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Abstract. Let P ∈ Z[n] with P (0) = 0 and ε > 0. We show, using Fourier analytic techniques, that if

N ≥ exp exp(Cε−1 log ε−1) and A ⊆ {1, . . . , N}, then there must exist n ∈ N such that

|A ∩ (A+ P (n))|
N

>

„
|A|
N

«2

− ε.

In addition to this we also show, using the same Fourier analytic methods, that if A ⊆ N, then the set of

ε-optimal return times

R(A,P, ε) =
˘
n ∈ N : δ(A ∩ (A+ P (n))) > δ(A)2 − ε

¯
is syndetic for every ε > 0. Moreover, we show that R(A,P, ε) is dense in every sufficiently long interval, in

particular we show that there exists an L = L(ε, P,A) such that

|R(A,P, ε) ∩ I| ≥ c(ε, P )|I|
for all intervals I of natural numbers with |I| ≥ L and c(ε, P ) = exp exp(−C ε−1 log ε−1).

1. Introduction

1.1. Background. The study of recurrence properties of dynamical systems goes back to the beginnings
of ergodic theory. If A is a measurable subset of a probability space (X,M, µ) with µ(A) > 0 and T is a
measure preserving transformation, then it was already shown by Poincaré [16] that µ(A ∩ T−nA) > 0 for
some natural number n, and hence for infinitely many.

Poincaré’s result was subsequently sharpened by Khintchine [8], who showed that sets of positive measure
not only return to intersect themselves infinitely often, but in fact return “frequently” with “large” intersec-
tion. In order to be more precisely we recall that a set R ⊆ N is said to be syndetic if it has bounded gaps:
there exists L ∈ N such that every interval of length greater than L intersects R non-trivially. A precise
formulation of Khintchine’s result is that for every ε > 0, the set

(1)
{
n ∈ N : µ(A ∩ T−nA) > µ(A)2 − ε

}
is syndetic. Note that in general this lower bound is sharp, since µ(A∩T−nA)→ µ(A)2 as n→∞ whenever
T is a mixing transformation.

In [6], Furstenberg showed that the iterates of the transformation arising in Khintchine’s result can in
fact be restricted to polynomial iterates, more precisely he established the following result.

Theorem A (Furstenberg [6], see also [15] or [2]). Let (X,M, µ, T ) be an invertible measure preserving
system, A ∈M and P ∈ Z[n] with P (0) = 0. For every ε > 0, the set

(2) {n ∈ N : µ(A ∩ T−P (n)A) > µ(A)2 − ε}
is syndetic.

It follows from Furstenberg’s correspondence principle (in fact, two different variants thereof) that Theo-
rem A has the following two combinatorial consequences, in infinite and finite setting respectfully, for subsets
of the natural numbers.

Corollary B (Furstenberg [6], see Frantzikinakis and Kra [4]). Let A ⊆ N and P ∈ Z[n] with P (0) = 0.
For every ε > 0, the set

(3)
{
n ∈ N : δ(A ∩ (A+ P (n))) > δ(A)2 − ε

}
is syndetic, where δ(A) = lim supN→∞ |A ∩ [1, N ]|/N denotes the upper density of any given set A ⊆ N.
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We remark that Corollary B (and Theorem 2 below) also holds if one replaces the upper density δ with
the upper Banach density δ∗ defined for A ⊆ N by δ∗(A) = limN→∞ supx∈N |A ∩ (x+ [1, N ])|/N .

Corollary C (Furstenberg [6], see Frantzikinakis and Kra [4]). Let P ∈ Z[n] with P (0) = 0. For every
ε > 0 there exists N1 = N1(ε, P ) such that if N ≥ N1 and A ⊆ [1, N ], then there exists n ∈ N such that

(4)
|A ∩ (A+ P (n))|

N
>

(
|A|
N

)2

− ε.

We note that Furstenberg’s correspondence principle unfortunately gives no effective quantitative bounds
in the finite setting of Corollary C (other than the special case when the polynomial is linear).

In this article we will be concerned with establishing, using Fourier analytic techniques, quantitative
refinements of both Corollaries B and C. In addition to this we also provide what is, to the best of our
knowledge, the first incidence of Fourier analysis being used to establish the syndeticity of a class of return
times (results such as Corollary B).

1.2. Further remarks. Recently, far reaching generalizations of Furstenberg’s results (Theorem A and
its corollaries) have been obtained in the settings of multiple recurrence by Frantzikinakis and Kra [4].
Such results appear, however, to be inaccessible via current Fourier analytic machinary. A study of
the intermediate phenomenon of simultaneous single polynomial recurrence was initiated by the authors
in [13] (see also [10] and [11]) where we in particular establish, using Fourier analytic techniques and a
standard decomposition theorem, Corollary C with weak tower-type bounds for N1(ε, P ). The general
method employed in [13] broadly follows a strategy outlined by Green and Tao in [7], we note however that
in addition to the weak quantitative bounds that one obtains using this approach, these methods appears to
be insufficient to establish syndeticity of optimal return times, namely results such as Corollary B.

1.3. Statement of Main Results. As stated above, the purpose of this article is to establish, using Fourier
analytic methods, the following quantitative versions of Corollaries C and B.

1.3.1. Quantitative refinement of Corollary C.

Theorem 1. Let A ⊆ [1, N ], P ∈ Z[n] with P (0) = 0 and ε > 0, then

(5)

∣∣∣∣∣
{
n ∈ [0, L] :

|A ∩ (A+ P (n))|
N

>

(
|A|
N

)2

− ε

}∣∣∣∣∣ ≥ c(ε, P )L

for all 1 ≤ L ≤ N1/k where k = deg(P ) and c(ε, P ) = 1/ exp exp(Cε−1 log ε−1).

In order to obtain a non-trivial conclusion from Theorem 1 we must have L ≥ c(ε, P )−1 and consequently
also N ≥ c(ε, P )−k. In particular, this implies Corollary C with N1(ε, P ) = exp exp(Cε−1 log ε−1). We
further note that Theorem 1 also gives more qualitative information as Corollary C only implies that the
left side of (5) is bounded below by c(ε, P,A)L with a constant that additionally depends on the set A.

1.3.2. Quantitative refinement of Corollary B.

Theorem 2. Let A ⊆ N, P ∈ Z[n] with P (0) = 0 and ε > 0, then there exists L = L(ε, P,A) such that

(6)
∣∣{n ∈ I : δ(A ∩ (A+ P (n))) > δ(A)2 − ε

}∣∣ ≥ c(ε, P )|I|

for all intervals I of natural numbers with |I| ≥ L and c(ε, P ) = 1/ exp exp(C ε−1 log ε−1).

Again, apart from the quantitative bounds, ergodic methods (Corollary B) imply only that the left side
of (6) is bounded below by c(ε, P,A)|I| with a constant again depending on the set A. We do note however
that the parameter L in Theorem 2 does necessarily depend on the actual set A in question and not just on
its density and include a proof of this fact in Section 7.
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1.3.3. Higher dimensional results. The strategy we will employ to prove Theorems 1 and 2 is to lift the
problem in such a way that we may then apply the following analogous higher dimensional results.

Theorem 3. Let B ⊆ [1,M ]k, γ(n) = (n, n2, . . . , nk) and ε > 0, then

(7)

∣∣∣∣∣
{
n ∈ [0,K] :

|B ∩ (B + γ(n))|
Mk

>

(
|B|
Mk

)2

− ε

}∣∣∣∣∣ ≥ c(ε, k)K

for all 1 ≤ K ≤M1/k with c(ε, k) = 1/ exp exp(Cε−1 log ε−1).

Theorem 4. Let B ⊆ Nk, γ(n) = (n, n2, . . . , nk) and ε > 0, then there exists K = K(ε, k,B) such that

(8)
∣∣{n ∈ I : δ(B ∩ (B + γ(n))) > δ(B)2 − ε

}∣∣ ≥ c(ε, k)|I|
for all intervals I of natural numbers with |I| ≥ K and c(ε, k) = 1/ exp exp(Cε−1 log ε−1).

Recall that for any given set B ⊆ Nk, it upper density δ(B) is defined to be

δ(B) = lim sup
M→∞

|B ∩ [1,M ]k|/Mk.

1.4. Outline of the paper. The bulk of the present paper is concerned with establishing Theorems 3 and 4,
from which Theorems 1 and 2 follow in an essentially straightforward manner. This approach was also used
by the authors in [10] (see also [11]), however in this setting, due to the optimal nature of the results we are
trying to establish, the analogous arguments are somewhat more delicate. These deductions are presented
in Sections 6.1 and 6.2 respectively.

We will deduce Theorems 3 and 4 from a key dichotomy proposition, namely Proposition 2. This di-
chotomy proposition roughly says that either the conclusion of Theorem 3 holds for a particular interval I,
or the L2 mass of the Fourier transform of the set A is concentrated on a very thin interval depending on I.
The proofs of Theorems 3 and 4 are presented in Sections 3.1 and 3.2, respectively. The arguments in these
sections are close in spirit, and were influenced greatly by those of Bourgain [3] in his study of distance sets
of measurable subsets of Euclidean spaces, which were first adapted to the discrete settings by the second
author in [14].

In Section 4 we introduce a smooth functional variant of Proposition 2 (a technique also employed by
Bourgain), the proof of which we present in Section 5 based on a certain decomposition of the indicator
function of the set A. Such decompositions can in fact be obtained under very general settings via the
so-called “arithmetic regularity lemma” of Green and Tao [7], and indeed have been used to proving optimal
versions of Szemerédi’s theorem on k-term arithmetic progressions for k = 3 and k = 4. We remark again
that, while our situation is essentially simpler, results obtained this way usually give tower type bounds and
do not show that the optimal return times are syndetic.

Finally, in Section 7, we include a short proof of the fact that the parameter L in Theorem 2 necessarily
depends on the actual set A in question and not just its density.

We choose to begin our presentation below by recalling some basic properties of the Fourier transform on
Zk. By observing how these properties can then be used to count differences in B ⊆ [1,M ]k of the form γ(t)
will lead us naturally to the analysis of certain variants of standard Weyl sums.

Remark on Notation. We will use the letters C and c denote appropriately large or small constants, which
can change from line to line.

2. Preliminaries

2.1. Fourier analysis on Zk. If f : Zk → C is a function for which
∑
m∈Zk |f(m)| < ∞ we will say that

f ∈ L1(Zk) and define
‖f‖1 =

∑
m∈Zk

|f(m)|.

For f ∈ L1 we define its Fourier transform f̂ : Tk → C by

f̂(α) =
∑
m∈Zk

f(m)e−2πim·α.
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Note that the summability assumption on f ensures that the series defining f̂ converges uniformly to a
continuous function on Tk (which we will identify with the unit cube [0, 1)k in Rk) and that the Fourier
inversion formula and Plancherel’s identity, namely

f(m) =
∫

Tk
f̂(α)e2πim·αdα and

∫
Tk
|f̂(α)|2dα =

∑
m∈Zk

|f(m)|2

are, in this setting, immediate consequences of the familiar orthogonality relation∫
Tk
e2πim·αdα =

{
1 if m = 0
0 if m 6= 0

.

Defining the convolution of f and g to be

f ∗ g(m) =
∑
`∈Zk

f(m− `)g(`)

it follows that if f, g ∈ L1 then f ∗ g ∈ L1 with

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1 and f̂ ∗ g = f̂ ĝ.

Finally, we remark that it follows from the Poisson Summation Formula that if ϕ ∈ S(Rk), then

(9) ϕ̂(α) =
∑
`∈Zk

ϕ̃(α− `)

where

(10) ϕ̃(ξ) =
∫

Rk
ϕ(x)e−2πix·ξ dx

denotes the Fourier transform (on Rk) of ϕ.

2.2. Counting differences of the form γ(n) = (n, n2, . . . , nk). Let B ⊆ [1,M ]k and δ = |B|/Mk.
Let 1 ≤ µ ≤ λ be integers with λk ≤ M/2k. It is easy to verify, using the properties of the Fourier

transform discussed above, that the average number of pairs of elements in B whose difference is equal to
γ(n) with n ∈ (λ, λ+ µ] ∩ Z can be expressed as follows:

(11)
1
µ

λ+µ∑
n=λ+1

|B ∩ (B + γ(n))| = 1
µ

λ+µ∑
n=λ+1

∑
m∈Zk

1B(m)1B(m− γ(n)) =
∫

Tk
|1̂B(α)|2Sλ,µ(α) dα

where

(12) Sλ,µ(α) =
1
µ

λ+µ∑
n=λ+1

e2πiα·γ(n).

It is easy to see that

(13) Sλ,µ(α) =
λ+ µ

µ
Sλ+µ(α)− λ

µ
Sλ(α)

where

(14) Sµ(α) =
1
µ

µ∑
n=1

e2πiα·γ(n)

denotes a classical (normalized) Weyl sum. Unfortunately, the rather simplistic relationship indicated in (13)
will only be useful to us in the case where µ = λ. When µ < λ we will make use of the following alternative:

(15) Sλ,µ(α) = e2πiα·γ(λ)Sµ(Tλα)

where Tλ is a k × k matrix whose entries are given by

(16) (Tλ)ij =

{(
j
i

)
λj−i j ≥ i

0 j < i
.
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2.3. Standard Weyl sum estimates. It is clear that whenever |αj | � µ−j there can be no cancellation
in the Weyl sum (14), in fact it is easy to verify that the same is also true whenever each αj is close to a
rational with small denominator (there is no cancellation over sums in residue classes modulo q).

We now state a precise formulation of the well known fact that this is indeed the only obstruction to
cancellation. For a proof of this result see either [10] or [11].

Lemma 1. Let η > 0 and µ ≥ η−C (with C sufficiently large depending on k). If for some 1 ≤ j ≤ k we
have

(17)
∣∣∣αj − a

q

∣∣∣ > 1
ηkµj

for all a ∈ Z and 1 ≤ q ≤ η−k, then

(18) |Sµ(α)| ≤ C1η.

Remark. It follows immediately from Lemma 1 and (15) that

(19) |Sλ,µ(α)| ≤ C1η

for any η > 0, where 1 ≤ µ ≤ λ are integers with µ ≥ η−C , provided that for some 1 ≤ j ≤ k

(20)
∣∣∣(Tλα)j −

a

q

∣∣∣ > 1
ηkµj

for all a ∈ Z and 1 ≤ q ≤ η−k. In fact, it is easy to see that one can conclude from Lemma 1 that estimate
(19) also holds (under the same hypotheses as above with C1 replaced with say 2C1) for the “perturbed”
Weyl sums

1
µ

∑
n∈(λ,λ+µ]∩Z

e2πiα·γ(n)

where 1 ≤ µ ≤ λ are now no longer assumed to take on integer values, provided C is chosen sufficiently large.

We note that from Lemma 1, relationship (15) and the Plancherel identity, we may conclude that∫
Tk
|1̂B(α)|2Sλ,µ(α) dα =

∫
T−1
λ Mη,µ

|1̂B(α)|2Sλ,µ(α) dα+O(ηMk)

where

Mη,µ =
η−k⋃
q=1

{
α ∈ Tk :

∣∣∣∣αj − aj
q

∣∣∣∣ ≤ 1
ηkµj

(1 ≤ j ≤ k) for some a ∈ Zk
}
.

While in the case µ = λ it follows from (13) that

|Sλ,λ(α)| ≤ 3C1η

whenever α /∈Mη,λ and as a consequence of this we can in fact make the rather more favorable conclusion
that ∫

Tk
|1̂B(α)|2Sλ,λ(α) dα =

∫
Mη,λ

|1̂B(α)|2Sλ,λ(α) dα+O(ηMk).

In order to carry out our Fourier analytic arguments it will be convenient to consider the (nonisotropic)
lattice {(

a1

qη
,
a2

q2
η

, . . . ,
ak
qkη

)
∈ Tk : (a1, . . . , ak) ∈ Zk

}
of rational points where

(21) qη = lcm{1 ≤ q ≤ η−k}
as opposed to the much smaller, but alas more wildly distributed, set of rational points that appear as the
centers of the major boxes in Tk that constitute Mη,µ. Note that it follows from elementary considerations
involving the prime numbers that

(22) qη ≤ exp(Cη−k)

and this accounts for one of the exponentials in the bound in Theorems 3 and 4 (as well as 1 and 2).



6 NEIL LYALL ÁKOS MAGYAR

3. Reduction to dichotomy propositions

We now separately present the statement of two key propositions (although as we shall see the first of
which follows immediately from the second) and demonstrate how they can be used to prove Theorem 3 and
Theorem 4 respectively.

For L > 1 and q ∈ N we define

(23) Mq,L =
{
α ∈ Tk :

∣∣∣∣αj − aj
qj

∣∣∣∣ ≤ 1
Lj

(1 ≤ j ≤ k) for some a ∈ Zk
}
.

Let 0 < η < 1 and 1 ≤ µ ≤ λ. We define

(24) Ωη,λ,µ =
{
α ∈ Tk : α ∈Mqη,ηkµ \Mqη,η−kλ

}
where qη = lcm{1 ≤ q ≤ η−k} as before.

3.1. Proof of Theorem 3. Although this result can in fact be deduced from the second dichotomy propo-
sition (Proposition 2 below), we feel that the reduction of Theorem 3 to the (simpler) Proposition 1 is not
only more direct and straightforward (by virtue of the fact that we can take µ = λ), but that our decision
to include it will also serve to illuminate the deduction of Theorem 4 from Proposition 2.

Proposition 1. Let B ⊆ [1,M ]k and ε > 0. Let ηε = exp(−Cε−1 log ε−1) and qε = qηε .

If λ is an integer that satisfies λ ≥ η−kε qε and M ≥ C(η−kε λ)k then either

(25)

∣∣∣∣∣
{
n ∈ (λ, 2λ] ∩ Z :

|B ∩ (B + γ(n))|
Mk

>

(
|B|
Mk

)2

− ε

}∣∣∣∣∣ ≥ exp(−Cη−kε )λ

or

(26)
∫

Ω

|1̂B(α)|2 dα ≥ εMk/10

where Ω = Ωηε,λ,λ.

Proposition 1 (and Proposition 2 below) both express, in our setting, the basic dichotomy that either
B behaves as though it were a random set, or has arithmetic structure as the Fourier transform 1̂B is
concentrated (on small annuli) around a fixed (nonisotropic) lattice of rational points.

Proof of Theorem 3. Let ε > 0, ηε = exp(−Cε−1 log ε−1) and qε = qηε . Suppose K and M are integers that
satisfy

exp(Cη−kε ) ≤ K ≤M1/k

and {λj}Jj=1 is a sequence of integers with J = d10/εe with the property that λ1 ≥ η−kε qε, λJ = cηkεK and

(27) η−2k
ε λj ≤ λj+1 ≤ Cη−2k

ε λj

for 1 ≤ j ≤ J . That such a lacunary sequence of length J > 10/ε exists is ensured by, by choosing C large
enough, that K � qε. It is also easy to see that (27) ensures that the sets Ωj = Ωηε,λj ,λj are disjoint.

Suppose, contrary to Theorem 3, that there does exists a set B ⊆ [1,M ]k such that

(28)

∣∣∣∣∣
{
n ∈ [0,K] :

|B ∩ (B + γ(n))|
Mk

>

(
|B|
Mk

)2

− ε

}∣∣∣∣∣ < exp(−Cη−kε )K

for all C > 0. Since λ1 ≥ (Cη−2k
ε )1−J , it follows that K/λj ≤ (Cηε)−2kJ � exp(−Cη−kε ) for all 1 ≤ j ≤ J ,

and hence that

(29)

∣∣∣∣∣
{
n ∈ (λj , 2λj ] ∩ Z :

|B ∩ (B + γ(n))|
Mk

>

(
|B|
Mk

)2

− ε

}∣∣∣∣∣ < exp(−Cη−kε )λj

for all C > 0 and all 1 ≤ j ≤ J .
Proposition 1 allows us to conclude from this that

(30)
J∑
j=1

∫
Ωj

|1̂B(α)|2 dα ≥ JεMk/10 > Mk.
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On the other hand it follows from the disjointness property of the sets Ωj (which we guaranteed by our
initial choice of sequence {λj}) and the Plancherel identity that

(31)
J∑
j=1

∫
Ωj

|1̂B(α)|2 dα ≤
∫

Tk
|1̂B(α)|2 dα ≤ |B| ≤Mk

giving us our desired contradiction. �

3.2. Proof of Theorem 4. We now present the statement of our second (stronger) dichotomy proposition.

Proposition 2. Let B ⊆ [1,M ]k and ε > 0. Let ηε = exp(−Cε−1 log ε−1) and qε = qηε .

If 1 ≤ µ ≤ λ are any given pair of integers that satisfy µ ≥ η−kε qε and M ≥ C(η−kε λ)k then either

(32)

∣∣∣∣∣
{
n ∈ (λ, λ+ µ] ∩ Z :

|B ∩ (B + γ(n))|
Mk

>

(
|B|
Mk

)2

− ε

}∣∣∣∣∣ ≥ exp(−Cη−kε )µ

or

(33)
∫
T−1
λ Ω

|1̂B(α)|2 dα ≥ εMk/10

where Ω = Ωηε,λ,µ.

Key to deducing Theorem 4 from Proposition 2 is the following combinatorial result on the annuli Ωηε,λ,µ.

Lemma 2 (Overlapping Lemma). Let η > 0. Suppose {µj}j∈N and {λj}j∈N be sequences such that µ1 ≥
η−kqη and

(34) µj ≤ λj ≤
1
3
η2kµj+1

for all j ∈ N, then it follows that
α ∈ T−1

λj
Ωj

for at most k different values of j, where Ωj = Ωη,λj ,µj .

The proof of this result is given in the Section 3.3 below.

Proof of Theorem 4. Let ε > 0, ηε = exp(−Cε−1 log ε−1) and qε = qηε . Suppose, contrary to Theorem 4,
that there exists a set B ⊆ Nk with δ = δ(B) > ε1/2 such that for all K > 0, there exists an interval of
natural numbers I with |I| ≥ K such that

(35)
∣∣{n ∈ I : δ(B ∩ (B + γ(n))) > δ(B)2 − ε

}∣∣ < exp(−Cη−kε )|I|

for all C > 0. In this case there necessarily exists a sequence of intervals of natural numbers Ij = (λj , λj+µj ]
with µ1 ≥ 4qη and µj ↗∞ for which

(36)
∣∣{n ∈ Ij : δ(B ∩ (B + γ(n))) > δ(B)2 − ε

}∣∣ < exp(−Cη−kε )|Ij |

for all C > 0 and all j ∈ N.
Since inequality (36) must then also hold for the right-half intervals I ′j = (λ′j , λ

′
j + µ′j ], where µ′j = µj/2

and λ′j = λj + µ′j , we see that we can further assume that λj →∞. By passing to a subsequence, one may
without loss in generality assume that µ1 ≥ η−kqε and

µj ≤ λj ≤
1
3
η2kµj+1

for all j ∈ N. We now fix an integer J > 40k/ε.
It follows from the definition of upper density that there must exist M ∈ N such that∣∣B ∩ [1,M ]k

∣∣ ≥ (δ − ε/2)Mk

while ∣∣B ∩ (B + γ(n)) ∩ [1,M ]k
∣∣ ≤ (δ2 − ε)Mk
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for all n ∈
⋃J
j=1 Ij for which δ(B ∩ (B + γ(n))) ≤ δ(B)2 − ε. Letting B′ = B ∩ [1,M ]k it follows that∣∣∣∣∣

{
n ∈ Ij :

|B′ ∩ (B′ + γ(n))|
Mk

>

(
B′

Mk

)2

− ε

4

}∣∣∣∣∣ < exp(−Cη−kε )|Ij |

for all C > 0 and all 1 ≤ j ≤ J .
Proposition 2 allows us to conclude from this that

(37)
J∑
j=1

∫
T−1
λj

Ωj

|1̂B(α)|2 dα ≥ JεMk/40 > kMk.

On the other hand it follows from Lemma 2 (with Ωj = Ωηε,λj ,µj ) and the Plancherel identity that

(38)
J∑
j=1

∫
T−1
λj

Ωj

|1̂B(α)|2 dα ≤ k
∫

Tk
|1̂B(α)|2 dα ≤ k|B| ≤ kMk

giving us our desired contradiction. �

3.3. Proof of the Overlapping Lemma. First we establish the following.

Lemma 3. Suppose that 0 < η < 1/4k2 and 0 < µ ≤ λ. If α ∈ T−1
λ Ω, where Ω = Ωη,λ,µ, then there exist

1 ≤ i ≤ k and a ∈ Z such that

(39)
1
2

(
ηk

λ

)i
≤
∣∣∣∣αi − a

qiη

∣∣∣∣ ≤ 3
2

(
1
ηkµ

)i
.

Proof of Lemma 3. Suppose that Tλα ∈ Ω, then for some 1 ≤ j ≤ k we have

(40)

∣∣∣∣∣(Tλα)j −
aj

qjη

∣∣∣∣∣ ≥
(
ηk

λ

)j
for all a ∈ Zk, while for all 1 ≤ j ≤ k we have

(41)

∣∣∣∣∣(Tλα)j −
a′j

qjη

∣∣∣∣∣ ≤
(

1
ηkµ

)j
for some a′ ∈ Zk. If we denote by i the largest integer from {1, . . . , k} for which∣∣∣∣(Tλα)i −

a

qi−1
η

∣∣∣∣ ≥ (ηkλ
)i

for all a ∈ Z, then we must have ∣∣∣∣(Tλα)i+1 −
a′′i
qiη

∣∣∣∣ < (ηkλ
)i+1

for some a′′ ∈ Zk. In light of the fact that for each 1 ≤ j ≤ k one can write

(Tλα)j = αj +
(
j + 1
j

)
λαj+1 + · · ·+

(
k

j

)
λk−jαk = αj + cjλ(Tλα)j+1

where 0 < cj ≤ j(k − j) < k2, it therefore follows that

(42)
∣∣∣∣(Tλα− α)i −

a′′′i
qiη

∣∣∣∣ < 2cjηk
(
ηk

λ

)i
≤ 1

2

(
ηk

λ

)i
<

1
2

(
1
ηkµ

)i
for some a′′′ ∈ Zk.

We note that it follows immediately from (42) and (41) that∣∣∣∣αi − ai
qiη

∣∣∣∣ ≤ 3
2

(
1
ηkµ

)i
.
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for some a ∈ Zk, while from (42) and (40) it follows that for all a ∈ Zk we have∣∣∣∣αi − ai
qiη

∣∣∣∣ ≥ 1
2

(
ηk

λ

)i
. �

Proof of Lemma 2. If Tλjα ∈ Ωj , then Lemma 3 guarantees the existence of an integer 1 ≤ ij ≤ k such that

(43)
1
2

(
ηk

λj

)ij
≤
∣∣∣∣αij − a

q

∣∣∣∣ ≤ 3
2

(
1

ηkµj

)ij
for some a ∈ Z. Suppose there exists α ∈ Tk and distinct integers j1, . . . , jk+1 for which

α ∈ T−1
λj1

Ωj1 ∩ · · · ∩ T−1
λjk+1

Ωjk+1 .

It follows from the pigeonhole principle that there must exists integers j, j′ ∈ {j1, . . . , jk+1}, with j < j′, for
which ij = ij′ . Inequality (43) and the fact that µ1 ≥ η−kqη the forces the situation that

η2kµj′ < 3λj

which contradicts (34). �

4. Formulation of smooth variants of Propositions 1 and 2

We now formulate smooth functional variants of Proposition 1 and 2 that are better suited to our Fourier
analytic approach.

4.1. Counting function. For g, h : [1,M ]k → [0, 1] and q, λ, µ ∈ N we define

(44) Λq,µ(g, h) =
q

µ

∑
n∈(λ,λ+µ]

q|n

∑
m∈Zk

g(m)h(m− γ(n)).

With g = h = 1B this essentially gives a normalized count for the number of pairs of elements in B whose
difference is equal to γ(n) with n ∈ (λ, λ+ µ] ∩ Z and q|n.

Note that it is natural to consider only those n ∈ N that are divisible by some (large) natural number
q. Indeed, as a consequence of the fact that our set B could fall entirely into a subset of Zk of the form
x+ dZ×Zk−1 with 1 ≤ d ≤ ε−1/2, it follows that if there were to exist n ∈ N such that B ∩ (B + γ(n)) 6= ∅
for an arbitrary set B, then these n would necessarily have to be divisible by all 1 ≤ d ≤ ε−1/2 and hence
by the least common multiple of all 1 ≤ d ≤ ε−1/2, a quantity of size exp(Cε−1/2).

As before this can be expressed this count on the transform side as

(45) Λq,µ(g, h) =
∫

Tk
ĝ(α)ĥ(α)Sλ,µ,q(α) dα

where

(46) Sλ,µ,q(α) =
q

µ

∑
n∈(λ,λ+µ]

q|n

e2πi α·γ(n).

Remark. If the integers λ and µ are both divisible by q, then one can easily verify that

(47) Sλ,µ,q(α) = Sλ/q,µ/q(q ◦ α)

where

(48) q ◦ α = (qα1, . . . , q
kαk)

and as such we can deduce estimates for these new exponential sums, via relations (13) and (15), from those
that are stated in Lemma 1. See in particular Lemma 6 below.
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4.2. Smooth variants of our dichotomy propositions. Let ϕ : Rk → (0,∞) be a Schwartz function
satisfying

ϕ̃(0) = 1 ≥ ϕ̃(ξ) ≥ 0 and ϕ̃(ξ) = 0 for |ξ| > 1
where ϕ̃ denotes the Fourier transform (on Rk) of ϕ, see (10).

For a given q ∈ N and L > 1 we define

(49) ϕq,L(x) =

{(
q
L

)k(k−1)/2
ϕ
(
q`1
L , . . . , q

k`k
Lk

)
if x = (q`1, . . . , qk`k) for some ` ∈ Zk

0 otherwise

It follows from the Poisson summation formula that the Fourier transform (on Zk) of ϕq,L takes the form

(50) ϕ̂q,L(α) =
∑
`∈Zk

ϕ̃

(
L

(
α1 −

`1
q

)
, . . . , Lk

(
αk −

`k
qk

))
.

We now define
ψq,L(x) = ϕq,L(T ∗

−1

λ x)
where T ∗λ denotes the adjoint of Tλ, and note that

ψ̂q,L(α) = ϕ̂q,L(Tλα).

Note that ϕ̂q,L is supported on Mq,L (and hence ψ̂q,L is supported on T−1
λ Mq,L), where Mq,L are the

major boxes defined by (23), and that we may choose our cutoff function ϕ so that

(51) ϕ̂qε,ηkεµ − ϕ̂qε,εη−kε λ

will be essentially supported on Ωηε,λ,µ in the sense that

(52)
∣∣ϕ̂qε,ηkεµ(α)− ϕ̂qε,εη−kε λ(α)

∣∣ ≤ ε/10

whenever α /∈ Ωηε,λ,µ.
The smooth variant of Proposition 2 is then the following:

Proposition 3 (Smooth variant of Proposition 2). Let f : [1,M ]k → [0, 1] and set δ = M−k
∑
m∈Zk f(m).

Let 0 < ε ≤ δ2 and 1 ≤ µ ≤ λ be any given pair of integers that satisfy µ ≥ η−kε qε and M ≥ C(η−kε λ)k

where qε = qηε with ηε = exp(−Cε−1 log ε−1). Then there exists 0 < η � ε satisfying ηε ≤ εη, such that
either

(53) Λq,µ(f, f) > (δ2 − ε)Mk

or

(54)
∫

Tk
|f̂(α)|2

∣∣ψ̂q,L2(α)− ψ̂q,L1(α)
∣∣ dα ≥ εMk/5

where L1 = η−kλ, L2 = ηkµ, and q = qη.

Remark. We have chosen to not explicitly state the analogous smooth variant of Proposition 1, since this
would be simply Proposition 3 with µ set equal to λ and ψ replaced with ϕ.

We finish this section by explicitly showing that Proposition 3 does indeed imply Proposition 2, the same
argument of course also establishes that Proposition 1 would follow from its (unstated) analogous smooth
variant.

Proof that Proposition 3 implies Proposition 2. Let f = 1B and q = qη, noting that and q ≤ qε.
It is easy to see that if Λq,µ(f, f) > (δ2 − ε)Mk, then

(55)
∣∣{n ∈ (λ, λ+ µ] ∩ Z : |B ∩ (B + γ(n))| > (δ2 − 2ε)Mk

}∣∣ ≥ cε

q
µ ≥ cε

qε
µ

which immediately gives (32), with 2ε in place of ε, since qε ≤ exp(Cη−kε ).
While from the fact that q|qε it follows that

supp
(
ψ̂q,L2 − ψ̂q,L1

)
⊆ supp

(
ψ̂qε,ηkεµ − ψ̂qε,εη−kε λ

)
and hence from the remarks preceding Proposition 3 (in particular (52)) that (54) implies (33). �
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5. Proof of Proposition 3

We now present the proof of Proposition 3, finally completing the proofs of Theorems 3 and 4. As
opposed to the usual Fourier proofs of Sárközy’s theorem, which are based on density increment arguments,
here we use an energy increment argument, (in fact a regularity lemma type decomposition) to obtain optimal
recurrence.

Remark. We have already noted that in order to establish Theorem 3 we need only prove Proposition 3 with
µ = λ and ψ replaced with ϕ. Making these substitutions in the proof below will indeed give a proof of the
(unstated) smooth variant of Proposition 1 (one must also, in the proof of Lemma 6, (naturally) replace Tλ
with the identity matrix and increase the size of some constants threefold).

5.1. Decomposition. Let f : [1,M ]k → [0, 1] and δ = M−k
∑
m∈[1,M ]k f(m).

We make the decomposition

(56) f = f1 + f2 + f3

where

(57) f1 = f ∗ ψq,L1 and f2 = f − f ∗ ψq,L2

which of course forces

(58) f3 = f ∗ (ψq,L2 − ψq,L1).

One should think of f1(m) (respectively f ∗ψq,L2(m)) as being essentially the average value of the function
f over arithmetic grids of the form {qη ◦ ` : ` ∈ Zk} of (total) size L1 × L2

1 × · · · × Lk1 (respectively
L2 × L2

2 × · · · × Lk2) centered at m.

5.2. Proof of Proposition 3. Note that

(59) Λq,µ(f, f) = Λq,µ(f1, f1) + Λq,µ(f2, f1) + Λq,µ(f, f2)︸ ︷︷ ︸
(?)

+ Λq,µ(f3, f1) + Λq,µ(f, f3)︸ ︷︷ ︸
(??)

where both terms in (?) involve a f2 and both terms in (??) involve a f3.
The proof of Proposition 3 will follow as an almost immediate consequence of the following two lemmas.

Lemma 4 (Main term). Let ε > 0. If 0 < η � ε, then

(60) Λq,µ(f1, f1) ≥ (δ2 − ε/2)Mk

Lemma 5 (Error term). Let ε > 0, then there exists η > 0 satisfying exp(−Cε−1 log ε−1) ≤ η � ε, such
that

(61)
∫

Tk
|f̂(α)|2|(1− ψ̂q,L2(α))Sλ,µ,q(α)| dα ≤ (ε/20)Mk

and hence

(62) |Λq,µ(f2, f1) + Λq,µ(f, f2)| ≤ (ε/10)Mk.

Proof of Proposition 3. If Λq,µ(f, f) ≤ (δ2 − ε)Mk, then it follows from Lemma 4 that

|Λq,µ(f, f)− Λq,µ(f1, f1)| ≥ (ε/2)Mk.

Since
|Λq,µ(f3, f1) + Λq,µ(f, f3)| ≥ |Λq,µ(f, f)− Λq,µ(f1, f1)| − |Λq,µ(f2, f1) + Λq,µ(f, f2)|

it consequently follows from Lemma 5 that

|Λq,µ(f3, f1) + Λq,µ(f, f3)| ≥ (2ε/5)Mk.

The proposition then follows from the observation that

(63) max{|Λq,µ(f3, f1)|, |Λq,µ(f, f3)|} ≤
∫

Tk
|f̂(α)|2

∣∣ψ̂q,L2(α)− ψ̂q,L1(α)
∣∣ dα.

which follows from standard properties of convolutions under the action of the Fourier transform, identity
(45), and trivial bounds for the exponential sum Sλ,µ,q. �
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5.3. Proof of Lemma 4. Let q = qη. If q|n and λ < n ≤ λ + µ (and hence n ≤ 2ηkL1), then it is
straightforward to see that ϕ can be chosen so that f1 is essentially invariant under translation by γ(n) in
the the sense that
(64)

|f1(m)− f1(m− γ(n))| =
(
q

L1

)k(k−1)/2 ∑
`∈Zk

∣∣∣∣ϕ(q`1 − nL1
, . . . ,

qk`k − nk

Lk1

)
− ϕ

(
q`1
L1

, . . . ,
qk`k
Lk1

)∣∣∣∣ ≤ cηk
for some constant c > 0.

Therefore, provided η is chosen so that cηk ≤ ε/4, we have

Λq,µ(f1) ≥
∑
m∈Zk

f1(m)2 − ε

4

∑
m∈Zk

f1(m).(65)

Since ψq,L1 is L1-normalized it follows that

(66)
∑
m∈Zk

f1(m) =
∑

m,`∈Zk
f(m− `)ψq,L1(`) =

∑
m∈Zk

f(m) = δMk.

Using Cauchy-Schwarz, one obtains

(67)
∑
m∈Zk

f1(m)2 ≥
∑

−σM≤mj≤M+σM

f1(m)2 ≥ 1
(1 + 2σ)kMk

 ∑
−σM≤mj≤M+σM

f1(m)

2

Since f is supported on [1,M ]k (and ψq,L1 is L1-normalized) it follows that

(68)
∑

−σM≤mj≤M+σM

f1(m) ≥
∑
m∈Zk

f(m)

1−
∑

|`j |≥σM

ψq,L1(`)

 ≥ δMk(1− σ)

as ϕ can be chosen so that
∑
|`j |≥σM ψq,L1(`) ≤ σ whenever M � L1.

Note that
(1− σ)2

(1 + 2σ)k
≥ (1− σ)2(1− 2σk) ≥ 1− 4kσ

provided 2σk < 1. Hence taking σ = ε/16k completes the proof. �

5.4. Proof of Lemma 5. It is in establishing Lemma 5 that we finally exploit the arithmetic properties of
the curve γ(n). In particular, we will make use of the following “minor arc” estimates for the exponential
sums Sλ,µ,q.

Lemma 6 (Corollary of Lemma 1). Let η0 > 0. If 0 < η′ < η < 1 with η′ = η0η, then

(69) ‖(1− ψ̂q′,L′2)Sλ,µ,q‖∞ ≤ 2C1η0

where q′ = qη′ and L′2 = η′kµ.

Proof. Let α ∈ Tk be fixed. If there exists a ∈ Zk such that∣∣∣(Tλα)i −
a

q′i

∣∣∣ ≤ η0

(η′kµ)i
,

for all 1 ≤ i ≤ k, then (as in (52) above) we note that ϕ can be chosen such that

(70) |1− ψ̂q′,L′2(α)| ≤ η0.

While if for some 1 ≤ i ≤ k we have ∣∣∣(Tλα)i −
a

q′i

∣∣∣ > η0

(η′kµ)i

for all a ∈ Zk, then ∣∣∣qi(Tλα)i −
a

qi0

∣∣∣ > qi

(ηk0µ)i

for all a ∈ Zk, since qq0|q′ where q0 = qη0 .
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Since

q ◦ (Tλα) = Tλ/q(q ◦ α)

it follows from (47) that

Sλ,µ,q(α) =
1
µ′

∑
s∈(λ′+q−1,λ′+µ′]∩Z

e2πiγ(s)·(q◦α)

where λ′ = λ/q and µ′ = µ/q and the remark proceeding Lemma 1 that

�(71) |Sλ,µ,q(α)| ≤ 2C1η0.

Proof of Lemma 5. We first construct the number η > 0. Choosing a lacunary sequence {ηj} for which

(72) η1 � ε and ηj+1 ≤ (ε/80C1)ηj

for each j ≥ 1 it is easy to see that

sup
α∈Tk

∞∑
j=1

∣∣ψ̂qj+1,ηkj+1µ
(α)− ψ̂qj ,ηkj µ(α)

∣∣ ≤ C2

where qj = qηj , as the terms have essentially disjoint supports. It follows that there exist 1 ≤ j ≤ 40C2/ε
such that

(73)
∫

Tk
|f̂(α)|2|ψ̂qj+1,ηkj+1µ

(α)− ψ̂qj ,ηkj µ(α)| dα ≤ (ε/40)Mk.

We set η = ηj and η′ = ηj+1 for this value of j and note that η satisfies the inequality

exp(−Cε−1 log ε−1) ≤ η � ε.

Lemma 5 now follows immediately from Lemma 6 and (73), since

(74) |(1− ψ̂q,L2)(α)Sλ,µ,q(α)| ≤ |(1− ψ̂q′,L′2)(α)Sλ,µ,q(α)|+ |(ψ̂q,L2(α)− ψ̂q′,L′2(α))Sλ,µ,q(α)|

and η′/η ≤ ε/80C1.
Indeed, arguing as in the proof of Proposition 3 above, we obtain

max{|Λq,µ(f2, f1)|, |Λq,µ(f, f2)|} ≤
∫

Tk
|f̂(α)|2 |(1− ψ̂q,L2(α))Sλ,µ,q(α)| dα

≤ ‖(1− ψ̂q′,L2)Sλ,µ,q‖∞Mk + (ε/40)Mk

where the last inequality follows from Plancherel and the fact that ‖f‖22 ≤ ‖f‖1 ≤Mk. �

6. The proofs of Theorems 1 and 2

In both of the proofs below we fix a polynomial P (n) with integer coefficients, namely

P (n) = c1n+ · · ·+ ckn
k

and let P : Zk → Z denote the mapping given by

P(b) = c1b1 + · · ·+ ckbk.

Furthermore, given any set A ⊆ Z we define

Aj = {a ∈ A : a ≡ j mod m} = A ∩ (mZ + j)

for each 0 ≤ j ≤ m− 1 where

m = gcd(c1, . . . , ck).
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6.1. Deduction of Thereom 1 from Theorem 3. Let ε > 0 and A ⊆ [1, N ] with δ = |A|/N satisfying
0 < ε ≤ δ2. We suppose that

|A ∩ (A+ P (n))| ≤ (δ2 − ε)N

for some n ∈ N. Without loss in generality we will make the convenient additional assumption that m|N .
It is easy to see that there necessarily exists 0 ≤ j ≤ m− 1 such that

|Aj ∩ (Aj + P (n))| ≤ (δ2
j − ε)N/m

with δj = m|Aj |/N . If we now let

B′ = {b ∈ Zk : P(b) ∈ Aj − j} ∩Q

where

Q = P−1(mZ ∩ [1, N ]) ∩ [−N ′, N ′]k

and N ′ is some suitably large multiple of N (depending only on the coefficients of P ) then it follows that

δj = |B′|/|Q|

and
|B′ ∩ (B′ + γ(n))|

|Q|
=
|Aj ∩ (Aj + P (n))|

N/m
.

We now set M = ηN/m for some suitably small η > 0,

X = {x ∈ (MZ)k : x+ [1,M ]k ⊆ Q}

and

Q′ =
⋃
x∈X

(x+ [1,M ]k),

noting that we can clearly choose η � ε to ensure that

|Q \Q′|
|Q|

≤ ε

10
⇐⇒ |Q|

|Q′|
≤ 1 +

ε

9
.

Thus, if we set B′′ = B′ ∩Q′ and β = |B′′|/|Q′|, it follows that

β ≥ δj − ε/10

and
|B′′ ∩ (B′′ + γ(n))|

|Q′|
≤ |B

′ ∩ (B′ + γ(n))|
|Q|

|Q|
|Q′|

≤ β2 − ε/2.

It follows that there must exist x ∈ X such that if we set

B = B′′ ∩ (x+ [1,M ]k)

then
|B ∩ (B + γ(n))|

Mk
≤
(
|B|
Mk

)2

− ε/2.

In summary we have shown that for any given set A ⊆ [1, N ] and ε > 0 there exists a set B ⊆ [1,M ]k

with M � εN/m such that{
n ∈ N :

|B ∩ (B + γ(n))|
Mk

>

(
|B|
Mk

)2

− ε/2

}
⊆

{
n ∈ N :

|A ∩ (A+ P (n))|
N

>

(
|A|
N

)2

− ε

}
and hence Theorem 1 now follows from Theorem 3. �
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6.2. Deduction of Theorem 2 from Theorem 4. Let ε > 0 and A ⊆ N with δ = δ(A) satisfying
0 < ε ≤ δ2. We suppose that

δ(A ∩ (A+ P (n))) ≤ δ2 − ε
for some n ∈ N. It follows from the definition of upper density that there exists a sequence of intervals {Ii}
with |Ii| = Ni, where {Ni} ⊆ mN and Ni ↗∞, such that

|(A ∩ Ii) ∩ ((A ∩ Ii) + P (n))|
Ni

≤ δ2 − ε/2

while
|A ∩ Ii|
Ni

≥ δ − ε/10.

If we define δi = |A ∩ Ii|/Ni, it therefore follows that

|(A ∩ Ii) ∩ ((A ∩ Ii) + P (n))|
Ni

≤ δ2
i − ε/5.

Note that (A ∩ Ii)j = Aj ∩ Ii. If we set δij = m|Aj ∩ Ii|/Ni, then

δi =
1
m

m−1∑
j=0

δij

and as a consequence of the Cauchy-Schwarz inequality we have

δ2
i ≤

1
m

m−1∑
j=0

δ2
ij .

It therefore follows immediately from the fact that
m−1∑
j=0

|(Aj ∩ Ii) ∩ ((Aj ∩ Ii) + P (n))| = |(A ∩ Ii) ∩ ((A ∩ Ii) + P (n))| ≤ 1
m

m−1∑
j=0

(δ2
ij − ε/5)Ni

that for each i there must exist 0 ≤ j ≤ m− 1 for which

|(Aj ∩ Ii) ∩ ((Aj ∩ Ii) + P (n))| ≤ (δ2
ij − ε/5)Ni/m.

We will assume (by refining our collection {Ii} if necessary) that the same j is selected for each i. Since
(A ∩ Ii)j = Aj ∩ Ii it follows, from the definition of upper density, that

δ(Aj) ≥ δij/m

and
δ(Aj ∩ (Aj + P (n))) ≤ (δ2

ij − ε/5)/m.

If we now define
B = {b ∈ Zk : P(b) ∈ Aj − j}

it follows immediately that
δ(B) = mδ(Aj)

δ(B ∩ (B + γ(n))) = mδ(Aj ∩ (Aj + P (n)))

and consequently
δ(B ∩ (B + γ(n))) ≤ δ(B)2 − ε/5.

In summary we have shown that for any given set A ⊆ N with δ(A) > 0 and ε > 0 there exists a set
B ⊆ Zk with δ(B) > 0 such that{

n ∈ N : δ(B ∩ (B + γ(n))) > δ(B)2 − ε/5
}
⊆
{
n ∈ N : δ(A ∩ (A+ P (n))) > δ(A)2 − ε

}
and hence Theorem 2 follows immediately from Theorem 4. �
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7. The parameter L in Theorem 2 necessarily depends on the set A

In this final section we construct an example to show that the parameter L in Theorem 2 necessarily
depends on the actual set A and not just on its density.

Proposition 4. Let P ∈ Z[n] with P (0) = 0 and L ∈ N, then there exist A ⊆ N with δ(A) = 1/3 and an
unbounded increasing sequence {λj} with the property that A∩(A+P (n)) = ∅ whenever n ∈

⋃∞
j=0[λj , λj+L].

Proof. With out loss in generality we assume that the leading coefficient of P . Set M = P (aL) with a ∈ N
chosen so that P is increasing and 2P (aL) ≥ P ((a + 1)L). We definine A ⊆ N such that A = A + 3M and
A ∩ [1, 3M ] = [M + 1, 2M ].

Since P (n) = P (m) (mod 3M) whenever n = m (mod 3M), it is easy to see that if λj = j3M +aL, then
the fact that A ∩ (A+ P (n)) = ∅ whenever n ∈ [λj , λj + L] for some j, follows from the fact that this holds
for j = 0 (as can be easily verified by the reader). �
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