THE WEYL INEQUALITY AND SÁRKÖZY'S THEOREM

NEIL LYALL

1. The Weyl Inequality

A Weyl sum is an exponential sum of the form

(1)
$$S = \sum_{n=1}^{N} e^{2\pi i P(n)}$$

where P(x) is a polynomial with real coefficients. The purpose of this section is to derive Weyl's estimates for these sums in the special case when $P(x) = \alpha x^2$.

Theorem 1.1 (The Weyl inequality for quadratic monomials). Let $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ with (a,q) = 1 and $N \in \mathbb{N}$ with $N \geq 2$. If $\alpha \in \mathbb{R}$ with $|\alpha - a/q| \leq q^{-2}$, then

$$\left|\sum_{n=1}^{N} e^{2\pi i \alpha n^2}\right| \le 20N \log N (1/q + 1/N + q/N^2)^{1/2}.$$

We remark that this gives a non-trivial estimate whenever $N^{\eta} \leq q \leq N^{2-\varepsilon}$ for some $0 < \eta, \varepsilon < 1$. We begin with the following elementary lemma.

Lemma 1.2. Let $\alpha \in \mathbf{R}$. Then for all $N \in \mathbf{N}$,

$$\left|\sum_{n=1}^{N} e^{2\pi i \alpha n}\right| \le \min\left\{N, \frac{1}{2\|\alpha\|}\right\}$$

where $\|\alpha\|$ is the distance from α to the nearest integer.

Proof. If $\alpha = 0$, then the sum is N. If $\alpha \neq 0$, then

$$\left|\sum_{n=1}^{N} e^{2\pi i\alpha n}\right| \le \frac{\left|1 - e^{2\pi i\alpha N}\right|}{\left|1 - e^{2\pi i\alpha}\right|} \le \frac{\left|\sin \pi \alpha N\right|}{\left|\sin \pi \alpha\right|} \le \frac{1}{2\|\alpha\|}.$$

The method of *Weyl differencing* allows us to treat higher degree polynomials, the idea is simply to square-out the Weyl sum (1);

$$\begin{split} |S|^2 &= \sum_{n=1}^N \sum_{m=1}^N e^{2\pi i [P(m) - P(n)]} \\ &= \sum_{n=1}^N \sum_{h=1-n}^{N-n} e^{2\pi i [P(n+h) - P(n)]} \\ &= N + \sum_{h=1}^{N-1} \sum_{n=1}^{N-h} e^{2\pi i [P(n+h) - P(n)]} + \sum_{h=1-N}^{-1} \sum_{n=1-h}^N e^{2\pi i [P(n+h) - P(n)]} \\ &= N + 2 \operatorname{Re} \sum_{h=1}^{N-1} \sum_{n=1}^{N-h} e^{2\pi i [P(n+h) - P(n)]} \\ &\leq N + 2 \sum_{h=1}^{N-1} \left| \sum_{n=1}^{N-h} e^{2\pi i [P(n+h) - P(n)]} \right|. \end{split}$$

Since P(x+h) - P(x) is a polynomial of degree one less than that of P(x), the possibility of inducting on the degree of P arises.

NEIL LYALL

In Theorem 1.1 we are considering Weyl sums with $P(x) = \alpha x^2$ so in this case the difference $P(x+h) - P(x) = 2xh + h^2$, and it follows from Weyl differencing and Lemma 1.2 that

$$|S|^{2} \leq N + 2 \sum_{h=1}^{N-1} \left| \sum_{n=1}^{N-h} e^{2\pi i (2\alpha h)n} \right|$$

$$\leq N + 2 \sum_{h=1}^{N-1} \min\left\{ N - h, \frac{1}{\|2\alpha h\|} \right\}$$

$$\leq N + 2 \sum_{h=1}^{2N} \min\left\{ N, \frac{1}{\|\alpha h\|} \right\}.$$

Theorem 1.1 therefore follows immediately from the following proposition (with H = 2N).

Proposition 1.3. Let $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ with (a,q) = 1, $N \in \mathbb{N}$ with $N \ge 2$, and $H \in \mathbb{N}$. If $\alpha \in \mathbb{R}$ with $|\alpha - a/q| \le q^{-2}$, then

$$\sum_{h=1}^{H} \min\left\{N, \frac{1}{\|\alpha h\|}\right\} \le 24 \log N(N + q + H + HN/q).$$

The proof of this proposition follows from the lemma below together with the key observation that if $0 < |h_2 - h_1| \le q/2$, then $||\alpha h_2 - \alpha h_1|| \ge 1/2q$.

Lemma 1.4. Let $L, M, N \in \mathbf{N}$ with $N \geq 2$ and $L \leq M$. If $\alpha_1, \ldots, \alpha_L \in \mathbf{R}$ with $\|\alpha_\ell - \alpha_{\ell'}\| \geq M^{-1}$ whenever $\ell \neq \ell'$, then

$$\sum_{\ell=1}^{L} \min\left\{N, \frac{1}{\|\alpha_{\ell}\|}\right\} \le 6(N+M)\log N.$$

Proof of Proposition 1.3. Write $\alpha = a/q + \beta$. We first note that if $0 < |h_2 - h_1| \le q/2$, then

$$\|\alpha h_2 - \alpha h_1\| \ge \|(h_2 - h_1)a/q\| - \|(h_2 - h_1)\beta\| \ge 1/q - 1/2q = 1/2q$$

since $(h_2 - h_1)a \neq 0 \pmod{q}$. It then follows from Lemma 1.4 that

$$\sum_{h=1}^{H} \min\left\{N, \frac{1}{\|\alpha h\|}\right\} \le \sum_{k=0}^{\lfloor 2H/q \rfloor} \sum_{h=k \lfloor q/2 \rfloor+1}^{(k+1)\lfloor q/2 \rfloor} \min\left\{N, \frac{1}{\|\alpha h\|}\right\} \le 6(1+2H/q)(N+2q)\log N. \qquad \Box$$

Proof of Lemma 1.4. Without loss of generality we may assume that each $\alpha_{\ell} \in [-1/2, 1/2]$ and that

$$S^{+} = \sum_{\substack{1 \le \ell \le L \\ \alpha_{\ell} \ge 0}} \min \left\{ N, \frac{1}{\|\alpha_{\ell}\|} \right\} \ge \frac{1}{2} \sum_{\ell=1}^{L} \min \left\{ N, \frac{1}{\|\alpha_{\ell}\|} \right\}.$$

Relabeling the non-negative α_{ℓ} as $0 \leq \alpha_1 < \alpha_2 < \cdots < \alpha_K$ and noting that $\alpha_k \geq (k-1)/M$ for $k = 1, \ldots, K$, we see that

$$S^{+} \leq \sum_{k=0}^{K-1} \min\left\{N, \frac{M}{k}\right\} = \sum_{k=0}^{\lfloor M/N \rfloor} N + \sum_{M/N < k < K} \frac{M}{k} \leq (N+M) + 2M \log N.$$

In the next two sections we shall prove two standard facts about squares, these results will then be used in the proceeding section to give a proof (due to Ben Green) of a result of Sárközy and Furstenberg on the existence of a square difference in any subset of \mathbf{Z} of positive upper density.

2. Heilbronn property

As a first application of Weyl's inequality we now prove a quantitative version of the fact that the squares form a Heilbronn set.

Definition 2.1 (Heilbronn set). We say that *H* is a Heilbronn set if given any $\alpha \in \mathbf{R}$ and $\varepsilon > 0$ there exists $h \in H$ such that $\|\alpha h\| \leq \varepsilon$.

Theorem 2.2. For all sufficiently large $M \in \mathbf{N}$ and $\alpha \in \mathbf{R}$ there exists $1 \leq q \leq M$ such that $\|\alpha q^2\| \leq M^{-1/10}$.

We begin with the following elementary lemma.

Lemma 2.3 (Dirichlet). Let $\alpha \in \mathbf{R}$ and $M \in \mathbf{N}$. Then there exists $1 \leq q \leq M$ such that $\|\alpha q\| \leq M^{-1}$.

Proof. Of the reals $\alpha, 2\alpha, \ldots, (M+1)\alpha$, two clearly lie within M^{-1} of each other (mod 1). Thus there exists $j, k \in \mathbb{N}$ with $j \neq k$ such that $||(k-j)\alpha|| \leq M^{-1}$. Set q = |k-j|.

Lemma 2.4. Let $A \subseteq \mathbb{Z}_N$ with |A| = M. If L is even and $A \cap (-L, L] = \emptyset$, then there exists $r \in \mathbb{Z}_N$ with $0 < |r| \le N^2/L^2$ such that $|\widehat{1}_A(r)| \ge LM/2N$, where |r| denotes the distance from r to the nearest integer multiple of N.

Proof of Theorem 2.2. It suffices to establish the result for $\alpha \in \mathbf{Q}$. Our proof will be by contradiction. We therefore assume that $\alpha = a/N$ and that the conclusion of the theorem is false.

If we set $A = \{a, 2^2 a, \dots, M^2 a\}$ and $L = 2\lfloor NM^{-1/10}/2 \rfloor$, then $A \cap (-L, L] = \emptyset$ and it follows from Lemma 2.4 that there exists r with $0 < |r| \le 2M^{1/5}$ such that $|\widehat{1}_A(r)| \ge M^{9/10}/4$. However,

$$\widehat{1_A}(r) = \sum_{m=1}^M e^{2\pi i (-\alpha r)m^2}$$

is a Weyl sum, and by Dirichlet (Lemma 2.3) there exists $1 \le q \le M$ such that $|(-\alpha r) - a/q| \le 1/qM$. Therefore if $M^{1/4} \le q \le M$ it follows from Weyl's inequality that $|\widehat{1}_A(r)| \le CM^{7/8} \log M$. Hence we must have $1 \le q \le M^{1/4}$, but in this case if follows immediately that

$$\|\alpha(rq)^2\| \le |r|q/M \le 2M^{-11/20},$$

a contradiction.

Proof of Lemma 2.4. Let I = (-L/2, L/2]. It then follows that $A \cap (I - I) = \emptyset$ and

$$\frac{1}{N}\sum_{r=0}^{N-1}|\widehat{1}_{I}(r)|^{2}\widehat{1}_{A}(r) = \sum_{n=0}^{N-1}1_{I}*1_{I}(n)1_{A}(n) = 0,$$

from which we can conclude that

$$\frac{1}{N}\sum_{r\neq 0}|\widehat{1_{I}}(r)|^{2}|\widehat{1_{A}}(r)| \geq \frac{1}{N}|\widehat{1_{I}}(0)|^{2}|\widehat{1_{A}}(0)| = \frac{L^{2}M}{N}$$

But it follows from Lemma 1.2 that

$$|\widehat{1}_{I}(r)| \le \min\left\{L, \frac{1}{2\|r/N\|}\right\} = \min\left\{L, \frac{N}{2|r|}\right\}.$$

Hence

$$\begin{split} \frac{1}{N} \sum_{r \neq 0} |\widehat{1_{I}}(r)|^{2} |\widehat{1_{A}}(r)| &\leq \max_{0 < |r| \leq N^{2}/L^{2}} |\widehat{1_{A}}(r)| \ \frac{1}{N} \sum_{r=0}^{N-1} |\widehat{1_{I}}(r)|^{2} + \frac{M}{N} \sum_{|r| \geq N^{2}/L^{2}} \frac{N^{2}}{4|r|^{2}} \\ &\leq L \max_{0 < |r| \leq N^{2}/L^{2}} |\widehat{1_{A}}(r)| + \frac{ML^{2}}{2N} \end{split}$$

and we must conclude that

$$\max_{0 < |r| \le N^2/L^2} |\widehat{\mathbf{1}_A}(r)| \ge \frac{ML}{2N}.$$

NEIL LYALL

3. SUMS OF SQUARES

For $k, M \in \mathbf{N}$ we define

$$r_{2k}(M) = \#\{(m_1, \dots, m_k, n_1, \dots, n_k) \in [1, M]^{2k} : m_1^2 + \dots + m_k^2 = n_1^2 + \dots + n_k^2\}.$$

The main objective of this section is to establish the following result.

Theorem 3.1. If $k \ge 3$ then there exists a constant $c_0 > 0$ such that $r_{2k}(M) \le c_0 M^{2k-2}$.

In actual fact $r_{2k}(M) \sim M^{2k-2}$ when $k \geq 3$, but we content ourselves with establishing upper bounds only. We begin with the observation that the following estimate holds for $r_4(M)$.

Lemma 3.2. For any $\eta > 0$ there exists a constant $c_{\eta} > 0$ such that $r_4(M) \leq c_{\eta} M^{2+\eta}$.

Proof. We note that

$$r_4(M) = \sum_{\ell=-M^2}^{M^2} \#\{(m,n) \in [1,M] \mid m^2 - n^2 = \ell\}^2 \le 2M^2 + 4\sum_{\ell=1}^{M^2} d(\ell)^2,$$

where $d(\ell)$ denotes the number of divisors of ℓ . The result then follows once we recall the basic fact that for every fixed $\eta > 0$,

$$\lim_{\ell \to \infty} \frac{d(\ell)}{\ell^{\eta}} = 0 \qquad \left(\iff \quad r_2(M) \le c_\eta M^\eta \right)$$

This is easy to verify; since $f(\ell) = d(\ell)/\ell^{\eta}$ is multiplicative it suffice to prove that $\lim_{p^k \to \infty} f(p^k) = 0$ as p^k runs through the sequence of all prime powers. We leave the details the reader.

It is easy to see that the argument above can also be applied to establish that $r_{2k}(M) \leq c_{\eta}M^{2k-2+\eta}$ for every $\eta > 0$ when $k \geq 3$. In order to obtain the desired stronger result (Theorem 3.1) we will make use of estimates, on specific major and minor arcs, for the Weyl sum

$$S_M(\alpha) = \sum_{m=1}^M e^{2\pi i m^2 \alpha}.$$

To see how the behavior of these sums relates to the size of $r_{2k}(M)$ we use the fact that

$$\int_0^1 e^{2\pi i n\alpha} d\alpha = \begin{cases} 1 \text{ if } n = 0\\ 0 \text{ if } n \in \mathbf{Z} \setminus \{0\} \end{cases}$$

from which it is then easy to see that

$$r_{2k}(M) = \sum_{1 \le m_j, n_j \le M} \int_0^1 e^{2\pi i (m_1^2 + \dots + m_k^2 - n_1^2 - \dots - n_k^2)\alpha} d\alpha = \int_0^1 |S_M(\alpha)|^{2k} d\alpha.$$

3.1. The major and minor arcs. Informally one refers to the points in [0,1] that are close to rationals a/q with small denominators as the major arcs and denotes them by $\mathbf{M}_{a/q}$. The remaining points are referred to as the minor arcs and are denoted by \mathfrak{m} .

We recall that it follows from the Dirichlet principle (Lemma 2.3) that for every $\alpha \in [0, 1]$ there exists $1 \le q \le M^{2-1/10}$ and $1 \le a < q$ with (a, q) = 1 such that $|\alpha - a/q| \le 1/qM^{2-1/10}$.

We now make our informal definition more precise.

Definition 3.3 (Major arcs). The major arcs are defined to be

$$\mathfrak{M} = igcup_{1 \leq q \leq M^{1/10}} igcup_{\substack{1 \leq a < q \ (a,q) = 1}} \mathbf{M}_{a/q} \quad \cup \quad \mathbf{M}_{0/1}$$

where for $1 \le a < q$ with (a,q) = 1 (and a = 0, q = 1) we define

$$\mathbf{M}_{a/q} = \left\{ \alpha : \left| \alpha - \frac{a}{q} \right| \le \frac{1}{qM^{2-1/10}} \right\}.$$

It is easy to see that $|\mathfrak{M}| \leq M^{-2+1/5}$. We further make the observation that the major arcs are in fact a union of (necessarily short) pairwise disjoint intervals.

Lemma 3.4. If $a/q \neq a'/q'$ with $1 \leq q, q' \leq M^{1/10}$, then $\mathbf{M}_{a/q} \cap \mathbf{M}_{a'/q'} = \emptyset$.

Proof. Suppose that $\mathbf{M}_{a/q} \cap \mathbf{M}_{a'/q'} \neq \emptyset$. Using the fact that $aq' - a'q \neq 0$, we see that

$$\frac{2}{M^{2-1/10}} \ge \left|\frac{a}{q} - \frac{a'}{q'}\right| = \left|\frac{aq' - a'q}{qq'}\right| \ge \frac{1}{qq'} \ge \frac{1}{M^{1/5}},$$

a contradiction.

Definition 3.5 (Minor arcs). The minor arcs \mathfrak{m} are simply defined to be $[0,1] \setminus \mathfrak{M}$.

Proposition 3.6 (Minor arc estimate). Let $M \in \mathbf{N}$. If $\alpha \in \mathfrak{m}$, then $|S_M(\alpha)| \leq CM^{1-1/40}$.

Corollary 3.7. Let $k, M \in \mathbb{N}$. If $k \geq 3$, then

$$\int_{\mathfrak{m}} |S_M(\alpha)|^{2k} d\alpha \le C M^{2k-2} M^{-1/40}$$

Proof. It then follows Proposition 3.6 and Lemma 3.2, with $\eta = 1/40$, that

$$\int_{\mathfrak{m}} |S_M(\alpha)|^{2k} d\alpha \leq \sup_{\alpha \in \mathfrak{m}} |S_M(\alpha)|^{2k-4} \int_0^1 |S_M(\alpha)|^4 d\alpha$$
$$\leq CM^{2k-4} M^{-(k-2)/20} M^2 M^{1/40}$$
$$\leq CM^{2k-2} M^{-1/40}.$$

Proof of Proposition 3.6. It follows from the Dirichlet principle and the fact that $\alpha \in \mathfrak{m}$ that there exists a reduced fraction a/q with

$$M^{1/10} \le q \le M^{2-1/10}$$

such that $|\alpha - a/q| \leq q^{-2}$. It therefore follows from the Weyl inequality that

$$|S_M(\alpha)| \le 30M^{1-1/20} \log M \le CM^{1-1/40}.$$

In order to prove Theorem 3.1 it therefore suffice to establish the following estimate.

Proposition 3.8 (Major arc estimate). If $\alpha \in \mathbf{M}_{a/q}$ with $1 \leq q \leq M^{1/10}$, then

$$|S_M(\alpha)| \le CMq^{-1/2}(1+M^2|\alpha-a/q|)^{-1/2}.$$

Corollary 3.9. If $\alpha \in \mathfrak{M}$, then

$$\int_{\mathfrak{M}} |S_M(\alpha)|^{2k} \, d\alpha \le CM^{2k-2}.$$

Proof. It follows from Propositon 3.8 that on a fixed major arc

$$\int_{\mathbf{M}_{a/q}} |S_M(\alpha)|^{2k} \, d\alpha \le CM^{2k} q^{-k} \int_{|\beta| \le 1/qM^{2-1/10}} (1+M^2|\beta|)^{-k} \, d\beta$$
$$\le CM^{2k-2} q^{-k} \int_{-\infty}^{\infty} (1+|\beta|)^{-k} \, d\beta$$
$$\le CM^{2k-2} q^{-k}.$$

Therefore

$$\int_{\mathfrak{M}} |S_M(\alpha)|^{2k} \, d\alpha \le CM^{2k-2} \sum_{q=1}^{M^{1/10}} \sum_{a=0}^{q-1} q^{-k} \le CM^{2k-2} \sum_{q=1}^{\infty} q^{-k+1} \le CM^{2k-2}.$$

Theorem 3.1 now follows immediately from Corollaries 3.7 and 3.9. We are thus left with the task of proving Proposition 3.8, key to this is the following approximation.

Proposition 3.10. If $\alpha \in \mathbf{M}_{a/q}$ with $1 \leq q \leq M^{1/10}$, then

(2)
$$S_M(\alpha) = q^{-1}S(a,q)I_M(\alpha - a/q) + O(M^{1/5}),$$

where

$$S(a,q) := \sum_{r=0}^{q-1} e^{2\pi i a r^2/q} \quad and \quad I_M(\beta) := \int_0^M e^{2\pi i \beta x^2} dx$$

Proof. We can write $\alpha = a/q + \beta$ where $|\beta| \le 1/qM^{2-1/10}$ and $1 \le q \le M^{1/10}$. We can also write each $1 \le m \le M$ uniquely as m = nq + r with $0 \le r < q$ and $0 \le n \le M/q$. It then follows that

$$S_M(\alpha) = \sum_{r=0}^{q-1} \sum_{n=0}^{M/q} e^{2\pi i (a/q+\beta)(nq+r)^2} + O(q)$$
$$= \sum_{r=0}^{q-1} e^{2\pi i a r^2/q} \sum_{n=0}^{M/q} e^{2\pi i \beta (nq+r)^2} + O(q).$$

Since

$$\left| e^{2\pi i (nq+r)^2 \beta} - e^{2\pi i n^2 q^2 \beta} \right| \le \left| e^{2\pi i (2nqr+r^2)\beta} - 1 \right| \le C \frac{M}{q} q^2 \frac{1}{qM^{2-1/10}} \le CM^{-1+1/10},$$

and

$$\begin{split} \left|\sum_{n=0}^{M/q} e^{2\pi i n^2 q^2 \beta} - \int_0^{M/q} e^{2\pi i x^2 q^2 \beta} dx\right| &\leq \sum_{n=0}^{M/q} \int_n^{n+1} \left| e^{2\pi i n^2 q^2 \beta} - e^{2\pi i x^2 q^2 \beta} \right| dx \\ &\leq \sum_{n=0}^{M/q} 2\pi (2n+1) q^2 |\beta| \\ &\leq 20 M^{1/10}, \end{split}$$

it follows that

$$\left|S_M(\alpha) - \frac{1}{q}S(a,q)I_M(\beta)\right| \le CM^{1/5}.$$

Proposition 3.8 then follows almost immediately from the two basic lemmas below.

Lemma 3.11 (Gauss sum estimate). If (a,q) = 1, then $|S(a,q)| \le \sqrt{2q}$. More precisely,

$$|S(a,q)| = \begin{cases} \sqrt{q} & \text{if } q \text{ odd} \\ \sqrt{2q} & \text{if } q \equiv 0 \mod 4 \\ 0 & \text{if } q \equiv 2 \mod 4 \end{cases}$$

Lemma 3.12 (Oscillatory integral estimate). For any $\lambda \ge 0$

$$\left|\int_{0}^{1} e^{2\pi i\lambda x^{2}} dx\right| \leq C(1+\lambda)^{-1/2}$$

Proof of Proposition 3.8. Lemmas 3.11 and 3.12 imply that the main term in (2)

$$q^{-1}S(a,q)I_M(\alpha - a/q) \le Mq^{-1/2}(1 + M^2|\alpha - a/q|)^{-1/2},$$

and since $q^{-1/2} \ge M^{-1/20}$ and $M^2(|\alpha - a/q| \le M^{1/10}$, it follows that

$$Mq^{-1/2}(1+M^2|\alpha-a/q|)^{-1/2} \ge M^{9/10} \gg M^{1/5}.$$

Proof of Lemma 3.11. Squaring-out S(a,q) we obtain

$$|S(a,q)|^{2} = \sum_{s=0}^{q-1} \sum_{r=0}^{q-1} e^{2\pi i a (r^{2} - s^{2})/q}.$$

Letting r = s + t the we see that

$$|S(a,q)|^{2} = \sum_{t=0}^{q-1} e^{2\pi i a t^{2}/q} \sum_{s=0}^{q-1} e^{2\pi i a (2st)/q} \le \sum_{t=0}^{q-1} \left| \sum_{s=0}^{q-1} e^{2\pi i a (2st)/q} \right|.$$

The result then follows since (a, q) = 1 and

$$\sum_{s=0}^{q-1} e^{2\pi i a(2st)/q} = \begin{cases} q & \text{if } 2at \equiv 0 \mod q \\ 0 & \text{otherwise} \end{cases} .$$

Proof of Lemma 3.12. We need only consider the case when $\lambda \geq 1$. We write

$$\int_0^1 e^{2\pi i\lambda x^2} dx = \int_0^{\lambda^{-1/2}} e^{2\pi i\lambda x^2} dx + \int_{\lambda^{-1/2}}^1 e^{2\pi i\lambda x^2} dx =: I_1 + I_2.$$

It is then easy to see that $|I_1| \leq \lambda^{-1/2}$, while integration by parts gives that

$$|I_2| = \left| \int_{\lambda^{-1/2}}^1 \frac{1}{4\pi i \lambda x} \left(\frac{d}{dx} e^{2\pi i \lambda x^2} \right) dx \right|$$

$$\leq \frac{1}{4\pi \lambda} \left| \left[\frac{1}{x} e^{2\pi i \lambda x^2} \right]_{\lambda^{-1/2}}^1 + \int_{\lambda^{-1/2}}^1 \frac{1}{x^2} e^{2\pi i \lambda x^2} dx \right|$$

$$\leq C \lambda^{-1/2}.$$

4. The Sárközy-Furstenberg theorem

Theorem 4.1 (Sárközy and Furstenberg). Let $\delta > 0$. There exists an absolute constant C > 0 such that if $N \ge \exp(C\delta^{-5/2})$ and $A \subseteq [1, N]$ with $|A| = \delta N$, then A necessarily contains two distinct elements a and a' whose difference a - a' is a perfect square.

Let $B = A \cap [0, N/2]$, we may assume without loss in generality that $|B| \ge \delta N/2$. If we let

$$S = \{d^2 : 1 \le d \le (N/2)^{1/2}\}$$

then we see that in order to prove Theorem 4.1 it suffices to show that

$$\#\{m \in A, \ell \in B : m - \ell \in S\} \ge 1.$$

To do so we consider the following bilinear expression

$$\Lambda(g,h) = \sum_{m,\ell \in \mathbf{Z}_N} g(\ell)h(m)\mathbf{1}_S(m-\ell) = \frac{1}{N}\sum_{r \in \mathbf{Z}_N} \widehat{g}(r)\widehat{h}(-r)\widehat{\mathbf{1}_S}(r).$$

The significance of this expression is that

$$\Lambda(1_B, 1_A) = \#\{m \in A, \ell \in B : m - \ell \in S\}.$$

In the proof of Theorem 4.1 it shall be convenient to consider functions of mean value zero.

Definition 4.2 (Balanced function). We define the *balanced* function of A to be $f_A = 1_A - \delta$.

It is clear from the definition of f_A that $\widehat{f_A}(r) = \widehat{1_A}(r)$ for all $r \in \mathbb{Z}_N \setminus \{0\}$, while (in contrast to the fact that $\widehat{1_A}(0) = |A|$) the fact that f_A has mean value zero implies that $\widehat{f_A}(0) = 0$.

Decomposing $1_A = \delta + f_A$ we obtain that

$$\Lambda(1_B, 1_A) = \delta|B||S| + \Lambda(1_B, f_A),$$

which is instructive since $\delta |B||S|$ is the number of square differences (not exceeding N/2 with at least one point in B) that we would expect A to contain if it where random, obtained by selecting each natural number from 1 to N independently with probability δ .

Definition 4.3 (ε -uniformity). We say that A is ε -uniform if $|\widehat{f}_A(r)| \leq \varepsilon N$ for all $r \in \mathbf{Z}_N$.

Lemma 4.4 (Quasirandomness). If A is ε -uniform with $\varepsilon = \delta^{7/2}/(2^{13}c_0)^{1/2}$, then $\Lambda(1_B, 1_A) \ge \delta^2 N^{3/2}/2^{5/2}$.

Proof. We will show that under this regularity assumption on A the term $\Lambda(1_B, f_A)$ is in fact an *error* term and satisfies the estimate

$$\Lambda(1_B, f_A) \leq \delta^2 N^{3/2} / 2^{5/2} \leq \delta |B| |S| / 2.$$

NEIL LYALL

To this end we first note that from Hölder's inequality it follows that

$$\begin{split} \Lambda(1_B, f_A) &| \leq \frac{1}{N} \sum_{r \in \mathbf{Z}_N} |\widehat{1_B}(r)| |\widehat{f_A}(r)| |\widehat{1_S}(r)| \\ &\leq \|\widehat{f_A}\|_3 \|\widehat{1_B}\|_2 \|\widehat{1_S}\|_6 \\ &\leq \max_{r \in \mathbf{Z}_N} |\widehat{f_A}(r)|^{1/3} \|\widehat{f_A}\|_2^{2/3} \|\widehat{1_B}\|_2 r_6 ((N/2)^{1/2})^{1/6} \end{split}$$

where $\|g\|_p^p = \frac{1}{N} \sum_{r \in \mathbf{Z}_N} |g(r)|^p$. Plancherel's identity implies that $\|\widehat{f_A}\|_2 \leq |A|^{1/2}$ and $\|\widehat{1_B}\|_2 = |B|^{1/2} \leq |A|^{1/2}$ while Theorem 3.1 gives the estimate $r_6((N/2)^{1/2}) \leq c_0 N^2/4$, we can therefore conclude that

$$|\Lambda(1_B, f_A)| \le c_0^{1/6} (\varepsilon/2)^{1/3} \delta^{5/6} N^{3/2}.$$

Lemma 4.5 (Additive structure). If A is <u>not</u> ε -uniform with $\varepsilon = \delta^{7/2}/(2^{13}c_0)^{1/2}$, then there exists a square-difference arithmetic progression P with $|P| \ge N^{1/30}/4\pi$ such that $|A \cap P| \ge (\delta + \varepsilon/8)|P|$.

Proof. Since A is not ε -uniform we know there exists $r \neq 0$ such that $|\widehat{1}_A(r)| \geq \varepsilon N$. It follows from Theorem 2.2, with $\alpha = r/N$, that there exists $1 \leq d \leq N^{1/3}$ such that $||d^2r/N|| \leq N^{-1/30}$, therefore if we let P_0 be the square-difference arithmetic progression $d^2, 2d^2, \ldots, Ld^2$ in \mathbf{Z}_N with $L = \lfloor N^{1/30}/4\pi \rfloor$, it is easy to see that

$$|\widehat{\mathbf{1}_{P_0}}(r)| \ge L - \sum_{\ell=1}^{L} \left| e^{2\pi i \ell d^2 r/N} - 1 \right| \ge L \left(1 - 2\pi L \left\| \frac{d^2 r}{N} \right\| \right) \ge L/2.$$

Since f_A has mean value zero it then follows that

$$\sum_{m \in \mathbf{Z}_N} \left(f_A * 1_{P_0}(m) \right)_+ = \frac{1}{2} \sum_{m \in \mathbf{Z}_N} |f_A * 1_{P_0}(m)| \ge \frac{1}{2} |\widehat{f_A}(r) \widehat{1_{P_0}}(r)| \ge \frac{\varepsilon |P_0|N}{4}$$

and hence that there exists $m \in \mathbf{Z}_N$ such that

$$f_A * 1_{P_0}(m) = |A \cap (m - P_0)| - \delta |P_0| \ge \varepsilon |P_0|/4.$$

To complete the proof we note that since $Ld^2 \leq LN^{2/3} \leq N^{7/10}$, for all but at most $N^{7/10}$ values m the \mathbb{Z}_N -progression $P := m - P_0$ is in fact a genuine square-difference arithmetic progression in [1, N]. Since the sum over these "bad" values of m,

$$\sum_{\text{bad" } m \in \mathbf{Z}_N} |f_A * 1_{P_0}(m)| \le L N^{7/10} \le \frac{\varepsilon |P_0| N}{8}$$

whenever $\varepsilon \geq 8/N^{3/10}$ (as it surely will be) the existence of a "good" $m \in \mathbf{Z}_N$ such that

$$f_A * 1_{P_0}(m) = |A \cap (m - P_0)| - \delta |P_0| \ge \varepsilon |P_0|/8$$

is guaranteed and the result follows.

Proof of Theorem 4.1. We assume that A does not contain a non-trivial square difference. It then follows from Lemmas 4.4 and 4.5 that there exists a constant c > 0 and a square-difference arithmetic progression P_1 with $|P_1| \ge cN^{1/30}$ such that $|A \cap P_1| \ge (\delta + c\delta^{7/2})|P_1|$. If we pass to this subprogression and rescale it to have common difference 1, we obtain a set $A_1 \subseteq [1, N_1]$ with $|A_1| = \delta_1 N_1$ where $N_1 \ge cN^{1/30}$ and $\delta_1 \ge \delta + c\delta^2$ that still does not contain a square difference. After iterating this argument $k = 2/c\delta^{5/2}$ times the density increases beyond 1, that is $\delta_k > 1$, an absurdity if N_k also remains large. Since $\log N_k \ge$ $30^{-k} \log N - c'$, for some c' > 0, this will be achieved if $\log N \ge e^{C\delta^{-5/2}}$ for some suitably large constant C > 0.

References

- H. FURSTENBERG, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. d'Analyse Math, 71 (1977), pp. 204–256.
- [2] W. T. GOWERS, Additive and Combinatorial Number Theory, www.dpmms.cam.ac.uk/~wtg10/addnoth.notes.dvi.
- [3] B. GREEN, On arithmetic structures in dense sets of integers, Duke Math. Jour., 114, (2002) (2), 215–238.
- [4] H. L. MONTGOMERY, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conference Series in Mathematics, 84.
- [5] A. SÁRZÖZY, On difference sets of sequences of integers III, Acta Math. Acad. Sci. Hungar. 31 (1978), pp. 355-386.