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1. The Weyl Inequality

A Weyl sum is an exponential sum of the form

(1) S =
N∑
n=1

e2πiP (n)

where P (x) is a polynomial with real coefficients. The purpose of this section is to derive Weyl’s estimates
for these sums in the special case when P (x) = αx2.

Theorem 1.1 (The Weyl inequality for quadratic monomials). Let a ∈ Z and q ∈ N with (a, q) = 1 and
N ∈ N with N ≥ 2. If α ∈ R with |α− a/q| ≤ q−2, then∣∣∣ N∑

n=1

e2πiαn2
∣∣∣ ≤ 20N logN(1/q + 1/N + q/N2)1/2.

We remark that this gives a non-trivial estimate whenever Nη ≤ q ≤ N2−ε for some 0 < η, ε < 1. We
begin with the following elementary lemma.

Lemma 1.2. Let α ∈ R. Then for all N ∈ N,∣∣∣ N∑
n=1

e2πiαn
∣∣∣ ≤ min

{
N,

1
2‖α‖

}
where ‖α‖ is the distance from α to the nearest integer.

Proof. If α = 0, then the sum is N . If α 6= 0, then∣∣∣ N∑
n=1

e2πiαn
∣∣∣ ≤ |1− e2πiαN |

|1− e2πiα|
≤ | sinπαN |
| sinπα|

≤ 1
2‖α‖

. �

The method of Weyl differencing allows us to treat higher degree polynomials, the idea is simply to
square-out the Weyl sum (1);

|S|2 =
N∑
n=1

N∑
m=1

e2πi[P (m)−P (n)]

=
N∑
n=1

N−n∑
h=1−n

e2πi[P (n+h)−P (n)]

= N +
N−1∑
h=1

N−h∑
n=1

e2πi[P (n+h)−P (n)] +
−1∑

h=1−N

N∑
n=1−h

e2πi[P (n+h)−P (n)]

= N + 2 Re
N−1∑
h=1

N−h∑
n=1

e2πi[P (n+h)−P (n)]

≤ N + 2
N−1∑
h=1

∣∣∣∣∣
N−h∑
n=1

e2πi[P (n+h)−P (n)]

∣∣∣∣∣ .
Since P (x+ h)−P (x) is a polynomial of degree one less than that of P (x), the possibility of inducting on
the degree of P arises.
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In Theorem 1.1 we are considering Weyl sums with P (x) = αx2 so in this case the difference P (x+h)−
P (x) = 2xh+ h2, and it follows from Weyl differencing and Lemma 1.2 that

|S|2 ≤ N + 2
N−1∑
h=1

∣∣∣N−h∑
n=1

e2πi(2αh)n
∣∣∣

≤ N + 2
N−1∑
h=1

min
{
N − h, 1

‖2αh‖

}
≤ N + 2

2N∑
h=1

min
{
N,

1
‖αh‖

}
.

Theorem 1.1 therefore follows immediately from the following proposition (with H = 2N).

Proposition 1.3. Let a ∈ Z and q ∈ N with (a, q) = 1, N ∈ N with N ≥ 2, and H ∈ N. If α ∈ R with
|α− a/q| ≤ q−2, then

H∑
h=1

min
{
N,

1
‖αh‖

}
≤ 24 logN(N + q +H +HN/q).

The proof of this proposition follows from the lemma below together with the key observation that if
0 < |h2 − h1| ≤ q/2, then ‖αh2 − αh1‖ ≥ 1/2q.

Lemma 1.4. Let L,M,N ∈ N with N ≥ 2 and L ≤ M . If α1, . . . , αL ∈ R with ‖α` − α`′‖ ≥ M−1

whenever ` 6= `′, then
L∑
`=1

min
{
N,

1
‖α`‖

}
≤ 6(N +M) logN.

Proof of Proposition 1.3. Write α = a/q + β. We first note that if 0 < |h2 − h1| ≤ q/2, then

‖αh2 − αh1‖ ≥ ‖(h2 − h1)a/q‖ − ‖(h2 − h1)β‖ ≥ 1/q − 1/2q = 1/2q

since (h2 − h1)a 6= 0 (mod q). It then follows from Lemma 1.4 that

H∑
h=1

min
{
N,

1
‖αh‖

}
≤
b2H/qc∑
k=0

(k+1)bq/2c∑
h=kbq/2c+1

min
{
N,

1
‖αh‖

}
≤ 6(1 + 2H/q)(N + 2q) logN. �

Proof of Lemma 1.4. Without loss of generality we may assume that each α` ∈ [−1/2, 1/2] and that

S+ =
∑

1≤`≤L
α`≥0

min
{
N,

1
‖α`‖

}
≥ 1

2

L∑
`=1

min
{
N,

1
‖α`‖

}
.

Relabeling the non-negative α` as 0 ≤ α1 < α2 < · · · < αK and noting that αk ≥ (k − 1)/M for
k = 1, . . . ,K, we see that

S+ ≤
K−1∑
k=0

min
{
N,

M

k

}
=
bM/Nc∑
k=0

N +
∑

M/N<k<K

M

k
≤ (N +M) + 2M logN. �

In the next two sections we shall prove two standard facts about squares, these results will then be used
in the proceeding section to give a proof (due to Ben Green) of a result of Sárközy and Furstenberg on the
existence of a square difference in any subset of Z of positive upper density.

2. Heilbronn property

As a first application of Weyl’s inequality we now prove a quantitative version of the fact that the
squares form a Heilbronn set.

Definition 2.1 (Heilbronn set). We say that H is a Heilbronn set if given any α ∈ R and ε > 0 there
exists h ∈ H such that ‖αh‖ ≤ ε.
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Theorem 2.2. For all sufficiently large M ∈ N and α ∈ R there exists 1 ≤ q ≤ M such that ‖αq2‖ ≤
M−1/10.

We begin with the following elementary lemma.

Lemma 2.3 (Dirichlet). Let α ∈ R and M ∈ N. Then there exists 1 ≤ q ≤M such that ‖αq‖ ≤M−1.

Proof. Of the reals α, 2α, . . . , (M + 1)α, two clearly lie within M−1 of each other (mod 1). Thus there
exists j, k ∈ N with j 6= k such that ‖(k − j)α‖ ≤M−1. Set q = |k − j|. �

Lemma 2.4. Let A ⊆ ZN with |A| = M . If L is even and A ∩ (−L,L] = ∅, then there exists r ∈ ZN with
0 < |r| ≤ N2/L2 such that |1̂A(r)| ≥ LM/2N , where |r| denotes the distance from r to the nearest integer
multiple of N .

Proof of Theorem 2.2. It suffices to establish the result for α ∈ Q. Our proof will be by contradiction. We
therefore assume that α = a/N and that the conclusion of the theorem is false.

If we set A = {a, 22a, . . . ,M2a} and L = 2bNM−1/10/2c, then A ∩ (−L,L] = ∅ and it follows from
Lemma 2.4 that there exists r with 0 < |r| ≤ 2M1/5 such that |1̂A(r)| ≥M9/10/4. However,

1̂A(r) =
M∑
m=1

e2πi(−αr)m2

is a Weyl sum, and by Dirichlet (Lemma 2.3) there exists 1 ≤ q ≤ M such that |(−αr) − a/q| ≤ 1/qM .
Therefore if M1/4 ≤ q ≤M it follows from Weyl’s inequality that |1̂A(r)| ≤ CM7/8 logM . Hence we must
have 1 ≤ q ≤M1/4, but in this case if follows immediately that

‖α(rq)2‖ ≤ |r|q/M ≤ 2M−11/20,

a contradiction. �

Proof of Lemma 2.4. Let I = (−L/2, L/2]. It then follows that A ∩ (I − I) = ∅ and

1
N

N−1∑
r=0

|1̂I(r)|21̂A(r) =
N−1∑
n=0

1I ∗ 1I(n)1A(n) = 0,

from which we can conclude that

1
N

∑
r 6=0

|1̂I(r)|2|1̂A(r)| ≥ 1
N
|1̂I(0)|2|1̂A(0)| = L2M

N
.

But it follows from Lemma 1.2 that

|1̂I(r)| ≤ min
{
L,

1
2‖r/N‖

}
= min

{
L,

N

2|r|

}
.

Hence

1
N

∑
r 6=0

|1̂I(r)|2|1̂A(r)| ≤ max
0<|r|≤N2/L2

|1̂A(r)| 1
N

N−1∑
r=0

|1̂I(r)|2 +
M

N

∑
|r|≥N2/L2

N2

4|r|2

≤ L max
0<|r|≤N2/L2

|1̂A(r)|+ ML2

2N

and we must conclude that

max
0<|r|≤N2/L2

|1̂A(r)| ≥ ML

2N
. �
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3. Sums of Squares

For k,M ∈ N we define

r2k(M) = #{(m1, . . . ,mk, n1, . . . , nk) ∈ [1,M ]2k : m2
1 + · · ·+m2

k = n2
1 + · · ·+ n2

k}.

The main objective of this section is to establish the following result.

Theorem 3.1. If k ≥ 3 then there exists a constant c0 > 0 such that r2k(M) ≤ c0M2k−2.

In actual fact r2k(M) ∼ M2k−2 when k ≥ 3, but we content ourselves with establishing upper bounds
only. We begin with the observation that the following estimate holds for r4(M).

Lemma 3.2. For any η > 0 there exists a constant cη > 0 such that r4(M) ≤ cηM2+η.

Proof. We note that

r4(M) =
M2∑

`=−M2

#{(m,n) ∈ [1,M ] |m2 − n2 = `}2 ≤ 2M2 + 4
M2∑
`=1

d(`)2,

where d(`) denotes the number of divisors of `. The result then follows once we recall the basic fact that
for every fixed η > 0,

lim
`→∞

d(`)
`η

= 0
(
⇐⇒ r2(M) ≤ cηMη

)
.

This is easy to verify; since f(`) = d(`)/`η is multiplicative it suffice to prove that limpk→∞ f(pk) = 0 as
pk runs through the sequence of all prime powers. We leave the details the reader. �

It is easy to see that the argument above can also be applied to establish that r2k(M) ≤ cηM2k−2+η for
every η > 0 when k ≥ 3. In order to obtain the desired stronger result (Theorem 3.1) we will make use of
estimates, on specific major and minor arcs, for the Weyl sum

SM (α) =
M∑
m=1

e2πim2α.

To see how the behavior of these sums relates to the size of r2k(M) we use the fact that∫ 1

0

e2πinαdα =

{
1 if n = 0
0 if n ∈ Z\{0}

,

from which it is then easy to see that

r2k(M) =
∑

1≤mj ,nj≤M

∫ 1

0

e2πi(m2
1+···+m2

k−n
2
1−···−n

2
k)αdα =

∫ 1

0

|SM (α)|2kdα.

3.1. The major and minor arcs. Informally one refers to the points in [0, 1] that are close to rationals
a/q with small denominators as the major arcs and denotes them by Ma/q. The remaining points are
referred to as the minor arcs and are denoted by m.

We recall that it follows from the Dirichlet principle (Lemma 2.3) that for every α ∈ [0, 1] there exists
1 ≤ q ≤M2−1/10 and 1 ≤ a < q with (a, q) = 1 such that |α− a/q| ≤ 1/qM2−1/10.

We now make our informal definition more precise.

Definition 3.3 (Major arcs). The major arcs are defined to be

M =
⋃

1≤q≤M1/10

⋃
1≤a<q
(a,q)=1

Ma/q ∪ M0/1

where for 1 ≤ a < q with (a, q) = 1 (and a = 0, q = 1) we define

Ma/q =
{
α :

∣∣∣α− a

q

∣∣∣ ≤ 1
qM2−1/10

}
.
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It is easy to see that |M| ≤M−2+1/5. We further make the observation that the major arcs are in fact
a union of (necessarily short) pairwise disjoint intervals.

Lemma 3.4. If a/q 6= a′/q′ with 1 ≤ q, q′ ≤M1/10, then Ma/q ∩Ma′/q′ = ∅.

Proof. Suppose that Ma/q ∩Ma′/q′ 6= ∅. Using the fact that aq′ − a′q 6= 0, we see that

2
M2−1/10

≥
∣∣∣a
q
− a′

q′

∣∣∣ =
∣∣∣aq′ − a′q

qq′

∣∣∣ ≥ 1
qq′
≥ 1
M1/5

,

a contradiction. �

Definition 3.5 (Minor arcs). The minor arcs m are simply defined to be [0, 1]\M.

Proposition 3.6 (Minor arc estimate). Let M ∈ N. If α ∈ m, then |SM (α)| ≤ CM1−1/40.

Corollary 3.7. Let k,M ∈ N. If k ≥ 3, then∫
m

|SM (α)|2kdα ≤ CM2k−2M−1/40.

Proof. It then follows Proposition 3.6 and Lemma 3.2, with η = 1/40, that∫
m

|SM (α)|2kdα ≤ sup
α∈m
|SM (α)|2k−4

∫ 1

0

|SM (α)|4 dα

≤ CM2k−4M−(k−2)/20M2M1/40

≤ CM2k−2M−1/40. �

Proof of Proposition 3.6. It follows from the Dirichlet principle and the fact that α ∈ m that there exists
a reduced fraction a/q with

M1/10 ≤ q ≤M2−1/10

such that |α− a/q| ≤ q−2. It therefore follows from the Weyl inequality that

|SM (α)| ≤ 30M1−1/20 logM ≤ CM1−1/40. �

In order to prove Theorem 3.1 it therefore suffice to establish the following estimate.

Proposition 3.8 (Major arc estimate). If α ∈Ma/q with 1 ≤ q ≤M1/10, then

|SM (α)| ≤ CMq−1/2(1 +M2|α− a/q|)−1/2.

Corollary 3.9. If α ∈M, then ∫
M

|SM (α)|2k dα ≤ CM2k−2.

Proof. It follows from Propositon 3.8 that on a fixed major arc∫
Ma/q

|SM (α)|2k dα ≤ CM2kq−k
∫
|β|≤1/qM2−1/10

(1 +M2|β|)−k dβ

≤ CM2k−2q−k
∫ ∞
−∞

(1 + |β|)−k dβ

≤ CM2k−2q−k.

Therefore ∫
M

|SM (α)|2k dα ≤ CM2k−2
M1/10∑
q=1

q−1∑
a=0

q−k ≤ CM2k−2
∞∑
q=1

q−k+1 ≤ CM2k−2. �

Theorem 3.1 now follows immediately from Corollaries 3.7 and 3.9. We are thus left with the task of
proving Proposition 3.8, key to this is the following approximation.
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Proposition 3.10. If α ∈Ma/q with 1 ≤ q ≤M1/10, then

(2) SM (α) = q−1S(a, q)IM (α− a/q) +O(M1/5),

where

S(a, q) :=
q−1∑
r=0

e2πiar2/q and IM (β) :=
∫ M

0

e2πiβx2
dx.

Proof. We can write α = a/q + β where |β| ≤ 1/qM2−1/10 and 1 ≤ q ≤ M1/10. We can also write each
1 ≤ m ≤M uniquely as m = nq + r with 0 ≤ r < q and 0 ≤ n ≤M/q. It then follows that

SM (α) =
q−1∑
r=0

M/q∑
n=0

e2πi(a/q+β)(nq+r)2 +O(q)

=
q−1∑
r=0

e2πiar2/q

M/q∑
n=0

e2πiβ(nq+r)2 +O(q).

Since ∣∣∣e2πi(nq+r)2β − e2πin2q2β
∣∣∣ ≤ ∣∣∣e2πi(2nqr+r2)β − 1

∣∣∣ ≤ CM
q
q2 1
qM2−1/10

≤ CM−1+1/10,

and ∣∣∣M/q∑
n=0

e2πin2q2β −
∫ M/q

0

e2πix2q2βdx
∣∣∣ ≤ M/q∑

n=0

∫ n+1

n

∣∣∣e2πin2q2β − e2πix2q2β
∣∣∣ dx

≤
M/q∑
n=0

2π(2n+ 1)q2|β|

≤ 20M1/10,

it follows that ∣∣∣SM (α)− 1
q
S(a, q)IM (β)

∣∣∣ ≤ CM1/5. �

Proposition 3.8 then follows almost immediately from the two basic lemmas below.

Lemma 3.11 (Gauss sum estimate). If (a, q) = 1, then |S(a, q)| ≤
√

2q. More precisely,

|S(a, q)| =


√
q if q odd
√

2q if q ≡ 0 mod 4
0 if q ≡ 2 mod 4

.

Lemma 3.12 (Oscillatory integral estimate). For any λ ≥ 0∣∣∣∫ 1

0

e2πiλx2
dx
∣∣∣ ≤ C(1 + λ)−1/2.

Proof of Proposition 3.8. Lemmas 3.11 and 3.12 imply that the main term in (2)

q−1S(a, q)IM (α− a/q) ≤Mq−1/2(1 +M2|α− a/q|)−1/2,

and since q−1/2 ≥M−1/20 and M2(|α− a/q| ≤M1/10, it follows that

Mq−1/2(1 +M2|α− a/q|)−1/2 ≥M9/10 �M1/5. �

Proof of Lemma 3.11. Squaring-out S(a, q) we obtain

|S(a, q)|2 =
q−1∑
s=0

q−1∑
r=0

e2πia(r2−s2)/q.

Letting r = s+ t the we see that

|S(a, q)|2 =
q−1∑
t=0

e2πiat2/q

q−1∑
s=0

e2πia(2st)/q ≤
q−1∑
t=0

∣∣∣q−1∑
s=0

e2πia(2st)/q
∣∣∣.
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The result then follows since (a, q) = 1 and
q−1∑
s=0

e2πia(2st)/q =

{
q if 2at ≡ 0 mod q

0 otherwise
. �

Proof of Lemma 3.12. We need only consider the case when λ ≥ 1. We write∫ 1

0

e2πiλx2
dx =

∫ λ−1/2

0

e2πiλx2
dx+

∫ 1

λ−1/2
e2πiλx2

dx =: I1 + I2.

It is then easy to see that |I1| ≤ λ−1/2, while integration by parts gives that

|I2| =
∣∣∣∣∫ 1

λ−1/2

1
4πiλx

( d
dx
e2πiλx2

)
dx

∣∣∣∣
≤ 1

4πλ

∣∣∣∣∣
[

1
x
e2πiλx2

]1

λ−1/2

+
∫ 1

λ−1/2

1
x2

e2πiλx2
dx

∣∣∣∣∣
≤ Cλ−1/2. �

4. The Sárközy-Furstenberg theorem

Theorem 4.1 (Sárközy and Furstenberg). Let δ > 0. There exists an absolute constant C > 0 such that
if N ≥ exp exp(Cδ−5/2) and A ⊆ [1, N ] with |A| = δN , then A necessarily contains two distinct elements
a and a′ whose difference a− a′ is a perfect square.

Let B = A ∩ [0, N/2], we may assume without loss in generality that |B| ≥ δN/2. If we let

S = {d2 : 1 ≤ d ≤ (N/2)1/2}

then we see that in order to prove Theorem 4.1 it suffices to show that

#{m ∈ A, ` ∈ B : m− ` ∈ S} ≥ 1.

To do so we consider the following bilinear expression

Λ(g, h) =
∑

m,`∈ZN

g(`)h(m)1S(m− `) =
1
N

∑
r∈ZN

ĝ(r)ĥ(−r)1̂S(r).

The significance of this expression is that

Λ(1B , 1A) = #{m ∈ A, ` ∈ B : m− ` ∈ S}.

In the proof of Theorem 4.1 it shall be convenient to consider functions of mean value zero.

Definition 4.2 (Balanced function). We define the balanced function of A to be fA = 1A − δ.

It is clear from the definition of fA that f̂A(r) = 1̂A(r) for all r ∈ ZN\{0}, while (in contrast to the fact
that 1̂A(0) = |A|) the fact that fA has mean value zero implies that f̂A(0) = 0.

Decomposing 1A = δ + fA we obtain that

Λ(1B , 1A) = δ|B||S|+ Λ(1B , fA),

which is instructive since δ|B||S| is the number of square differences (not exceeding N/2 with at least one
point in B) that we would expect A to contain if it where random, obtained by selecting each natural
number from 1 to N independently with probability δ.

Definition 4.3 (ε-uniformity). We say that A is ε-uniform if |f̂A(r)| ≤ εN for all r ∈ ZN .

Lemma 4.4 (Quasirandomness). If A is ε-uniform with ε = δ7/2/(213c0)1/2, then Λ(1B , 1A) ≥ δ2N3/2/25/2.

Proof. We will show that under this regularity assumption on A the term Λ(1B , fA) is in fact an error
term and satisfies the estimate

|Λ(1B , fA)| ≤ δ2N3/2/25/2 ≤ δ|B||S|/2.
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To this end we first note that from Hölder’s inequality it follows that

|Λ(1B , fA)| ≤ 1
N

∑
r∈ZN

|1̂B(r)||f̂A(r)||1̂S(r)|

≤ ‖f̂A‖3‖1̂B‖2‖1̂S‖6
≤ max
r∈ZN

|f̂A(r)|1/3‖f̂A‖2/32 ‖1̂B‖2r6((N/2)1/2)1/6,

where ‖g‖pp = 1
N

∑
r∈ZN

|g(r)|p. Plancherel’s identity implies that ‖f̂A‖2 ≤ |A|1/2 and ‖1̂B‖2 = |B|1/2 ≤
|A|1/2 while Theorem 3.1 gives the estimate r6((N/2)1/2) ≤ c0N2/4, we can therefore conclude that

|Λ(1B , fA)| ≤ c1/60 (ε/2)1/3δ5/6N3/2. �

Lemma 4.5 (Additive structure). If A is not ε-uniform with ε = δ7/2/(213c0)1/2, then there exists a
square-difference arithmetic progression P with |P | ≥ N1/30/4π such that |A ∩ P | ≥ (δ + ε/8)|P |.

Proof. Since A is not ε-uniform we know there exists r 6= 0 such that |1̂A(r)| ≥ εN . It follows from
Theorem 2.2, with α = r/N , that there exists 1 ≤ d ≤ N1/3 such that ‖d2r/N‖ ≤ N−1/30, therefore if we
let P0 be the square-difference arithmetic progression d2, 2d2, . . . , Ld2 in ZN with L = bN1/30/4πc, it is
easy to see that

|1̂P0(r)| ≥ L−
L∑
`=1

∣∣∣e2πi`d2r/N − 1
∣∣∣ ≥ L(1− 2πL

∥∥∥d2r

N

∥∥∥) ≥ L/2.
Since fA has mean value zero it then follows that∑

m∈ZN

(
fA ∗ 1P0(m)

)
+

=
1
2

∑
m∈ZN

|fA ∗ 1P0(m)| ≥ 1
2
|f̂A(r)1̂P0(r)| ≥ ε|P0|N

4

and hence that there exists m ∈ ZN such that

fA ∗ 1P0(m) = |A ∩ (m− P0)| − δ|P0| ≥ ε|P0|/4.

To complete the proof we note that since Ld2 ≤ LN2/3 ≤ N7/10, for all but at most N7/10 values m the
ZN -progression P := m − P0 is in fact a genuine square-difference arithmetic progression in [1, N ]. Since
the sum over these “bad” values of m,∑

“bad” m∈ZN

|fA ∗ 1P0(m)| ≤ LN7/10 ≤ ε|P0|N
8

whenever ε ≥ 8/N3/10 (as it surely will be) the existence of a “good” m ∈ ZN such that

fA ∗ 1P0(m) = |A ∩ (m− P0)| − δ|P0| ≥ ε|P0|/8
is guaranteed and the result follows. �

Proof of Theorem 4.1. We assume that A does not contain a non-trivial square difference. It then follows
from Lemmas 4.4 and 4.5 that there exists a constant c > 0 and a square-difference arithmetic progression
P1 with |P1| ≥ cN1/30 such that |A ∩ P1| ≥ (δ + cδ7/2)|P1|. If we pass to this subprogression and rescale
it to have common difference 1, we obtain a set A1 ⊆ [1, N1] with |A1| = δ1N1 where N1 ≥ cN1/30 and
δ1 ≥ δ + cδ2 that still does not contain a square difference. After iterating this argument k = 2/cδ5/2

times the density increases beyond 1, that is δk > 1, an absurdity if Nk also remains large. Since logNk ≥
30−k logN − c′, for some c′ > 0, this will be achieved if logN ≥ eCδ

−5/2
for some suitably large constant

C > 0. �
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[5] A. Sárzözy, On difference sets of sequences of integers III, Acta Math. Acad. Sci. Hungar. 31 (1978), pp. 355–386.


