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Abstract. We present a new direct proof, in fact two, of Bourgain’s theorem on simplices in Rd in which

he established that any subset of Rd of positive upper Banach density necessarily contains an isometric copy
of all sufficiently large dilates of any fixed non-degenerate k-dimensional simplex provided d ≥ k + 1.

1. Introduction

1.1. Background. A result of Katznelson and Weiss [2] states that if A ⊆ R2 has positive upper Banach
density, then its distance set

dist(A) = {|x− x′| : x, x′ ∈ A}
contains all large numbers. Recall that the upper Banach density of a measurable set A ⊆ Rd is defined by

(1) δ∗(A) = lim
N→∞

sup
t∈Rd

|A ∩ (t+QN )|
|QN |

,

where | · | denotes Lebesgue measure on Rd and QN denotes the cube [−N/2, N/2]d.

This result was later reproved using Fourier analytic techniques by Bourgain in [1] where he established
the following more general result for arbitrary non-degenerate k-dimensional simplices.

Theorem 1.1 (Bourgain [1]). Let ∆k ⊆ Rk be a fixed non-degenerate k-dimensional simplex.

If A ⊆ Rd has positive upper Banach density and d ≥ k + 1, then there exists a threshold λ0 = λ0(A,∆k)
such that A contains an isometric copy of λ ·∆k for all λ ≥ λ0.

Recall that a set ∆k = {0, v1, . . . , vk} of k + 1 points in Rk is a non-degenerate k-dimensional simplex if
the vectors v1, . . . , vk are linearly independent and that a configuration ∆′k is an isometric copy of λ ·∆k in
Rd if ∆′k = x+ λ · U(∆k) for some x ∈ Rd and U ∈ SO(d) when d ≥ k + 1.

2. Uniformly Distributed Subsets of Rd and a New Proof of Theorem 1.1 when k = 1

In this section we introduce a precise notion of uniform distribution for subsets of Rd and prove an
(optimal) result, Proposition 2.1 below, on distances in uniformly distributed subsets of [0, 1]d. Proposition
2.1 immediately implies Theorem 1.1 when k = 1 and hence provides a new direct proof of

Theorem 2.1 (Katznelson and Weiss [2]). If A ⊆ Rd has positive upper Banach density and d ≥ 2, then
there exists a threshold λ0 = λ0(A) such that for all λ ≥ λ0 there exist a pair of points

{x, x′} ⊆ A with |x− x′| = λ.

2.1. Uniform Distribution and Distances.

Definition 2.1 ((ε, L)-uniform distribution). Let 0 < L ≤ ε� 1 and QL = [−L/2, L/2]d.

A set A ⊆ [0, 1]d is said to be (ε, L)-uniformly distributed if

(2)

∫
[0,1]d

∣∣∣∣ |A ∩ (t+QL)|
|QL|

− |A|
∣∣∣∣2 dt ≤ ε2.
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Proposition 2.1 (Distances in uniformly distributed sets). Let 0 < λ ≤ ε� 1 and d ≥ 2

If A ⊆ [0, 1]d is (ε, ε4λ)-uniformly distributed with α = |A| > 0, then there exist a pair of points

{x, x′} ⊆ A with |x− x′| = λ.

In fact, ∫∫
1A(x)1A(x− λx1) dσ(x1) dx = α2 +O(ε2/3).

where σ denotes the normalized measure on the sphere {x ∈ Rd : |x| = 1} induced by Lebesgue measure.

Before proving Proposition 2.1 we will first show that it immediately implies Theorem 2.1. To the best of
our knowledge this observation, which gives a direct proof of Theorem 2.1, is new.

2.2. Proof that Proposition 2.1 implies Theorem 2.1. Let ε > 0 and A ⊆ Rd with δ∗(A) > 0.

The following two facts follow immediately from the definition of upper Banach density, see (1):

(i) There exist M0 = M0(A, ε) such that for all M ≥M0 and all t ∈ Rd

|A ∩ (t+QM )|
|QM |

≤ (1 + ε4/3) δ∗(A).

(ii) There exist arbitrarily large N ∈ R such that

|A ∩ (t0 +QN )|
|QN |

≥ (1− ε4/3) δ∗(A)

for some t0 ∈ Rd.
Combining (i) and (ii) above we see that for any λ ≥ ε−4M0, there exist N ≥ ε−4λ and t0 ∈ Rd such that

|A ∩ (t+Qε4λ)|
|Qε4λ|

≤ (1 + ε4)
|A ∩ (t0 +QN )|

|QN |
for all t ∈ Rd. Consequently, Theorem 2.1 reduces, via a rescaling of A ∩ (t0 +QN ) to a subset of [0, 1]d, to
establishing that if 0 < λ ≤ ε� 1 and A ⊆ [0, 1]d is measurable with |A| > 0 and the property that

|A ∩ (t+Qε4λ)|
|Qε4λ|

≤ (1 + ε4) |A|

for all t ∈ Rd, then there exist a pair of points x, x′ ∈ A such that |x− x′| = λ. Now since A ∩ (t+Qε4λ) is
only supported in [−ε4λ, 1 + ε4λ]d it follows that

|A| =
∫
Rd

|A ∩ (t+Qε4λ)|
|Qε4λ|

dt =

∫
[0,1]d

|A ∩ (t+Qε4λ)|
|Qε4λ|

dt+O(ε4|A|),

from which one can easily deduce that∣∣∣{t ∈ [0, 1]d :
|A ∩ (t+Qε4λ)|

|Qε4λ|
≤ (1− ε2) |A|

}∣∣∣ = O(ε2)

and hence that A is (ε, ε4λ)-uniformly distributed. The result therefore follows, provided d ≥ 2. �

2.3. Proof of Proposition 2.1.

Definition 2.2 (Counting Function for Distances). For 0 < λ� 1 and functions

f0, f1 : [0, 1]d → R
with d ≥ 2 we define

T (f0, f1)(λ) =

∫∫
f0(x)f1(x− λx1) dσ(x1) dx.

Definition 2.3 (U1(L)-norm). For 0 < L� 1 and functions f : [0, 1]d → R we define

‖f‖2U1(L) =

∫
[0,1]d

∣∣∣ 1

Ld

∫
t+QL

f(x) dx
∣∣∣2 dt =

∫
[0,1]d

(
1

L2d

∫∫
x,x′∈t+QL

f(x)f(x′) dx′ dx

)
dt

where QL = [−L/2, L/2]d.
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It is an easy, but important, observation that

(3) ‖f‖2U1(L) =

∫∫
f(x)f(x− x1)ψL(x1) dx1 dx+O(L)

where ψL = L−2d 1QL
∗ 1QL

. Note also that if A ⊆ [0, 1]d with α = |A| > 0 and we define

fA := 1A − α1[0,1]d

then

(4)

∫
[0,1]d

∣∣∣ 1

Ld

∫
t+QL

fA(x) dx
∣∣∣2 dt =

∫
[0,1]d

∣∣∣∣ |A ∩ (t+QL)|
|QL|

− |A|
∣∣∣∣2 dt+O(L).

Evidently the U1(L)-norm is measuring the mean-square uniform distribution of A on scale L. Specifically
if A is (ε, L)-uniformly distributed, then ‖fA‖U1(L) ≤ 2ε provided 0 < L� ε.

At the heart of this short proof of Proposition 2.1 is the following “generalized von-Neumann inequality”.

Lemma 2.1 (Generalized von-Neumann for Distances). For any c > 0, 0 < ε, λ� min{1, c−1} and functions

f0, f1 : [0, 1]d → [−1, 1]

with d ≥ 2 we have

|T (f0, f1)(cλ)| ≤
∏
j=0,1

‖fj‖U1(ε4λ) +O(c−1/6ε2/3).

Indeed, if A ⊆ [0, 1]d with d ≥ 2 and α = |A| > 0, then Lemma 2.1 (with c = 1) implies∣∣T (1A, 1A)(λ)− T (α1[0,1]d , α1[0,1]d)(λ)
∣∣ ≤ 3 ‖fA‖U1(ε4λ) +O(ε2/3)

for any 0 < ε, λ� 1. Since T (α1[0,1]d , α1[0,1]d)(λ) = α2 +O(λ) it follows that

T (1A, 1A)(λ) = α2 +O(ε2/3)

provided 0 < λ ≤ ε� 1.

To finish the proof of Proposition 2.1 we are therefore left with the task of proving Lemma 2.1.

Proof of Lemma 2.1. An application of Parseval followed by Cauchy-Schwarz implies that

T (f0, f1)(cλ)2 =
(∫∫

f0(x)f1(x− cλx1) dσ(x1) dx
)2

≤
(∫

Rd

|f̂0(ξ)||f̂1(ξ)||σ̂(cλξ)| dξ
)2

≤
∏
j=0,1

∫
Rd

|f̂j(ξ)|2|σ̂(cλξ)| dξ

where

µ̂(ξ) =

∫
Rd

e−2πix·ξ dµ(x)

denotes the Fourier transform of any complex-valued Borel measure dµ and ĝ(ξ) is the Fourier transform of
the measure dµ = g dx. Combining the basic fact (see for example [3]) that

|σ̂(ξ)| ≤ min{1, C|ξ|−(d−1)/2}

with the simple observation that |1− ψ̂(ξ)| ≤ min{1, C|ξ|} gives

|σ̂(cλξ)| = |σ̂(cλξ)|ψ̂(ε4λξ) + |σ̂(cλξ)|(1− ψ̂(ε4λξ)) ≤ ψ̂(ε4λξ) +O(min{ε4λ|ξ|, (cλ|ξ|)−1/2}).

The result now follows, since ‖fj‖22 ≤ 1,

min{ε4λ|ξ|, (cλ|ξ|)−1/2} ≤ c−1/3ε4/3

and a further application of Parseval (and appeal to (3)) reveals that∫
|f̂j(ξ)|2ψ̂(ε4λξ) dξ =

∫∫
fj(x)fj(x− x1)ψε4λ(x1) dx1 dx = ‖fj‖2U1(ε4λ) +O(ε4λ). �
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3. A New Proof of Theorem 1.1

In light of the reduction argument presented in Section 2.2 it is clear that in order to prove Theorem 1.1 it
would suffice to establish the following result for uniformly distributed subsets of [0, 1]d.

Proposition 3.1 (Simplices in uniformly distributed sets). Let ∆k = {0, v1, . . . , vk} be a fixed non-degenerate
k-dimensional simplex with c∆k

= min1≤j≤k dist(vj , span {{v1, . . . , vk} \ vj}).
Let 0 < λ ≤ ε� min{1, c−1

∆k
} and A ⊆ [0, 1]d with d ≥ k + 1 and α = |A| > 0. If A is (ε, ε4λ)-uniformly

distributed, then A contains an isometric copy of λ ·∆k and in fact

(5)

∫∫
1A(x)1A(x− λ · U(v1)) · · · 1A(x− λ · U(vk)) dµ(U) dx = αk+1 +Ok(c

−1/6
∆k

ε2/3)

where µ denotes the Haar measure on SO(d).

Note that Proposition 2.1 is the special case of Proposition 3.1 with k = 1 and v1 = 1.

3.1. Proof of Proposition 3.1.

Definition 3.1 (Counting Function for Simplices). For any 0 < λ� 1 and functions

f0, f1, . . . , fk : [0, 1]d → R

with d ≥ k + 1 we define

(6) T∆k
(f0, f1, . . . , fk)(λ) =

∫∫
f0(x)f1(x− λ · U(v1)) · · · fk(x− λ · U(vk)) dµ(U) dx.

Proposition 3.1 is an immediate consequence of the following “generalized von-Neumann inequality”.

Lemma 3.1 (Generalized von-Neumann for Simplices). For any 0 < ε, λ� min{1, c−1
∆k
} and functions

f0, f1, . . . , fk : [0, 1]d → [−1, 1]

|T∆k
(f0, f1, . . . , fk)(λ)| ≤ min

j=0,1,...,k
‖fj‖U1(ε4λ) +O(c

−1/6
∆k

ε2/3).

Indeed, if A ⊆ [0, 1]d with d ≥ k + 1 and α = |A| > 0, then Lemma 3.1 implies∣∣T∆k
(1A, . . . , 1A)(λ)− T∆k

(α1[0,1]d , . . . , α1[0,1]d)(λ)
∣∣ ≤ (2k+1 − 1)‖fA‖U1(ε4λ) +Ok(c

−1/6
∆k

ε2/3)

for any 0 < ε, λ� min{1, c−1
∆k
}. Since T∆k

(α1[0,1]d , . . . , α1[0,1]d)(λ) = αk+1 +O(λ) it follows that

T∆k
(1A, . . . , 1A)(λ) = αk+1 +Ok(c

−1/6
∆k

ε2/3)

provided 0 < λ ≤ ε� min{1, c−1
∆k
}.

To finish the proof of Proposition 3.1 we are therefore left with the task of proving Lemma 3.1.

Proof of Lemma 3.1. By symmetry it suffices to show that

(7) |T∆k
(f0, f1, . . . , fk)(λ)| ≤ ‖fk‖U1(ε4λ) +O(c

−1/6
∆k

ε2/3).

As in [1] we start by writing

T∆k
(f0, f1, . . . , fk)(λ) =

∫∫
· · ·
∫
f0(x)f1(x− λx1) · · · fk(x− λxk) dσ(d−k)

x1,...,xk−1
(xk) · · · dσ(d−2)

x1
(x2) dσ(x1) dx

where σ now denotes the normalized measure on the sphere Sd−1(0, |v1|) and σ
(d−j)
x1,...,xj−1 denotes, for each

2 ≤ j ≤ k, the normalized measure on the spheres

(8) Sd−jx1,...,xj−1
= Sd−1(0, |vj |) ∩ Sd−1(x1, |vj − v1|) ∩ · · · ∩ Sd−1(xj−1, |vj − vj−1|)

where Sd−1(x, r) = {x′ ∈ Rd : |x− x′| = r}. Since

|T∆k
(f0, f1, . . . , fk)(λ)| ≤

∫∫
· · ·
∫ ∣∣∣∫ fk(x−λxk) dσ(d−k)

x1,...,xk−1
(xk)

∣∣∣ dσ(d−k+1)
x1,...,xk−2

(xk−1) · · · dσ(d−2)
x1

(x2) dσ(x1) dx
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it follows from an application of Cauchy-Schwarz that

|T∆k
(f0, f1, . . . , fk)(λ)|2 ≤

∫
· · ·
∫∫ ∣∣∣∫ fk(x− λxk) dσ(d−k)

x1,...,xk−1
(xk)

∣∣∣2 dx(9)

dσ(d−k+1)
x1,...,xk−2

(xk−1) · · · dσ(d−2)
x1

(x2) dσ(x1).

An application of Plancherel therefore shows that

|T∆k
(f0, f1, . . . , fk)(λ)|2 ≤

∫
|f̂k(ξ)|2I(λ ξ) dξ

where

(10) I(ξ) =

∫
· · ·
∫ ∣∣ ̂

σ
(d−k)
x1,...,xj−1(ξ)

∣∣2 dσ(d−k+1)
x1,...,xk−2

(xk−1) · · · dσ(d−2)
x1

(x2) dσ(x1).

Estimate (7) will follow if we can show that

(11) I(λξ) = I(λξ)ψ̂(ε4λξ) + I(λξ)(1− ψ̂(ε4λξ)) ≤ ψ̂(ε4λξ) +O(c
−1/3
∆k

ε4/3)

since ‖fk‖2 ≤ 1 and an application of Parseval and appeal to (3) reveals that

(12)

∫
|f̂k(ξ)|2ψ̂(ε4λξ) dξ =

∫∫
fk(x)fk(x− x1)ψε4λ(x1) dx dx1 = ‖fk‖2U1(ε4λ) +O(ε4λ).

To establish (11) we argue as in [1], in particular we use the fact that in addition to being trivially bounded

by 1 the Fourier transform of σ
(d−k)
x1,...,xk−1 also decays for large ξ in certain directions, specifically

(13)
∣∣ ̂
σ

(d−k)
x1,...,xk−1(ξ)

∣∣ ≤ C (r(Sd−kx1,...,xk−1
) · dist(ξ, span{x1, . . . , xk−1})

)−(d−k)/2

where r(Sd−kx1,...,xk−1
) = dist(vk, span{v1, . . . , vk−1}) denotes the radius of the sphere Sd−kx1,...,xk−1

.

This estimate is a consequence of the well-known asymptotic behavior of the Fourier transform of the
measure on the unit sphere Sd−k ⊆ Rd−k+1 induced by Lebesgue measure, see for example [3].

Together with the trivial uniform bound I(ξ) ≤ 1, and an appropriate conical decomposition (depending
on ξ) of the configuration space over which the integral I(ξ) is defined, this gives

(14) I(ξ) ≤ min{1, C(c∆k
|ξ|)−(d−k)/2}.

Combining (14) with the basic bound |1− ψ̂(ξ)| ≤ min{1, C|ξ|} we obtain the uniform bound

|1− ψ̂(ε4λ ξ)|I(λ ξ)� min{(λc∆k
|ξ|)−1/2, ε4λ|ξ|} ≤ c−1/3

∆k
ε4/3

from which (11) follows. �

3.2. A Second Approach to our New Proof of Theorem 1.1. In this final subsection we present an
alternative approach to proving Proposition 3.1, and hence Theorem 1.1, with the slightly worse error bound

Ok(c
−1/12
∆k

ε1/3). Specifically, we establish the following (slightly weaker) generalized von-Neumann inequality
for simplices using only Lemma 2.1, namely the generalized von-Neumann inequality for distances.

Lemma 3.2 (Generalized von-Neumann for Simplices II). For any 0 < λ ≤ ε� min{1, c−1
∆k
} and functions

f0, f1, . . . , fk : [0, 1]d → [−1, 1]

|T∆k
(f0, f1, . . . , fk)(λ)| ≤

√
2π min

j=0,1,...,k
‖fj‖1/2U1(ε4λ) +O(c

−1/12
∆k

ε1/3).

In the proof below we will make use of the following straightforward observations:

(i) If we let ∆k−1 = {0, v1, . . . , vk−1}, then

(15) T∆k
(f0, f1, . . . , fk−1, 1[0,1]d)(λ) = T∆k−1

(f0, f1, . . . , fk−1)(λ) +O(λ).

(ii) If we let ∆′k = {0, v′1, . . . , v′k} with v′j = vk−j − vk for 0 ≤ j ≤ k − 1 and v′k = −vk, then

(16) T∆k
(f0, f1, . . . , fk)(λ) = T∆′k

(fk, fk−1, . . . , f0)(λ).
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Proof of Lemma 3.2. By symmetry it suffices to show that

(17) |T∆k
(f0, f1, . . . , fk)(λ)|2 ≤ 2π ‖fk‖U1(ε4λ) +O(c

−1/6
∆k

ε2/3).

We initially follow the proof of Lemma 3.1, but after (9) we now proceed differently. Instead of applying
Plancherel to the right hand side of

|T∆k
(f0, f1, . . . , fk)(λ)|2 ≤

∫∫
· · ·
∫ ∣∣∣∫ fk(x− λxk) dσ(d−k)

x1,...,xk−1
(xk)

∣∣∣2 dσ(d−k+1)
x1,...,xk−2

(xk−1) · · · dσ(x1) dx.

we now “square out” the right hand side to obtain

(18)

∫∫
· · ·
∫∫∫

fk(x−λxk)fk(x−λxk+1) dσ(d−k)
x1,...,xk−1

(xk+1) dσ(d−k)
x1,...,xk−1

(xk) dσ(d−k+1)
x1,...,xk−2

(xk−1) · · · dσ(x1) dx.

If d = k + 1, then for fixed x1, . . . , xk we can use arc-length to parameterize of the circle Sd−kx1,...,xk−1
, with

θ = 0 and θ = 2π corresponding to the point xk, to write

(19)

∫
fk(x− λxk+1) dσ(d−k)

x1,...,xk−1
(xk+1) =

∫ 2π

0

fk(x− λxk+1(x1, . . . , xk, θ)) dθ.

For any fixed θ ∈ [0, 2π] we then define ∆k+1(θ) = {0, v1, . . . , vk, vk+1(θ)} with vk+1 = vk+1(θ) satisfying
|vk+1| = |vk|, |vk+1 − vj | = |vk − vj | for all 1 ≤ j ≤ k− 1 and use θ to determine the angle between vk+1 and
vk measured from the center of the circle Sd−kx1,...,xk−1

, consequently

|vk+1 − vk| = 2 sin(θ/2) · dist(vk, span{v1, . . . , vk−1}).

It follows that

|T∆k
(f0, f1, . . . , fk)(λ)|2 ≤

∫ 2π

0

T∆k+1(θ)(1[0,1]d , . . . , 1[0,1]d , fk, fk)(λ) dθ +O(λ)

and in light of (15) and (16) that

|T∆k
(f0, f1, . . . , fk)(λ)|2 ≤

∫ 2π

0

T∆′k+1(θ)(fk, fk, 1[0,1]d , . . . , 1[0,1]d)(λ) dθ +O(λ)

=

∫ 2π

0

T∆′1(θ)(fk, fk)(λ) dθ +O(λ)

where

T∆′1(θ)(fk, fk)(λ) = T (fk, fk)(c(θ)λ) :=

∫∫
fk(x)fk(x− c(θ)λx1) dσ(x1) dx

with c(θ) = 2 sin(θ/2) · dist(vk, span{v1, . . . , vk−1}). Lemma 2.1 now implies that

|T∆′1(θ)(fk, fk)(λ)| ≤ ‖fk‖U1(ε4λ) +O((sin(θ/2))−1/6c
−1/6
∆k

ε2/3)

since c(θ) ≥ 2 sin(θ/2) c∆k
. This completes the proof, when d = k + 1, as

∫ 2π

0
(sin(θ/2))−1/6 dθ <∞, and in

fact establishes the result in general, since if d ≥ k + 2, one can define a new non-degenerate simplex

∆d−1 = {0, v1, . . . , vk−1, v
′
k, . . . , v

′
d−2, v

′
d−1}

with v′d−1 = vk and use the fact that

T∆k
(f0, f1, . . . , fk)(λ) = T∆d−1

(f0, . . . , fk−1, 1[0,1]d , . . . , 1[0,1]d , fk)(λ) +O(λ). �
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