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Abstract. We primarily consider here the L2 mapping properties of a class of strongly singular
Radon transforms on the Heisenberg group Hn; these are convolution operators on Hn with ker-
nels of the form M(z, t) = K(z)δ0(t) where K is a strongly singular kernel on Cn. Our results
are obtained by utilizing the group Fourier transform and uniform asymptotic forms for Laguerre
functions due to Erdélyi.

We also discuss the behavior of related twisted strongly singular operators on L2(Cn) and obtain
results in this context independently of group Fourier transform methods. Key to this argument is
a generalization of the results for classical strongly singular integrals on L2(Rd).

1. Introduction

In this article our main consideration shall be the L2 mapping properties of a class of strongly
singular Radon transforms on the Heisenberg group Hn. More precisely we consider convolution
operators on Hn with kernels of the form M(z, t) = K(z)δ0(t) where K is a kernel on Cn that is too
singular at the origin to be of Calderón-Zygmund type and has this strong singularity compensated
for by the introduction of a suitably large oscillation. Our main result is stated in §1.2 below and is
obtained by utilizing group Fourier transform methods and uniform asymptotic forms for Laguerre
functions due to Erdélyi [3].

We also discuss the behavior of related twisted strongly singular integral operators on L2(Cn), these
results are stated in §1.3 and are obtained independently of group Fourier transform techniques.
Key to these arguments is a generalization of existing results for classical strongly singular integrals
on L2(Rd). We choose to state these results first.

1.1. Strongly singular integrals on Rd. These are operators T , initially defined as mappings
from test functions in S(Rd) to distributions in S ′(Rd), to which are associated kernels Kα,β(x, y),
defined when x 6= y, that take the form

(1) Kα,β(x, y) = a(x, y)eiϕ(x,y).

We assume that the amplitude and phase satisfy the differential inequalities

|∂µx∂νya(x, y)| ≤ Cµ,ν |x− y|−d−α−|µ|−|ν|(2a)

|∂µx∂νyϕ(x, y)| ≤ Cµ,ν |x− y|−β−|µ|−|ν|,(2b)

that ϕ is real-valued and furthermore that

(2c) |∇xϕ(x, y)|, |∇yϕ(x, y)| ≥ C|x− y|−β−1
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with α ≥ 0 and β > 0. In the case where α = 0 we must make the further assumption that our
amplitude a is compactly supported in a neighborhood of the diagonal x = y, this is of course also
the only region of any interest when α > 0.

It is clear that the estimates (2) also hold uniformly for the dilated functions

aλ(x, y) = λd+αa(λx, λy) and ϕλ(x, y) = λβϕ(λx, λy),

and in additions to the differential inequalities (2) above we also make the following non-degeneracy
assumption, namely that

(3)
∣∣∣∣det

(
∂2ϕλ(x, y)
∂xi∂yj

)∣∣∣∣ ≥ C > 0

uniformly in λ, such kernels we shall call (non-degenerate) strongly singular integral kernels.

Our strongly singular integral operators T are related to these kernels Kα,β as follows: for f ∈ S
with compact support we identify the distribution Tf with the function

(4) Tf(x) =
∫
Kα,β(x, y)f(y) dy,

for x is outside the support of f . Our result for such operators is the following.

Theorem 1.1. The operator T , initially given by (4), extends to a bounded operator on L2(Rd) if
and only if α ≤ dβ

2 .

The proof of this result, amongst other things, is essentially contained in §5; see also [8].

The model case for operators of this type are those with kernels

Kα,β(x, y) = K̃α,β(x− y)

where K̃α,β is a distribution1 on Rd that away from the origin agrees with the radial function

(5) K̃α,β(x) = |x|−d−αei|x|−β
χ(|x|),

again β > 0 and here χ is smooth and compactly supported in a small neighborhood of the origin.

Operators of this type were first studied by Hirschman [7] in the case d = 1 and then in higher
dimensions by Wainger [13], Fefferman [4], and Fefferman and Stein [5]. That these operators
are indeed of the form considered in Theorem 1.1, and that their kernels are in particular non-
degenerate, is an easy exercise; see §5.2.

To establish Theorem 1.1 in this model case it is efficient to use Fourier transform methods. Since
K̃α,β is a radial compactly supported distribution it is well known that its Fourier transform is a
smooth radial function given by

(6) m(ξ) = (2π)
d
2

∫ ∞

0
χ(r)r−1−αeir

−β
J d−2

2
(r|ξ|)(r|ξ|)

2−d
2 dr,

where J d−2
2

is a Bessel function; see [11]. Using Plancherel’s theorem and the asymptotics of Bessel
functions it is then straightforward to establish Theorem 1.1 in this case.

1 The distribution-valued function α 7→ eKα,β , initially defined for Re α < 0, continues analytically to all of C.
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1.2. The Heisenberg group. The Heisenberg group Hn is Cn ×R endowed with the group law

[z, t] · [w, s] = [z + w, t+ s+ 1
2 Im z · w̄],

with identity the origin and inverses given by [z, t]−1 = [−z,−t].

The following transformations are automorphisms of the group Hn:

• nonisotropic dilations [z, t] 7→ δ ◦ [z, t] = [δz, δ2t], for all δ > 0;
• rotations [z, t] 7→ [Uz, t], with U a unitary transformation of Cn.

The usual Lebesgue measure dz dt on Cn ×R is the Haar measure for Hn.

A natural analogue, in this Heisenberg group setting, to the model operators discussed above has
been studied by the author; see [9].

In this article we shall consider the class of strongly singular Radon transforms on the Heisenberg
group Hn formally given by

(7) Rf(z, t) =
∫
Hn

M([w, s]−1 · [z, t])f(w, s) dw ds

and M are distribution kernels of the form

(8) M = K̃α,β ⊗ δ0

with K̃α,β the radial strongly singular kernels on Cn (Rd with d = 2n) given by (5).

Our main result is then the following.

Theorem 1.2. R extends to a bounded operator on L2(Hn) if and only if α ≤ (n− 1
6)β.

We obtain this result via group Fourier transform methods. Similar methods were employed by the
author in [9] however the arguments in this setting are simpler.

1.3. Twisted strongly singular integrals on Cn. The operators above are of course intimately
connected with the twisted convolution operators

(9) Rλf(z) =
∫
Cn

K̃α,β(z − w)ei
1
2
λ Im z·w̄f(w)dw.

In fact it follows from taking the partial Fourier transform in the t variable and applying Plancherel’s
theorem that the boundedness of R on L2(Hn) is formally equivalent to the uniform boundedness
of Rλ on L2(Cn) for λ 6= 0. It is therefore interesting to note the following corollary of the proof
of Theorem 1.2; for any fixed real λ, the operator Rλ extends to a bounded operator on L2(Cn)
whenever α ≤ nβ.

However we shall prove a more general version of this result and do so independently of group
Fourier transform methods.

We shall consider operators T λ, initially defined as mappings from test functions in S(Cn) to
distributions in S ′(Cn), to which we associate strongly singular integral kernels Kα,β(z, w) on Cn.
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For f ∈ S with compact support we identify the distribution T λf with the function

(10) T λf(z) =
∫
Cn

Kα,β(z, w)ei
1
2
λ Im z·w̄f(w)dw,

for z is outside the support of f . Our result for such operators is the following.

Theorem 1.3. For any λ real

‖T λf‖L2(Cn) ≤ Aλ‖f‖L2(Cn) if and only if α ≤ nβ.

Remark 1.4. (i) Theorem 1.1 is of course essentially a special case of Theorem 1.3 with λ = 0.
(ii) It would be of interest to know the precise behavior of the constant Aλ in Theorem 1.3

above as |λ| → ∞.

In the next three sections we shall concern ourselves with the proof of Theorem 1.2: in §2 we
introduce the group Fourier transform and reduce matters to basic Laguerre transform estimates;
as with the model Euclidean case the asymptotics of special functions, in this case Laguerre poly-
nomials, will be crucial and we include a discussion of these expansions in §3; while finally in §4 we
present the proof of these key Laguerre transform estimates.

The proof Theorem 1.3 is presented in §5.

2. Reduction of Theorem 1.2 to Laguerre transform estimates

Let ε > 0 and set M ε(z, t) = K̃ε
α,β(z)δ0(t), where

K̃ε
α,β(z) = e−ε|z|

−β
K̃α,β(z)

and for f ∈ L2(Hn) we define
Rεf(z, t) = f ∗M ε(z, t),

where convolution is taken with respect to the group structure on Hn. It is then easy to see that
if, for fixed ε > 0, we integrate the function K̃ε

α,β by parts N times and take the limit as ε → 0
then this must agree with the unique analytic continuation of K̃α,β to the half plane Re(α) < Nβ.
It then follows that for f ∈ S(Hn),

Rf(z, t) = lim
ε→0

Rεf(z, t).

We shall therefore, in the following, content ourselves with studying the operator Rε.

2.1. Group Fourier transform. It follows from Plancherel’s theorem for the group Fourier trans-
form that

‖Rεf‖L2(Hn) ≤ A‖f‖L2(Hn) ⇔ ‖M̂ ε(λ)‖Op ≤ A uniformly over λ 6= 0,

where M̂ ε(λ) denotes the group Fourier transform of M ε, which for each λ 6= 0 is an operator on
the Hilbert space L2(Rn). Now since M ε were chosen radial on Hn, i.e. M ε(z, t) = M ε

0(|z|, t) for
some function M ε

0, it is a well known result of Geller [6] that the operators M̂ ε(λ) are in fact, for
each λ 6= 0, diagonal with respect to a (rescaled) Hermite basis for L2(Rn). More precisely

M̂ ε(λ) = Cn
(
δj,k µ(|k|, λ)

)
j,k∈Nn ,
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where Cn is a constant which depends only on the dimension and the diagonal entries µ(|k|, λ) can
be expressed explicitly in terms a Laguerre transform. Denoting k = |k| we in fact have

(11) µ(k, λ) = cn−1
k

∫ ∞

0
e−εr

−β
χ(r)r−1−αeir

−β
Λn−1
k (1

2 |λ|r
2)(1

2 |λ|r
2)

1−n
2 dr,

where cδk =
(

k!
(k+δ)!

)1/2 and Λδk(x) is a Laguerre function of type δ. Recall that Laguerre functions of

type δ, δ > −1, form an orthonormal basis for L2(R+) and are given by Λδk(x) = cδkL
δ
k(x)e

− 1
2
xx

δ
2 ,

where Lδk(x) =
∑k

j=0

(
k+δ
k−j

) (−x)j

j! are the Laguerre polynomials of type δ.

It therefore follows that the operators M̂ ε(λ) are bounded on L2(Rn) if and only if the diagonal
scalars µ(k, λ) are bounded uniformly in k, and hence

‖Rεf‖L2(Hn) ≤ A‖f‖L2(Hn) ⇔ |µ(k, λ)| ≤ A′, uniformly in k and λ 6= 0.

For more on the group Fourier transform and Laguerre functions see [10] and [12].

2.2. Main estimates. We have seen that matters reduce to the study of the ‘Fourier transforms’
µ(k, λ). Our main estimate is then the following.

Theorem 2.1. (1) If |λ| ≤ k, then |µ(k, λ)| ≤ c0(1 + |λ|k)
α−nβ
2(β+1) ,

(2) If |λ| ≥ k, then as k →∞

µ(k, λ) = c1(|λ|k)
α−(n− 1

6 )β

2(β+1) eic2(|λ|k)
β

2(β+1)
+ O

(
(|λ|k)

α−nβ
2(β+1)

)
where the constants c0, c1, and c2 above are independent of k and λ.

It is clear from the remarks above that Theorem 1.2 will be an immediate consequence of Theorem
2.1, we present the proof of Theorem 2.1 in §4.

3. Asymptotic properties of Laguerre functions

Recall that Laguerre functions of type δ, δ > −1, form an orthonormal basis for L2(R+) and are
given by

Λδk(x) =
(

k!
(k+δ)!

)1/2
Lδk(x)e

− 1
2
xx

δ
2 ,

where Lδk(x) =
∑k

j=0

(
k+δ
k−j

) (−x)j

j! are the Laguerre polynomials of type δ.

The two asymptotic formulae below which hold uniformly in their respective ranges of validity
(which overlap) are due to Erdélyi [3]. In what follows ν = 4k + 2δ + 2 and N = ν/4.

3.1. The Bessel asymptotic forms. Let 0 ≤ x ≤ bν, b < 1. Then for k ≥ k0,

Λδk(x) =
((δ + k)!

k!

) 1
2 2δ−

1
2 ν−

δ
2

(ν
x

) 1
2
( ψ
ψ′

) 1
2 {Jδ(νψ) + O [ν−1( x

ν−x)
1
2 J̃δ(νψ)]},

and so

(12) Λδk(x) = C1(δ)
(ν
x

) 1
2
( ψ
ψ′

) 1
2 {Jδ(νψ) + O [ν−1( x

ν−x)
1
2 J̃δ(νψ)]}
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where C1(δ) is a constant independent of k, ψ = ψ(t) satisfies

(13) ψ′(t) =
1
2

(1
t
− 1

) 1
2

and t = x
ν . For 0 ≤ t < 1,

ψ(t) = 1
2 [(t− t2)

1
2 + sin−1 t

1
2 ],

and

J̃δ(u) =

{
Jδ(u) if u sufficiently small,(
|Jδ(u)|2 + |Yδ(u)|2

) 1
2 otherwise,

here Yδ and Jδ are Bessel functions of order δ.

Lemma 3.1. If 0 ≤ t ≤ 1
2 , then 1

2 t
1
2 ≤ ψ(t) ≤ t

1
2 .

Proof. Let f(t) = (t− t2)
1
2 + sin−1 t

1
2 , notice then that f ′(t) =

(
1−t
t

) 1
2 . Now if 0 ≤ s ≤ 1

2 , we have
1
2s
− 1

2 ≤ f ′(s) ≤ s−
1
2 , and so

1
2

∫ t

0
s−

1
2ds ≤

∫ t

0
f ′(s)ds ≤

∫ t

0
s−

1
2ds

which implies t
1
2 ≤ f(t) ≤ 2t

1
2 , since f(0) = 0. �

3.2. The Airy asymptotic forms. Let 0 < aν ≤ x, a > 0. Then for k ≥ k0,

Λδk(x) =
(−1)k(

k!(δ + k)!
) 1

2

2
5
6NN+ 1

6 e−Nx−
1
2

( π

−φ′
) 1

2 {Ai(−ν
2
3φ) + O [x−1Ãi(−ν

2
3φ)]},

and so, using Stirling’s formula

(14) Λδk(x) = C2(δ)(−1)kν
1
6x−

1
2

( 1
−φ′

) 1
2 {Ai(−ν

2
3φ) + O [x−1Ãi(−ν

2
3φ)]}

where C2(δ) is a constant independent of k, φ = φ(t) satisfies

(15) [φ(t)]
1
2φ′(t) =

1
2

(1
t
− 1

) 1
2
,

and again t = x
ν . Now one can show

φ(t) =
(3

4

) 2
3

{
[cos−1 t

1
2 − (t− t2)

1
2 ]

2
3 if 0 < t ≤ 1,

−[(t− t2)
1
2 − cosh−1 t

1
2 ]

2
3 if t > 1,

and

Ãi(z) =

{
Ai(z) if z ≥ 0,(
|Ai(z)|2 + |Bi(z)|2

) 1
2 if z ≤ 0,

here Ai and Bi are Airy integrals2.

Lemma 3.2. If 1
2 ≤ t ≤ 1, then 1

2(1− t) ≤ φ(t) ≤ 1− t.

2 Ai(z) and Bi(z) are independent solutions of the differential equation d2y
dz2 = zy and have the integral represen-

tations Ai(z)=
1

π

R∞
0

cos( 1
3
t3 + zt)dt and Bi(z)=

1

π

R∞
0

�
e

1
3

t3+zt + sin( 1
3
t3 + zt)

	
dt.
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Proof. Let g(t) = cos−1 t
1
2 − (t − t2)

1
2 , notice then that g′(t) = −

(
1−t
t

) 1
2 . Now if 1

2 ≤ s ≤ 1, we
have (1− s)

1
2 ≤ −g′(s) ≤ 2(1− s)

1
2 , and so∫ 1

t
(1− s)

1
2ds ≤ −

∫ 1

t
g′(s)ds ≤ 2

∫ 1

t
(1− s)

1
2ds

which implies 2
3(1− t)

3
2 ≤ g(t) ≤ 4

3(1− t)
3
2 , since g(1) = 0. �

Note also that, for z > 0
Ai(−z) = 1

3z
1
2 [J1/3(2

3z
3
2 ) + J−1/3(2

3z
3
2 )]

Bi(−z) =
(
z
3

) 1
2 [J1/3(2

3z
3
2 ) + J−1/3(2

3z
3
2 )].

3.3. Bessel functions. The Bessel functions, defined for real k > −1
2 by the formula

Jk(λ) = (π
1
2 Γ(k + 1

2))−1
(λ

2

)k ∫ 1

−1
eiλt(1− t2)k−

1
2dt

are a model case for oscillatory integrals in one dimension and using this theory one can show that

(16) Jk(λ) = σ1(λ)eiλ + σ2(λ)e−iλ,

where |σ(`)
i (λ)| ≤ c`(1 + λ)−

1
2
−` ; see for example [14].

3.4. Trivial Estimates. It follows from the asymptotics above that for k large we have the fol-
lowing crude estimates for our Laguerre function; see Askey and Wainger [1].

|Λδk(x)| ≤ C



(xν)
δ
2 if 0 ≤ x ≤ 1

ν ,

(xν)−
1
4 if 1

ν ≤ x ≤ ν
2 ,

ν−
1
4 (ν − x)−

1
4 if ν

2 ≤ x ≤ ν − ν
1
3 ,

ν−
1
3 if ν − ν

1
3 ≤ x ≤ ν + ν

1
3 ,

ν−
1
4 (x− ν)−

1
4 e−γ1ν

− 1
2 (x−ν)

3
2 if ν + ν

1
3 ≤ x ≤ 3ν

2 ,

e−γ2x if x ≥ 3ν
2 ,

where γ1, γ2 > 0 are fixed constants.

4. Proof of Theorem 2.1

It is natural to consider the cases for bounded and unbounded k separately. We now fix k0 to be a
large constant and note that for k ≤ k0 one can easily verify, by integration by parts, that

|µ(k, λ)| ≤ C(1 + |λ|)−N ,
for all N ≥ 0.

Since we are now only interested in the case when k is large, our main object of study, namely
µ(k, λ), is therefore essentially

I =
∫ ∞

0
e−εr

−β
χ(r)r−1−αeir

−β
(xν)

1−n
2 Λn−1

k (x)dr,
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where x = 1
2 |λ|r

2. We can of course always integrate by parts in r, but we must take care of what
happens when the derivative hits the amplitude of I.

Recall that Λδk(x) = cδkL
δ
k(x)e

− 1
2
xx

δ
2 . Now since d

dxL
δ
k(x) = −Lδ+1

k−1(x) and cδ+1
k−1 = k−

1
2 cδk it follows

that
d

dx
Λδk(x) = 1

2( δx − 1)Λδk(x)−
(
k
x

) 1
2 Λδ+1

k−1(x).

Therefore, using the fact that ∂rx = 2x
r we see that

∂rΛδk(x) = −r−1[(x− δ)Λδk(x) + 2(xk)
1
2 Λδ+1

k−1(x)].

If we instead take N derivatives it is easy to see that we get

∂Nr Λδk(x) = r−N [PN (x)Λδk(x) + (xk)
1
2PN−1(x)Λδ+1

k−1(x) + · · ·+ (xk)
N
2 P0(x)Λδ+Nk−N (x)],

that is

(17) ∂Nr Λδk(x) = r−N
N∑
`=0

(xk)
`
2PN−`(x)Λδ+`k−`(x),

where PN−`(x) is some polynomial of degree N − ` in x.

We therefore see that integration by parts will, in general, only help us if

max{(xν)
1
2 , x} ≤ C1r

−β .

In order to estimate I we shall make use of the asymptotics for Laguerre functions presented in §3,
it is then natural to consider six separate regions and write I = I1 + · · ·+ I6 where

Ij =
∫ ∞

0
χεj(r)r

−1−αeir
−β

(xν)
1−n

2 Λn−1
k (x)dr,

where χε1(r) = e−εr
−β
χ(r)ϑj(x, ν) and each ϑj(x, ν) localizes smoothly to the jth interval indicated

in §3.4.

4.1. Neighborhood of 0: 0 ≤ x ≤ 1
ν . Notice that here xν ≤ 1 and |Λδk(x)| ≤ C(xν)

δ
2 . Using our

trivial estimate it is easy to see that

|∂Nr Λδk(x)| ≤ Cr−N (xν)
δ
2
+N ,

therefore integrating by parts N times we obtain the estimate

|I1| =
∣∣∣ ∫ ∞

0
χε1(r)r

−1−αeir
−β

(xν)
1−n

2 Λn−1
k (x)dr

∣∣∣
≤ C

∫
r≤min{1,(|λ|ν)−

1
2 }

r−1−α+Nβdr

≤ C(|λ|ν)
α−Nβ

2 ,

for any N ≥ 0.
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4.2. Oscillatory interval I: 1
ν ≤ x ≤ ν

2 . Notice that here ν
2 ≤ ν−x < ν, and |Λδk(x)| ≤ C(xν)−

1
4 .

In this interval we shall make explicit use of the oscillation in the main term of our asymptotic
expansion, which are in this case is given in terms of Bessel functions; see §3.1. We note here that
from (13) and Lemma 3.1 it follows that

ψ′ ∼
(ν
x

) 1
2 while ψ ∼

(x
ν

) 1
2
.

The following estimates are then immediate,

(νψ)−
1
2 ∼ (xν)−

1
4 and ∂r[(νψ)−

1
2 ] = − x

rν
3
2

ψ−
3
2ψ′ ∼ −1

r
(xν)−

1
4 ,

∂rνψ =
1
r
x

1
2 (ν − x)

1
2 ∼ 1

r
(xν)

1
2 and ∂2

rνψ = − 1
r2

x
3
2

(ν − x)
1
2

∼ 1
r2
x

3
2 ν−

1
2 ,

(ν
x

) 1
2
( ψ
ψ′

) 1
2 ≤ C and

∣∣∣∂r[(ν
x

) 1
2
( ψ
ψ′

) 1
2
]∣∣∣ ≤ C

1
r
.

Case 1: (xν)
1
2 ≤ C1r

−β. We should integrate by parts and since x ≤ (xν)
1
2 it suffices to estimate,

I2 =
∫ ∞

0
χε2(r)r

−1−α+Nβeir
−β

(xν)
N+1−n

2 Λn−1+N
k−N (x)dr.

Using the Bessel asymptotic forms (12) we may write I2 = cB + EB, where

B =
∫ ∞

0
χε2(r)r

−1−α+Nβeir
−β

(xν)
N+1−n

2

(ν
x

) 1
2
( ψ
ψ′

) 1
2
Jn−1+N (νψ)dr.

Error term:

|EB| ≤ C

∫ ∞

0
χε2(r)r

−1−α+Nβ(xν)
N+1−n

2

(ν
x

) 1
2
( ψ
ψ′

) 1
2
ν−1

(
x

ν−x
) 1

2 |J̃n−1+N (νψ)|dr

≤ C

∫ ∞

0
χε2(r)r

−1−α+Nβ(xν)
1
2
(N−n− 1

2
)dr

≤ C(|λ|ν)
1
2
(N−n− 1

2
)

∫
rβ+1≤(|λ|ν)−

1
2

r−1−α+N(β+1)−(n+ 1
2
)dr

≤ C(|λ|ν)
α−(n+1

2 )β

2(β+1) ,

provided N is chosen large enough.

Main term: Since νψ ≥ (xν)
1
2 ≥ 1 it follows from (16) that

Jn−1+N (νψ) = σ1(νψ)eiνψ + σ2(νψ)e−iνψ,

where each σi is a symbol of order −1
2 . Since ∂rψ ∼ 1

rψ it follows that

|∂`rσi(νψ)| ≤ Cr−`(νψ)−
1
2 .

Write B = B1 +B2, where

B1 =
∫ ∞

0
χε2(r)r

−1−α+Nβei[r
−β+νψ](xν)

N+1−n
2

(ν
x

) 1
2
( ψ
ψ′

) 1
2
σ1(νψ)dr,
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B2 =
∫ ∞

0
χε2(r)r

−1−α+Nβei[r
−β+νψ](xν)

N+1−n
2

(ν
x

) 1
2
( ψ
ψ′

) 1
2
σ2(νψ)dr.

Let us first consider the integral B1, and let ϕ(r) = r−β + νψ. Now

∂rϕ(r) = −βr−(β+1) + 1
rx

1
2 (ν − x)

1
2 ,

and so if C1 is chosen small enough it follows that

|∂rϕ(r)| ≥ Cr−(β+1).

In addition to this we also have

∂2
rϕ(r) = β(β + 1)r−(β+2) − 1

r2
x

3
2

(ν−x)
1
2
≥ Cr−(β+2).

If we let

a(r) = χε2(r)r
−1−α+Nβ(xν)

N+1−n
2

(ν
x

) 1
2
( ψ
ψ′

) 1
2
σ1(νψ),

then for all ` = 0, 1, . . . we have

|∂`ra(r)| ≤ Cr−1−α+Nβ−`(xν)
N
2 (νψ)−

1
2 .

Applying van der Corput’s lemma (integration by parts) gives

|B1| ≤ C

∫
rβ+1≤(|λ|ν)−

1
2

r−1−α+(N+1)β(xν)
2N+1−2n

4 dr ≤ C(|λ|ν)
α−(n+1

2 )β

2(β+1) ,

provided N is chosen large enough as before.

Of course the phase in B2 is never stationary, so we obtain the same estimate for B2.

Case 2: (xν)
1
2 ≥ C1r

−β. Here we shall not integrate by parts first, so we wish to estimate

I2 =
∫ ∞

0
χε2(r)r

−1−αeir
−β

(xν)
1−n

2 Λn−1
k (x)dr.

Using the asymptotic forms (12) we may write I2 = cB + EB, where

B =
∫ ∞

0
χε2(r)r

−1−αeir
−β

(xν)
1−n

2

(ν
x

) 1
2
( ψ
ψ′

) 1
2
Jn−1(νψ)dr.

Error term:

|EB| ≤ C

∫ ∞

0
χε2(r)r

−1−α(xν)
1−n

2

(ν
x

) 1
2
( ψ
ψ′

) 1
2
ν−1

( x

ν − x

) 1
2 |J̃n−1(νψ)|dr

≤ C

∫ ∞

0
χε2(r)r

−1−α(xν)−
1
2
(n+ 1

2
)dr

≤ C(|λ|ν)−
1
2
(n+ 1

2
)

∫
rβ+1≥(|λ|ν)−

1
2

r−1−α−(n+ 1
2
)dr

≤ C(|λ|ν)
α−(n+1

2 )β

2(β+1) .
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Main term: As above we shall use (16) and write B = B1 + B2, where

B1 =
∫ ∞

0
χε2(r)r

−1−αei[r
−β+νψ]

(ν
x

) 1
2 (xν)

1−n
2

( ψ
ψ′

) 1
2
σ1(νψ)dr,

B2 =
∫ ∞

0
χε2(r)r

−1−αei[r
−β−νψ]

(ν
x

) 1
2 (xν)

1−n
2

( ψ
ψ′

) 1
2
σ2(νψ)dr.

Let us first consider the integral B1, and again let ϕ(r) = r−β + νψ. Recall that

∂rϕ(r) = −βr−(β+1) + 1
rx

1
2 (ν − x)

1
2 ,

and so if we were to choose a constant C2 large enough it would follow that

|∂rϕ(r)| ≥ C 1
rx

1
2 (ν − x)

1
2 ,

whenever (xν)
1
2 ≥ C2r

−β , and hence as before

|B1| ≤ C

∫
rβ+1≥(|λ|ν)−

1
2

r−1−α(xν)−
2n+1

4 dr ≤ C(|λ|ν)
α−(n+1

2 )β

2(β+1) .

Of course the phase in B2 is trivially never critical in the complete range, so we obtain the same
estimate for B2 everywhere.

We are thus left with estimating B1 when C1r
−β ≤ (xν)

1
2 ≤ C2r

−β, which means r ∼ (|λ|ν)−
1

2(β+1) .

Now making the change of variables r = s(|λ|ν)−
1

2(β+1) we see that

B1 = (|λ|ν)
α

2(β+1)

∫ ∞

0
ϑ(s)s−1−αei(|λ|ν)

β
2(β+1) Φ(s)

(ν
x

) 1
2 (xν)

1−n
2

( ψ
ψ′

) 1
2
σ1(νψ)dr,

where ϑ is smooth and supported where s ∼ 1 and Φ(s) = s−β + (|λ|ν)−
β

2(β+1) νψ.

Although our phase Φ(s) may now be stationary in this range we do have the following.

Lemma 4.1. If s ∼ 1 and x ≤ ν
2 , then |∂sΦ(s)|+ |∂2

sΦ(s)| ≥ C0 > 0.

Proof. Recall that

∂sΦ(s) = −βs−(β+1) + (|λ|ν)−
β

2(β+1) 1
sx

1
2 (ν − x)

1
2 ,

and
∂2
sΦ(s) = β(β + 1)s−(β+2) − (|λ|ν)−

β
2(β+1) 1

s2
x

3
2

(ν−x)
1
2
.

Hence ∂sΦ(s) = 0 if and only if

(|λ|ν)−
β

2(β+1) 1
sx

1
2 (ν − x)

1
2 = βs−(β+1).

It is therefore clear that if

(|λ|ν)−
β

2(β+1) 1
sx

1
2 (ν − x)

1
2 ≥ (1 + β

2 )βs−(β+1),

then
|∂sΦ(s)| ≥ Cs−(β+1).

While if
(|λ|ν)−

β
2(β+1) 1

sx
1
2 (ν − x)

1
2 ≤ (1 + β

2 )βs−(β+1),
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then we have

∂2
sΦ(s) = β(β + 1)s−(β+2) − 1

s
x

ν−x(|λ|ν)−
β

2(β+1) 1
sx

1
2 (ν − x)

1
2 ≥ Cs−(β+2),

since 0 < x
ν−x ≤ 1. �

We note that since

(18) −∂3
sΦ(s) = β(β + 1)(β + 2)s−(β+3) + (|λ|ν)−

β
2(β+1) ν

s3
x

3
2

(ν−x)
3
2
> 0

our phase Φ can have at most two separated critical points, that they must be separated follows
from the fact that for all ` = 0, 1, . . . we have |∂`sΦ(s)| ≤ c`. In addition to this we note that if we
now set

a(s) = ϑ(s)s−1−α(xν)
1−n

2

(ν
x

) 1
2
( ψ
ψ′

) 1
2
σ1(νψ),

then for all ` = 0, 1, . . .

|∂`sa(s)| ≤ C(xν)
1−n

2
− 1

4 ∼ (|λ|ν)−
(n− 1

2 )β

2(β+1) .

Applying van der Corput’s lemma therefore gives

|B1| ≤ C(|λ|ν)
α−nβ
2(β+1) .

We have therefore established that |B| ≤ C(|λ|ν)
α−nβ
2(β+1) , and hence the same estimate for I2.

4.3. Oscillatory interval II: ν
2 ≤ x ≤ ν − ν

1
3 . We now have ν

1
3 ≤ ν − x ≤ ν

2 and the trivial
estimate |Λδk(x)| ≤ Cx−

1
4 (ν − x)−

1
4 .

The situation here is much the same as it was in §4.2 only here we must use instead the Airy
asymptotic form. In order to do better than the trivial estimate we shall again make use the
oscillation in the main term of our asymptotic expansion. It follows from Lemma 3.2 that

φ ∼ ν − x

ν
,

from this and (15) it is immediately clear that

1
10

≤ φ′ ≤ 10 and φ′′ ≤ C.

Case 1: (xν)
1
2 ≤ C1r

−β. We should integrate by parts and since x ≤ (xν)
1
2 it suffices to estimate,

I3 =
∫ ∞

0
χε3(r)r

−1−α+Nβeir
−β

(xν)
N+1−n

2 Λn−1+N
k−N (x)dr.

Using the Airy asymptotic forms (14) we may write this as I3 = cA+ EA, where

A =
∫ ∞

0
χε3(r)r

−1−α+Nβeir
−β

(xν)
N+1−n

2 x−
1
2 ν

1
6
(

1
−φ′

) 1
2 Ai(−ν

2
3φ)dr.
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Error term:

|EA| ≤
∫ ∞

0
χε3(r)(r)r

−1−α+Nβ(xν)
N+1−n

2 x−
3
2 ν

1
6
(

1
−φ′

) 1
2 |Ãi(−ν

2
3φ)|dr

≤ C

∫ ∞

0
χε3(r)(r)r

−1−α+Nβ(xν)
1
2
(N− 1

2
−n)ν

1
4 (ν − x)−

1
4dr

≤ C(|λ|ν)
α−(n+1

2 )β

2(β+1) ν−
3
4

∫
ν−x≤ν

(ν − x)−
1
4dx

≤ C(|λ|ν)
α−(n+1

2 )β

2(β+1) ,

provided N is chosen large enough.

Main term: Recall that for z > 0

Ai(−z) = 1
3z

1
2 [J1/3(2

3z
3
2 ) + J−1/3(2

3z
3
2 )],

and since J1/3 and J−1/3 satisfy the same bounds for large z it suffices to estimate

Ã =
∫ ∞

0
χε3(r)r

−1−α+Nβeir
−β

(xν)
N+1−n

2 x−
1
2 ν

1
6
(

1
−φ′

) 1
2 (ν

2
3φ)

1
2J1/3(2

3νφ
3
2 )dr.

It follows from (16) that

J1/3(2
3νφ

3
2 ) = σ1(νφ

3
2 )ei

2
3
νφ

3
2 + σ2(νφ

3
2 )e−i

2
3
νφ

3
2 ,

where σi is a symbol of order −1
2 . We therefore write Ã = A1 +A2, where

A1 =
∫ ∞

0
χε3(r)r

−1−α+Nβei[r
−β+ 2

3
νφ

3
2 ](xν)

N+1−n
2 x−

1
2 ν

1
6
(

1
−φ′

) 1
2 (ν

2
3φ)

1
2σ1(νφ

3
2 )dr,

A2 =
∫ ∞

0
χε3(r)r

−1−α+Nβei[r
−β− 2

3
νφ

3
2 ](xν)

N+1−n
2 x−

1
2 ν

1
6
(

1
−φ′

) 1
2 (ν

2
3φ)

1
2σ2(νφ

3
2 )dr.

Let us first consider the integral A1, and now let ϕ̃(r) = r−β + 2
3νφ

3
2 . We note that ∂rϕ̃ = ∂rϕ.

It therefore follows that ϕ̃ behaves exactly as ϕ did in §4.2 and so for C1 chosen small enough we
again may integrate by parts. In this case our amplitude

ã(r) = χε3(r)r
−1−α+Nβ(xν)

N+1−n
2 x−

1
2 ν

1
6
(

1
−φ′

) 1
2 (ν

2
3φ)

1
2σ1(νφ

3
2 ),

courtesy of the symbol estimates |∂`rσ1(νφ
3
2 )| ≤ Cr−`x

1
4
+`(ν − x)−

3
4
−`, satisfies for ` = 0, 1, . . . the

differential inequality

|∂`rã(r)| ≤ Cr−1−α+Nβ−`(ν − x)−`−
1
4 νN−n+ 3

4
+`.

Integrating by parts N ′ times we therefore get the estimate

|A1| ≤ C

∫ ∞

0
r−1−α+(N+N ′)β(ν − x)−N

′− 1
4 νN+N ′−n+ 3

4dr

≤ C(|λ|ν)
α−(n+1

4 )β

2(β+1)

∫
ν

1
3≤ν−x

(ν − x)−N
′− 1

4dx

≤ C(|λ|ν)
α−nβ−N′

3
2(β+1) ,

again provided N large enough, but also in this case that N ′ ≥ 1.

We of course obtain the same estimate for A2 since its phase is trivially never stationary.
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Case 2: (xν)
1
2 ≥ C1r

−β. Here we shall not integrate by parts first, so we wish to estimate

I3 =
∫ ∞

0
χε3(r)r

−1−αeir
−β

(xν)
1−n

2 Λn−1
k (x)dr.

Using the asymptotic forms (14) we may write I3 = cA+ EA, where

A =
∫ ∞

0
χε3(r)r

−1−αeir
−β

(xν)
1−n

2 x−
1
2 ν

1
6
(

1
−φ′

) 1
2 Ai(−ν

2
3φ)dr.

Error term:

|EA| ≤
∫ ∞

0
χε3(r)(r)r

−1−α(xν)
1−n

2 x−
3
2 ν

1
6
(

1
−φ′

) 1
2 |Ãi(−ν

2
3φ)|dr

≤ C

∫ ∞

0
χε3(r)(r)r

−1−α(xν)−
1
2
(n+ 1

2
)ν

1
4 (ν − x)−

1
4dr

≤ C(|λ|ν)
α−(n+1

2 )β

2(β+1) ν−
3
4

∫
ν−x≤ν

(ν − x)−
1
4dx

≤ C(|λ|ν)
α−(n+1

2 )β

2(β+1) .

Main term: As above it suffices to consider

Ã =
∫ ∞

0
χε3(r)r

−1−αeir
−β

(xν)
1−n

2 x−
1
2 ν

1
6
(

1
−φ′

) 1
2 (ν

2
3φ)

1
2J1/3(2

3νφ
3
2 )dr,

and as before we shall write Ã = A1 +A2, where

A1 =
∫ ∞

0
χε3(r)r

−1−αei[r
−β+ 2

3
νφ

3
2 ](xν)

1−n
2 x−

1
2 ν

1
6
(

1
−φ′

) 1
2 (ν

2
3φ)

1
2σ1(νφ

3
2 )dr,

A2 =
∫ ∞

0
χε3(r)r

−1−αei[r
−β− 2

3
νφ

3
2 ](xν)

1−n
2 x−

1
2 ν

1
6
(

1
−φ′

) 1
2 (ν

2
3φ)

1
2σ2(νφ

3
2 )dr.

So again matter reduce to the study of A1 and we again let ϕ̃(r) = r−β + 2
3νφ

3
2 . As in §4.2 we may

choose a constant C2 so large that

|∂rϕ̃(r)| ≥ C 1
rx

1
2 (ν − x)

1
2

whenever (xν)
1
2 ≥ C2r

−β . In this range we can therefore integrate by parts N ′ times and obtain

|A1| ≤ C

∫ ∞

0
r−1−α(ν − x)−

3
2
N ′− 1

4 ν
1
2
N ′−n+ 3

4dr

≤ C(|λ|ν)
α−nβ
2(β+1) ν

1
2
N ′− 1

4

∫
ν

1
3≤ν−x

(ν − x)−
3
2
N ′− 1

4dx

≤ C(|λ|ν)
α−nβ
2(β+1) .

Of course the phase in A2 is trivially never critical in the complete range, so we obtain the same
estimate for A2 everywhere.

We are thus left with estimating A1 when C1r
−β ≤ (xν)

1
2 ≤ C2r

−β, which means r ∼ (|λ|ν)−
1

2(β+1) .

Making the change of variables r = s(|λ|ν)−
1

2(β+1) we see that

A1 = (|λ|ν)
α

2(β+1)

∫ ∞

0
ϑ(s)s−1−αei(|λ|ν)

β
2(β+1) eΦ(s)(xν)

1−n
2 x−

1
2 ν

1
6
(

1
−φ′

) 1
2 (ν

2
3φ)

1
2σ1(νφ

3
2 )dr,
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where ϑ is smooth and supported where s ∼ 1 and Φ̃(s) = s−β + (|λ|ν)−
β

2(β+1) νψ.

We recall that Φ̃(s) satisfies the same differential inequalities as Φ(s) and thus both ∂sΦ̃(s) and
∂2
s Φ̃(s) now vanish at a point s = s0 determined by the condition x

ν−x = β + 1. We can however
use the fact, noted before, that

−∂3
sΦ(s) = β(β + 1)(β + 2)s−(β+3) + (|λ|ν)−

β
2(β+1) ν

s3
x

3
2

(ν−x)
3
2
> 0.

Applying the method of stationary phase (see [10], chapter VIII, Proposition 3) in a suitably small
neighborhood of s0 therefore gives

A1 = C(|λ|ν)
α− 1

3 β

2(β+1) ν−n+ 1
2 ei(|λ|ν)

β
2(β+1) eΦ(s0) + O

(
(|λ|ν)

α− 2
3 β

2(β+1) ν−n+ 1
2

)
= C(|λ|ν)

α−(n− 1
6 )β

2(β+1) ei(|λ|ν)
β

2(β+1) eΦ(s0) + O
(
(|λ|ν)

α−(n+1
6 )β

2(β+1)

)
.

Away from this small neighborhood one has |∂2
sΦ(s)|+ |∂2

sΦ(s)| ≥ C0 and hence we may argue as
in Oscillatory interval I, Case 2 and obtain the estimate

|A1| ≤ C(|λ|ν)
α−nβ
2(β+1) .

We have therefore established that

A = C(|λ|ν)
α−(n− 1

6 )β

2(β+1) ei(|λ|ν)
β

2(β+1) eΦ(s0) + O
(
(|λ|ν)

α−nβ
2(β+1)

)
,

and hence the same equality for I3.

4.4. Neighborhood of the turning point: |ν − x| ≤ ν
1
3 . Here we just use a size estimate and

the fact that |Λδk(x)| ≤ Cν−
1
3 . This is the best we can do since νφ

3
2 ≤ ν

(
ν−x
ν

) 3
2 ≤ 1.

Case 1: (xν)
1
2 ≤ C1r

−β. We should integrate by parts and since x ≤ C(xν)
1
2 it suffices to estimate,

|I4| =
∣∣∣∣∫ ∞

0
χε4(r)r

−1−α+Nβeir
−β

(xν)
N+1−n

2 Λn−1+N
k−N (x)dr

∣∣∣∣
≤ C(|λ|ν)

α−nβ
2(β+1)

∫
|ν−x|≤ν

1
3

ν−
1
3dx

≤ C(|λ|ν)
α−nβ
2(β+1) ,

provided N is taken large enough.

Case 2: (xν)
1
2 ≥ C1r

−β. Here we shall not integrate by parts first, so we wish to estimate

|I4| =
∣∣∣∣∫ ∞

0
χε4(r)r

−1−αeir
−β

(xν)
1−n

2 Λn−1
k (x)dr

∣∣∣∣
≤ C(|λ|ν)

α−nβ
2(β+1)

∫
|ν−x|≤ν

1
3

ν−
1
3dx

≤ C(|λ|ν)
α−nβ
2(β+1) .

4.5. Monotonic region I: ν+ν
1
3 ≤ x ≤ 3

2ν. Recall that here |Λδk(x)| ≤ Cν−
1
4 (x−ν)−

1
4 e−γ1ν

− 1
2 (x−ν)

3
2 .
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Case 1: (xν)
1
2 ≤ C1r

−β. We should integrate by parts and since x ≤ C(xν)
1
2 it suffices to estimate,

|I5| =
∣∣∣∣∫ ∞

0
χε5(r)r

−1−α+Nβeir
−β

(xν)
N+1−n

2 Λn−1+N
k−N (x)dr

∣∣∣∣
≤ C(|λ|ν)

α−nβ
2(β+1)

∫
x−ν≥ν

1
3

ν−
1
4 (x− ν)−

1
4 e−γ1ν

− 1
2 (x−ν)

3
2 dx

≤ C(|λ|ν)
α−nβ
2(β+1)

∫
u≥1

u−
1
4 e−γ1u

3
2 du

≤ C(|λ|ν)
α−nβ
2(β+1) ,

provided N is chosen large enough.

Case 2: (xν)
1
2 ≥ C1r

−β. Here we shall not integrate by parts first, so we wish to estimate

|I5| =
∣∣∣∣∫ ∞

0
χε5(r)r

−1−αeir
−β

(xν)
1−n

2 Λn−1
k (x)dr

∣∣∣∣
≤ C(|λ|ν)

α−nβ
2(β+1)

∫
x−ν≥ν

1
3

ν−
1
4 (x− ν)−

1
4 e−γ1ν

− 1
2 (x−ν)

3
2 dx

≤ C(|λ|ν)
α−nβ
2(β+1) ,

as before.

4.6. Monotonic region II: x ≥ 3ν
2 . Here we have the trivial estimate |Λδk(x)| ≤ Ce−γ2x.

Case 1: x ≤ C1r
−β. We should integrate by parts and since x ≥ (xν)

1
2 it suffices to estimate,

|I6| =
∣∣∣∣∫ ∞

0
χε6(r)r

−1−α+Nβeir
−β
xN (xν)

1−n
2 |Λn−1

k (x)|dr
∣∣∣∣

≤ C|λ|
α−Nβ
β+2 ν1−n

∫
x≥ν

xN−1e−γ2xdx

≤ C|λ|
α−Nβ
β+2 νN−ne−γ2ν ,

for all N large enough.

Case 2: x ≥ C1r
−β. Here we shall not integrate by parts first, so we wish to estimate

|I6| =
∣∣∣∣∫ ∞

0
χε6(r)r

−1−αeir
−β

(xν)
1−n

2 Λn−1
k (x)dr

∣∣∣∣
≤ C|λ|

α−Nβ
β+2 ν1−n

∫
x≥ν

xN−1e−γ2xdx

≤ C|λ|
α−Nβ
β+2 νN−ne−γ2ν ,

for all N ≥ 0.

This completes the proof of Theorem 2.1.
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5. Proof of Theorem 1.3

5.1. Establishing Sufficiency. We have already noted above that Theorem 1.1 is essentially no
more than a special case of Theorem 1.3, the case λ = 0. The sufficiency in Theorem 1.3 is however,
as we shall see, an almost immediate consequence of that in Theorem 1.1 and it is to this that we
now turn our attention.

5.1.1. Establishing Sufficiency in Theorem 1.1. We may clearly assume that our kernel Kα,β(x, y)
is supported in a small neighborhood of the diagonal, as in the complement of such a region Kα,β

is, for α > 0, clearly dominated by an integrable function of |x− y|.

In order to establish the positive result we shall dyadically decompose the operator

T =
∞∑
j=0

Tj .

In order to do this we consider the following partition of unity; choose ϑ ∈ C∞
0 (R) supported in

[12 , 2] such that
∑∞

j=0 ϑ(2jr) = 1 for all 0 ≤ r ≤ 1, and then write for f ∈ S with compact support

Tjf(x) =
∫
Kj(x, y)f(y) dy

whenever x is in the complement of the support of f , where

Kj(x, y) = ϑ(2j |x− y|)Kα,β(x, y).

The key result here is the following.

Theorem 5.1. The operator norms of Tj are uniformly bounded whenever α ≤ dβ
2 , more precisely∫

Rd

|Tjf(x)|2dx ≤ C2j(2α−dβ)

∫
Rd

|f(x)|2dx.

We note that as the operator norms of Tj are equal to that of

T̃jf(x) = 2jα
∫
Rd

ϑ(|x− y|)a2−j (x, y)ei2
jβϕ

2−j (x,y)f(y)dy

it suffices to consider the operators T̃j and establish the following inequality

(19)
∫
|x−x0|≤1

|T̃jf(x)|2dx ≤ C2j(2α−dβ)

∫
|x−x0|≤10

|f(x)|2dx,

uniformly for all x0 in Rd. Integrating (19) with respect to x0 then gives Lemma 5.1.

Key to establishing (19) is the following proposition of Hörmander, which may be thought of as a
variable coefficient version of Plancherel’s theorem. For a proof see [10], Chapter IX.

Proposition 5.2. Let Ψ be a smooth function of compact support in x and y and Φ be real-valued
and smooth. If we assume that,

det
( ∂2Φ
∂xi∂yj

)
6= 0,
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on the support of Ψ, then∥∥∥∫
Rd

Ψ(x, y)eiλΦ(x,y)f(y)dy
∥∥∥
L2(Rd)

≤ Cλ−
d
2 ‖f‖L2(Rd).

Proof of (19). We shall first assume that x0 = 0 and write f = f1 + f2, with f1 is supported in
B(10), f2 supported outside B(9), f1 and f2 smooth, and with |f1|, |f2| ≤ |f |. We fix χ ∈ C∞

0 so
that χ ≡ 1 in B(1).

Now, since the integral kernel of T̃j is compactly supported in x−y, it follows that χT̃j is compactly
supported in x and y, so applying proposition 5.2 we see that,∫

B(1)
|T̃jf1(x)|dx =

∫
Rd

|χ(x)T̃jf1(x)|dx

≤ C2j(2α−dβ)

∫
Rd

|f1(x)|2dx

≤ C2j(2α−dβ)

∫
B(10)

|f(x)|2dx.

However, if |x| ≤ 1, and |y| ≥ 9, it follows that |x− y| ≥ 8 and hence χT̃jf2 ≡ 0.

The passage to general x0 is then easy since although T̃j are not translation invarient the ‘translated’
kernels

Kx0
α,β(x, y) = Kα,β(x+ x0, y + x0)

do satisfy assumptions (2) and (3), for the same α and β as Kα,β, uniformly in x0, and hence∫
|x−x0|≤1

|T̃jf(x)|2dx =
∫
|x−x0|≤1

∣∣∣∣2−jd ∫
Kj(2−jx, 2−jy)f(y) dy

∣∣∣∣2 dx
=

∫
|x|≤1

∣∣∣∣2−jd ∫
Kx0
j (2−jx, 2−jy)f(y + x0)dy

∣∣∣∣2 dx
≤ C2j(2α−dβ)

∫
|x|≤10

|f(x+ x0)|2dx

≤ C2j(2α−dβ)

∫
|x−x0|≤10

|f(x)|2dx,

where Kx0
j (x, y) = ϑ(2j(x− y))Kx0

α,β(x, y). �

Theorem 1.1 now follows from Lemma 5.1 and an application of Cotlar’s lemma (plus a standard
limiting argument) once we have verified that the Tj are, in the following sense, almost orthogonal.

Lemma 5.3. If α = dβ
2 then ‖T ∗i Tj‖Op + ‖TiT ∗j ‖Op ≤ C2−

dβ
2
|i−j|.

Proof. This follows trivially from Lemma 5.1 whenever |i−j| ≤ 10, since ‖T ∗i Tj‖Op ≤ ‖Ti‖Op‖Tj‖Op.
We shall therefore, without loss of generality, assume that j ≥ i+ 10. Now T ∗i Tj has a kernel

Lij(x, y) =
∫
K̄i(z, x)Kj(z, y)dz,



STRONGLY SINGULAR RADON TRANSFORMS ON Hn 19

and the same operator norm as the operator with kernel

L̃ij(x, y) = 2−jdLij(2−jx, 2−jy)

= 2−jd
∫
K̄i(z, 2−jx)Kj(z, 2−jy)dz

= 2j2α
∫

|z−y|∼1
|z−x|∼2j−i

a2−j (z, x)a2−j (z, y)ei2
jβ [ϕ

2−j (z,y)−ϕ
2−j (z,x)]dz.

Trivially we get the estimate |L̃ij(x, y)| ≤ C2j2α2(i−j)(d+α). However from (2c) it follows that

|∇z[ϕ2−j (z, y)− ϕ2−j (z, x)]| ≥ C0,

thus there is always a direction in which we may integrating by parts, in doing so d times we obtain

|L̃ij(x, y)| ≤ C2j(2α−dβ)2(i−j)(d+α) = 2(i−j)(d+α).

This of course implies that

sup
x

∫
|L̃ij(x, y)| dy ≤ C2(i−j)α

and
sup
y

∫
|L̃ij(x, y)| dx ≤ C2(i−j)α,

and so by Schur’s Lemma we are done. �

5.1.2. Establishing Sufficiency in Theorem 1.3. The task of proving the positive half of Theorem
1.3 reduces, as above, to establishing the following result.

Theorem 5.4. The inequality∫
|z−z0|≤1

|T λf(z)|2dz ≤ Cλ

∫
|z−z0|≤10

|f(z)|2dz,

holds with constant Cλ independent of z0.

As before Theorem 1.3 then follows immediately from Theorem 5.4 via an integration in z0.

Proof. The case when λ = 0 of course follows form estimate (19) above, so in what follows it is
understood that λ 6= 0. Using the fact that for z, w ∈ Cn we have∣∣∣∣∣ei 12λ Im z·w̄−

N−1∑
k=0

λk

4kk!

(
(z−w) · w−(z−w) · w

)k∣∣∣∣∣≤Cλ|w|N |z − w|N ,

one sees that matters reduce to estimating operators of the form

f 7→
∫
Cn

K(z, w)f(w)dw,

where
K(z, w) = Kα,β(z, w)(z̄ − w̄)`(z − w)m

for |`|+ |m| = k = 0, . . . , N − 1.

It is possible to then establish that these operators are bounded in L2(Cn) whenever α − k ≤ nβ
in the model case by appealing to spherical harmonics and Fourier transform methods. It is
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however easy to see that these kernels K(z, w) are in fact strongly singular integral kernels and
it therefore follows immediately from Theorem 1.1, in particular inequality (19), that these more
general operators are also bounded in L2(Cn) whenever α− k ≤ nβ, this establishes Theorem 5.4
and hence the sufficiency of α ≤ nβ in Theorem 1.3. �

5.2. Establishing Necessity. We begin by noting that the model kernelsKα,β(x, y) = K̃α,β(x−y)
are indeed strongly singular integral kernels. That they satisfy the differential inequalities (2) is
self evident and the simple lemma below establishes that they in addition also satisfy the required
non-degeneracy hypothesis.

Lemma 5.5. Let ϕ(x, y) = |x− y|−β, then det
( ∂2ϕ
∂xi∂yj

)
6= 0 whenever β 6= −1.

Proof. Recall that ∇|x|−β = −β|x|−β−1 x
|x| , it is then easy to see that

∂xi∂yjϕ(x, y) = β|x− y|−β−2 (δij − (β + 2)uiuj) ,

where ui = (x−y)i

|x−y| . We therefore need to check that I − (β + 2)uut is non-singular. To do this we
shall denote by R the rotation matrix such that Ru = e1, of course detR = 1 and it is clear that

det(I − (β + 2)uut) = det
(
R(I − (β + 2)uut)Rt

)
= 1− (β + 2) = −(β + 1). �

In order to establish the necessity of the condition α ≤ nβ it therefore suffices to test our model
twisted convolution operator Rλ on a suitably chosen L2(Cn) function f0 over an appropriately
chosen range of z. We choose as our test function f0(z) = |z|−γχ(10|z|), where γ < n. Restricting
ourselves to small |z| we therefore have

χ(10|z|)Rλf0(z) = χ(10|z|)
∫
Cn

|z − w|−2n−αei(|z−w|
−β+ 1

2
λ Im z·w̄)χ(10|w|)|w|−γdw.

At this point we also make the observation that Sf0 is a radial function and as such we may with
no loss in generality assume that z = (|z|, 0, . . . , 0).

Now making the change of variables w = |z|s we see that

χ(10|z|)Sf0(z) = χ(10|z|)|z|−α−γ
∫
Cn

ei|z|
−βϕ(s,|z|)ψ(s) ds,

where
ϕ(s, |z|) = (1− 2s1 + |s|2)−

β
2 +

1
2
λ|z|β+2s2

and
ψ(s) = (1− 2s1 + |s|2)−n−

α
2 χ(10|s|)|s|−γ .

We have therefore now reduced matters to the analysis of the oscillatory integral

I(|z|) =
∫
Cn

ei|z|
−βϕ(s,|z|)ψ(s) ds,

as |z| → 0. We now write

I(|z|) = M(|z|) + E1(|z|) + E2(|z|) + E3(|z|),
where

M(|z|) = ei|z|
−β

∫
Cn

χ(|z|−β(1−ε)|s|)ei[c|z|−βs1+ 1
2
λ|z|2s2]|s|−γ ds,
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E1(|z|) =
∫
Cn

χ(|z|−β(1−ε)|s|)ei
1
2
λ|z|2s2[ei|z|−β(1−2s1+|s|2)−

β
2 − ei|z|

−β(1+cs1)
]
|s|−γds,

E2(|z|) =
∫
Cn

χ(|z|−β(1−ε)|s|)ei|z|−βϕ(s,|z|)[ψ(s)− |s|−γ
]
ds,

and

E3(|z|) =
∫
Cn

[
1− χ(|z|−β(1−ε)|s|)

]
ei|z|

−βϕ(s,|z|)ψ(s) ds.

Let us first take care of the error terms. It is easy to verify that whenever |s| ≤ |z|β(1−ε) we have∣∣∣∣ei|z|−β(1−2s1+|s|2)−
β
2 − ei|z|

−β(1+cs1)

∣∣∣∣ ≤ C|z|−βε|s|

and
|ψ(s)− |s|−γ | ≤ C|z|β(1−ε)|s|−γ ,

and hence that

|E1(|z|)| ≤ C|z|−βε
∫
|s|≤|z|β(1−ε)

|s|−γ+1 ds

≤ C|z|−βε|z|β(2n−γ+1)(1−ε)

= C|z|β(2n−γ)|z|β(1−ε(2+2n−γ)),

while

|E2(|z|)| ≤ C|z|β(1−ε)
∫
|s|≤|z|β(1−ε)

|s|−γ ds

≤ C|z|β(1−ε)|z|β(2n−γ)(1−ε)

= C|z|β(2n−γ)|z|β(1−ε(1+2n−γ)).

In the error integral E3(|z|) it shall be advantageous to repeatedly apply integration by parts in
the s1 direction since C|z|β(1−ε) ≤ |s| ≤ 1

10 . In fact it is clear that in this region

∂1ϕ(s, |z|) = β(1− s1)(1− 2s1 + |s|2)−
β+2

2 ≥ C(β),

while |∂`1ϕ(s, |z|)| ≤ c`, for all ` ≥ 0 and∣∣∂`1[1− χ(|z|−β(1−ε)|s|)]ψ(s)
∣∣ ≤ c`

(
|z|−β(1−ε)`|s|−γϑ(10|z|−β(1−ε)|s|) + |s|−γ−`

)
.

It therefore follows that after integrating by parts N times we obtain the estimate

|E3(|z|)| ≤ C|z|βN
(
|z|β(1−ε)N

∫
|s|≈|z|β(1−ε)

|s|−γ ds+
∫
|s|≥|z|β(1−ε)

|s|−γ−N ds
)

≤ C|z|β(2n−γ)|z|βε(N−2n+γ).

It remains for us to show that for |z| small

(20) |M(|z|)| ≥ C|z|β(2n−γ).

Assuming this for the moment we see that it would then follow that |I(|z|)| ≥ |z|β(2n−γ) for small
enough |z| and hence that

‖Rλf0‖2
2 ≥ C

∫
Cn

χ(10|z|)|z|−2(α+γ−β(2n−γ)) dz.
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It then follows that if Rλ were to extend to a bounded operator on L2(Cn) we must have

α− nβ < (n− γ)(β + 1)

for all γ < n. It follows immediately that one must then necessarily have the condition α ≤ nβ.

The lower bound estimate (20) for the main term will be an almost immediate consequence of the
following, slightly more general lemma.

Lemma 5.6. If γ < d
2 then∫

Rd

χ(|s|)eiξ·s|s|−γ ds = C|ξ|γ−d + O(|ξ|γ−d−1).

Let us assume Lemma 5.6 for the moment and see how this gives us (20). To do this we first rescale
the integral M(|z|) so that

M(|z|) = |z|(2n−γ)β(1−ε)ei|z|
−β

∫
Cn

χ(|s|)ei[c|z|−βεs1+ 1
2
λ|z|2+β(1−ε)s2]|s|−γ ds,

applying Lemma 5.6 to this then gives

M(|z|) = |z|(2n−γ)βei|z|−β(
1 + (1

2λ|z|
β+2)2

) γ−2n
2 + O

(
|z|(2n−γ+ε)β

(
1 + (1

2λ|z|
β+2)2

) γ−2n−1
2

)
.

The result now follows if we restrict ourselves at the beginning to |z| ≤ min{ 1
100 , λ

− 1
β+2 }.

Proof of Lemma 5.6. This is merely a Fourier transform and hence∫
Rd

χ(|s|)eiξ·s|s|−γ ds = C

∫
Rd

χ̂(|η − ξ|)|η|γ−d dη.

Now since χ is smooth and of compact support χ̂ is a Schwartz function and satisfies the inequality

|χ̂(|η − ξ|)| ≤ CN (1 + |η − ξ|)−N ,
for all N ≥ 0. Using this standard estimate it is easy to see that whenever |ξ| /∈ [12 |η|, 2|η|] we have∣∣∣∣∫

Rd

χ̂(|η − ξ|)|η|γ−d dη
∣∣∣∣ ≤ C|ξ|−N+γ .

Now if |ξ| ∈ [12 |η|, 2|η|], then∫
Rd

χ̂(|η − ξ|)|η|γ−d dη = |ξ|γ−d
∫
Rd

χ̂(|η − ξ|) dη +
∫
Rd

χ̂(|η − ξ|)
[
|η|γ−d − |ξ|γ−d

]
dη

= |ξ|γ−dχ(0) + O
(∫

|η|≈|ξ|
|η|γ−d−1 dη

)
= |ξ|γ−d + O(|ξ|γ−d−1). �

6. Final Remarks

6.1. Extensions. Using similar methods one can also establish Theorem 1.2 for the integral oper-
ators

Rγf(z, t) =
∫
Hn

Mγ([w, s]−1 · [z, t])f(w, s) dw ds,

where
Mγ(z, t) = K̃α,β(z)δ0(t− |z|γ),
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with γ ≥ 2, and Theorem 1.3 for the integral operators

T λγ f(z) =
∫
Cn

Kα,β(z, w)eiλ|z−w|
γ
ei

1
2
λ Im z·w̄f(w)dw,

with γ ≥ 0.

We plan to discuss these operators in more detail, in particular the uniform behavior of the operators
T λγ , is a future paper.

6.2. Strongly singular Radon transforms on Rd+1. We should finish by saying something
about the analogous class of strongly singular Radon transforms on Rd+1 formally given by

Rγf = f ∗ L,

where L(x, t) = K̃α,β(x)δ0(t − |x|γ) and again γ ≥ 0. The following result is due to Chandarana
[2]; see also Zielinski [15].

Theorem 6.1. If γ ≥ 2, then Rγ extends to a bounded operator on L2(R2) if and only if α ≤
(1
2 −

1
6)β.

We take this opportunity to remark that the situation when d ≥ 2 is quite different.

Theorem 6.2. If d ≥ 2 and γ ≥ 0, then Rγ extends to a bounded operator on L2(Rd+1) if and
only if α ≤ 1

2β.

As with the model operators discussed earlier proving L2-boundedness is equivalent to establishing
the uniform boundedness, in Rd+1, of the multiplier

m(ξ, λ) = (2π)
d
2

∫ ∞

0
χ(r)r−1−αei(r

−β+λrγ)J d−2
2

(r|ξ|)(r|ξ|)
2−d
2 dr.

It is then easy to see that for r|ξ| small and λ large the phase in this integral may be stationary
and that one can, in this region, only establish the estimate

|m(ξ, λ)| ≤ C|λ|α−
1
2
β.

When d ≥ 2 this is in fact the worst region and one can, by applying the method of stationary
phase, show that for ξ fixed

m(ξ, λ) ≈ |λ|α−
1
2
β.
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