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1. Introduction

The purpose of this expository note is to give a self contained proof (modulo the Weyl inequality) of the
following result, due independently to Sárközy [5] and Furstenberg [1].

Theorem 1. Let δ > 0, then there exists N0 = N0(δ) such that if N ≥ N0 and A ⊆ [1, N ] with |A| ≥ δN ,
then A necessarily contains distinct elements a, b whose difference a− b is a perfect square.

We will closely follow the approach taken in Lyall and Magyar [3] and employ a density increment strategy
to obtain the result above with

(1) N0 = exp(Cδ−1 log δ−1).

This is equivalent to the statement that if A ⊆ [1, N ] and d2 /∈ A−A for any d 6= 0, then necessarily

(2)
|A|
N
≤ C log logN

logN
.

2. Dichotomy between randomness and arithmetic structure

Our approach will be to obtain a dichotomy between randomness and structure of the following form.

Proposition 2. Let A ⊆ [1, N ] and δ = |A|/N . If N ≥ δ−C with C sufficiently large, then either

(3)
N∑
d=1

∣∣A ∩ (A+ d2
)∣∣ ≥ 1

12
δ|A|N1/2

or there exists a square difference arithmetic progression P in [1, N ] of length |P | ≥ cδ5N such that

(4) |A ∩ P | > δ(1 + cδ)|P |.

Proof that Proposition 2 implies Theorem 1 (with bound (1)). Suppose A ⊆ [1, N ], with |A| ≥ δN , contains
no square differences, then Proposition 2 allows us to perform an iteration. At the kth step of this iteration
we will have a set Ak ⊆ [1, Nk] of size δkNk. This set will be an appropriately rescaled version of a subset
of A itself and hence will also contain no square differences.

Let A0 = A, N0 = N and δ0 = |A|/N ≥ δ. Proposition 2 ensures that either

(5) Nk ≤ δ−Ck
or else the iteration proceeds allowing us to choose Nk+1, δk+1 and Ak+1 such that

Nk+1 ≥ cδ5
kNk

and
δk+1 ≥ δk + cδ2

k.

Now as long as the iteration continues we must have δk ≤ 1, and so after O(δ−1) iterations condition (5)
must be satisfied, giving

δCδ
−1
N ≤ δ−C ⇐⇒ logN ≤ Cδ−1 log δ−1. �

The rest of this note is devoted to the proof of Proposition 2. As opposed to the standard L∞ increment
strategy of Roth, we will obtain the dichotomy in Proposition 2 by exploiting the concentration of the L2

mass of the Fourier transform (this sometimes referred to as an energy increment strategy).
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3. Setting the stage for the proof of Proposition 2

Let A ⊆ [1, N ], with N ≥ δ−C , where δ = |A|/N and C is a sufficiently large constant. Our approach
will be to assume that A exhibits neither of the two properties described in Proposition 2 and then seek a
contradiction.

3.1. A simple consequence of A being non-random. If we were to suppose that A is non-random, in
the sense that inequality (3) does not hold, then it would immediately follows that

(6)
∑
m,n∈Z

1A(m)1A(n)1S(m− n) ≤ 1
4
δ|A||S|

where

(7) S = {d2 : 1 ≤ d ≤
√
N/9}.

3.2. A simple consequences of A being non-structured. If we were to assume that A is regular, in the
sense that A in fact satisfies the inequality

|A ∩ P | ≤ δ(1 + ε)|P |
for all arithmetic progressions P ⊆ [1, N ] of the form

(8) P = {m+ `q2 : 1 ≤ ` ≤ L}
with L ≥ δ4εN , then the set A ∩ (N/9, 8N/9] must contain most of the elements of A. In particular

(9) |A ∩ (N/9, 8N/9]| ≥ (3/4)|A|,
since if this were not the case we would immediately obtain a progression P ⊆ [1, N ] of the form (8) with
q = 1 and L ≥ N/9 such that |A ∩ P | ≥ δ(1 + 1/8)|P |.

3.3. The balance function. We define the balance function of A to be

(10) fA = 1A − δ1[1,N ].

We note that fA has mean value zero, that is
∑
fA(m) = 0, this will be critically important later.

It easy to verify that if A satisfies inequalities (6) and (9), then

(11)
∑
m,n∈Z

fA(m)fA(n)1S(m− n) ≤ −1
4
δ|B||S|.

One can see this by simply expanding the sum into a sum of four sums, one involving only the function 1A
on which we can apply (6), two involving the functions 1A and −δ1[1,N ] on which we can apply (9), and one
involving only the function −δ1[1,N ] which can be estimated trivially.

3.4. Fourier analysis on Z. If f : Z→ C and has finite support, then we define its Fourier transform by

f̂(α) =
∑
m∈Z

f(m)e−2πimα.

The finite support assumption on f ensures that f̂ is a continuous function on the circle, and in this setting
the Fourier inversion formula and Plancherel’s identity, namely

f(m) =
∫ 1

0

f̂(α)e2πimαdα and
∫ 1

0

|f̂(α)|2dα =
∑
m∈Z
|f(m)|2

are simply immediate consequences of the familiar orthogonality relation∫ 1

0

e2πimαdα =

{
1 if m = 0
0 if m 6= 0

.

It is then easy to verify that from inequality (11) we immediately obtain the estimate

(12)
∫ 1

0

|f̂A(α)|2|1̂S(α)| dα ≥ 1
4
δ|B||S|
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where we recognize

(13) 1̂S(α) =

√
N/9∑
d=1

e−2πid2α,

as a classical Weyl sum.

3.5. Estimates for Weyl sums. Let M =
√
N/9. We note that whenever |α| � M−2 there can be no

cancellation in the Weyl sum (13), in fact the same is also true when α is close to a rational with small
denominator (i.e. there is no cancellation over sums in residue classes modulo q).

We now state a precise formulation of the fact that this is indeed the only obstruction to cancellation.
For η > 0 we define

(14) Mq = Mq(η) =
{
α ∈ [0, 1] :

∣∣∣α− a

q

∣∣∣ ≤ 1
η2M2

for some a ∈ [1, q]
}
.

Proposition 3. Let η > 0.

(i) (Minor arc estimate) If α /∈Mq for any 1 ≤ q ≤ η−2, then

|1̂S(α)| ≤ ηM +O(M1−1/40).

(ii) (Major arc estimate) If α ∈Mq for some 1 ≤ q ≤ η−2, then

|1̂S(α)| ≤ Cq−1/2M +O(M1/2).

The proof of this result is a straightforward (and presumably well known) consequence of the standard
estimates for Weyl sums, for the sake of completeness we include these arguments in an appendix.

4. The proof of Proposition 2

In the previous section we established that inequalities (6) and (9) would be immediate consequences of
A not exhibiting either of the two properties described in Proposition 2. We now present the two lemmas
from which we will obtain our desired contradiction.

In both lemmas below we assume that A ⊆ [1, N ] and N ≥ δ−C , where δ = |A|/N and C is a sufficiently
large constant. Moreover, we set η = cδ, where c is a sufficiently small constant.

Lemma 4. If A is neither random nor structured, in the sense outlined in Proposition 2, then there exists
1 ≤ q ≤ η−2 such that

(15)
1
δ|A|

∫
Mq

|f̂A(α)|2dα ≥ cδ.

The second lemma is a precise quantitative formulation, in our setting, of the standard L2 density incre-
ment lemma.

Lemma 5. Let ε ≤ η2/4π. If A is regular, in the sense that

|A ∩ P | ≤ δ(1 + ε)|P |

for all progressions P ⊆ [1, N ] of the form (8) with q2L ≥ η2εN , then

(16)
1
δ|A|

∫
Mq

|f̂A(α)|2dα ≤ 12ε.

We therefore obtain a contradiction if ε ≤ cδ, proving Proposition 2.
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4.1. Proof of Lemma 4. It follows from the minor arc estimate of Proposition 3 (since N ≥ δ−C for C
sufficiently large) and Plancherel’s identity that∫

minor arcs

|f̂A(α)|2|1̂S(α)| dα ≤ CηM |A|.

Therefore, if η = δ/8C, it follows from estimate (12) and the major arc estimate of Lemma 3 that
η−2∑
q=1

q−1/2

∫
Mq

|f̂A(α)|2dα ≥ η|A|.

It therefore follows that
max

1≤q≤η−2

∫
Mq

|f̂A(α)|2dα ≥ η2|A|

as required. �

4.2. Proof of Lemma 5. We fix q and L so that q2L = η2εN and define

P = {−`q2 | 1 ≤ ` ≤ L}.

Claim 1. If α ∈Mq, then |1̂P (α)| ≥ |P |/2.

Proof of Claim 1. Since
L‖q2α‖ ≤ Lq2η−2M−2 = η−2ε,

for all α ∈Mq, where ‖ · ‖ denotes the distance to the nearest integer, it follows that

|1̂P (α)| ≥ |P | −
L∑
`=1

∣∣e2πi`q2α − 1
∣∣ ≥ |P |(1− 2πL‖q2α‖

)
≥ |P |/2,

for all α ∈Mq, provided ε ≤ η2/4π. �

We now note that Plancherel’s identity (applied to the function fA ∗ 1P ) and Claim 1 imply that

(17)
1
δ|A|

∫
Mq

|f̂A(α)|2dα ≤ 4
δ|A||P |2

∑
m∈Z
|fA ∗ 1P (m)|2.

The conclusion of Lemma 5 will therefore be an immediate consequence of the following.

Claim 2. As a consequence of the assumptions in Lemma 5 if follows that∑
m∈Z
|fA ∗ 1P (m)|2 ≤ 3ε δ|A||P |2.

Proof of Claim 2. We let
M = {m ∈ Z |m− P ⊆ [1, N ]}

E = ([1, N ] + P ) \M
and write ∑

m∈Z
|fA ∗ 1P (m)|2 =

∑
m∈M

|fA ∗ 1P (m)|2 +
∑
m∈E
|fA ∗ 1P (m)|2.

We note that since
fA ∗ 1P (m) = |A ∩ (m− P )| − δ|[1, N ] ∩ (m− P )|

it follows from our regularity assumption on A that if m ∈M, then

−δL ≤ fA ∗ 1P (m) ≤ δεL,
while for m ∈ E we can only conclude that

|fA ∗ 1P (m)| ≤ L.
Now since fA has mean value zero the convolution

fA ∗ 1P (m) =
∑
n

fA(n)1P (m− n)
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also has mean value zero. Thus, using the fact that |g| = 2g+ − g, where g+ = max{g, 0} denotes the
positive-part function, and the trivial size estimate |M| ≤ N , we can deduce that∑

m∈M
|fA ∗ 1P (m)|2 ≤ 2

(
sup
m∈M

|fA ∗ 1P (m)|
) ∑
m∈M

(fA ∗ 1P )+(m)

≤ 2(δL)(δεL)|M|
≤ 2δ2εL2N.

Using the fact that |E| ≤ 2q2L = 2η2εN , it follows that∑
m∈E
|fA ∗ 1P (m)|2 ≤ |P |2|E| ≤ 1

2

∑
m∈M

|fA ∗ 1P (m)|2,

provided 2η2 ≤ δ2.
This concludes the proof of Claim 2 and establishes Lemma 5. �

Appendix A. Weyl Sum Estimates: Proof of Proposition 3

A.1. Standard estimates for Weyl sums. Let

SM (α) =
M∑
d=1

e−2πid2α.

Proposition 6 (The Weyl inequality). If |α− a/q| ≤ q−2 and (a, q) = 1, then

|SM (α)| ≤ 20M logM(1/q + 1/M + q/M2)1/2.

The proof of this result is completely standard, see for example [4] or [2]. We remark that this gives a
non-trivial estimate whenever Mµ ≤ q ≤M2−µ for some 0 < µ < 1.

Let

(18) M′
a/q =

{
α ∈ [0, 1] :

∣∣∣α− a

q

∣∣∣ ≤ 1
M2−1/10

}
.

We say that α is in a minor arc if α /∈M′
a/q for any (a, q) = 1 with 1 ≤ q ≤M1/10.

Lemma 7 (Minor arc estimate I). If α /∈M′
a/q for any (a, q) = 1 with 1 ≤ q ≤M1/10, then

(19) |SM (α)| ≤ CM1−1/40.

While on the complement of these minor arcs (the major arcs) we have the follow important estimate.

Lemma 8 (Major arc estimate). If α ∈M′
a/q for some (a, q) = 1 with 1 ≤ q ≤M1/10, then

(20) |SM (α)| ≤ CMq−1/2(1 +M2|α− a/q|)−1/2 +O(M1/2).

For the proofs of these two lemmas see Section A.3.

A.2. Refinement of the major arcs. We now let 0 < η ≤ 1 and define

(21) Ma/q =
{
α :

∣∣∣α− a

q

∣∣∣ ≤ 1
η2M2

}
.

Lemmas 7 and 8 combine to give the following result from which Proposition 3 is an immediate conse-
quence.

Lemma 9 (Minor arc estimate II). If α /∈Ma/q for any (a, q) = 1 with 1 ≤ q ≤ η−2, then

|SM (α)| ≤ ηM +O(M1−1/40).

Proof. It follow from Lemma 8 that on M′
a/q we have

|SM (α)| ≤ ηM
provided (a, q) = 1 and either η−2 ≤ q ≤ N1/10 or η−2M−2 ≤ |α− a/q| ≤M−2+1/10. �
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A.3. Proof of Lemmas 7 and 8. Before launching into this, we make the important observation that the
major arcs (and hence the refined major arcs) are a union of (necessarily short) pairwise disjoint intervals.

Lemma 10. If a/q 6= a′/q′ with 1 ≤ q, q′ ≤M1/10, then M′
a/q ∩M′

a′/q′ = ∅.

Proof. Suppose that M′
a/q ∩M′

a′/q′ 6= ∅. Using the fact that aq′ − a′q 6= 0, we see that

2
M2−1/10

≥
∣∣∣a
q
− a′

q′

∣∣∣ =
∣∣∣aq′ − a′q

qq′

∣∣∣ ≥ 1
qq′
≥ 1
M1/5

,

a contradiction. �

Proof of Lemma 7. It follows from the Dirichlet principle and the fact that α is in a minor arc that there
exists a reduced fraction a/q with

M1/10 ≤ q ≤M2−1/10

such that |α− a/q| ≤ q−2. It therefore follows from the Weyl inequality that

|SM (α)| ≤ 30M1−1/20 logM ≤ CM1−1/40. �

Key to the proof of Lemma 8 is the following approximation.

Lemma 11. If α ∈M′
a/q with 1 ≤ q ≤M1/10, then

(22) SM (α) = q−1S(a, q)IM (α− a/q) +O(M1/5)

where

S(a, q) :=
q−1∑
r=0

e−2πiar2/q and IM (β) :=
∫ M

0

e−2πiβx2
dx.

Proof. We can write α = a/q + β where |β| ≤ 1/M2−1/10 and 1 ≤ q ≤ M1/10. We can also write each
1 ≤ d ≤M uniquely as d = mq + r with 1 ≤ r ≤ q and 0 ≤ m ≤M/q. It then follows that

SM (α) =
q∑
r=1

M/q∑
m=0

e−2πi(a/q+β)(mq+r)2 +O(q)

=
q∑
r=1

e−2πiar2/q

M/q∑
m=0

e−2πiβ(mq+r)2 +O(q).

Since ∣∣∣e−2πi(mq+r)2β − e−2πim2q2β
∣∣∣ ≤ ∣∣∣e−2πi(2mqr+r2)β − 1

∣∣∣ ≤ Cdr|β| ≤ CqM−1+1/10

and ∣∣∣M/q∑
m=0

e−2πim2q2β −
∫ M/q

0

e−2πix2q2βdx
∣∣∣ ≤ M/q∑

m=0

∫ m+1

m

∣∣∣e−2πim2q2β − e−2πix2q2β
∣∣∣ dx

≤
M/q∑
m=0

2π(2m+ 1)q2|β|

≤ 20M1/10

it follows that ∣∣∣SM (α)− 1
q
S(a, q)IM (β)

∣∣∣ ≤ CM1/5. �

Lemma 8 then follows almost immediately from the two basic lemmas below.

Lemma 12 (Gauss sum estimate). If (a, q) = 1, then |S(a, q)| ≤
√

2q. More precisely,

|S(a, q)| =


√
q if q odd
√

2q if q ≡ 0 mod 4
0 if q ≡ 2 mod 4

.
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Lemma 13 (Oscillatory integral estimate). For any λ ≥ 0∣∣∣∫ 1

0

e2πiλx2
dx
∣∣∣ ≤ C(1 + λ)−1/2.

Proof of Lemma 8. Lemmas 12 and 13 imply that the main term in (22)

q−1S(a, q)IM (α− a/q) ≤Mq−1/2(1 +M2|α− a/q|)−1/2,

and since q−1/2 ≥M−1/20 and M2(|α− a/q| ≤M1/10, it follows that

Mq−1/2(1 +M2|α− a/q|)−1/2 ≥M9/10 �M1/5. �

Proof of Lemma 12. Squaring-out S(a, q) we obtain

|S(a, q)|2 =
q−1∑
s=0

q−1∑
r=0

e2πia(r2−s2)/q.

Letting r = s+ t and using the fact that (a, q) = 1 and
q−1∑
s=0

e2πia(2st)/q =

{
q if 2at ≡ 0 mod q

0 otherwise

it follows that

|S(a, q)|2 =
q−1∑
t=0

e2πiat2/q

q−1∑
s=0

e2πia(2st)/q =

{
q if q odd
q
(
e2πia(q/4) + 1

)
if q even

. �

Proof of Lemma 13. We need only consider the case when λ ≥ 1. We write∫ 1

0

e2πiλx2
dx =

∫ λ−1/2

0

e2πiλx2
dx+

∫ 1

λ−1/2
e2πiλx2

dx =: I1 + I2.

It is then easy to see that |I1| ≤ λ−1/2, while integration by parts gives that

|I2| =
∣∣∣∣∫ 1

λ−1/2

1
4πiλx

( d
dx
e2πiλx2

)
dx

∣∣∣∣
≤ 1

4πλ

∣∣∣∣∣
[

1
x
e2πiλx2

]1

λ−1/2

+
∫ 1

λ−1/2

1
x2

e2πiλx2
dx

∣∣∣∣∣
≤ Cλ−1/2. �
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