
TWO THEOREMS OF SÁRKÖZY

NEIL LYALL ALEX RICE

Abstract. In this note, we provide parallel expositions of two theorems of Sárközy, the qualitative versions
of which state that any set of natural numbers of positive upper density necessarily contains two distinct

elements which differ by a perfect square, as well as two elements which differ by one less than a prime
number. We use simplified versions of Sárközy’s original methods, and the proofs are self-contained with

the exception of the Weyl Inequality, minor arc estimates of Vinogradov, and the Siegel-Walfisz Theorem

on primes in arithmetic progressions.

1. Introduction

In a series of papers in the late 1970s, Sárközy [8],[9] confirmed conjectures of Lovász and Erdős, respec-
tively, showing that any set A ⊆ N of positive upper density, i.e. satisfying

lim sup
N→∞

|A ∩ [1, N ]|
N

> 0,

necessarily contains two distinct elements which differ by a perfect square, as well as two elements which
differ by a prime number. Furstenberg [1] established the result for squares independently via ergodic
theory, yielding no quantitative information, while Sárközy’s approach was Fourier analytic, using the Hardy-
Littlewood circle method to employ a density increment strategy inspired by Roth’s proof of the analogous
conjecture for three-term arithmetic progressions [6].

Here we use simplified versions of Sárközy original methods to establish the following quantitative esti-
mates, using A−A to denote the difference set {a− a′ : a, a′ ∈ A}, [1, N ] to denote {1, 2, . . . , N}, and � to
denote “less than some constant times”.

Theorem 1. If A ⊆ [1, N ] and n2 /∈ A−A for all n ∈ N, then

(1)
|A|
N
� log logN

logN
.

Theorem 2. If A ⊆ [1, N ] and p− 1 /∈ A−A for all primes p, then,

(2)
|A|
N
� e−c(log logN)1/3

for some absolute constant c > 0.

While these bounds are better than those obtained by Sárközy, they are not the best known. Pintz,
Steiger, and Szemerédi [5] replaced (1) with

|A|
N
� (logN)−c log log log logN ,

and the constant c has since been improved to 1/ log 3. Ruzsa and Sanders [7] replaced (2) with

|A|
N
� e−c(logN)1/4

for some absolute constant c > 0.

Technical Remark. We use the letters C and c to denote appropriately large or small absolute constants,
which change from step to step. At the expense of the implied constants in (1) and (2), we are free to
insist that the parameter N is sufficiently large, which we take as a perpetual hypothesis and abstain from
including further.
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2. Main Iteration Lemmas: Deducing Theorems 1 and 2

The principle behind a density increment strategy is that a set which lacks the desired arithmetic struc-
ture should spawn a new, significantly denser subset of a slightly smaller interval with an inherited lack of
arithmetic structure. Iterating this procedure enough times for the density to reach 1 provides an upper
bound on the density of the original set. With the following two lemmas, we make this idea precise and show
how the particulars in each case yield the bounds claimed in Theorems 1 and 2.

Lemma 1. Suppose A ⊆ [1, N ] with |A| = δN and δ ≥ N−1/20. If n2 /∈ A − A for all n ∈ N, then there
exists A′ ⊆ [1, N ′] with

N ′ � δ7N, |A′| ≥ (δ + cδ2)N ′, and n2 /∈ A′ −A′ for all n ∈ N.

2.1. Proof of Theorem 1. Suppose A ⊆ [1, N ] with |A| = δN and n2 /∈ A−A for all n ∈ N.

Setting A0 = A, N0 = N , and δ0 = δ, Lemma 1 yields, for each m, a set Am ⊆ [1, Nm] with |Am| = δmNm
and n2 /∈ Am −Am for all n ∈ N satisfying

(3) Nm ≥ cδ7Nm−1 ≥ (cδ7)mN

and

(4) δm ≥ δm−1 + cδ2
m−1

as long as

(5) δm ≥ N−1/20
m .

By (4), we see that the density δm will surpass 1, and hence (5) must fail, for m = Cδ−1. In particular, by
(3) we have

δ ≤ (cδ7)−Cδ
−1
N−1/20,

which can be rearranged to

N ≤ (cδ)−Cδ
−1

and seen to imply

δ � log logN
logN

,

as required. �

We see from Lemma 1 that in the case of square differences, the new, denser set inherits the identical lack
of structure, but things get slightly trickier in the other setting. Foreshadowing this issue, we let P denote
the primes, and for d ∈ N we define Λd = {n ∈ N : dn+ 1 ∈ P}.

Lemma 2. Suppose A ⊆ [1, N ] with |A| = δN . If (A−A) ∩ Λd = ∅ and

(6) d, δ−1 ≤ logN,

then there exists A′ ⊆ [1, N ′] and q � δ−2 with

N ′ � δ5N,
|A′|
N ′
≥ δ +

cδ

log(Cδ−1)
, and (A′ −A′) ∩ Λqd = ∅.
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2.2. Proof of Theorem 2. Suppose A ⊆ [1, N ] with |A| = δN and p− 1 /∈ A−A for all p ∈ P.

Setting A0 = A, N0 = N , δ0 = δ, and d0 = 1, Lemma 2 yields, for each m, a set Am ⊆ [1, Nm] with
|Am| = δmNm and (Am −Am) ∩ Λdm

= ∅ satisfying

(7) Nm ≥ cδ5Nm−1 ≥ (cδ5)mN,

(8) δm ≥ δm−1 +
cδm−1

log(Cδ−1
m−1)

,

and

(9) dm ≤ Cδ−2dm−1 ≤ (Cδ−2)m

as long as

(10) dm, δ
−1
m ≤ logNm.

By (8), we see that the density δm will surpass 1 for m = C(log(Cδ−1))2. Therefore, if

(11) δ ≥ e−c(log logN)1/3

for an absolute constant c > 0, then (10) must fail for

(12) m = C(log logN)2/3.

However, we see that if c is sufficiently small, then (9), (11), and (12) imply

dm ≤ e3c(log logN)1/3m ≤ elog logN/2 =
√

logN,

and similarly (7), (11), and (12) imply Nm ≥ N/ logN . In particular (10) holds, yielding a contradiction,
and the theorem follows. �

3. Preliminaries

3.1. Fourier Analysis on Z. We embed our finite sets in Z, on which we utilize the discrete Fourier
transform. Specifically, for a function F : Z → C, we define F̂ : T → C, where T denotes the circle
parametrized by the interval [0, 1] with 0 and 1 identified, by

F̂ (α) =
∑
n∈Z

F (n)e−2πinα.

Given N ∈ N and a set A ⊆ [1, N ] with |A| = δN , we examine the Fourier analytic behavior of A by
considering the balance function, fA, defined by

fA = 1A − δ1[1,N ].

We analyze the behavior of f̂A using the Hardy-Littlewood circle method, decomposing the frequency space
into two pieces: the points on the circle which are close to rationals with small denominator, and those which
are not.

Definition 1. Given N ∈ N and η > 0, we define, for each q ∈ N and a ∈ [1, q],

Ma/q = Ma/q(N, η) =
{
α ∈ T : |α− a

q
| < 1

η2N

}
and Mq =

⋃
(a,q)=1

Ma/q.

We then define M, the major arcs, by

M =
η−2⋃
q=1

Mq,

and m, the minor arcs, by
m = T \M.
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3.2. Counting Primes in Arithmetic Progressions. As indicated by the definition of Λd, we need some
information about the distribution of primes in certain congruence classes. Classical estimates of this type
come from the famous Siegel-Walfisz Theorem, which can be found for example in Corollary 11.19 of [4].

Lemma 3 (Siegel-Walfisz Theorem). If q ≤ (log x)D and (a, q) = 1, then

ψ(x, a, q) :=
∑
p∈Px

p≡a mod q

log p = x/φ(q) +O(xe−c
√

log x)

for some constant c = c(D) > 0, where Px = P ∩ [1, x].

4. Density Increment Strategy: Deducing Lemmas 1 and 2

Morally, a lack of square differences or Λd differences in a set A represents highly nonrandom behavior,
which should be detectable in the Fourier analytic behavior of A. Specifically, we follow the approach of
Lyall and Magyar [2] to locate a single small denominator q such that f̂A has large L2 concentration around
rationals with denominator q, then we use that information to show that A has increased density on a long
arithmetic progression of step size q. From this correlation, we can quickly establish Lemmas 1 and 2.

Lemma 4 (L2 concentration for squares). Suppose A ⊆ [1, N ] with |A| = δN , and let η = c0δ for a
sufficiently small constant c0 > 0. If n2 /∈ A−A for all n ∈ N, δ ≥ N−1/20, and |A∩ (N/9, 8N/9)| ≥ 3δN/4,
then there exists q ≤ η−2 such that ∫

Mq

|f̂A(α)|2dα� δ3N.

Lemma 5 (L2 concentration for Λd). Suppose A ⊆ [1, N ] with |A| = δN , and let η = c0δ. If d, δ−1 ≤ logN ,
(A−A) ∩ Λd = ∅, and |A ∩ (N/9, 8N/9)| ≥ 3δN/4, then there exists q ≤ η−2 such that∫

Mq

|f̂A(α)|2dα� δ2N

log(η−1)
.

Lemma 6 (Density Increment). Suppose A ⊆ [1, N ] with |A| = δN , and let η = c0δ. If σ ≤ 1/4π and∫
Mq

|f̂A(α)|2dα ≥ σδ2N,

then there exists an arithmetic progression

P = {x+ `q : 1 ≤ ` ≤ L}
with L = bη2σN/qc and |A ∩ P |/L ≥ δ + σδ/32.

4.1. Proof of Lemma 1. Suppose A ⊆ [1, N ], |A| = δN , δ ≥ N−1/20, and n2 /∈ A−A for all n ∈ N.

If |A ∩ (N/9, 8N/9)| < 3δN/4, then max{|A ∩ [1, N/9]|, |A ∩ [8N/9, N ]|} > δN/8. In other words, A has
density at least 9δ/8 on one of these intervals.

Otherwise, Lemmas 4 and 6 apply, so in either case, letting η = c0δ, there exists q ≤ η−2 and an arithmetic
progression

P = {x+ `q : 1 ≤ ` ≤ L}
with qL� δ3N and |A∩P |/L ≥ δ+ cδ2. Partitioning P into subprogressions of step size q2, the pigeonhole
principle yields a progression

P ′ = {y + `q2 : 1 ≤ ` ≤ N ′} ⊆ P
with N ′ ≥ L/2q and |A ∩ P ′|/N ′ ≥ δ + cδ2. This allows us to define a set A′ ⊆ [1, N ′] by

A′ = {` ∈ [1, N ′] : y + `q2 ∈ A},
which clearly satisfies |A′| ≥ (δ + cδ2)N ′ and N ′ � δ3N/q2 � δ7N . Moreover, one can easily check that
due to our choice of a perfect square step size, A′ inherits the lack of square differences from A. �

Lemma 2 follows from Lemmas 5 and 6 in a virtually identical fashion, except without the need to pass to
a subprogression of square step size.
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5. Proof of Lemmas 4, 5, and 6

5.1. Proof of Lemma 4. Suppose A ⊆ [1, N ] with |A| = δN , and let η = c0δ and M = b
√
N/3c.

If n2 /∈ A−A for all n ∈ N, we see that∑
n∈Z

1≤m≤M

fA(n)fA(n+m2) =
∑
n∈Z

1≤m≤M

1A(n)1A(n+m2)− δ
∑
n∈Z

1≤m≤M

1A(n)1[1,N ](n+m2)

− δ
∑
n∈Z

1≤m≤M

1[1,N ](n−m2)1A(n) + δ2
∑
n∈Z

1≤m≤M

1[1,N ](n)1[1,N ](n+m2)

≤
(
δ2N − δ(|A ∩ [1, 8N/9)|+ |A ∩ (N/9, N ]|)

)
M.

Therefore, if |A ∩ (N/9, 8N/9)| ≥ 3δN/4, we have

(13)
∑
n∈Z

1≤m≤M

fA(n)fA(n+m2) ≤ −δ2NM/2.

One can easily check using the orthogonality relation∫ 1

0

e2πinαdα =

{
1 if n = 0
0 else

that

(14)
∑
n∈Z

1≤m≤M

fA(n)fA(n+m2) =
∫ 1

0

|f̂A(α)|2SM (α)dα,

where

Sx(α) =
x∑

m=1

e2πim2α.

From (13) and (14), we have

(15)
∫ 1

0

|f̂A(α)|2|SM (α)|dα ≥ δ2NM/2.

It follows from traditional Weyl sum estimates that if δ ≥ N−1/20, then

(16) |SM (α)| � q−1/2M if α ∈Mq ⊆M

and

(17) |SM (α)| ≤ CηM ≤ δM/4 for all α ∈ m,

provided we choose c0 ≤ 1/4C. We will discuss these estimates in more detail in Appendix A.

By (17) and Plancherel’s Identity, we have∫
m

|f̂A(α)|2|SM (α)|dα ≤ δ2NM/4,

which by (15) yields

(18)
∫

M

|f̂A(α)|2|SM (α)|dα ≥ δ2NM/4.

Finally, by (16) and (18) we have

δ2N �
( η−2∑
q=1

q−1/2
)

max
q≤η−2

∫
Mq

|f̂A(α)|2dα� η−1 max
q≤η−2

∫
Mq

|f̂A(α)|2dα,

and the lemma follows. �
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5.2. Proof of Lemma 5. Suppose A ⊆ [1, N ] with |A| = δN , and let η = c0δ and M = bN/9c.
If (A−A) ∩ Λd = ∅, then we define a function ν on Z by

ν(m) =
φ(d)
d

log(dm+ 1)1Λd
(m)

and we see just as in the proof of Lemma 4 that if |A ∩ (N/9, 8N/9)| ≥ 3δN/4, then

(19)
∑
n∈Z

1≤m≤M

fA(n)fA(n+m)ν(m) ≤ −δ
2N

2

M∑
m=1

ν(m).

If d ≤ logN , then it follows from Lemma 3 that

(20)
M∑
m=1

ν(m) = φ(d)ψ(dM + 1, 1, d)/d ≥M/2.

Again by orthogonality, we have

(21)
∑
n∈Z

1≤m≤M

fA(n)fA(n+m)ν(m) =
∫ 1

0

|f̂A(α)|2WM (α)dα,

where

Wx(α) =
x∑

m=1

ν(m)e2πimα.

From (19), (20), and (21), we have

(22)
∫ 1

0

|f̂A(α)|2|WM (α)|dα ≥ δ2NM/4.

It follows from Lemma 3 and work of Vinogradov that if δ ≥ 1/ logN , then

(23) |WM (α)| �M/φ(q) if α ∈Mq ⊆M

and

(24) |WM (α)| ≤ CηM ≤ δM/8 for all α ∈ m,

provided we choose c0 ≤ 1/8C. We will discuss these estimates in more detail in Appendix B.

Just as before, we can apply (24) and Plancherel’s Identity to conclude

(25)
∫

M

|f̂A(α)|2|WM (α)|dα ≥ δ2NM/8.

Finally, by (23) and (25) we have

δ2N �
( η−2∑
q=1

1
φ(q)

)
max
q≤η−2

∫
Mq

|f̂A(α)|2dα� log(η−1) max
q≤η−2

∫
Mq

|f̂A(α)|2dα,

where the last inequality comes from the estimate

X∑
q=1

1
φ(q)

� logX,

and the lemma follows. �
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5.3. Proof of Lemma 6. Suppose A ⊆ [1, N ] with |A| = δN , and let η = c0δ. Suppose further that

(26)
∫
Mq

|f̂A(α)|2dα ≥ σδ2N,

and let P = {q, 2q, . . . , Lq} with L = bη2σN/qc. We will show that some translate of P satisfies the
conclusion of Lemma 6. We note that for α ∈ [0, 1],

(27) |1̂P (α)| =
∣∣∣ L∑
`=1

e−2πi`qα
∣∣∣ ≥ L− L∑

`=1

|1− e−2πi`qα| ≥ L− 2πL2‖qα‖,

where ‖ · ‖ denotes the distance to the nearest integer. Further, if α ∈Mq, then

(28) ‖qα‖ ≤ q/η2N ≤ σ/L ≤ 1/4πL,

provided σ ≤ 1/4π. Therefore, by (27) and (28) we have

(29) |1̂P (α)| ≥ L/2 for all α ∈Mq.

By (26), (29), and Plancherel’s Identity we see

(30) σδ2N ≤
∫
Mq

|f̂A(α)|2dα ≤ 4
L2

∫ 1

0

|f̂A(α)|2|1̂P (α)|2dα =
4
L2

∑
n∈Z
|fA ∗ 1̃P (n)|2,

where 1̃P (n) = 1P (−n) and

(31) fA ∗ 1̃P (n) =
∑
m∈Z

fA(m)1P (m− n) = |A ∩ (P + n)| − δ|(P + n) ∩ [1, N ]|.

We now take advantage of the fact that fA, and consequently fA ∗ 1̃P , has mean value zero. In other words,

(32)
∑
n∈Z

fA ∗ 1̃P (n) = 0.

As with any real valued function, we can write

(33) |fA ∗ 1̃P | = 2(fA ∗ 1̃P )+ − fA ∗ 1̃P ,

where (fA ∗ 1̃P )+ = max{fA ∗ 1̃P , 0}.

For the purposes of proving Lemma 6, we can assume that fA ∗ 1̃P (n) ≤ 2δL for all n ∈ Z, as otherwise
the progression P + n would more than satisfy the conclusion. Combined with the trivial upper bound
fA ∗ 1̃P (n) ≥ −δL, we can assume

(34) |fA ∗ 1̃P (n)| ≤ 2δL for all n ∈ Z.

By (30), (32), (33), and (34), we have

(35)
∑
n∈Z

(fA ∗ 1̃P )+(n) =
1
2

∑
n∈Z
|fA ∗ 1̃P | ≥

1
4δL

∑
n∈Z
|fA ∗ 1̃P |2 ≥

σδNL

16
.

By (31), we see that fA ∗ 1̃P (n) = 0 if n /∈ [−qL,N ]. Letting E = {n ∈ Z : P + n ⊆ [1, N ]} and
F = [−qL,N ] \ E, we see that |F | ≤ 2qL ≤ 2η2σN . Therefore, by (34) and (35) we have

(36)
∑
n∈E

(fA ∗ 1̃P )+(n) ≥ σδNL

16
− 2δL|F | ≥ σδNL

16
− 4η2σδNL >

σδNL

32
,

provided c0 < 1/8. Recalling that |E| ≤ N and fA ∗ 1̃P (n) = |A ∩ (P + n)| − δL for all n ∈ E, we have that
there exists n ∈ Z with

|A ∩ (P + n)|/L ≥ δ + σδ/32,

as required. �
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Appendix A. Exponential Sum Estimates over Squares: Proof of (16) and (17)

In this section, we return to the setting of the proof of Lemma 4, recalling all relevant notation and
assumptions. We begin with a version of the usual major arc asymptotic for Weyl sums, which is completely
standard in the context of Waring’s Problem, for example.

Lemma 7. If α = a/q + β with q ≤M1/4 and |β| ≤M−7/4 then

SM (α) = q−1G(a, q)
∫ M

0

e2πix2βdx+O(M1/2),

where

G(a, q) =
q−1∑
r=0

e2πir2a/q.

Proof. First we see that for any x ≥ 0 we have

Sx(a/q) =
x∑

m=1

e2πim2a/q =
q−1∑
r=0

e2πir2a/q
∣∣∣{1 ≤ m ≤ x : m ≡ r mod q}

∣∣∣ = q−1G(a, q)x+O(q).

Then, fixing α as in Lemma 7, we apply integration by parts twice to yield

SM (α) =
M∑
m=1

e2πim2a/qe2πim2β = SM (a/q)e2πiM2β −
∫ M

0

Sx(a/q)(4πixβ)e2πix2βdx

= q−1G(a, q)
(
Me2πiM2β −

∫ M

0

x(4πixβ)e2πix2βdx
)

+O(q(1 +M2β))

= q−1G(a, q)
∫ M

0

e2πix2βdx+O(M1/2),

as required. �

To establish the cancellation on the major arcs promised in (16), we need the following standard estimate
on the Gauss sum G(a, q).

Lemma 8. If (a, q) = 1, then |G(a, q)| � √q.

Proof. Using a change of variables (r = s+ h) and the orthogonality relation

(37)
q−1∑
s=0

e2πist/q =

{
q if q | t
0 else

,

we see

|G(a, q)|2 =
q−1∑
r,s=0

e2πi(r2−s2)a/q =
q−1∑
s,h=0

e2πi(2sh+h2)a/q =
q−1∑
h=0

e2πih2a/q

{
q if q | 2ha
0 else

.

In particular, if (a, q) = 1, then |G(a, q)|2 ≤ 2q.

�
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A.1. Proof of (16). Since δ � M−1/10, the hypotheses of Lemma 7 are satisfied when α ∈ Mq ⊆ M.
Trivially bounding the integral in Lemma 7 and applying Lemma 8, the result follows. �

For the minor arcs, we make further use of Lemma 7 as well as the following well-known result, which
roughly says that being close to rational with small denominator is the only obstruction to a great deal of
cancellation in a Weyl sum.

Lemma 9 (Weyl Inequality). If |α− a/q| < q−2 with (a, q) = 1, then

|SM (α)| � logM(q +M +M2/q)1/2.

This particular formulation of the Weyl Inequality follows from Theorem 1, Chapter 3, of [3]. To complete
the re-purposing of Lemma 7, we need a nontrivial estimate on the oscillatory integral in the asymptotic
formula.

Lemma 10. ∣∣∣ ∫ M

0

e2πix2βdx
∣∣∣� |β|−1/2.

Proof. By trivially bounding the integral we can assume that |β|−1/2 ≤ M , in which case we can break up
the interval and integrate by parts to see∣∣∣ ∫ M

0

e2πix2βdx
∣∣∣ =

∣∣∣ ∫ |β|−1/2

0

e2πix2βdx+
∫ M

|β|−1/2

1
4πixβ

d
dx

(e2πix2β)dx
∣∣∣

� |β|−1/2 +
1

4π|β|

∣∣∣∣∣[e2πix2β

x

]M
|β|−1/2

+
∫ M

|β|−1/2

e2πix2β

x2
dx

∣∣∣∣∣
� |β|−1/2,

as required. �

A.2. Proof of (17). For a fixed α ∈ m we have by the pigeonhole principle that there exist

1 ≤ q ≤M7/4

and (a, q) = 1 with

|α− a/q| < 1/qM7/4.

If η−2 ≤ q ≤M1/4, then by reasoning identical to the proof of (16), Lemma 7 implies

|SM (α)| � q−1/2M ≤ ηM.

If M1/4 ≤ q ≤M7/4, then Lemma 9 and the bound δ ≥ N−1/20 �M−1/10 imply

|SM (α)| �M9/10 � ηM.

If 1 ≤ q ≤ η−2, then, letting β = α− a/q, it must be the case that

(38) |β| > 1/η2N � 1/η2M2,

as otherwise we would have α ∈M. Combining Lemma 7 and (38) with Lemma 10, the minor arc estimate
is established.
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Appendix B. Exponential Sum Estimates over Shifted Primes: Proof of (23) and (24)

In this section, we return to the setting of the proof of Lemma 5, recalling all relevant notation and
assumptions. We begin with an asymptotic formula for WM near rationals with small denominator.

Lemma 11. If α = a/q + β with q ≤ (logM)20, (a, q) = 1, and |β| ≤ (logM)20/M , then

WM (α) =
r(d, a, q)φ(d)

φ(qd)

∫ M

0

e2πixβdx+O(Me−c
√

logM ),

where

r(d, a, q) =
q−1∑
r=0

(dr+1,q)=1

e2πira/q =

{
µ(q)e2πi`a/q if (d, q) = 1 and ` ≡ −d−1 mod q

0 else

and µ is the Möbius function.

Proof. First we see that for any x ≥ 0 we have

(39) Wx(a/q) =
x∑

m=1

ν(x)e2πima/q =
φ(d)
d

q−1∑
r=0

e2πira/qψ(dx+ 1, dr + 1, qd).

Noting that (dr + 1, qd) = 1 if and only if (dr + 1, q) = 1, we have by (39) and Lemma 3 that

Wx(a/q) =
r(d, a, q)φ(d)

φ(qd)
x+O(qMe−c

√
logM )

for all x ≤M . Then, fixing α as in Lemma 11, we apply integration by parts twice to yield

WM (α) =
M∑
m=1

ν(m)e2πima/qe2πimβ

= WM (a/q)e2πiMβ −
∫ M

0

Wx(a/q)(2πiβ)e2πixβdx

=
r(d, a, q)φ(d)

φ(qd)

(
Me2πiMβ −

∫ M

0

x(2πiβ)e2πixβdx
)

+O(q(M +M2β)e−c
√

logM )

=
r(d, a, q)φ(d)

φ(qd)

∫ M

0

e2πixβdx+O(Me−c
√

logM ),

as required. In the remaining proofs, we only use that |r(d, a, q)| ≤ 1 when (a, q) = 1, and we leave the
evaluation claimed in Lemma 11 to the interested reader. �

B.1. Proof of (23). Since δ−1 � logM , the hypotheses of Lemma 11 are satisfied when α ∈ Mq ⊆ M.
Recalling that |r(d, a, q)| ≤ 1 and φ(qd) ≥ φ(q)φ(d), the result follows. �

For the minor arcs, we make further use of Lemma 11 as well as the following estimate of Vinogradov, a
suitable analog to the Weyl Inequality used famously in his solution to the ternary Goldbach problem, which
can be found in Theorem 3.1 of [10].

Lemma 12 (Vinogradov). If |α− a/q| < q−2 and (a, q) = 1, then

|Vx(α)| � (log x)4(
√
qx+ x4/5 + x/

√
q),

where
Vx(α) =

∑
p∈Px

log p e2πipα.

10



Corollary 13. If |α− a/q| < q−2 and (a, q) = 1, then

|WM (α)| � d(logM)4(
√
qM +M4/5 +M/

√
q).

Proof. Exploiting (37), we see

d

φ(d)
|WM (α)| =

∣∣∣ ∑
p∈PdM+1
p≡1 mod d

log p e2πi(p−1)α/d
∣∣∣ =

∣∣∣ ∑
p∈PdM+1

log p e2πi(p−1)α/d 1
d

d−1∑
r=0

e2πi(p−1)r/d
∣∣∣

≤ 1
d

d−1∑
r=0

∣∣∣ ∑
p∈PdM+1

log p e2πi(p−1)(α+r)/d
∣∣∣ =

1
d

d−1∑
r=0

∣∣∣VdM+1

(α+ r

d

)∣∣∣.
If |α−a/q| < q−2 and (a, q) = 1, then for any fixed 0 ≤ r ≤ d−1, the pigeonhole pricniple yields 1 ≤ q′ ≤ 2dq
and (a′, q′) = 1 with |(α+ r)/d− a′/q′| < 1/2dqq′. We also know that |(α+ r)/d− (a+ rq)/qd| < 1/dq2, so
in particular we have

(40)
∣∣∣a′
q′
− a+ rq

qd

∣∣∣ < 1
2dqq′

+
1
dq2

.

If q′ < q, then since (a, q) = 1 the two fractions above cannot be equal, hence

1
2dqq′

+
1
dq2

>
1
dqq′

,

which implies q′ ≥ q/2. In any case q/2 ≤ q′ ≤ 2dq, so by Lemma 12 we have∣∣∣VdM+1

(α+ r

d

)∣∣∣� (log(dM + 1))4(
√
q′(dM + 1) + (dM + 1)4/5 + (dM + 1)/

√
q′)

� d(logM)4(
√
qM +M4/5 +M/

√
q),

and the corollary follows. �

B.2. Proof of (24). For a fixed α ∈ m we have by the pigeonhole principle that there exist

1 ≤ q ≤M/(logM)20

and (a, q) = 1 with
|α− a/q| < (logM)20/qM.

If η−2 ≤ q ≤ (logM)20, then by reasoning identical to the proof of (23), Lemma 11 implies

|WM (α)| �M/φ(q)� ηM,

where the last inequality follows from the fact that φ(q)� √q.

If (logM)20 ≤ q ≤M/(logM)20, then Corollary 13 and the bound d, δ−1 � logM imply

|WM (α)| �M/(logM)5 ≤ ηM.

If 1 ≤ q ≤ η−2, then, letting β = α− a/q, it must be the case that

(41) |β| > 1/η2N � 1/η2M,

as otherwise we would have α ∈M. Combining Lemma 11 and (41) with the bound∣∣∣ ∫ M

0

e2πixβdx
∣∣∣ =

∣∣∣e2πiMβ − 1
2πiβ

∣∣∣ < |β|−1,

the minor arc estimate is established. �
11
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