k∏
i=1

‖fi‖22.

Thus, the `2 × · · · × `2 → `2 boundedness of the dyadic maximal operator Ml(f1, . . . , fk) follows from the
estimate

(27)

ˆ
Ik

‖ĜX,ε‖∞ dX ≤ Cd,∆ Λk(d−k−1)

with Λ = 2l. For the mollified estimate assume that, supp f̂i ⊆ Ωcj,l, i.e. f̂i = 1Ωcj,l
f̂i for some 1 ≤ i ≤ k. By

symmetry of the expression in (22) we may assume without loss of generality that i = 1. In this case in equality
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(25) the function ĜX,ε(ξ1, . . . , ξk−1, ξ − ξ1 − · · · − ξk−1) can be replaced by 1Ωcj,l
(ξ1) ĜX,ε(ξ1, . . . , ξk−1, ξ −

ξ1 − · · · − ξk−1), thus to prove Theorem 2, it is enough to show that for j, l ∈ N with 2j+2 ≤ l, one has

(28)

ˆ
Ik

‖1Ωcj,l
(ξ1) ĜX,ε(ξ1, . . . , ξk)‖∞ dX ≤ Cd,∆ 2−j/2j−1 Λk(d−k−1)

with Λ = 2l.

5. Estimates for theta functions on the Siegel upper half space.

To prove estimates (27) and (28) we will follow the approach given in Section 5 of [15]. For the sake of
completeness we recall below some of the basic notions and constructs. If M = [m1, . . . ,mk] ∈ Zd×k and
X = [ξ1, . . . , ξk] ∈ Rd×k are d × k matrices then one has that tr(M tX ) = m1 · ξ1 + . . . + mk · ξk where ·
denotes the usual dot product. Thus the Fourier transform of a function f(m1, . . . ,mk) = f(M) may written

f̂(X ) = f̂(ξ1, . . . , ξk) =
∑

M∈Zd×k
f(M)e−2πi tr(MtX ).

This implies that

(29) ĜX,ε(X ) =
∑

M∈Zd×k
eπi tr[(M(X+iεT−1)Mt−2MtX ] = θd,k(X + iεT−1,−X , 0)

is the theta-function θd,k : Hk × Rd×k × Rd×k → C defined by

(30) θd,k(Z,X , E) =
∑

M∈Zd×k
eπi tr[(M−E)Z(M−E)t+2MtX−EtX ]

for Z = X + iY ∈ Hk, Hk being the Siegel upper space, see (5.1)-(5.3) in [15].

We partition the range of integration Ik and estimating the theta function separately on each part by
exploiting its transformation properties. This may be viewed as the extension of the classical Farey arcs
decomposition to k > 1. Recall the integral symplectic group

(31) Γk =

{
γ =

(
A B
C D

)
; ABt = BAt, CDt = DCt, ADt −BCt = Ek,

}
which acts on the Siegel upper-half space Hk = {Z = X + iY : X ∈ Mk, Y ∈ Pk} as a group of analytic
automorphisms; The action being defined by: γ〈Z〉 = (AZ +B)(CZ +D)−1 for γ ∈ Γk, Z ∈ Hk, see [15]
and also [7]. Let us recall also the subgroup of integral modular substitutions:

(32) Γk,∞ =

{
γ =

(
A B
0 D

)
; ABt = BAt, ADt = Ek

}
Writing U = At and S = ABt, it is easy to see that D = U−1 and B = SU−1, moreover S is symmetric

and U ∈ GL(k,Z), i.e. det(U) = ±1. The action of such γ ∈ Γk,∞ on Z ∈ Hk takes the form:

(33) γ〈Z〉 = Z[U ] + S

using the notation Z[U ] = U tZU . The general linear group GL(k,Z) acts on the space Pk of positive k × k
matrices, via the action: Y → Y [U ], Y ∈ Pk, and let Rk denote the corresponding so-called Minkowski
domain, see Definition 1 on p12 of [8]. A matrix Y = (yij) ∈ Rk is called reduced. We recall that for a
reduced matrix Y

(34) Y ≈ YD , y11 ≤ y22 ≤ · · · ≤ ykk
where YD = diag(y11, . . . , ykk) denotes the diagonal part of Y , and A ≈ B means that A − ckB > 0,
B − ckA > 0 for some constant ck > 0. For a proof of these facts, see Lemma 2 on p20 in [8]. A fundamental
domain Dk for the action of Γk on Hk, called the Siegel domain, consists of all matrices Z = X + iY ,
(X = (xij)), satisfying

(35) Y ∈ Rk, |xij | ≤ 1/2, |det (CZ +D)| ≥ 1, ∀ γ =

(
A B
C D

)
∈ Γk.

The second rows of the matrices γ ∈ Γk are parameterized by the so-called coprime symmetric pairs of
integral matrices (C,D), which means that CDt is symmetric and the matrices GC and GD with a matrix G
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of order k are both integral only if G is integral, see Lemma 2.1.17 in [1]. It is clear from definition (5.6) that
if γ2 = γγ1 with second rows (C2, D2) and (C1, D1) for some γ ∈ Γk,∞, then (C2, D2) = (UC1, UD1) for some

U ∈ GL(k,Z). On the other hand, if both γ1 and γ2 have the same second row (C,D) then γ2γ
−1
1 ∈ Γk,∞.

This gives the parametrization of the group Γk,∞\Γk by equivalence classes of coprime symmetric pairs (C,D)
via the equivalence relation (C2, D2) ∼ (C1, D1) if (C2, D2) = (UC1, UD1) for some U ∈ GL(k,Z), see also
p.54 in [1]. We will use the notation [γ] = [C,D] ∈ Γk,∞\Γk.

If one defines the domain: Fk = ∪γ∈Γk,∞γDk, then Hk =
⋃

[γ]∈Γk,∞\Γk γ−1Fk is a non-overlapping cover

of the Siegel upper half-plane. Correspondingly, for a given matrix T > 0 of order k, define the Farey arc
dissection of level T , as the cover

(36) Ik =
⋃

[γ]∈Γk,∞\Γk

IT [γ], IT [γ] = {X ∈ Ik : X + iT−1 ∈ γ−1Fk}

We recall the basic estimates (5.14)-(5.16) in [15] whose proofs are based on the transformation property

|θd,k(Z,X , 0)| = |det (CZ +D)|− d2 |θd,k(γ〈Z〉, XAt −Kγ/2, XCt −Nγ/2)|

for some matrices Kγ , Nγ ∈ Zn×k, see Proposition 5.2 in [15]. Namely, if (C,D) is a coprime symmetric pair,
then for Z ∈ IT [C,D] one has

(37) |θd,k(Z,X , 0)| ≤ Cd,k |det (CZ +D)|− d2

uniformly for X ∈Mk(R).

Next we describe the “mollified” estimate (5.16) in [15] in slightly different form. For q ∈ N and τ > 0
define the region

(38) Ωq,τ = {X ∈ Rd×k : |X − P/2q| ≤ τ for some P ∈ Zd×k}.

If [γ] = [C,D] coprime symmetric pair, q := |det(C)| > 0, then for Z ∈ IT [C,D]

(39) |θd,k(Z,X , 0)| . |det (CZ +D)|− d2
(
e−cmin(Y ) + e−c τ

2µ(CtY C)
)

uniformly for X ∈ Ωcq,τ . Here Y = Imγ〈Z〉, min(Y ) = minx∈Zd,x6=0 |Y x ·x| and µ(Y ) = minx∈Rd, |x|=1 |Y x ·x|.
Define, similarly as in (5.20) in [15]

(40) JT [C,D] =

ˆ
IT [C,D]

sup
X
|θd,k(X + iT−1,−X , 0)| dX.

By (37) we have that

(41) JT [C,D] ≤ Cd,k J0
T [C,D],

where

(42) J0
T [C,D] =

ˆ
X∈IT [C,D]

|det(CZ +D)|− d2 dX.

If q := |det(C)| > 0, then for τ > 0 let

(43) JT,τ [C,D] :=

ˆ
IT [C,D]

sup
X

1Ωcτ,q
(X ) |θd,k(X + iT−1,−X , 0)| dX.

By estimate (39) one has

(44) JT,τ [C,D] ≤ Cd,k J1
T [C,D] + J2

T,τ [C,D],

where

(45) J1
T [C,D] =

ˆ
IT [C,D]

|det(CZ +D)|− d2 e−cmin(Y ) dX

(46) J2
T,τ [C,D] =

ˆ
IT [C,D]

|det(CZ +D)|− d2 e−cτ
2 µ(CtY C) dX.

where Y = Imγ〈Z〉 and γ ∈ Γk such that [γ] = [C,D] ∈ Γk,∞\Γ.
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Then by inequalities (5.24)-(5.26) given in Propositions 5.3-5.4 in [15], we have

(47)
∑
St=S

JT [C,D + CS] ≤ Cd,k det(T )
d−k−1

2 |det(C)|− d2 and

(48)
∑
St=S

JT,τ [C,D + CS] ≤ Cd,k det(T )
d−k−1

2

(
|det(C)|−k min(T )−

d−2k
4 + |det(C)|− d2 (τ2µ(T ))−

d−2k
4

)
where the summation is over all symmetric integral matrices S ∈Mk(Z).

Recall that the map [C,D]→ C−1D provides a one-one and onto correspondence between the classes of
coprime symmetric pairs [C,D] ∈ Γk,∞\Γk, with det(C) 6= 0, and symmetric rational matrices R of order k,
and the pairs [C,D+CS] correspond to the matrices R+ S with symmetric S ∈ Zk×k. Let us write Q(1)k×k

for the space of modulo 1 incongruent symmetric rational matrices, where Q(1) = Q/Z, Q being the set of
rational numbers. If R = C−1D, for a coprime symmetric pair [C,D] then will write

(49) JT [R] :=
∑
St=S

JT [C,D + CS],

(50) JT,τ [R] :=
∑
St=S

JT,τ [C,D + CS],

which is well-defined as it only depends on the equivalence class [R] ∈ Q(1)k×k. Finally write d(R) = |det(C)|
for R = C−1D. Then by (30) and (40), we have with ε = Λ−2 that

(51)

ˆ
Ik

sup
X
|θd,k(X+iεT−1,−X , 0)| dX =

∑
[C,D],det(C)6=0

JΛ2T [C,D]+
∑

[C,D],det(C)=0

JΛ2T [C,D] =:
∑

1

+
∑

2

.

An estimate for the second sum is given in Corollary 5.1 in [15], namely it is shown that

(52)
∑

2

≤ Cd,k |Λ2T |(k−1)(d−k)/2 ≤ Cd,kΛ(d−k)(k−1)

where |T | = (
∑
ij t

2
ij)

1/2 is the Euclidean norm of the matrix T . For the first sum we use estimate (47) for

the matrix Λ2T , which implies

(53)
∑

1

=
∑

[R]∈Q(1)k×k

JΛ2T [R] ≤ Cd,k Λk(d−k−1)
∑

[R]∈Q(1)k×k

d(R)−d/2.

Recall the following estimate, proved in Lemma 1.4.9 in [7]; for u ≥ 1 and s > 1 one has

(54) u−s
∑

1≤d(R)≤u

d(R)−k +
∑

d(R)≥u

d(R)−k−s ≤ C(2 +
1

s− 1
)u1−s

where the summation is taken over [R] ∈ Q(1)k×k. In particular
∑
R d(R)−d/2 . 1 in dimensions d > 2k + 2,

thus estimate (27) follows from (29), (51) and estimates (52)-(53).

For the mollified estimate (28), we set τ = 2j−l besides Λ = 2l and ε = 2−2l. Again, we note that if
q = |det(C)| > 0 and if q | qj i.e. if q divides qj then ξ1 ∈ Ωcj,l implies that X ∈ Ωτ,q for X = (ξ1, . . . , ξd), for

the sets Ωj,l and Ωτ,q defined in (12) and (38). Using this observation, we have

(55)

ˆ
Ik

sup
X

1Ωcj,k
(ξ1)|θd,k(X + iεT−1,−X , 0)| dX .

∑
d(R)|qj

JΛ2T,τ [R] +
∑

d(R)-qj

JΛ2T [R] +
∑

2

.

In dimensions d ≥ 2k + 3, using (48) and (54), the first sum on the right side of (55) is crudely estimated by∑
d(R)|qj

JΛ2T,τ [R] . Λk(d−k−1)
∑

1≤d(R)≤qj

(
d(R)−kΛ−

d−2k
2 + d(R)−

d
2 (τΛ)−

d−2k
2

)
(56)

. Λk(d−k−1)
(
qj2
− 3l

2 + 2−
3j
2

)
. Λk(d−k−1)2−

3j
2 .

Indeed, qj = lcm{1 ≤ q ≤ 2j} ≈ e2j ≤ 2l as 2j+2 ≤ l by our assumptions. To estimate the second term on
the right side of (55), we need the following.
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Lemma 4. Let j ∈ N and s > 1. Then

(57)
∑

d(R)-qj

d(R)−k−s ≤ C 2j(1−s) j−1

where the constant C may depend on d, k and s.

Proof. Let

(58) Ψ(s) :=
∑

[R]∈Q(1)k×k

d(R)−k−s =
∑
n≥1

ak(n)n−s,

with ak(n) =
∑
d(R)=n d(R)−k. For two Dirichlet series Ψ(s) =

∑
n≥1 a(n)n−s and Φ(s) =

∑
n≥1 b(n)n−s we

will write Ψ(s) � Φ(s) if |a(n)| ≤ b(n) for all n ≥ 1.

It is proved in [7], see (34) Lemma 1.4.9 there, that

(59) Ψ(s) � ζ(s+ 1)Kζ(s) =:
∑
n≥1

bK(n)n−s,

with K = 2k + k − 3. Clearly the coefficients of the Dirichlet series ζ(s + 1)Kζ(s) are multiplicative i.e.
bK(nm) = bK(n)bK(m) if (n,m) = 1, moreover are easy to show that,

(60) bK(n) =
∑
m|n

dK(m)

m
,

where dK(m) = |{m1, . . . ,mk ∈ N : m1m2 · · ·mK = m}|. Since qj = l.c.m.{1 ≤ q ≤ 2j}, if n - qj the either
there is a prime p > 2j such that p | n or there is a prime p < 2j such that pγp > 2j but pγp | n. Accordingly,
we have the estimate

(61)
∑

d(R)-qj

d(R)−k−s =
∑
n-qj

ak(n)n−s ≤
∑
p>2j

∑
n≥1

bK(pn)p−sn−s +
∑
p<2j

∑
n≥1

bK(pγpn)p−γpsn−s.

Writing n = prm, the first sum on the right side of (61) is estimated by

(62)
∑
p>2j

∑
n≥1

bK(pn)p−sn−s =
∑
p>2j

∞∑
r=1

∑
m≥1,p-m

bK(pr)bK(m)p−rsm−s,

using the fact that bK(prm) = bK(pr)bk(m). By (60), we have

(63) bK(pr) = 1 +

r∑
s=1

dK(ps)

ps
≤ 1 +

∞∑
s=1

(s+ 1)K

2s
. 1,

uniformly in r ≥ 1. Thus, for s > 1,

(64)
∑
p>2j

∞∑
r=1

∑
m≥1,p-m

bK(pr)bK(m)p−rsm−s .
∑
p>2j

p−s . 2j(1−s)j−1,

using the fact that the number of primes 2J ≤ p < 2J+1 is bounded by 2J J−1 for all J ≥ j.
The second term on the right side of (61) is estimated similarly, except that here we use the fact that

pγp > 2j for p < 2j . We have∑
p<2j

∑
n≥1

bK(pγpn)p−γpsn−s =
∑
p<2j

∞∑
r=γp

∑
m≥1,p-m

bK(pr)bK(m)p−rsm−s(65)

.
∑
p<2j

∞∑
r=γp

p−rs .
∑
p<2j

p−γps . 2j(1−s)j−1,

as the number of primes p < 2j is bounded by 2jj−1. Estimate (57) follows immediately from (64)-(65). �

In dimensions d > 2k + 2, Lemma 4 with s = d/2− k ≥ 3/2 implies that

(66)
∑

d(R)-qj

JΛ2T [R] . Λk(n−k−1)d(R)−d/2 . Λk(n−k−1)2−j/2j−1,
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with Λ = 2l. Finally, by (52) (55)-(56) and (66) one obtains, in dimensions d > 2k + 2
(67)ˆ
Ik

sup
X

1Ωcj,k
(ξ1)|θd,k(X+ iεT−1,−X , 0)| dX . Λk(d−k−1)

(
2−j/2j−1 +2−3j/2 +2−3l

)
. Λk(d−k−1)2−j/2j−1.

Estimate (28) follows immediately from (29) and (67).
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[12] N. Lyall, Á. Magyar, A. Newman, P. Woolfitt, The discrete spherical maximal function: A new proof of `2-boundedness,
Proc. Amer. Math. Soc. 149.12 (2021): 5305-5312
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