THE WEYL INEQUALITY AND SARKOZY’S THEOREM

NEIL LYALL

1. THE WEYL INEQUALITY

A Weyl sum is an exponential sum of the form

N
(1) S = Z eQwiP(n)
n=1

where P(x) is a polynomial with real coefficients. The purpose of this section is to derive Weyl’s estimates

for these sums in the special case when P(x) = az?.

Theorem 1.1 (The Weyl inequality for quadratic monomials). Let a € Z and ¢ € N with (a,q) =1 and
N € N with N > 2. If a € R with |a — a/q| < q~2, then

N
‘E :e2m'om2
n=1

We remark that this gives a non-trivial estimate whenever N7 < ¢ < N27¢ for some 0 < 1,6 < 1. We
begin with the following elementary lemma.

< 20Nlog N(1/q+1/N +q/N*)'/2.

Lemma 1.2. Let a € R. Then for all N € N,

al 1
‘Z e2mian < min{N, 7}
2 3l

where ||| is the distance from « to the nearest integer.

Proof. If a = 0, then the sum is N. If a # 0, then
N

‘Z 627rian
n=1

The method of Weyl differencing allows us to treat higher degree polynomials, the idea is simply to
square-out the Weyl sum (1);

N N
|S‘2 _ Z Z eZﬂ'i[P(m)fP(n)]

< |1 —e?™ N |sinTaN| 1 -
- [1—e?rie] T sinwal T 2o

n=1m=1
N N-n
_ Z 627r7L[P('rLJrh)7P(n)]
n=1h=1-n
N—-1N—-h -1 N
=N+ Z e27ri[P(n+h)—P(n)] + Z Z eQ'fri[P(n—i-h)—P(n)]
h=1 n=1 h=1-Nn=1-h
N—-1N—-h
= N + 2Re 6271'1’[1-"(71-‘,—)1)—P(n)]
h=1 n=1
N—-1|N—-h
<N+2 Z e?‘/ri[P(n-i—h)—P(n)] .
h=1 | n=1

Since P(z + h) — P(z) is a polynomial of degree one less than that of P(x), the possibility of inducting on
the degree of P arises.
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In Theorem 1.1 we are considering Weyl sums with P(x) = ax? so in this case the difference P(z + h) —
P(x) = 2xh + h?, and it follows from Weyl differencing and Lemma 1.2 that

N-1 N—h
1S|2 < N +2 Z’Z G2mi(2ah)n
h=1 n=1
1
<N +2 min< N — h, }
Z { "200]

1
< N+2 min{N, 7}
Yl
Theorem 1.1 therefore follows immediately from the following proposition (with H = 2N).
Proposition 1.3. Let a € Z and g € N with (a,q) =1, N € N with N > 2, and H € N. If « € R with
o —a/q| < q72, then

H
Zmin{ ¥ h”} < 24log N(N + q+ H + HN/q).
h=1

The proof of this proposition follows from the lemma below together with the key observation that if
0 < |hg — h1] < ¢/2, then ||ahy — ahq]] > 1/2q.

Lemma 1.4. Let L, M,N € N with N > 2 and L < M. If a1,...,ar € R with |Jay — ap| > M1
whenever £ # (', then

Zmln{ }<6(N+M)logN

Proof of Proposition 1.3. Write a = a/q + 3. We first note that if 0 < |he — k1| < ¢/2, then
ahe —ah|| = [[(he — h1)a/qll = [|(he — h1)Bl| = 1/q —1/2q = 1/2q
since (hy — hy1)a # 0 (mod g). It then follows from Lemma 1.4 that

[2H/q] (k+1)la/2]

Zmln{ Ta h”} Z Z min{N T hH} <6(1+2H/q)(N + 2q)log N. O

k=0 h=k|q/2|+1

Proof of Lemma 1.4. Without loss of generality we may assume that each oy € [—1/2,1/2] and that

L , 1 1 1
ST = Z mln{N,M[l}>2;m1n{N,”w”}.

1<(<L
(X[ZO
Relabeling the non-negative ay as 0 < a3 < @z < --- < ag and noting that ap > (k — 1)/M for
k=1,...,K, we see that
K-1 M [M/N] M
st<> min{N, b= 3 N+ Y < (N+M)+2Mlogh. O
k k
k=0 k=0 M/N<k<K

In the next two sections we shall prove two standard facts about squares, these results will then be used
in the proceeding section to give a proof (due to Ben Green) of a result of Sarkozy and Furstenberg on the
existence of a square difference in any subset of Z of positive upper density.

2. HEILBRONN PROPERTY

As a first application of Weyl’s inequality we now prove a quantitative version of the fact that the
squares form a Heilbronn set.

Definition 2.1 (Heilbronn set). We say that H is a Heilbronn set if given any @ € R and £ > 0 there
exists h € H such that ||ah| < e.
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Theorem 2.2. For all sufficiently large M € N and o € R there exists 1 < ¢ < M such that ||ag?|| <
M—l/lO.

We begin with the following elementary lemma.

Lemma 2.3 (Dirichlet). Let « € R and M € N. Then there ezists 1 < ¢ < M such that ||ag| < M~

Proof. Of the reals a,2a,...,(M + 1)a, two clearly lie within M~ of each other (mod 1). Thus there
exists j,k € N with j # k such that ||(k — j)a|| < M~1. Set ¢ = |k — j|. O

Lemma 2.4. Let AC Zy with |A| = M. If L is even and AN (—L, L] =0, then there exists r € Zn with
0 < |r| < N2/L? such that [1a(r)| > LM /2N, where |r| denotes the distance from r to the nearest integer
multiple of N.

Proof of Theorem 2.2. Tt suffices to establish the result for a € Q. Our proof will be by contradiction. We
therefore assume that a = a/N and that the conclusion of the theorem is false.

If we set A = {a,2%a,...,M?a} and L = 2|NM~/19/2|, then AN (—L,L] = 0 and it follows from
Lemma 2.4 that there exists r with 0 < |r| < 2M'/® such that |14(r)| > M*/0/4. However,

M ] ,
1A(T) _ Z esz(far)m

m=1

is a Weyl sum, and by Dirichlet (Lemma 2.3) there exists 1 < ¢ < M such that |(—ar) —a/q| < 1/¢M.
Therefore if M/* < g < M it follows from Weyl’s inequality that |1 4(r)| < CM7/8log M. Hence we must
have 1 < ¢ < M'/4, but in this case if follows immediately that

lec(ra)?|| < |rla/M < 2M =120,

a contradiction. O

Proof of Lemma 2.4. Let I = (—L/2,L/2]. It then follows that AN (I —I) =0 and
| Nl N-1
i ZO [17(r)[*1a(r) = 2} 1y #17(n)la(n) =0,

from which we can conclude that

1 ~ —~
- 15( i =1 21 =
Z| 1(r)PLa(r)] > N| 1(0)[*[14(0)] N

r;ﬁO

But it follows from Lemma 1.2 that

117(r)] < mln{ 7m}:min{L7%}.

Hence
N-—
M N2
INGIEN ) — —
S TP < pomax ITa Z OP+F 2 e
T#O r=0 [r|>N2/L?
—~ 12
<L 1
- 0<|7‘1‘/r%aj\>f(2/[12‘ Alr)l =+ 2N
and we must conclude that
— ML
1a(r)| > —. O

max A >
0<|r|<N2/L2 2N
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3. SUMS OF SQUARES
For k, M € N we define
ror (M) = #{(m1,...,mp,n1,...,np) €[L,M]** :m2 +- 4 mi =ni 4+ +ni}
The main objective of this section is to establish the following result.

Theorem 3.1. If k > 3 then there exists a constant cy > 0 such that rop(M) < cogM?*~2,

In actual fact rop (M) ~ M?#~2 when k > 3, but we content ourselves with establishing upper bounds
only. We begin with the observation that the following estimate holds for r4(M).

Lemma 3.2. For any n > 0 there ewists a constant c,, > 0 such that ra(M) < c,,M2+".

Proof. We note that

M? M?
ra(M)= > #{(m,n) € [L,M]|m? —n® =0} <2M>+ 4 _d(()?,
{=—M?2 =1

where d(£) denotes the number of divisors of £. The result then follows once we recall the basic fact that
for every fixed n > 0,
d(l
lim L:O <<:> TQ(M)gch”).
l—oo0 N
This is easy to verify; since f(£) = d(¢)/¢" is multiplicative it suffice to prove that lim_, f(P*) =0as
p* runs through the sequence of all prime powers. We leave the details the reader. O

It is easy to see that the argument above can also be applied to establish that rof (M) < ch%_Q‘”’ for
every 1 > 0 when &k > 3. In order to obtain the desired stronger result (Theorem 3.1) we will make use of
estimates, on specific major and minor arcs, for the Weyl sum

M 2
SM(Oé) _ Z eszm a
m=1

To see how the behavior of these sums relates to the size of ro, (M) we use the fact that

/162ﬂinada: 11f77,:0 ,
0 0 if n € Z\{0}

from which it is then easy to see that

1 f 1
rar(M) = Z / e2milmittmi i — / |Sa(a)[* da.
0 0

1§m1‘,anM

3.1. The major and minor arcs. Informally one refers to the points in [0, 1] that are close to rationals
a/q with small denominators as the major arcs and denotes them by M The remaining points are
referred to as the minor arcs and are denoted by m.

a/q-
We recall that it follows from the Dirichlet principle (Lemma 2.3) that for every « € [0, 1] there exists

1<q<M?*7V/1%and 1 < a < qwith (a,q) = 1 such that |a — a/q| < 1/gM>~1/10,
We now make our informal definition more precise.

Definition 3.3 (Major arcs). The major arcs are defined to be

M = U U Ma/q @] M0/1

1<q<M1/10 1<a<q
(a,q)=1

where for 1 < a < g with (a,q) =1 (and a = 0, ¢ = 1) we define

a 1
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It is easy to see that |9 < M~2+1/5 We further make the observation that the major arcs are in fact
a union of (necessarily short) pairwise disjoint intervals.

Lemma 3.4. Ifa/q# d'/q with1<q,q <MY, then M,y N M,/ = 0.

Proof. Suppose that M/, N M,/ # (. Using the fact that ag’ — a’q # 0, we see that
1 1

a2 > - >

q q/ - qq/ - M1/5

a contradiction. O

2 a a
M2-1/10 = ‘

B ‘aq’ —adq
qq’

Definition 3.5 (Minor arcs). The minor arcs m are simply defined to be [0, 1]\9.
Proposition 3.6 (Minor arc estimate). Let M € N. If o € m, then |Sas(a)| < CM*—1/40,
Corollary 3.7. Let k,M € N. Ifk > 3, then

/ |SM(O()|2kdOé S CMQk_ZM_1/4O.
m
Proof. Tt then follows Proposition 3.6 and Lemma 3.2, with n = 1/40, that

1
/ 1S (@) P dar < sup\5M<a)|2k—4/ 1Sat ()| da
m aEm 0
S CMQk—4M—(k—2)/20M2M1/4O
< CM2]€72M71/40. 0O

Proof of Proposition 3.6. 1t follows from the Dirichlet principle and the fact that o € m that there exists
a reduced fraction a/q with

MY10 < g < pg2=1/10
such that |a — a/q| < ¢~2. Tt therefore follows from the Weyl inequality that

mla) < - 0 < - .
|Sar(a)| < 30M1Y/2000g M < CMLL/40 O

In order to prove Theorem 3.1 it therefore suffice to establish the following estimate.

Proposition 3.8 (Major arc estimate). If a € My, with 1 < q < M/, then

a/q
1Sa(a)| < CMg™?(1+ M?|a—a/q) /2.
Corollary 3.9. If a € O, then

/ |Sar () |?F da < C M2,
m

Proof. Tt follows from Propositon 3.8 that on a fixed major arc

/ |Sar () ]?F da < C’Mqufk/ (1+ M2|3))"* dg
Ma/q |81<1/qM2~1/10
<cargt [ o)t
S OM2k72q7k.
Therefore
M/10 g1 -
|Sar(e)|*F da < CMPF2 gF < CMPFRNT R < oph?, .
h P> =

Theorem 3.1 now follows immediately from Corollaries 3.7 and 3.9. We are thus left with the task of
proving Proposition 3.8, key to this is the following approximation.
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Proposition 3.10. If o € M/, with 1 < g < M0, then

(2) Sur(a) = ¢ 1S (a, q)In (o — a/q) + O(M5),
where
q—1 ., M o
St =t 14— [0
r=0 0

Proof. We can write o = a/q + 8 where |8| < 1/¢M?*7 /19 and 1 < ¢ < M/, We can also write each
1 <m < M uniquely as m = ng+r with 0 <r < ¢gand 0 <n < M/q. It then follows that

q—1M/q

Sula) = Y Y emelrednatn’ 1 o(g)

n=0

<
Il
= o

. M/q . 2
e2miar /q Z 627”5(7“1“’7’) + O(q)

n=0

2

I
=)

.
Since

‘eQWi(nq-H’)zﬂ _ eQwinzqzﬂ‘ < ‘827ri(2nqr+r2)ﬂ _ 1‘ < C%qz 1 < OM1H/10,

q | qM2-1/10 =
and
M/q

2 2 M/q 2 2 M/ a1 2 2 2 2
‘ZGQﬂznqﬂ_/ eQﬂ'zqudm‘SZ/ ‘eQﬁ’L’an_EQﬂ"Lmqﬁ dr
n=0 0 n=0""

M/q

<Y 2m(2n+1)¢|B)

n=0
S 20M1/10,
it follows that 1
Sa() = - S(a, )T (B)| < MV O

Proposition 3.8 then follows almost immediately from the two basic lemmas below.

Lemma 3.11 (Gauss sum estimate). If (a,q) = 1, then |S(a, q)| < /2q. More precisely,

Va if q odd
IS(a, @)l =4v2¢ if ¢=0 mod4.
0 if ¢=2 mod4

Lemma 3.12 (Oscillatory integral estimate). For any A > 0
1
’/ eQﬂi/\a:de’ < C(1+)\)_1/2.
0

Proof of Proposition 3.8. Lemmas 3.11 and 3.12 imply that the main term in (2)
g ' S(a,q)In(a —a/q) < Mg~ *(1+ M?|a—a/q))~"/?,
and since ¢~ /2 > M~1/20 and M?(|a — a/q| < M1 it follows that
Mq*1/2(1+M2|afa/q|)*1/22M9/10>>M1/5. O
Proof of Lemma 3.11. Squaring-out S(a,q) we obtain

q—1lq—1

\S(a,q)\z _ 22627”'11(7’2752)/?

s=0 r=0
Letting r = s + t the we see that

Ju

qg—1 q—1

g—1 qg—1
15(a, q)|2 _ Ze2mat2/q Ze2wia(28t)/q < Z ZeQTria(Qst)/q‘.
t=0 s=0 =

=0 s

~+
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The result then follows since (a,q) =1 and

-1

2

627ria(2st)/q _ q if 2at =0 mod q . O
0 otherwise

o

s=

Proof of Lemma 3.12. We need only consider the case when A > 1. We write

1
N2
/ 627rz)\:n dIZ/
0 0

It is then easy to see that |I;]| < A~1/2_ while integration by parts gives that

1
1 d 27miA 2)
—p2miAzT ) g
A—l/z 4midx (clac6 .

1 1
< 1 l 627Ti)\z2 +/ i eQTriAxde
T A ||z yo1/2 Sz @2

< OoNV2 O

AT1/2 1

e27ri)\z2dx_|_/ 627ri)\x2d1, = Il +12
A

—1/2

|I2| =

4. THE SARKOZY-FURSTENBERG THEOREM

Theorem 4.1 (Sarkozy and Furstenberg). Let § > 0. There exists an absolute constant C > 0 such that
if N > expexp(C6°/2) and A C [1, N] with |A| = §N, then A necessarily contains two distinct elements
a and a’ whose difference a — a’ is a perfect square.
Let B = AN 0, N/2], we may assume without loss in generality that |B| > dN/2. If we let
S={d?:1<d<(N/2)'?}
then we see that in order to prove Theorem 4.1 it suffices to show that
#{meAleB:m—LeS}>1
To do so we consider the following bilinear expression
1 SRS —
Mg.h)= D gOnm)ls(m—0) =< > G)h(=r)s(r).
mEZN r€Zy
The significance of this expression is that
A(lp,1a)=#{me A leB : m—(ecS}.
In the proof of Theorem 4.1 it shall be convenient to consider functions of mean value zero.

Definition 4.2 (Balanced function). We define the balanced function of A to be f4 =14 — 4.

It is clear from the definition of f4 that E(r) = 14(r) for all r € Zx\{0}, while (in contrast to the fact
that 14(0) = |A|) the fact that f4 has mean value zero implies that f4(0) = 0.
Decomposing 14 = § + f4 we obtain that
A(1p,14) =46|B||S|+ A1, fa),

which is instructive since 6| B||S| is the number of square differences (not exceeding N/2 with at least one
point in B) that we would expect A to contain if it where random, obtained by selecting each natural
number from 1 to N independently with probability .

Definition 4.3 (e-uniformity). We say that A is e-uniform if |]/";1(7")\ <eN forallre€Zy.
Lemma 4.4 (Quasirandomness). If A is e-uniform withe = 67/2 /(2%3¢o)Y/?, then A(1p,14) > 62N3/2/25/2,

Proof. We will show that under this regularity assumption on A the term A(1lp, f4) is in fact an error
term and satisfies the estimate

|A(1p, fa)| < 62N3/2/25/2 < 5|B||S|/2.
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To this end we first note that from Holder’s inequality it follows that
1 — — —~
IAQs, fa)l = > el falr)lTs(r)]

reZn

I fallsl1all2l1slle

g T ()Tl allar((/2)1 /)11,

IN

IN

where [|g|[5 = % Y, ¢z, 19(r)[". Plancherel’s identity implies that I Fall2 < |A]Y2 and ||15)2 = |B|Y2 <
|A|*/? while Theorem 3.1 gives the estimate 76((N/2)'/2) < coN?/4, we can therefore conclude that

A1, fa)l < c/°(e/2)1/365/ON3/2, O

Lemma 4.5 (Additive structure). If A is not e-uniform with ¢ = 67/2/(2'3¢y)'/2, then there exists a
square-difference arithmetic progression P with |P| > N'/30 /4x such that |AN P| > (6 +¢/8)|P.

Proof. Since A is not e-uniform we know there exists r # 0 such that |ﬁ(?")| > eN. It follows from
Theorem 2.2, with o = /N, that there exists 1 < d < N'/3 such that ||d*r/N|| < N~'/30_ therefore if we
let Py be the square-difference arithmetic progression d2,2d?,...,Ld*> in Zy with L = [N'/30 /47|, it is
easy to see that

L 2
— ild?r d°r
T ()] >L—;‘e2 d /N—1‘ 2L<1—27rLHWH) > L)2.

Since f4 has mean value zero it then follows that

S Gartntm), =1 aninml = SR 2 S0

meZn meZn

and hence that there exists m € Zx such that
fa*x1p,(m)=]AN(m— Py)| — | Py| > e|Pol/4.

To complete the proof we note that since Ld? < LN2/3 < N7/10_for all but at most N7/10 values m the
Z n-progression P :=m — Py is in fact a genuine square-difference arithmetic progression in [1, N]. Since
the sum over these “bad” values of m,

S tnm) < L0 < PN
“bad” meZn

whenever £ > 8/N3/10 (as it surely will be) the existence of a “good” m € Zy such that
fax1p,(m)=[AN(m— Pyl —d|F| > e|Fol/8

is guaranteed and the result follows. O

Proof of Theorem 4.1. We assume that A does not contain a non-trivial square difference. It then follows
from Lemmas 4.4 and 4.5 that there exists a constant ¢ > 0 and a square-difference arithmetic progression
Py with |P| > ¢N1/39 such that |A N Py| > (6 + ¢67/2)|Py|. If we pass to this subprogression and rescale
it to have common difference 1, we obtain a set A; C [1, N7] with |A;| = 01 N7 where N; > e¢N1/30 and
01 > & + c6? that still does not contain a square difference. After iterating this argument k = 2/0(55/ 2
times the density increases beyond 1, that is §; > 1, an absurdity if N also remains large. Since log Ny >
30 % log N — ¢, for some ¢ > 0, this will be achieved if log N > e“0""? for some suitably large constant
C>0. |
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