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1. Fourier transform on Rn

We start by presenting some standard properties of the Euclidean Fourier transform; see for example
[6] and [4].

Given f ∈ L1(Rn), we define its Fourier transform by setting

f̂(ξ) =
∫
Rn

e−ix·ξf(x)dx.

If for h ∈ Rn we let (τhf)(x) = f(x+ h), then it follows that τ̂hf(ξ) = eih·ξ f̂(ξ). Now for suitable
f the inversion formula

f(x) = (2π)−n

∫
Rn

eix·ξ f̂(ξ)dξ,

holds and we see that the Fourier transform decomposes a function into a continuous sum of
characters (eigenfunctions for translations).

If A is an orthogonal matrix and ξ is a column vector then f̂ ◦A(ξ) = f̂(Aξ) and from this it follows
that the Fourier transform of a radial function is again radial. In particular the Fourier transform
of Gaussians take a particularly nice form; if G(x) = e−|x|

2/2, then Ĝ(ξ) = (2π)
n
2G(ξ). In general

the Fourier transform of a radial function can always be explicitly expressed in terms of a Bessel
1
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transform; if g(x) = g0(|x|) for some function g0, then

ĝ(ξ) = (2π)
n
2

∫ ∞

0
g0(r)(r|ξ|)

2−n
2 Jn−2

2
(r|ξ|)rn−1dr,

where Jn−2
2

is a Bessel function.

If f ∈ L2(Rn) then Plancherel’s theorem states that f̂ ∈ L2(Rn), more precisely

‖f̂‖2
2 = (2π)n‖f‖2

2.

If for f, g ∈ L1(Rn) we define convolution by

(f ∗ g)(x) =
∫
f(x− y)g(y)dy,

then we have
f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).

2. Fourier analysis on the Heisenberg group

We now turn our attention to the Heisenberg group Hn, see also Stein [5] and the books by
Thangavelu [7] and [8].

2.1. Representations of the Heisenberg group. The Heisenberg group Hn is of course Cn×R
endowed with the group law

[z, t] · [w, s] = [z + w, t+ s+ 〈z, w〉],
where the symplectic form 〈·, ·〉 is defined by 〈z, w〉 = 1

2 Im(z · w̄), with identity the origin and
inverses given by [z, t]−1 = [−z,−t].

The following transformations are automorphisms of the group Hn:

• the nonisotropic dilations [z, t] 7→ δ ◦ [z, t] = [δz, δ2t], for all δ > 0;
• the rotations [z, t] 7→ [Uz, t], with U a unitary transformation of Cn.

The representation theory of the Heisenberg group is well understood, using the Stone-von Neumann
theorem we can give a complete classification of all the irreducible unitary representations of Hn;
see Folland [1]. Let U(L2(Rn)) denote the group of unitary operators acting on L2(Rn), and for
each λ ∈ R define the mapping

πλ : Hn → U(L2(Rn))
as follows. For each (z, t) ∈ Hn, z = x+ iy, and ϕ ∈ L2(Rn), we let

πλ(z, t)ϕ(ξ) = eiλ(x·ξ+ 1
2
x·y+t)ϕ(ξ + y).

It is then easy to check that πλ(z, t) is a homomorphism from Hn to U(L2(Rn)), that is

πλ(z, t)πλ(w, s) = πλ(z + w, t+ s+ 〈z, w〉),
and that πλ(z, t) is unitary. Moreover, it is continuous in the sense that for ϕ ∈ L2,

‖πλ(z, t)ϕ− ϕ‖L2 → 0 as (z, t) → 0.
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Thus πλ is a unitary representation of Hn. Let us now show that they are irreducible when λ 6= 0.
Write πλ(z, t) = πλ(z)eiλt, where πλ(z) = πλ(z, 0). So

πλ(z)ϕ(ξ) = eiλ(xξ+ 1
2
xy)ϕ(ξ + y).

Suppose M ⊂ L2(R) is invariant under all πλ(z, t). If M 6= {0} we will show M = L2(R) proving
the irreducibility of πλ. Suppose M is a proper invariant subspace of L2(R), then there exists
functions f, g ∈ L2(Rn) such that f ∈M and (πλ(z)f, g) = 0 for all z. Now

(πλ(z)f, g) =
∫
Rn

eiλx·ξf(ξ +
y

2
)ḡ(ξ − y

2
)dξ.

Applying the Plancherel theorem for the Fourier transform in the x variable gives∫
Cn

|(πλ(z)f, g)|2dz =
(

2π
|λ|

)n ∫
R2n

|f(ξ +
y

2
)|2|ḡ(ξ − y

2
)|2dξdy

which after making a change of variables gives

(1) ‖(πλ(z)f, g)‖2
L2(Cn) =

(
2π
|λ|

)n

‖f‖2
L2(Rn)‖g‖

2
L2(Rn),

so we must have ‖f‖L2(R2)‖g‖L2(R2) = 0, but this is a contradiction since f, g are non-trivial.

The theorem of Stone-von Neumann, states that, up to unitary equivalence these are all the infinite-
dimensional irreducible unitary representations of the Heisenberg group.

It follows from (1) by polarization that if ϕ,ψ, f, g ∈ L2(Rn), then

(2) ((πλ(z)ϕ,ψ), (πλ(z)f, g)) =
(

2π
|λ|

)n

(ϕ, f)(g, ψ).

Notice that this result has the following immediate consequence. Suppose {ej} is an orthonormal
system in L2(Rn), then {ejk} defined by

ejk =
(
|λ|
2π

)n
2

(πλ(z)ej , ek)

forms an orthonormal system in L2(Cn). In actual fact, using properties of the group Fourier
transform, we will show that {ejk} is an orthonormal basis whenever {ej} is.

2.2. Group Fourier transform. Given f ∈ L1(Hn) the group Fourier transform f̂(λ) is defined
for each λ 6= 0 as the operator-valued function on the Hilbert space L2(Rn) given by

f̂(λ)ϕ(ξ) =
∫
Hn

f(z, t)πλ(z, t)ϕ(ξ)dzdt.

If ψ is another function in L2(Rn), then

(f̂(λ)ϕ,ψ) =
∫
Hn

f(z, t)(πλ(z, t)ϕ,ψ)dzdt.

Since πλ(z, t) are unitary operators, we have

|(πλ(z, t)ϕ,ψ)| ≤ ‖ϕ‖L2(Rn)‖ψ‖L2(Rn),

and so
|(f̂(λ)ϕ,ψ)| ≤ ‖ϕ‖L2(Rn)‖ψ‖L2(Rn)‖f‖L1(Hn).
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Hence f̂(λ) is a bounded operator on L2(Rn), moreover ‖f̂(λ)‖L2(Rn)→L2(Rn) ≤ ‖f‖L1(Hn).

If we define
fλ(z) =

∫
R
eiλtf(z, t)dt,

then it is clear that
f̂(λ)ϕ(ξ) = Wλ(fλ)ϕ(ξ),

where1

Wλ(fλ)ϕ(ξ) =
∫
Cn

fλ(z)πλ(z)ϕ(ξ)dz.

Letting z = x+ iy = (x, y) we see that

f̂(λ)ϕ(ξ) =
∫
Hn

fλ(x, y)eiλ(x·ξ+1
2x·y)ϕ(ξ + y)dxdy

=
∫
Rn

Kλ(ξ, η)ϕ(η)dη,

where
Kλ(ξ, η) =

∫
fλ(x, η − ξ)eiλ(x

2
·(ξ+η))dx.

We can now prove the Plancherel theorem for the group Fourier transform.

Theorem 1. If f ∈ L2(Hn), then f̂(λ) is a Hilbert-Schmidt operator and∫
‖f̂(λ)‖2

HS |λ|ndλ = (2π)n+1

∫
Hn

|f(z, t)|2dzdt.

Proof. Suppose that f ∈ L1 ∩ L2(Hn), it then follows from Plancherel’s theorem for the Fourier
transform that

‖f̂(λ)‖2
HS =

∫
R2n

|Kλ(ξ, η)|2dξdη =
(

2π
|λ|

)n ∫
R2n

|fλ(x, y)|2dxdy.

If we now integrate in λ and using Plancherel’s theorem for the Fourier transform in the t variable
we get ∫

‖f̂(λ)‖2
HS |λ|ndλ =

∫
(2π)n

∫
Cn

∣∣∣∣∫
R
eiλtf(z, t)dt

∣∣∣∣2 dzdλ
= (2π)n

∫
Cn

∫ ∣∣∣∣∫
R
eiλtf(z, t)dt

∣∣∣∣2 dλdz,
= (2π)n+1

∫
Hn

|f(z, t)|2dzdt.

An additional limiting argument then proves the theorem. �

Corollary 2. If {ej} is an orthonormal basis for L2(Rn), then {ejk} defined by

ejk =
(
|λ|
2π

)n
2

(πλ(z)ej , ek),

is an orthonormal basis for L2(Cn).

1 When λ = 1 this is called the Weyl transform of f .
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Proof. Orthonormality follows immediately from (2), to prove completeness suppose g ∈ L2(Cn) is
orthogonal to all ejk, that is ∫

Cn

ḡ(z)(πλ(z)ej , ek)dz = 0.

If we now take h ∈ L2(R) and define f(z, t) = ḡ(z)h(t), it follows that

(f̂(λ)ej , ek) =
∫
Hn

f(z, t)(πλ(z, t)ej , ek)dzdt =
∫
R
h(t)eiλtdt

∫
Cn

ḡ(z)(πλ(z)ej , ek)dz = 0.

The completeness of {ek} in L2(Rn) then implies f̂(λ)ej = 0 which shows f̂(λ) = 0. Plancherel’s
theorem for the group Fourier transform then implies that f = 0. �

2.3. Convolution and twisted convolution. Consider the operator f 7→ f∗K where convolution
is taken with respect to the group structure on Hn, that is∫

Hn

f(w, s)K([w, s]−1 · [z, t])dwds.

Using the fact that πλ(z, t) is a homomorphism from Hn to the group of unitary operators on
L2(Rn), we see that

f̂ ∗K(λ) = f̂(λ)K̂(λ).

Now it follows from Plancherel’s theorem for the group Fourier transform that the boundedness
of our convolution operators on L2(Hn) is equivalent to the uniform boundedness of the operator
norms of K̂(λ) over λ 6= 0. Note that in the previous section we saw

K̂(λ)ϕ(ξ) =
∫
Rn

Lλ(ξ, η)ϕ(η)dη,

where

Lλ(ξ, η) =
∫∫

K(x, η − ξ, t)eiλ(x
2
·(ξ+η)+t)dxdt.

Alternatively, in view of the Plancherel theorem for the Fourier transform, the boundedness of our
convolution operators on L2(Hn) is also equivalent to the estimate∫

Cn

|(f ∗K)λ(z)|2dz ≤ C

∫
Cn

|fλ(z)|2dz,

where the constant C is independent of λ. Now as

(f ∗K)λ(z) =
∫
Cn

fλ(w)Kλ(z − w)eiλ〈z,w〉dw,

we are naturally led to consider so called twisted convolutions

(g ∗λ h)(z) =
∫
Cn

g(w)h(z − w)eiλ〈z,w〉dw.

It then follows that boundedness of our convolution operators on L2(Hn) is equivalent to that of
the twisted convolution operator f 7→ f ∗λ K

λ on L2(Cn). Note that

(f ∗λ K
λ)(z) =

∫
Cn

Mλ(z, w)f(w)dw,
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where
Mλ(z, w) =

∫
K(z − w, t)eiλ(t+〈z,w〉)dt.

Note also that using the fact that

πλ(z)πλ(w) = πλ(z + w)eiλ〈z,w〉,

it is easy to see that the operator Wλ bears the same relation to the twisted convolution as the
group Fourier transform bears to the convolution, namely

Wλ(g ∗λ h) = Wλ(g)Wλ(h).

However, if our kernels were chosen radial on Hn, i.e. K(z, t) = K0(|z|, t) for some function K0,
then it is a result of Geller [3] that the operators K̂(λ) are in fact diagonal on the Hermite basis
for L2(Rn) and that the diagonal entries can be expressed explicitly in terms a Laguerre functions.
Therefore, for radial K, studying the boundedness of convolution operators on L2(Hn) reduces to
studying the uniform behavior of these diagonal entries.

The remainder of this appendix shall be devoted to the formulation and proof of this result, we
start by introducing the Hermite and Laguerre functions.

3. Hermite and Laguerre functions

Fourier analysis on the Heisenberg group is intimately connected with Hermite expansions in Rn.

3.1. Hermite polynomials. Hermite polynomials are defined, for x ∈ R, by

Hk(x) = (−1)kex
2 dk

dxk
e−x2

.

By expanding e−(x−r)2 in a Taylor series, multiply by ex
2

and then compare terms one obtains the
following generating function identity. If |r| < 1, then

∞∑
k=0

Hk(x)
rk

k!
= ex

2
e−(x−r)2 .

Proposition 3. The Hermite polynomials {Hk}∞k=0 form a complete orthogonal set on R with
respect to the weight w(x) = e−x2

and ‖Hk‖2
w = 2kk!π

1
2 .

Proof. If P is any polynomial, then∫
R
P (x)Hk(x)e−x2

dx = (−1)k

∫
R
P (x)

dk

dxk
e−x2

dx =
∫
R
P (k)(x)e−x2

dx.

Now if P is a polynomial of degree less that k, in particular if P = Hj with j < k then P (k) ≡ 0
and the orthogonality of the Hermite polynomials follows. Now if P = Hk, then we have P (x) =
(2x)k + . . . and hence P (k) ≡ 2kk! and

‖Hk‖2
w = 2kk!

∫
R
e−x2

dx = 2kk!π
1
2 .
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Finally we point out that our family {Hk} is complete in L2(R). That is, if f ∈ L2(R) and∫
R
f(x)Hk(x)e−x2

dx = 0, for all k,

then f = 0. This is equivalent to

I(r) =
∫
R
f(x)e−x2

e2rxdx = 0.

Now, I(r) is entire, so this equality holds for purely imaginary r. The inverse Fourier transform
applied to f(x)e−x2

then gives that f = 0. �

It is therefore clear that hk(x) = Hk(x)e−
x2

2 forms an orthogonal basis for L2(R) and furthermore
that for each λ 6= 0 the normalized, rescaled Hermite functions

hλ
k(x) = (2kk!)−

1
2

( |λ|
π

) 1
4
hk(|λ|

1
2x),

form an orthonormal basis. It follows that if we now have x ∈ Rn and let α = (α1, . . . , αn) then
the functions

hλ
α(x) = hλ

α1
(x1) . . . hλ

αn
(xn),

forms an orthonormal basis for L2(Rn), where α ranges over all multi–indices.

Now given any function f on Rn, the Hermite expansion of f is (formally) given by

f(x) =
∞∑

k=0

∑
|α|=k

(f, hλ
α)hλ

α(x) =
∞∑

k=0

Pkf(x),

where Pk is the projection onto the kth eigenspace spanned by {hλ
α : |α| = k}. Of course Pk is an

integral operator with kernel

hλ
k(x, y) =

∑
|α|=k

hλ
α(x)hλ

α(y).

Lemma 4. For |r| < 1 we have the following identity known as Mehler’s formula, for x, y ∈ R

∞∑
k=0

rkhλ
k(x)hλ

k(y) =
(
|λ|
π

)1/2

(1− r2)−1/2e
|λ|
2

(x2−y2)e
−|λ| (x−ry)2

1−r2 .

Proof. It clearly suffices to prove the following generating function identity for Hk; for |r| < 1,

∞∑
k=0

Hk(x)Hk(y)
rk

2kk!
= (1− r2)−1/2ex

2
e
− (x−ry)2

1−r2 .

To see this first recall ∫
R
e−i2uxe−u2

du = π1/2e−x2
.
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Now,

Hk(x) = (−1)kex
2

(
d

dx

)k

e−x2

= (−1)kex
2
π−1/2

(
d

dx

)k ∫
R
e−i2uxe−u2

du

= ex
2
π−1/2

∫
R

(i2u)ke−i2uxe−u2
du.

So,

∞∑
k=0

Hk(x)Hk(y)
rk

2kk!
=

1
π
ex

2+y2

∫∫ ∞∑
k=0

(−2uvr)k

k!
e−i2uxe−u2

e−i2vye−v2
dudv

=
1
π
ex

2+y2

∫
e−i2uxe−u2

(∫
e−i2vye−2uvre−v2

dv

)
du.

But, ∫
e−i2vye−2uvre−v2

dv = eu
2r2
ei2ury

∫
R
e−i2vye−v2

dv = π1/2eu
2r2
ei2urye−y2

.

Therefore,

∞∑
k=0

Hk(x)Hk(y)
rk

2kk!
= π−1/2ex

2

∫
e−i2uxe−u2

eu
2r2
ei2urydu

= π−1/2ex
2

∫
e−u2(1−r2)e−i2u(x−ry)du

= π−1/2ex
2
(1− r2)−1/2

∫
e−u2

e
−i2u

(x−ry)

(1−r2)1/2 du

= (1− r2)−1/2ex
2
e
− (x−ry)2

1−r2 .

�

The Mehler kernel is defined, for |r| < 1, by

M(x, y, r) =
∞∑

k=0

rkhλ
k(x, y).

It therefore follows from Mehler’s formula that,

M(x, y, r) =
(
|λ|
π

)n/2

(1− r2)−n/2e
− |λ|

2(1−r2)
((|x|2+|y|2)(1+r2)−4rx·y)

.

Remark 5. The Hermite functions hλ
α are the normalized eigenfunctions of the operator λ2|x|2−∆,

corresponding to the eigenvalues |λ|(2|α|+ n).
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3.2. Laguerre polynomials. Laguerre polynomials of type δ > −1 are defined, for x ∈ (0,∞),
by

Lδ
k(x) = exx−δ 1

k!
dk

dxk
(e−xxk+δ).

These are clearly polynomials of degree k and from the product rule for derivatives it follows that

Lδ
k(x) =

k∑
j=0

(
k + δ

k − j

)
(−x)j

j!
.

From this it is easy to see that
d

dx
Lδ

k(x) = −Lδ+1
k−1(x).

We also have the following generating function for the Laguerre polynomials; for x > 0 and |r| < 1,

(3)
∞∑

k=0

Lδ
k(x)r

k = (1− r)−δ−1e−
r

1−r
x.

Proposition 6. The Laguerre polynomials {Lδ
k}∞k=0 form a complete orthogonal set on (0,∞) with

respect to the weight w(x) = e−xxδ and ‖Lδ
k‖2

w = (k+δ)!
k! .

Proof. If P is any polynomial, then∫ ∞

0
P (x)Lδ

k(x)e
−xxδdx =

1
k!

∫ ∞

0
P (x)

dk

dxk
e−xxk+δdx =

(−1)k

k!

∫ ∞

0
P (k)(x)e−xxk+δdx.

Now if P is a polynomial of degree less that k, in particular if P = Lδ
j with j < k then P (k) ≡ 0; this

proves the orthogonality of the Laguerre polynomials. Now if P = Lδ
k, then we have P (k) = (−1)k

and

‖Lδ
k‖2

w =
1
k!

∫ ∞

0
e−xxk+δdx =

(k + δ)!
k!

.

The argument giving completeness is similar to that for Hermite polynomials; see Folland [2]. �

Definition. Laguerre functions of type δ, δ > −1 are given by

Λδ
k(x) =

(
k!

(k+δ)!

)1/2
Lδ

k(x)e
− 1

2
xx

δ
2 .

It is an immediate consequence of Proposition 6 that Λδ
k(x) form an orthonormal basis for L2(R+).

In particular, we also have that for each λ 6= 0, the “Laguerre functions”

`λk(r) = (|λ|r2)
1−n

2 Λn−1
k (1

2 |λ|r
2),

form an orthonormal basis for L2(R+, |λ|nr2n−1dr).

3.3. Special Hermite functions. For each α, β ∈ Nn and z ∈ Cn, we define the special Hermite
functions hλ

α,β by

hλ
α,β(z) =

(
|λ|
2π

)n
2

(πλ(z)ej , ek).

We have therefore already shown that {hλ
α,β} forms an orthonormal basis in L2(Cn).
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For a function f ∈ L2(Cn) we have the eigenfunction expansion

f =
∑
α

∑
β

(f, hλ
α,β)hλ

α,β

which is called the special Hermite expansion. This series can be put in a compact form once we’ve
shown that special Hermite functions can be expressed in terms of Laguerre functions.

Proposition 7. For f ∈ L2(Cn) we have

f(z) =
∞∑

k=0

f ∗λ ϕ
λ
k(z),

where ϕλ
k(z) = ( |λ|2π )nLn−1

k (1
2 |λ||z|

2)e−
1
4
|λ||z|2.

This will be an immediate consequence of the following two lemmas. The first will show that our
Laguerre functions are in fact special Hermite functions, more precisely

Lemma 8.

hλ
α,α(z) =

(
|λ|
2π

)n/2 n∏
j=1

L0
αj

(1
2 |λ||zj |

2)e−
1
4 |λ||zj |2 .

Proof. It suffices to consider the one dimensional case. Mehler’s kernel identity gives,
∞∑

k=0

hλ
k(x)hλ

k(y)rk =
(
|λ|
π

)1/2

(1− r2)−1/2e
− |λ|

2(1−r2)
((x2+y2)(1+r2)−4xyr)

.

An easy calculation gives that

∞∑
k=0

hλ
k(ξ +

y

2
)hλ

k(ξ − y

2
)rk =

(
|λ|
π

)1/2

(1− r2)−1/2e
−|λ|

�
ξ2 1−r

1+r
+ y2

4
1+r
1−r

�
.

Therefore,
∞∑

k=0

hλ
kk(z)r

k =
(
|λ|
2π

)1/2 ∞∑
k=0

(πλ(z)hλ
k , h

λ
k))rk

=
(
|λ|
2π

)1/2 ∫
R
eiλxξ

∞∑
k=0

hλ
k(ξ +

y

2
)hλ

k(ξ − y

2
)rkdξ

=
|λ|
π

(2(1− r2))−1/2e−|λ|
y2

4
1+r
1−r

∫
R
e−|λ|ξ

2 1−r
1+r ei|λ|xξdξ

=
(
|λ|
2π

)1/2

(1− r)−1e−
|λ|
4

1+r
1−r

(x2+y2).

But it follows from (3) that
∞∑

k=0

L0
k(x)e

− 1
2
xrk = (1− r)−1e

− 1+r
2(1−r)

x
.
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Hence,
∞∑

k=0

hλ
kk(z)r

k =
(
|λ|
2π

)1/2 ∞∑
k=0

L0
k(

1
2
|λ|(x2 + y2))e−

1
4
|λ|(x2+y2)rk.

�

Lemma 9.

hλ
α,β ∗λ h

λ
µ,ν =

(
2π
|λ|

)n/2

δβ,µh
λ
α,ν ,

Proof. For ϕ,ψ ∈ L2(Rn),

(Wλ(h̄λ
α,β)ϕ,ψ) =

∫
Cn

h̄λ
α,β(πλ(z)ϕ,ψ)dz

=
(
|λ|
2π

)n/2

((πλ(z)ϕ,ψ), (πλ(z)hλ
α, h

λ
β))

=
(

2π
|λ|

)n/2

(ϕ, hλ
α)(hλ

β , ψ).

Therefore

(Wλ(h̄λ
α,β ∗λ h̄

λ
µ,ν)ϕ,ψ) =

(
2π
|λ|

)n/2

(Wλ(h̄λ
µ,ν)ϕ, h

λ
α)(hλ

β, ψ) =
(

2π
|λ|

)n

(ϕ, hλ
µ)(hλ

ν , h
λ
α)(hλ

β , ψ).

This of course implies

h̄λ
α,β ∗λ h̄

λ
µ,ν =

(
2π
|λ|

)n/2

δα,ν h̄
λ
µ,β ,

which gives us our result, since f ∗λ g = ḡ ∗λ f̄ . �

Proof of Proposition 7. For f ∈ L2(Cn) we have that

f =
∑
α

∑
β

(f, hλ
α,β)hλ

α,β.

Lemma 9 therefore implies that

(4) f ∗λ h
λ
µ,µ =

∑
α

∑
β

(f, hλ
α,β)hλ

α,β ∗λ h
λ
µ,µ =

(
2π
|λ|

)n/2 ∑
α

(f, hλ
α,µ)hλ

α,µ,

and so

f(z) =
(
|λ|
2π

)n/2 ∞∑
k=0

∑
|β|=k

f ∗λ h
λ
β,β(z).

We are therefore required to show that

(5)
∑
|β|=k

hλ
β,β(z) =

(
2π
|λ|

)n/2

ϕλ
k(z).
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It follows from (3) that ϕλ
k satisfy the generating function

(6)
∞∑

k=0

ϕλ
k(z)rk =

(
|λ|
2π

)n

(1− r)−ne−
1
4 |λ||z|

2 1+r
1−r .

Now it follows from Lemma 8 that

hλ
β,β(z) =

(
|λ|
2π

)n/2 n∏
j=1

L0
βj

(1
2 |λ||zj |

2)e−
1
4 |λ||zj |2 ,

and from (3) we see that each L0
βj

(1
2 |λ||zj |

2)e−
1
4 |λ||zj |2 satisfies

∞∑
k=0

L0
k(

1
2 |λ||zj |

2)e−
1
4 |λ||zj |2rk = (1− r)−1e−

1
4 |λ||zj |2 1+r

1−r .

From this it is clear that
∞∑

k=0

∑
|β|=k

hλ
β,β(z)rk =

(
|λ|
2π

)n/2

(1− r)−ne−
1
4 |λ||z|

2 1+r
1−r ,

comparing this with (6) we obtained our desired result. �

Lemma 10.
Wλ(ϕλ

k) = Pk and hence ϕλ
k ∗λ ϕ

λ
j = δkjϕ

λ
k .

Proof. From the calculation in the proof of Lemma 9 it follows that

Wλ(hλ
α,α)ϕ =

(
2π
|λ|

)n/2

(ϕ, hλ
α)hλ

α,

in view of identity (5) we therefore have

Wλ(ϕλ
k)ϕ =

∑
|α|=k

(ϕ, hλ
α)hλ

α = Pk,

and the second part of the claim follows immediately. �

4. Group Fourier transform of radial functions on the Heisenberg group

Recall that the group Fourier transform of an integrable function g on Hn is, for each λ 6= 0, an
operator-valued function on the Hilbert space L2(Rn) given by

ĝ(λ)ϕ(ξ) = Wλ(gλ)ϕ(ξ),

where

Wλ(fλ)ϕ(ξ) =
∫
Cn

gλ(z)πλ(z)ϕ(ξ)dz and gλ(z) =
∫
R
g(z, t)eiλtdt.

Now if g is also radial on Hn, which means that it depends only on |z| and t, then it follows that
the operators ĝ(λ) are diagonal on the Hermite basis for L2(Rn).
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Theorem 11. If g ∈ L1(Hn) and g(z, t) = g0(|z|, t), then

ĝ(λ)hλ
α(x) = Cnµ(|α|, λ)hλ

α(x),

where
µ(k, λ) =

(
k!

(k+n−1)!

)1/2
∫ ∞

0
gλ
0 (s)(1

2 |λ|s
2)

1−n
2 Λn−1

k (1
2 |λ|s

2)s2n−1ds,

and Cn is a constant which depends only on n.

Proof. It is clear that gλ(z) = gλ
0 (|z|), for some function gλ

0 . We can therefore write

gλ
0 (r) =

∞∑
k=0

(∫ ∞

0
gλ
0 (s)`λk(s)|λ|ns2n−1ds

)
`λk(r).

From this we see that we formally have

gλ(z) = Cn

∞∑
k=0

µ(k, λ)ϕλ
k(z),

where Cn = (2π)n21−n. It now follows from Lemma 10 that

gλ ∗λ ϕ
λ
k(z) = Cnµ(k, λ)ϕλ

k(z),

and hence from Proposition 7 we see that this formal “Laguerre expansion” in fact agrees with the
special Hermite expansion,

(7) gλ(z) =
∞∑

k=0

gλ ∗λ ϕ
λ
k(z) = Cn

∞∑
k=0

µ(k, λ)ϕλ
k(z).

Now since ĝ(λ) = Wλ(gλ) we see that Theorem 11 follow immediately from (7) and Lemma 10. �
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