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Abstract. In this article we consider conditional two-weight estimates for singular and strongly
singular integral operators. The conditions governing two-weight estimates shall be simultaneously
necessary and sufficient for a quite large class of singular integrals.

1. Introduction

In the sequel we shall assume that K is a distributional kernel that satisfies the estimate

(1) |K(x, y)| ≤ A

|x− y|n+α
,

whenever x 6= y for some α ≥ 0. Moreover, we assume that the operator

(2) Tf(x) =
∫
Rn

K(x, y)f(y) dy , x /∈ supp f,

which is initially defined for function f ∈ S(Rn), extends to a bounded operator on L2(Rn).
We shall assume that a weight ρ is an almost everywhere positive function on Rn and denote by

Lp
ρ(Rn), for 1 ≤ p < ∞, the space of all measurable functions f : Rn → R for which

‖f‖Lp
ρ(Rn) :=

(∫
Rn

|f(x)|pρ(x) dx

)1/p

< ∞.

We denote by Lp,∞
ρ (Rn), for 1 ≤ p < ∞, the space of all measurable functions f : Rn → R for

which

‖f‖Lp,∞
ρ (Rn) := sup

λ>0
λ

(∫
{x:|f(x)|>λ}

ρ(x) dx

)1/p

< ∞.

For convenience we shall often abbreviate Lp
ρ(Rn) and Lp,∞

ρ (Rn) by Lp
ρ and Lp,∞

ρ respectively.
We shall say that an operator is of two-weight strong-type (p, p) or two-weight weak-type (p, p),

for 1 ≤ p < ∞, if it is bounded from Lp
ρ1 to Lp

ρ2 or from Lp
ρ1 to Lp,∞

ρ2 respectively.
In this article we will be concerned with conditional two-weight estimates for operators T defined

by (2) with kernel satisfying (1). In our arguments we use known boundedness properties of
appropriate singular integrals and two-weight criteria for the Hardy transforms. We also establish
necessary conditions for such estimates to hold in the case where α = 0.

For one-weight estimates it is a well known result of Stein [33] that operators given by (2) with
kernels satisfying condition (1) for α = 0 that are bounded on Lp for 1 < p < ∞ will also be
bounded on Lp

ρ(Rn), with ρ(x) = |x|λ and −n < λ < n(p − 1). For related topics when p = 1 see
Hoffman [18]. The results of [33] were later extended by Soria and Weiss [32] to the case of general
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Ap weights and to certain maximal singular integrals. One-weight estimates have been obtained in
the case where α > 0 by Chanillo [3].

For convenience we recall that ρ is an Ap weight for 1 < p < ∞, or more succinctly ρ ∈ Ap, if

sup
B⊂Rn

(
1
|B|

∫
B

ρ(x) dx

)1/p(
1
|B|

∫
B

ρ−p′/p(x) dx

)1/p′

< ∞,

where p′ = p
p−1 and the supremum is taken over all balls in Rn. Passing to the limit in the definition

above we obtain the following characterization of the class A1, namely that ρ ∈ A1 if

sup
B⊂Rn

(
1
|B|

∫
B

ρ(x) dx

)∥∥∥ρ−1
∥∥∥

L∞(B)
< ∞.

Recall also that if ρ ∈ Ap, then ρ−p′/p ∈ Ap′ , where again p′ = p
p−1 .

2. Main Results

2.1. Positive results in the case where α ≥ 0. Our first result establishes a sufficient condition
for our operators T to be of two-weight strong-type (p, p) when 1 < p < ∞.

Theorem 1. Let 1 < p < ∞ and T be an operator defined by (2) with kernel satisfying (1) with
α ≥ 0 that is bounded on Lp(Rn). If v0 and w0 are positive monotonic functions on (0,∞) such
that the weights v(x) = v0(|x|) and w(x) = w0(|x|) satisfy the condition

Bα,d(v, w) := sup
t>0

( ∫
t≤|x|

v(x)(|x|−α + 1)p|x|−npdx

)1/p( ∫
|x|≤t/d

w−p′/p(x) dx

)1/p′

< ∞

if v0 and w0 are increasing or

B′
α,d(v, w) := sup

t>0

( ∫
|x|≤t/d

v(x) dx

)1/p( ∫
t≤|x|

w−p′/p(x)(|x|−α + 1)p′ |x|−np′dx

)1/p′

< ∞

if v0 and w0 are decreasing, for some d > 1, then T is bounded from Lp
w to Lp

v. Moreover

‖Tf‖Lp
v
≤ C1Bα,d(v, w)

[
or B′

α,d(v, w)
]
‖f‖Lp

w
,

where C1 = C1(‖T‖Lp→Lp , A, p, n, α, d).

Remark 1. If w satisfies the doubling condition:∫
|x|≤2t

w(x) dx ≤ c′
∫
|x|≤t

w(x) dx,

then so does w−p′/p, and as a consequence Bα,d(v, w) ≤ Aα(v, w), where

Aα(v, w) := sup
t>0

t−n(t−α + 1)

( ∫
|x|≤t

v(x) dx

)1/p( ∫
|x|≤t

w−p′/p(x) dx

)1/p′

.

We include the proof of this statement as an appendix.

Our second result establishes a sufficient condition for our operators T to be of two-weight weak-
type (p, p) when 1 ≤ p < ∞.
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Theorem 2. Let 1 ≤ p < ∞ and T be an operator defined by (2) with kernel satisfying (1) with
α ≥ 0 that is bounded from Lp(Rn) to Lp,∞(Rn). If v0 and w0 are positive increasing functions on
(0,∞) such that the weights v(x) = v0(|x|) and w(x) = w0(|x|) satisfy the condition

B
(p)
α,d(v, w) := sup

0<t<τ

τ−α + 1
τn

( ∫
t≤|x|≤τ

v(x) dx

)1/p( ∫
|x|≤t/d

w−p′/p(x) dx

)1/p′

< ∞

if 1 < p < ∞, and

B
(1)
α,d(v, w) := sup

0<t<τ

τ−α + 1
τn

( ∫
t≤|x|≤τ

v(x) dx

)∥∥∥w−1
∥∥∥

L∞({|·|<t/d})
< ∞

if p = 1, for some d > 1, then T is bounded from Lp
w to Lp,∞

v . Moreover

‖Tf‖Lp,∞
v

≤ C2B
(p)
α,d(v, w)‖f‖Lp

w
,

where C2 = C2(‖T‖Lp→Lp,∞ , A, p, n, α, d).

2.1.1. Examples. Let 1 < p < ∞ and recall that |x|γ ∈ Ap(Rn) if and only if −n < γ < n(p− 1).
For simplicity we shall restrict our examples to the case where n = 1. It is known (see [8]) that

if

v(x) =

{
|x|p−1 if 0 < |x| ≤ 1
|x|γ if |x| > 1

w(x) =

{
|x|p−1(1− log |x|)p if 0 < |x| ≤ 1
|x|γ if |x| > 1

with 0 < γ < p− 1, then the Hilbert transform is bounded from Lp
w to Lp

v. Furthermore, if

v(x) =

{
|x|p−1(1− log |x|)p if 0 < |x| ≤ 1
|x|γ if |x| > 1

w(x) =

{
|x|p−1(1− log |x|) if 0 < |x| ≤ 1
|x|γ if |x| > 1

with 0 < γ < p − 1, then the Hilbert transform is bounded from Lp
w to Lp,∞

v , but is not bounded
from Lp

w to Lp
v. See [10] page 557.

The following two examples are an immediate consequence of Theorem 1.

Example 1. Suppose that T is an operator defined by (2) with kernel satisfying (1) with α ≥ 0
that is bounded on Lp(R). If we set

v(x) =

{
|x|γ+αp if 0 < |x| ≤ 1
|x|γ if |x| > 1

w(x) = |x|γ if |x| > 0

with 0 < γ < p− 1, then T is bounded from Lp
w to Lp

v.
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Example 2. Suppose that T is an operator defined by (2) with kernel satisfying (1) with α ≥ 0
that is bounded on Lp(R). If we set

v(x) =

{
|x|p−1+αp if 0 < |x| ≤ 1
|x|γ if |x| > 1

w(x) =

{
|x|p−1(1− log |x|)p if 0 < |x| ≤ 1
|x|γ if |x| > 1

with 0 < γ < p− 1, then T is bounded from Lp
w to Lp

v.

The following is an immediate consequence of Theorem 2.

Example 3. Suppose that T is an operator defined by (2) with kernel satisfying (1) with α ≥ 0
that is bounded from Lp(R) to Lp,∞(R). If we set

v(x) =

{
|x|p−1+αp(1− log |x|)p if 0 < |x| ≤ 1
|x|γ if |x| > 1

w(x) =

{
|x|p−1(1− log |x|) if 0 < |x| ≤ 1
|x|γ if |x| > 1

with 0 < γ < p− 1, then T is bounded from Lp
w to Lp,∞

v .

2.1.2. Local Properties in the case where α ≥ 0. Our third and final result in the generality
of α ≥ 0 concerns the local properties of our operator T .

We make the assumption here that our operators T are local; that the boundedness of T on Lp

is equivalent to the following estimate holding uniformly in x0,

(3)
∫
|x−x0|≤1

|Tf(x)|pdx ≤ C0

∫
|x−x0|≤10

|f(x)|pdx.

Theorem 3. Let 1 < p < ∞ and T be an operator defined by (2) with kernel satisfying (1) with
α ≥ 0 that satisfies (3). If v0 and w0 are positive monotonic functions on (0, 10) such that the
weights v(x) = v0(|x|) and w(x) = w0(|x|) satisfy the condition

Bloc
α,d(v, w) := sup

0<t<1

( ∫
t≤|x|≤1

v(x)|x|−(n+α)pdx

)1/p( ∫
|x|≤t/d

w−p′/p(x) dx

)1/p′

< ∞

if v0 and w0 are increasing or

B′ loc
α,d (v, w) := sup

0<t<1

( ∫
|x|≤t/d

v(x) dx

)1/p( ∫
t≤|x|≤1

w−p′/p(x)|x|−(n+α)p′dx

)1/p′

< ∞

if v0 and w0 are decreasing, for some d > 1, then∫
|x−x0|≤1

|Tf(x)|p v(x− x0) dx ≤ C3B
loc
α,d(v, w)

[
or B′ loc

α,d (v, w)
] ∫
|x−x0|≤10

|f(x)|p w(x− x0) dx,

where C3 = C3(C0, A, p, n, α, d) is independent of x0 and f .
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2.2. Positive results in the case where α = 0. The restriction to α = 0 in (1) enables us to
formulate more general statements.

Again our first result establishes a sufficient condition for our operators T to be of two-weight
strong-type (p, p) when 1 < p < ∞. We introduce the following notation,

Bd(v, w) := B0,d(v, w) = sup
t>0

( ∫
t≤|x|

v(x)|x|−npdx

)1/p( ∫
|x|≤t/d

w−p′/p(x) dx

)1/p′

B′
d(v, w) := B′

0,d(v, w) = sup
t>0

( ∫
|x|≤t/d

v(x) dx

)1/p( ∫
t≤|x|

w−p′/p(x)|x|−np′dx

)1/p′

.

Theorem 4. Let 1 < p < ∞, ρ ∈ Ap, and T be an operator defined by (2) with kernel satisfying
(1) with α = 0 that is bounded on Lp

ρ(Rn). If v0 and w0 are positive monotonic functions on (0,∞)
such that the weights v(x) = v0(|x|)ρ(x) and w(x) = w0(|x|)ρ(x) satisfy the condition

Bd(v, w) < ∞

if v0 and w0 are increasing or

B′
d(v, w) < ∞

if v0 and w0 are decreasing, for some d > 1, then T is bounded from Lp
w to Lp

v. Moreover

‖Tf‖Lp
v
≤ C4Bd(v, w)

[
or B′

d(v, w)
]
‖f‖Lp

w
,

where C4 = C4(‖T‖Lp
ρ→Lp

ρ
, A, p, n, d).

Theorem 4 has been already been proven in the case of Calderón-Zygmund singular integrals;
see [8]. The following corollary generalizes results presented in [9], see also [10], p517.

Corollary 5. Let 1 < p < ∞ and T be an operator defined by (2) with kernel satisfying (1) with
α = 0 that is bounded on Lp

%(Rn) for ρ ∈ Ap. Let ρ1 ∈ A1, if v0 and w0 are positive monotonic
functions on (0,∞) such that the weights v(x) = v0(|x|) and w(x) = w0(|x|) satisfy the condition

Bd(v, w) < ∞

if v0 and w0 are increasing [or B′
d(v, w) < ∞ if v0 and w0 are decreasing], for some d > 1, then it

follows that T is bounded from Lp
wρ1 to Lp

vρ1 [or from Lp

wρ1−p
1

to Lp

vρ1−p
1

]. Moreover

‖Tf‖Lp
vρ1

≤ C5Bd(v, w)‖f‖Lp
wρ1

[
or ‖Tf‖Lp

vρ
1−p
1

≤ C5B
′
d(v, w)

]
‖f‖Lp

wρ
1−p
1

]
,

where C5 = C5(‖T‖Lp
ρ→Lp

ρ
, A, p, n, d).
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Proof. We shall assume that v0 and w0 are increasing. Using the fact that ρ1 ∈ A1 ⊂ Ap it follows
that

Bd(vρ1, wρ1) =
∞∑

k=0

( ∫
2kt≤|x|<2k+1t

v(x)ρ1(x)|x|−npdx

)1/p( ∫
|x|≤t/d

w−p′/p(x)ρ−p′/p
1 (x) dx

)1/p′

≤ [A1(ρ1)]1/p
∞∑

k=0

v1/p(2k+1)(2kt)−n+n/p

( ∫
|x|≤t/d

w−p′/p(x) dx

)1/p′

≤ [A1(ρ1)]1/p
∞∑

k=1

( ∫
2kt≤|x|<2k+1t

v(x)|x|−npdx

)1/p( ∫
|x|≤t/d

w−p′/p(x) dx

)1/p′

≤ CBd(v, w).

The argument for v0 and w0 decreasing is similar, in this case one instead uses the fact that
ρ
−p/p′

1 ∈ Ap′ if ρ1 ∈ A1. �

Our second main result when α = 0 establishes a sufficient condition for our operators T to be
of two-weight weak-type (p, p) when 1 ≤ p < ∞. We introduce the following notation,

B
(p)
d (v, w) := B

(p)
0,d(v, w) = sup

0<t<τ

1
τn

( ∫
t≤|x|≤τ

v(x) dx

)1/p( ∫
|x|≤t/d

w−p′/p(x) dx

)1/p′

B
(1)
d (v, w) := B

(1)
0,d(v, w) = sup

0<t<τ

1
τn

( ∫
t≤|x|≤τ

v(x) dx

)∥∥∥w−1
∥∥∥

L∞({|·|<t/d})
.

Theorem 6. Let 1 ≤ p < ∞, ρ ∈ Ap, and T be an operator defined by (2) with kernel satisfying
(1) with α = 0 that is bounded from Lp

ρ(Rn) to Lp,∞
ρ (Rn). If v0 and w0 are positive increasing

functions on (0,∞) such that the weights

v(x) = v0(|x|)ρ(x) and w(x) = w0(|x|)ρ(x)

satisfy the condition

B
(p)
d (v, w) < ∞

if 1 < p < ∞, and

B
(1)
d (v, w) < ∞

if p = 1, for some d > 1, then T is bounded from Lp
w to Lp,∞

v . Moreover

‖Tf‖Lp,∞
v

≤ C6B
(p)
d (v, w)‖f‖Lp

w
,

where C6 = C6(‖T‖Lp
ρ→Lp,∞

ρ
, A, p, n, d).

Remark 2. If ρ ∈ Ap with p > 1, then one-weight weak-type (p, p) estimates for the Riesz
transforms are equivalent to one-weight strong-type (p, p) estimates. It has however been shown
that for p > 1 the class of weight pairs guaranteeing two-weight weak-type (p, p) estimates for the
Hilbert transform is larger than the class that ensures two-weight strong-type (p, p) estimates; see
[9] and [10], Chapter 8.
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2.3. Necessary conditions in the case where α = 0. Our first result establishes a necessary
condition for our operators T to be of two-weight strong-type (p, p) when 1 < p < ∞.

Theorem 7. Let 1 < p < ∞ and T be an operator defined by (2) with kernel K(x, y) = K̃(x− y)
satisfying the estimates

|∇K̃(x)| ≤ A0

|x|n+1
,(4a)

|K̃(x)| ≥ A1

|x|n
,(4b)

whenever x 6= 0, in addition to (1) with α = 0. If T is bounded from Lp
w to Lp

v then this implies
the condition

B 4A0n
A1

(v, w) < ∞.

Our second result of this section establishes a necessary condition for our operators T to be of
two-weight weak-type (p, p) when 1 ≤ p < ∞.

Theorem 8. Let 1 ≤ p < ∞ and T be an operator defined by (2) with kernel K(x, y) = K̃(x− y)
satisfying estimates (4) and (1) with α = 0. If T is bounded from Lp

w to Lp,∞
v then it follows that

B
(p)
4nA0

A1

(v, w) < ∞,

if 1 < p < ∞, and

B
(1)
4nA0

A1

(v, w) < ∞,

if p = 1.

Corollary 9. Let K(x, y) = K̃(x − y) satisfy conditions (1) and (4) and P be a real polynomial
on Rn ×Rn. If we, in the sense of (2), define

TP f(x) =
∫

K(x, y)eiP (x,y)f(y) dy

then in order for TP to be bounded from Lp
w to Lp

v with bounds independent of the coefficients of P
it is necessary that

B 4A0n
A1

(v, w) < ∞.

Proof. For ε > 0 we denote Pε(x, y) := εP (x, y). Let f be a non-negative belonging to Lp
wwith

support in χB(0,t), t > 0. It is then easy to see, using the Lebesgue dominated convergence theorem,
that if |x| > 4nA0

A1
t, then

�(5) lim
ε→0

∫
|y|<t

eiPε(x,y)K(x, y)f(y)dy =
∫
|y|<t

K(x, y)f(y)dy.

3. Background

3.1. Model Operators. We now list some model operators that are of the form that we are
considering, namely of the form (2) with kernels satisfying (1). Recall that we are also making the
a priori assumption that our operators are bounded on L2(Rn).
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3.1.1. Calderón-Zygmund Singular Integrals. These operators, which we shall denote by S, are
defined as in (2) with integral kernel that in addition to satisfying (1) for α = 0 also satisfy the
differential inequality

|∂ν
x∂µ

y K(x, y)| ≤ A|x− y|−n−|ν|−|µ|.

Key examples are the following;
(1) The key example when n = 1 is the Hilbert transform H, this is a convolution operator

(defined as a principle value) with distributional kernel

K(x) = x−1.

(2) The analogues of the Hilbert transform in higher dimensions are the Reisz transforms
R1, . . . , Rn, where each operator Rj is given by convolution with

Kj(x) = xj |x|−n−1.

(3) Another important example are the convolution kernels of the form

K(x) = |x|−n−it, with t 6= 0.

The following result is of course well known; see for example [34].

Theorem A. If 1 < p < ∞ then S extends to a bounded operator on Lp(Rn) and if p = 1 then S
extends to an operator which is of weak-type (1, 1).

3.1.2. Oscillatory Singular Integrals. Let K be a Calderón-Zygmund kernel as described above and
P be a real polynomial on Rn ×Rn. If we, in the sense of (2), define

TP f(x) =
∫

K(x, y)eiP (x,y)f(y) dy

then the following is known, see [30] and [4].

Theorem B. If 1 < p < ∞ then TP extends to a bounded operator on Lp(Rn) and if p = 1 then
TP extends to an operator which is of weak-type (1, 1). In both instances the bounds on TP can be
taken independent of the coefficients of P .

For extensions of Theorem B to more general phase functions see [29], see also [34].

3.1.3. Strongly Singular Integrals. These are operators, which we shall denote by Tα, whose integral
kernels take the form

Kα(x, y) = a(x, y)eiϕ(x,y),

where the amplitude1 and phase satisfy the differential inequalities

|∂µ
x∂ν

y a(x, y)| ≤ Cµ,ν |x− y|−d−α−|µ|−|ν|

|∂µ
x∂ν

y ϕ(x, y)| ≤ Cµ,ν |x− y|−β−|µ|−|ν|,

that ϕ is real-valued and furthermore that

(6) |∇xϕ(x, y)|, |∇yϕ(x, y)| ≥ C|x− y|−β−1

with β > 0 and 0 ≤ α ≤ nβ/2. In additions to these two assumptions one also makes the non-
degeneracy assumption that ∣∣∣∣det

(
∂2ϕλ(x, y)

∂xi∂yj

)∣∣∣∣ ≥ C > 0

1 In the case where α = 0 we must make the further assumption that our amplitude a is compactly supported in
a neighborhood of the diagonal x = y, this is of course also the only region of any interest when α > 0.
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uniformly in λ. Note that this non-degeneracy assumption ensures that Tα extends to a bounded
operator on L2(Rn).

The key example of such a kernels are Kα(x, y) = K̃α(x− y) where K̃α is a distribution on Rd

that away from the origin agrees with the function

K̃α(x) = |x|−d−αei|x|−β
χ(|x|),

with χ smooth and compactly supported in a small neighborhood of the origin. Operators of this
type where first studied in one dimension by Hirschman [17] and then in higher dimensions by
Wainger [36]. For the following result see [25].

Theorem C. If 1 < p < ∞, then Tα extends to a bounded operator on Lp(Rn) if and only if∣∣∣∣1p − 1
2

∣∣∣∣ ≤ 1
2
− α

nβ
.

The prototype non-convoltion operator of this strongly singular type are the pseudo-differential
operators with symbols in the class Sm

ρ,δ that where introduced by Hörmander. In the special case
where Kα(x, y) = K̃α(x − y) and α = 0 it was shown by C. Fefferman [11] that Tα extends to an
operator which is of weak-type (1, 1). In fact this result, and the one above, can be extended to
the general class introduced by Hörmander, see [12].

We now recall some well known one-weight and two-weight estimates for these singular integrals.

3.2. One-weight estimates for singular integrals. For completeness we choose to state here
some results which pre-date those in [32].

3.2.1. Calderón-Zygmund singular integrals.

Theorem D. If 1 < p < ∞ and ρ ∈ Ap then S is bounded on Lp
ρ, while if ρ ∈ A1 then S is bounded

from L1
ρ to L1,∞

ρ (S is of one-weight weak-type (1, 1)).
In the case of the Hilbert transform H having ρ ∈ Ap for 1 < p < ∞ and ρ ∈ A1 is also necessary

for H to be of one-weight strong-type (p, p) and one-weight weak-type (1, 1) respectively.

Theorem D was proved for the Hilbert transform in [21] and for general Calderón-Zygmund
intgrals in [7], see also [13].

Moreover, in [13] (page 417) it is shown that if the Reisz transforms Rj are of one-weight weak-
type (p, p) for 1 ≤ p < ∞ then one must necessarily have ρ ∈ Ap.

3.2.2. Oscillatory singular integrals. In [31] it was shown that if K(x, y) = K̃(x − y) satisfies the
conditions2

|K̃(x)| ≤ A|x|−n and |∇K̃(x)| ≤ A0|x|−n−1

and ∫
ε<|x|<N

K̃(x) dx = 0,

for all 0 < ε < N < ∞, and ρ ∈ A1, then TP is one-weight weak-type (1, 1). See also [5].
Let 1 < p < ∞, P (x, y) = Q(x − y) and K̃(x, y) = (x − y)−1, then TP is bounded on Lp

ρ(R) if
and only if ρ ∈ Ap, see [19]. See also [20].

2 These are precisely the necessary and sufficient conditions in order for the Calderón-Zygmund singular integrals

with this convolution kernel eK to extend top a bounded operator on L2(Rn).
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3.2.3. Strongly singular integrals. The following results have been established in the in the ‘model’
convolution case.

Theorem E. Let Kα(x, y) = K̃α(x− y).
(i) If α = 0, 1 < p < ∞ and ρ ∈ Ap then Tα is bounded on Lp

ρ, while if ρ ∈ A1 then Tα is
bounded from L1

ρ to L1,∞
ρ .

(ii) If 0 < α ≤ αp := nβ
(

1
2 −

∣∣∣1p − 1
2

∣∣∣), γ = (α−αp)/αpand ρ ∈ Ap then Tα is bounded on Lp
ργ .

These two results were established in [3], in the same paper it was also shown that if 1 < p < ∞
and ρ(x) = |x|λ, where λ ≤ −n or λ ≥ n(p− 1), then Tα is not bounded on Lp

ρ. For extensions to
the prototype non-translation invariant setting discussed in §3.1.3 see [6].

3.3. Two-weight estimates for Calderón-Zygmund singular integrals. Two-weight inequal-
ities for Calderón-Zygmund singular integrals have been studied in [28] and [8] (see also [16], [15],
[23], [24], [10] Chapter 8, and [14]).

Theorem F. Let 1 < p < ∞ and K be a Calderón-Zygmund kernel. We put v(x) = v0(|x|)ρ(x)
and w(x) = w0(|x|)ρ(x), where v0 and w0 are positive monotonic functions on (0,∞) and ρ ∈ Ap.
If v0 and w0 are increasing and

B2(v, w) < ∞
or if v0 and w0 are decreasing and

B′
2(v, w) < ∞

then S is bounded from Lp
w to Lp

v.
Conversely, if the Hilbert transform H is to be bounded from Lp

w to Lp
v then the weights v and w

must satisfy conditions B2(v, w) < ∞ and B′
2(v, w) < ∞.

For the two-weight weak-type inequality we have the following, see [9] and [10].

Theorem G. Let 1 ≤ p < ∞ and K be a Calderón-Zygmund kernel. We put v(x) = v0(x)ρ(x)
and w(x) = w0(x)ρ(x), where v0 and w0 are positive increasing functions on (0,∞) and ρ ∈ A1.
Now if the weights v and w satisfy

B
(p)
2 (v, w) < ∞

if 1 < p < ∞, and
B

(1)
2 (v, w) < ∞

if p = 1, then T is bounded from Lp
w to Lp,∞

v .
Conversely, if the Hilbert transform H is to be bounded from Lp

w to Lp,∞
v then the weights v and

w must satisfy conditions B
(p)
2 (v, w) < ∞ and B

(1)
2 (v, w) < ∞.

3.4. Hardy operators. Before presenting the proofs of the main results, we formulate some well
known statements concerning two-weight norm estimates for Hardy-type transforms defined on Rn.
The two-weight problem for the classical Hardy operator

Hf(x) =
∫ x

0
f(y) dy

has been solve in [27], [2], [22], and [26].
Let

Hα,df(x) :=
1

|x|n+α

∫
|y|≤|x|/d

f(y) dy
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and
H′

α,df(x) :=
∫
|y|≥d|x|

f(y)
|y|n+α

dy

for measurable f : Rn → R, where d > 1.
For the following two-weight strong-type and weak-type (p, p) estimates see [10], Chapter 1.

Theorem H. Let 1 < p < ∞ and α ≥ 0.
(i) Hα,d is bounded from Lp

w to Lp
v if and only if

Dα,d(v, w) := sup
t>0

( ∫
t≤|x|

v(x)|x|−(n+α)pdx

)1/p( ∫
|x|≤t/d

w−p′/p(x) dx

)1/p′

< ∞.

Moreover, there exists constants c1 and c2 such that

c1Dα,d(v, w) ≤ ‖Hα,d‖Lp
w→Lp

v
≤ c2Dα,d(v, w).

(ii) H′
α,d is bounded from Lp

w to Lp
v if and only if

D′
α,d(v, w) := sup

t>0

( ∫
|x|≤t/d

v(x) dx

)1/p( ∫
t≤|x|

w−p′/p(x)|x|−(n+α)p′dx

)1/p′

< ∞.

Moreover, there exists constants c′1 and c′2 such that

c′1D
′
α,d(v, w) ≤ ‖H′

d‖Lp
w→Lp

v
≤ c′2D

′
α,d(v, w).

Remark 3. It is easy to see that for all α ≥ 0 one has

Dα,d(v, w) ≤ Bα,d(v, w) and D′
α,d(v, w) ≤ B′

α,d(v, w).

From Theorem H is easy to establish the following local result.

Corollary I. Let 1 < p < ∞ , then the two-weight inequality

(7)
∫
|x−x0|≤1

∣∣Hα,d|fx0 |(x)
∣∣pv(x− x0) dx ≤ C0

∫
|x−x0|≤10

|f(x)|p w(x− x0) dx,

where fx0(y) = f(y + x0) holds if and only if Bloc
α,d(v, w) < ∞. Moreover, there exists constants c1

and c2 such that if C0 is the best possible constant in (7) then

c1[Bloc
α,d(v, w)]p ≤ C0 ≤ c2[Bloc

α,d(v, w)]p.

Theorem J. Let 1 ≤ p < ∞ and α > −n. Hα,d is bounded from Lp
w to Lp,∞

v if and only if

D
(p)
α,d(v, w) := sup

0<t<τ
τ−n−α

( ∫
t≤|x|≤τ

v(x) dx

)1/p( ∫
|x|≤t/d

w−p′/p(x) dx

)1/p′

< ∞

when 1 < p < ∞, and

D
(1)
α,d(v, w) := sup

0<t<τ
τ−n−α

( ∫
t≤|x|≤τ

v(x) dx

)∥∥∥w−1
∥∥∥

L∞({|·|<t/d})
< ∞

when p = 1 for some d > 1. Moreover, there exists constants c1 and c2 depending only on α and p
such that

c1Dα,d(v, w) ≤ ‖Hα,d‖Lp
w→Lp,∞

v
≤ c2Dα,d(v, w).
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This statement was proved in more generality in [10]. For two-weight weak-type estimates for
the one-dimensional Hardy operator see [1].

Remark 4. For all 1 ≤ p < ∞ and α ≥ 0 one has that

D
(p)
α,d(v, w) ≤ B

(p)
α,d(v, w).

4. Proof of Main Results

We shall need the following lemmata, they are easily established so we omit their proofs.

Lemma 1. Let 1 < p < ∞ and α ≥ 0. Suppose that v(x) = v0(|x|) and w(x) = w0(|x|), where v0

and w0 are positive monotonic functions on (0,∞).
(i) If v0 and w0 are increasing and

Bα,d(v, w) < ∞
for some d > 1, then there exists a positive constant C depending only on p, n, α, and d
such that

v0(dt) ≤ C[Bα,d(v, w)]p w0(t)
for all t > 0.

(ii) If v0 and w0 are decreasing and

B′
α,d(v, w) < ∞

for some d > 1, then there exists a positive constant C depending only on p, n, α, and d
such that

v0(t/d) ≤ C[B′
α,d(v, w)]pw0(t)

for all t > 0.

Lemma 2. Let 1 ≤ p < ∞ and α ≥ 0. If v(x) = v0(|x|) and w(x) = w0(|x|), where v0 and w0 are
positive increasing functions on (0,∞) satisfy, for some constant d > 1, the condition

B
(p)
α,d(v, w) < ∞

if 1 < p < ∞, and
B

(1)
α,d(v, w) < ∞

if p = 1, then there exists a positive constant C depending only on p, n, α, and d such that

v0(dt) ≤ C[B(p)
α,d(v, w)]pw0(t)

for all t > 0.

When α = 0 we have the following two lemmata, see [8], [9], and [10].

Lemma 3. Let 1 < p < ∞ and α = 0. Suppose that v(x) = v0(|x|)ρ(x) and w(x) = w0(|x|)ρ(x),
where v0 and w0 are positive monotonic functions on (0,∞) and ρ ∈ Ap.

(i) If v0 and w0 are increasing and

Bd(v, w) < ∞
for some d > 1, then there exists a positive constant C depending only on p, n, and d such
that

v0(dt) ≤ C[Bd(v, w)]p w0(t)
for all t > 0.
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(ii) If v0 and w0 are decreasing and

B′
d(v, w) < ∞

for some d > 1, then there exists a positive constant C depending only on p, n, and d such
that

v0(t/d) ≤ C[B′
d(v, w)]pw0(t)

for all t > 0.

Lemma 4. Let 1 ≤ p < ∞ and α = 0. If v(x) = v0(|x|)ρ(x) and w(x) = w0(|x|)ρ(x), where v0

and w0 are positive increasing functions on (0,∞) and ρ ∈ Ap satisfy, for some constant d > 1,
the condition

B
(p)
d (v, w) < ∞

if 1 < p < ∞, and
B

(1)
d (v, w) < ∞

if p = 1, then there exists a positive constant C depending only on p, n, and d such that

v0(dt) ≤ C[B(p)
d (v, w)]pw0(t)

for all t > 0.

Proof of Theorem 1. We shall assume that v0 and w0 are increasing. Without loss of generality we
can assume that the weight v(x) = v0(|x|) has the form

(8) v(x) = v(0) +
∫ |x|

0
ϕ(t) dt,

where ϕ ≥ 0 and v(0) := lim
|x|→0

v(x). In fact there exists a sequence of absolutely continuous

functions vk such that
vk(x) ≤ v(x) and lim

k→∞
vk(x) = v(x),

that are given by

vk(x) = v(0) + k

∫ |x|

0
[v0(t)− v0(t− 1

k )] dt.

Now using representation (8) we have∫
|Tf(x)|pv(x) dx =

∫
|Tf(x)|pv(0) dx +

∫
|Tf(x)|p

(∫ |x|

0
ϕ(t) dt

)
dx =: I1 + I2.

Now if v(0) = 0 then I1 = 0, while if v(0) 6= 0 it follows from the Lp boundedness of T and Lemma
1 (part (i)) that

I1 ≤ v(0)‖T‖p
Lp→Lp

∫
|f(x)|pdx ≤ C[Bα,d(v, w)]p‖T‖p

Lp→Lp

∫
|f(x)|pw(x) dx.

For I2 we have that

I2 =
∫ ∞

0
ϕ(t)

(∫
|x|≥t

|Tf(x)|pdx
)

dt

≤ 2p−1

[∫ ∞

0
ϕ(t)

(∫
|x|≥t

|Tf1,t(x)|pdx
)

dt +
∫ ∞

0
ϕ(t)

(∫
|x|≥t

|Tf2,t(x)|pdx
)

dt

]
= I2,1 + I2,2,
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where
f1,t(x) = f(x)χ{|x|≥t/d}(x) and f2,t(x) = f(x)− f1,t(x).

Using again the Lp boundedness of T and Lemma 1 (part (i)) it follows that

I2,1 ≤ ‖T‖p
Lp→Lp

∫ ∞

0
ϕ(t)

(∫
|x|≥t/d

|f(x)|pdx
)

dt

= ‖T‖p
Lp→Lp

∫
|f(x)|p

(∫ d|x|

0
ϕ(t) dt

)
dx

≤ C[Bα,d(v, w)]p‖T‖p
Lp→Lp

∫
|f(x)|pw(x) dx.

Using the fact that if |x| ≥ t and |y| ≤ t/d then (d− 1)|x|/d ≤ |x− y| and Theorem H (part (i)) we
see that

I2,2 ≤ CAp

∫ ∞

0
ϕ(t)

(∫
|x|≥t

|x|−(n+α)p
(∫

|y|≤t/d
|f(y)| dy

)p
dx

)
dt

≤ CAp

∫ ∞

0
ϕ(t)

(∫
|x|≥t

|x|−(n+α)p
(∫

|y|≤|x|/d
|f(y)| dy

)p
dx

)
dt

≤ CAp

∫
|x|−(n+α)p

(∫
|y|≤|x|/d

|f(y)| dy
)p(∫ |x|

0
ϕ(t) dt

)
dx

≤ CAp

∫
v(x)|x|−(n+α)p

∣∣Hα,d|f |(x)
∣∣pdx

≤ C[Bα,d(v, w)]pAp

∫
|f(x)|pw(x) dx.

This completes the proof in the case when v0 and w0 are increasing. The proof in the decreasing
case follows in exactly then same manner using the representation

(9) v(x) = v(∞) +
∫ ∞

|x|
ϕ(t) dt, ϕ ≥ 0, v(∞) := lim

|x|→∞
v(x),

and part (ii) of both Theorem H and Lemma 1. �

Proof of Theorem 2. Using representation (8) we have∫
{|Tf(x)|>λ}

v(x) dx = v(0)|{x : |Tf(x)| > λ}|+
∫
{|Tf(x)|>λ}

(∫ |x|

0
ϕ(t) dt

)
dx =: I1 + I2.

Now if v(0) = 0 then I1 = 0, while if v(0) 6= 0 it follows from the assumption that T is of weak-type
(p, p) and Lemma 2 that

I1 ≤ v(0)‖T‖p
Lp→Lp,∞

1
λp

∫
|f(x)|pdx ≤ C[B(p)

α,d(v, w)]p‖T‖p
Lp→Lp,∞

1
λp

∫
|f(x)|pw(x) dx.

To estimate I2 we introduce the following notation:

Jt(λ) = {x : |Tf(x)| > λ} ∩ {x : |x| ≥ t}
J1,t(λ) = {x : |Tf1,t(x)| > λ/d} ∩ {x : |x| ≥ t}
J2,t(λ) = {x : |Tf2,t(x)| > λ/d} ∩ {x : |x| ≥ t},

where again
f1,t(x) = f(x)χ{|x|≥t/d}(x) and f2,t(x) = f(x)− f1,t(x).
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Now it is easy to see that

I2 =
∫ ∞

0
ϕ(t) |Jt(λ)| dt ≤

∫ ∞

0
ϕ(t) |J1,t(λ)| dt +

∫ ∞

0
ϕ(t) |J2,t(λ)| dt = I2,1 + I2,2.

Using again that T is of weak-type (p, p) and Lemma 2 it follows that

I2,1 ≤ ‖T‖p
Lp→Lp,∞

1
λp

∫ ∞

0
ϕ(t)

(∫
|x|≥t/d

|f(x)|pdx
)

dt

= ‖T‖p
Lp→Lp,∞

∫
|f(x)|p

(∫ d|x|

0
ϕ(t) dt

)
dx

≤ C[B(p)
α,d(v, w)]p‖T‖p

Lp→Lp,∞

∫
|f(x)|pw(x) dx.

Using, as in the proof of Theorem 1, the fact that |x| ≥ t and |y| ≤ t/d ensures (d−1)|x|/d ≤ |x−y|
and Theorem J we see that

I2,2 ≤
∫ ∞

0
ϕ(t)

∣∣{x : |x| ≥ t} ∩ {x : Hα,d|f |(x) > λ/d′}
∣∣ dt

=
∫
{Hα,d|f |(x)>λ/d′}

(∫ |x|

0
ϕ(t) dt

)
dx

≤
∫
{Hα,d|f |(x)>λ/d′}

v(x) dx

≤ C[B(p)
α,d(v, w)]p

1
λp

∫
|f(x)|pw(x) dx,

where d′ = d
(

d
d−1

)n+α
. �

The proofs of Theorems 4 and 6 are similar to those for Theorems 1 and 2 above, one simply
instead uses the one-weight strong-type and weak-type (p, p) assumptions respectively together
with Lemmata 3 and 4.

Arguing as in the proof of Theorem 1 and using Corollary I one can easily obtain Theorem 3.
Before proving Theorems 7 and 8, we present the following Lemma.

Lemma 5. If |x| ≥ 4nA0

A1
t, then

(10) |Tf(x)| ≥ A1

4
|x|−n

∫
|y|≤t

f(y) dy

for all non-negative f supported in B(0, t).

Proof. It follows from (4a) and (4b) that

(11)
∣∣∣K̃(x− y)− K̃(x)

∣∣∣ ≤ A1

4
|x|−n

whenever |x| ≥ 4nA0
A1

|y| and that either∣∣∣Re K̃(x)
∣∣∣ ≥ A1

2
|x|−n or

∣∣∣Im K̃(x)
∣∣∣ ≥ A1

2
|x|−n.
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Lets assume that
∣∣Re K̃(x)

∣∣ ≥ A1

2
|x|−n, then it follows from (11) that∣∣∣∣∣Re K̃(x− y)

∣∣− ∣∣Re K̃(x)
∣∣∣∣∣ ≤ ∣∣∣K̃(x− y)− K̃(x)

∣∣∣ ≤ 1
2

∣∣K̃(x)
∣∣,

whenever |x| ≥ 4nA0
A1

|y| and thus that

(12)
1
2

∣∣Re K̃(x)
∣∣ ≤ ∣∣Re K̃(x− y)

∣∣ ≤ 3
2

∣∣Re K̃(x)
∣∣

It is then immediate from the continuity of K̃ on Rn \ {0} that Re K̃(x− y) does not change sign

for |y| ≤ A1

4nA0
|x|.

If we now let 0 < t ≤ A1

4nA0
|x| and

ft(y) = f(y)χ{|y|≤t},

from (12) it then follows that

|Tft(x)| ≥
∫
|y|≤t

f(y)
∣∣Re K̃(x− y)| dy ≥ A1

4
|x|−n

∫
|y|≤t

f(y) dy.

Arguing in a similar manner for the case where | Im K̃(x)| ≥ A1

2
|x|−n we obtain the same conclusion.

�

Proof of Theorems 7 and 8. Let us first prove Theorem 8. We consider the case p > 1, the case
p = 1 is similar. We claim that if the operator T is bounded from Lp

w to Lp,∞
v , then

(13) I(r) :=
∫
|x|<r

w−p′/p(x)dx < ∞

for all r > 0.
Indeed, first observe that I(r) = ‖w−1/pχ|·|<r‖

p′

Lp . If I(r) = ∞ for some r > 0, then by the duality
properties there exists non-negative g ∈ Lp supported in B(0, r) such that

∫
|·|<r gw−1/p = ∞.

Let us take the function fr(y) = g(y)w−1/p(y)χ{|y|<r}. Then by Lemma 5 we have

|Trf(x)| ≥ A1

4
|x|−n

∫
|y|≤r

g(y)w−1/p(y)dy = ∞,

whenever |x| > 4nA0
A1

r.
Due to two-weight weak-type inequality and the latter estimate we have∫

|x|> 4nA0
A1

r
v(x)dx ≤

∫
{x:|Tfr(x)|>λ}

v(x)dx ≤ c

λp

∫
|y|<r

g(y)dy < ∞

for all positive λ. Consequently, passing λ to ∞ we find that the left-hand side of the latter
inequality is equal to 0 which contradicts the assumption that the weight v is positive almost
everywhere.

Now let us derive the condition B
(p)
4nA0

A1

(v, w) < ∞.

Applying Lemma 5 we conclude that

(14) |Tf(x)| ≥ A1

4
|x|−n

∫
|y|< A1

4nA0
t
w−p′/p(y)dy ≥ A1

4
τ−nI

( A1

4A0n
t
)
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whenever 0 < t ≤ |x| < τ and f(y) = w−p′/p(y)χ{|y|< A1
4nA0

t}(y).

The two-weight weak-type inequality for T leads to the estimates∫
t<|x|<τ

v(x)dx ≤
∫
{x:|Tf(x)|≥(A1τ−n/4)I

(
A1

4nA0

)
}

≤
(

4τn‖T‖Lp
w→Lp,∞

A1

)p 1
Ip
(

A1
4nA0

t
)I( A1

4nA0
t
)

< ∞

for all t, τ , 0 < t < τ < ∞. This completes the proof of Theorem 8.
To prove Theorem 7 we observe that due to (12) which is true also for all |x| ≥ t because of

Lemma 5, we have

(15) ‖Tf‖p
Lp

v
≥
∫
|x|>t

|Tf(x)|pv(x)dx ≥ A1

4

(∫
|x|>t

|x|−npv(x)dx

)(∫
|y|< A1

4A0n
t
w−p′/p(y)dy

)p

.

On the other hand, by (11) we have

‖f‖p
Lp

w
=
∫
|x|< A1

4nA0

w−p′/p(x)dx < ∞.

Finally, from the boundedness of T from Lp
w to Lp

v we conclude that B 4A0n
A1

(v, w) < ∞. �

Appendix

Here we shall verify the statement made in Remark 1. We first note that if the measure

w−p′/p(E) =
∫

E
w−p′/p(x) dx

is doubling then it also satisfies the reverse doubling condition: that there exists constants η1,
η2 > 1 such that for all t > 0 the inequality∫

|x|≤η1t
w−p′/p(x) dx ≥ η2

∫
|x|≤t

w−p′/p(x) dx

holds, see [35] page 21.
Using this fact we find that∫
ηk
1 t≤|x|≤ηk+1

1 t

w−p′/p(x) dx =
∫

|x|≤ηk+1
1 t

w−p′/p(x) dx −
∫

|x|≤ηk
1 t

w−p′/p(x) dx ≥ (η2 − 1)ηk
2

∫
|x|≤t

w−p′/p(x) dx,

and hence

(16)
∫

|x|≤t

w−p′/p(x) dx ≤ 1
(η2 − 1)ηk

2

∫
ηk
1 t≤|x|≤ηk+1

1 t

w−p′/p(x) dx.
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Arguing as in the proof of Corollary 5 leads to the following string of inequalities

Bα,d(v, w) = sup
t>0

( ∫
t≤|x|

v(x)(|x|−α + 1)p|x|−npdx

)1/p( ∫
|x|≤t/d

w−p′/p(x) dx

)1/p′

= sup
t>0

∞∑
k=0

( ∫
ηk
1 t≤|x|<ηk+1

1 t

v(x)|x|−npdx

)1/p( ∫
|x|≤t/d

w−p′/p(x) dx

)1/p′

≤ sup
t>0

∞∑
k=0

(ηk
1 t)−n[(ηk

1 t)−α + 1]
[(η2 − 1)ηk

2 ]1/p′

( ∫
ηk
1 t≤|x|<ηk+1

1 t

v(x) dx

)1/p( ∫
ηk
1 t≤|x|<ηk+1

1 t

w−p′/p(x) dx

)1/p′

≤ Aα(v, w)
∞∑

k=0

1
[(η2 − 1)ηk

2 ]1/p′

≤ CAα(v, w).
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[35] J. O. Strömberg and A. Torchinsky, Weighted Hardy spaces, Lecture Notes in Math. 1381, Springer Verlag,

Berlin, 1989.
[36] S. Wainger, Special Trigonometric Series in k Dimensions, Memoirs of the AMS 59, American Math. Soc.,

1965.

Authors’ addresses:
V. Kokilashvili and A. Meskhi: A. Razmadze Mathematical Institute, Georgian Academy of

Sciences, 1, M. Aleksidze St., 0193 Tbilisi, Georgia

N. Lyall: Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

A. Meskhi’s current address: Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

N. Lyall’s current address: Department of Mathematics, University of Georgia, Athens GA 30602
USA
e-mail: lyall@math.uga.edu


