NOTES ON THE ALMOST EVERYWHERE CONVERGENCE OF BOCHNER-RIESZ MEANS IN R ${ }^{n}$

NORBERTO LAGHI
NEIL LYALL

Abstract

In this expository note we present a result of Carbery, Rubio de Francia and Vega [1] on the almost everywhere convergence of Bochner-Riesz means.

1. Introduction

We are interested in the pointwise convergence of Bochner-Riesz means T_{R}^{λ} in \mathbf{R}^{n}, these are defined in terms of the Fourier transform for $\lambda>0$ and $0<R<\infty$ by

$$
\widehat{T_{R}^{\lambda}} f(\xi)=\left(1-\frac{|\xi|^{2}}{R^{2}}\right)_{+}^{\lambda} \widehat{f}(\xi)
$$

We of course need only consider values of λ below the critical index of $\frac{1}{2}(n-1)$. It follows from the uniform boundedness principle and scaling that convergence of T_{R}^{λ} in L^{p} is equivalent to the L^{p} boundedness of $T^{\lambda}=T_{1}^{\lambda}$, it is conjectured that this should hold for $0<\lambda \leq \frac{1}{2}(n-1)$ if and only if

$$
\frac{2 n}{n+1+2 \lambda}=p_{\lambda}^{\prime}<p<p_{\lambda}=\frac{2 n}{n-1-2 \lambda} .
$$

It is easy to show that this inequality is necessary and well known that the conjecture is indeed a theorem in \mathbf{R}^{2}; see [3]. There has been progress in higher dimensions but the problem is still open. The following result in \mathbf{R}^{n} for $n \geq 2$ concerning almost everywhere convergence is due to Carbery, Rubio de Francia and Vega [1].

Theorem A. If $2 \leq p<p_{\lambda}$ then $\lim _{R \rightarrow \infty} T_{R}^{\lambda} f(x)=f(x)$ almost everywhere for all $f \in L^{p}\left(\mathbf{R}^{n}\right)$.

We naturally need to consider the maximal operator: $T_{*}^{\lambda} f(x)=\sup _{R>0}\left|T_{R}^{\lambda} f(x)\right|$. Now for $p>2$ almost everywhere convergence is no longer equivalent to the L^{p} boundedness of a corresponding maximal operator. As a result we can avoid the hard problem of proving L^{p} boundedness, it will in fact suffice to instead establish the following weighted L^{2} estimate.

Theorem B. If $0 \leq \alpha<1+2 \lambda \leq n$ then $\left\|T_{*}^{\lambda} f\right\|_{L^{2}\left(|x|^{-\alpha}\right)} \leq C_{\alpha, \lambda}\|f\|_{L^{2}\left(|x|^{-\alpha}\right)}$.

Note that $1+2 \lambda=n\left(1-\frac{2}{p_{\lambda}}\right)$ and that Theorem B implies the almost everywhere convergence of $T_{R}^{\lambda}(x)$ for all $f \in L^{2}\left(|x|^{-\alpha}\right)$ as Schwartz functions are dense in $L^{2}\left(|x|^{-\alpha}\right)$.

The key idea is then to use the fact that $L^{p} \subseteq L^{2}+L^{2}\left(|x|^{-\alpha}\right)$ whenever $\alpha>n\left(1-\frac{2}{p}\right)$, which follows immediately from Hölder's inequality. Then for a fixed p such that $2 \leq p<p_{\lambda}$ we can certainly choose α such that $n\left(1-\frac{2}{p}\right)<\alpha<1+2 \lambda$, almost everywhere convergence of $T_{R}^{\lambda}(x)$ for all $f \in L^{p}$ then follows from Theorem B.

2. Reduction to basic estimate

In order to prove Theorem B we are going to decompose the multipliers on dyadic annuli whose widths are approximately their distances to the sphere $|\xi|=1$. To be precise: choose smooth functions φ supported where $\frac{1}{2}<t<1$ such that $0 \leq \varphi \leq 1$, and $\sum_{k=1}^{\infty} \varphi_{k}(t)=1$ for $\frac{1}{2} \leq t \leq 1$, where $\varphi_{k}(t)=\varphi\left(2^{k} t\right)$. Now define $\varphi_{0}(t)=1-\sum_{k=1}^{\infty} \varphi_{k}(t)$, for $0 \leq t<\frac{1}{2}$ and $\varphi_{0}(t)=0$ otherwise. Then we have

$$
\left(1-|\xi|^{2}\right)_{+}^{\lambda}=\sum_{k=0}^{\infty}\left(1-|\xi|^{2}\right)^{\lambda} \varphi_{k}\left(1-|\xi|^{2}\right)=\sum_{k=0}^{\infty} 2^{-k \lambda} m^{2^{-k}}(|\xi|)
$$

where

$$
m^{2^{-k}}(|\xi|)=2^{k \lambda}\left(1-|\xi|^{2}\right)^{\lambda} \varphi_{k}\left(1-|\xi|^{2}\right)
$$

This allows us to decompose the operator

$$
\begin{equation*}
T_{R}^{\lambda} f(x)=\sum_{k=0}^{\infty} 2^{-k \lambda} \mathcal{F}^{-1}\left[m^{2^{-k}}\left(\frac{|\cdot|}{R}\right) \widehat{f}\right](x) \tag{1}
\end{equation*}
$$

For $k=0$ and 1 the terms are controlled by the Hardy-Littlewood maximal operator which is bounded in $L^{p}\left(|x|^{-\alpha}\right)$ for $n(1-p)<\alpha<n^{1}$; see Appendix. We will therefore study operators S_{t}^{δ} defined by

$$
\widehat{S_{t}^{\delta} f}(\xi)=m^{\delta}(t|\xi|) \widehat{f}(\xi) \quad \text { and } \quad S_{*}^{\delta} f(x)=\sup _{t>0}\left|S_{t}^{\delta} f(x)\right|
$$

for $\delta<\frac{1}{2}$. Notice that given a small $\delta>0, m^{\delta}(t)$ is a smooth function supported in $[1-\delta, 1]$, we have that $0 \leq m^{\delta}(t) \leq 1$ and $\left|D^{l} m^{\delta}(t)\right| \leq C \delta^{-l}$ for all $l \in \mathbf{N}$.

Lemma 1. For $\delta>0$ and $0 \leq \alpha<n$ we have

$$
\int\left|S_{*}^{\delta} f(x)\right|^{2} \frac{d x}{|x|^{\alpha}} \leq C_{\alpha} A_{\alpha}(\delta) \int|f(x)|^{2} \frac{d x}{|x|^{\alpha}}
$$

where C_{α} is independent of δ and

$$
A_{\alpha}(\delta)=\left\{\begin{array}{l}
1, \quad \text { if } 0 \leq \alpha<1 \\
|\log \delta|, \quad \text { if } \alpha=1 \\
\delta^{1-\alpha}, \quad \text { if } 1<\alpha<n
\end{array}\right.
$$

Theorem B is an immediate consequence of Lemma 1; it is clear from (1) that

$$
\left\|T_{*}^{\lambda} f\right\|_{L^{2}\left(|x|^{-\alpha}\right)} \leq C \sum_{k=0}^{\infty} 2^{-k \lambda}\left\|S_{*}^{2^{k}} f\right\|_{L^{2}\left(|x|^{-\alpha}\right)}
$$

so setting $\delta=2^{-k}$ we see that T_{*}^{λ} is bounded on $L^{2}\left(|x|^{-\alpha}\right)$ provided that $\lambda>0$ (in the $0 \leq \alpha<1$ case) or that $\lambda>\frac{\alpha-1}{2}$ (in the case when $1 \leq \alpha<n$).

Let $L_{k} f$ be the usual Littlewood-Paley operator, defined by $\widehat{L_{k} f}(\xi)=\phi\left(2^{k}|\xi|\right) \widehat{f}(\xi)$ where $\operatorname{supp} \phi \subset$ $\left[\frac{1}{4}, 4\right]$ and $\phi(t)=1$ for $\frac{1}{2} \leq t \leq 2$. If $n(1-p)<\alpha<n$ then we have, see Appendix, that

$$
C_{1}\|f\|_{L^{p}\left(|x|^{-\alpha}\right)} \leq\left\|\left(\sum_{k=0}^{\infty}\left|L_{k} f(x)\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}\left(|x|^{-\alpha}\right)} \leq C_{2}\|f\|_{L^{p}\left(|x|^{-\alpha}\right)}
$$

[^0]Using this fact we can reduce matters to establishing the local maximal operator estimate

$$
\begin{equation*}
\left\|\sup _{1 \leq t \leq 2}\left|S_{t}^{\delta} f(x)\right|\right\|_{L^{2}\left(|x|^{-\alpha}\right)}^{2} \leq C_{\alpha} A_{\alpha}(\delta)\|f\|_{L^{2}\left(|x|^{-\alpha}\right)}^{2} \tag{2}
\end{equation*}
$$

By homogeneity (2) also holds for $S_{R t}^{\delta}$ for any $R>0$. Lets now see that this estimate in fact implies Lemma 1.

$$
\begin{aligned}
\left\|\sup _{t>0}\left|S_{t}^{\delta} f(x)\right|\right\|_{L^{2}\left(|x|^{-\alpha}\right)}^{2} & =\left\|\sup _{k} \sup _{2^{k-1} \leq t \leq 2^{k}}\left|S_{t}^{\delta} f(x)\right|\right\|_{L^{2}\left(|x|^{-\alpha}\right)}^{2} \\
& \leq\left\|\left(\sum_{k} \sup _{2^{k-1} \leq t \leq 2^{k}}\left|S_{t}^{\delta} f(x)\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{2}\left(|x|^{-\alpha}\right)}^{2} \\
& =\left\|\left(\sum_{k} \sup _{2^{k-1} \leq t \leq 2^{k}}\left|S_{t}^{\delta}\left(L_{k} f\right)(x)\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{2}\left(|x|^{-\alpha}\right)}^{2} \\
& =\sum_{k}\left\|_{1 \leq t \leq 2}\left|S_{t}^{\delta}\left(L_{k} f\right)(x)\right|\right\|_{L^{2}\left(|x|^{-\alpha}\right)}^{2} \\
& \leq C_{\alpha} A_{\alpha}(\delta) \sum_{k}\left\|L_{k} f\right\|_{L^{2}\left(|x|^{-\alpha}\right)}^{2} \\
& =C_{\alpha} A_{\alpha}(\delta)\left\|\left(\sum_{k}\left|L_{k} f\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{2}\left(|x|^{-\alpha}\right)}^{2} \\
& \leq C_{\alpha} A_{\alpha}(\delta)\|f\|_{L^{2}\left(|x|^{-\alpha}\right)}^{2} .
\end{aligned}
$$

We are therefore left with verifying estimate (2). Let $F(t)=\left|S_{t}^{\delta} f(x)\right|$, then by the Fundamental Theorem of Calculus we have

$$
\sup _{1 \leq t \leq 2} F(t) \leq F(1)+c\|F\|_{2}^{\frac{1}{2}}\left\|F^{\prime}\right\|_{2}^{\frac{1}{2}}
$$

Therefore

$$
\left(\int \sup _{1 \leq t \leq 2}|F(t)|^{2} \frac{d x}{|x|^{\alpha}}\right)^{\frac{1}{2}} \leq\left(\int|F(1)|^{2} \frac{d x}{|x|^{\alpha}}\right)^{\frac{1}{2}}+c\left(\int\|F\|_{2}\left\|F^{\prime}\right\|_{2} \frac{d x}{|x|^{\alpha}}\right)^{\frac{1}{2}} .
$$

Of course by definition

$$
\|F(1)\|_{L^{2}\left(|x|^{-\alpha}\right)}=\left\|S^{\delta} f\right\|_{L^{2}\left(|x|^{-\alpha}\right)}
$$

while

$$
\begin{aligned}
\int\|F\|_{2}\left\|F^{\prime}\right\|_{2} \frac{d x}{|x|^{\alpha}} & =\int\left(\int_{1}^{2}\left|S_{t}^{\delta} f(x)\right|^{2} d t\right)^{\frac{1}{2}}\left(\int_{1}^{2}\left|\frac{d}{d t} S_{t}^{\delta} f(x)\right|^{2} d t\right)^{\frac{1}{2}} \frac{d x}{|x|^{\alpha}} \\
& \leq\left\|\left(\int_{1}^{2}\left|S_{t}^{\delta} f\right|^{2} d t\right)^{\frac{1}{2}}\right\|_{L^{2}\left(|x|^{-\alpha}\right)}\left\|\left(\int_{1}^{2}\left|\frac{d}{d t} S_{t}^{\delta} f\right|^{2} d t\right)^{\frac{1}{2}}\right\|_{L^{2}\left(|x|^{-\alpha}\right)} \\
& =I_{1} \cdot I_{2}
\end{aligned}
$$

Argument for $\alpha=0$: Then we of course have by Plancherel that

$$
\|F(1)\|_{2}=\left\|S^{\delta} f\right\|_{2}=\left\|m^{\delta}(|\cdot|) \widehat{f}\right\|_{2} \leq C\|f\|_{2}
$$

Notice also that

$$
I_{1}^{2} \leq \int_{1}^{2}\left\|S_{t}^{\delta} f\right\|_{2}^{2} d t=\int_{1}^{2} \int\left|m^{\delta}(t|\xi|) \widehat{f}(\xi)\right|^{2} d \xi d t=\int|\widehat{f}(\xi)|^{2} \int_{1}^{2}\left|m^{\delta}(t|\xi|)\right|^{2} d t d \xi
$$

Now if for fixed ξ the t integrand is non-zero then necessarily $\left[(1-\delta)|\xi|^{-1},|\xi|^{-1}\right] \cap[1,2]$ must be non-empty, which implies that $1 \leq|\xi|^{-1} \leq 4$ and therefore that the effective size of the region of integration is in fact bounded by 4δ. It therefore follows that

$$
I_{1}^{2} \leq \int|\widehat{f}(\xi)|^{2} \int_{1}^{2} \eta_{\xi}(t)\left|m^{\delta}(t|\xi|)\right|^{2} d t d \xi \leq \int \frac{\delta}{|\xi|} \tilde{\eta}(|\xi|)|\widehat{f}(\xi)|^{2} d \xi \leq C \delta\|f\|_{2}^{2}
$$

Now for I_{2} notice that $\left|\frac{d}{d t} m^{\delta}(t|\xi|)\right| \leq C|\xi| \delta^{-1}$ so arguing as above we get that

$$
I_{2}^{2} \leq \int \frac{|\xi|}{\delta} \tilde{\eta}(|\xi|)|\widehat{f}(\xi)|^{2} d \xi \leq C \delta^{-1}\|f\|_{2}^{2}
$$

we therefore have that $I_{1} \cdot I_{2} \leq C\|f\|_{2}^{2}$, this establishes Lemma 1 in the special case where $\alpha=0$.
We of course wish to obtain this result for $0 \leq \alpha<n$, we claim that proving estimate (2) holds boils down to establishing the following result.

Lemma 2. For $\delta>0$ and $0 \leq \alpha<n$ we have

$$
\int\left|S^{\delta} f(x)\right|^{2} \frac{d x}{|x|^{\alpha}} \leq C_{\alpha} A_{\alpha}(\delta) \int|f(x)|^{2} \frac{d x}{|x|^{\alpha}}
$$

This clearly takes care of the $F(1)$ term, we claim that it also implies $I_{1} \cdot I_{2} \leq C A_{\alpha}(\delta)\|f\|_{L^{2}\left(|x|^{-\alpha}\right)}^{2}$.
Claim. Lemma 2 implies that

$$
I_{1}^{2} \leq C \delta A_{\alpha}(\delta)\|f\|_{L^{2}\left(|x|^{-\alpha}\right)}^{2} \quad \text { and } \quad I_{2}^{2} \leq C \delta^{-1} A_{\alpha}(\delta)\|f\|_{L^{2}\left(|x|^{-\alpha}\right)}^{2}
$$

Proof of Claim. We shall first consider I_{1}, we wish to show that Lemma 2 implies

$$
\begin{equation*}
\iint_{1}^{2}\left|S_{t}^{\delta} f(x)\right|^{2} d t \frac{d x}{|x|^{\alpha}} \leq C_{\alpha} \delta A_{\alpha}(\delta) \int|f(x)|^{2} \frac{d x}{|x|^{\alpha}} \tag{3}
\end{equation*}
$$

It follows from duality that this is equivalent to

$$
\begin{equation*}
\int\left|\int_{1}^{2} S_{t}^{\delta} f_{t}(x) d t\right|^{2}|x|^{\alpha} d x \leq C_{\alpha} \delta A_{\alpha}(\delta) \iint_{1}^{2}\left|f_{t}(x)\right|^{2} d t|x|^{\alpha} d x \tag{4}
\end{equation*}
$$

Lets see this: let $T:=S_{t}^{\delta}$ and $G(x):=\left\{g_{t}(x)\right\}$, then $T: L^{2}\left(|x|^{-\alpha}\right) \rightarrow L_{x, t}^{2}\left(|x|^{-\alpha}\right)$ so

$$
\begin{aligned}
\langle T f, G\rangle_{L_{x, t}^{2}\left(|x|^{-\alpha}\right)} & =\iint_{1}^{2} S_{t}^{\delta} f(x) \overline{g_{t}(x)} d t \frac{d x}{|x|^{\alpha}} \\
& =\iint_{1}^{2} \int K_{t}^{\delta}(x-y) f(y) d y \overline{g_{t}(x)} d t \frac{d x}{|x|^{\alpha}} \\
& =\int f(y) \int_{1}^{2} \int K_{t}^{\delta}(x-y) \overline{g_{t}(x)} \frac{d x}{|x|^{\alpha}} d t d y \\
& =\int f(y) \int_{1}^{2}|y|^{\alpha} \overline{S_{t}^{\delta\left[\frac{g_{t}(\cdot)}{|\cdot|^{\alpha}}\right]} d t \frac{d y}{|y|^{\alpha}}} \\
& =\left\langle f, T^{*} G\right\rangle_{L^{2}\left(|x|^{-\alpha}\right)}
\end{aligned}
$$

where (since K_{t}^{δ} is even)

$$
T^{*} G(x)=\int_{1}^{2}|x|^{\alpha} S_{t}^{\delta}\left[\frac{g_{t} \cdot(\cdot)}{|\cdot|^{\alpha}}\right](x) d t
$$

So estimate (3) is equivalent to

$$
\int\left|T^{*} G(x)\right|^{2} \frac{d x}{|x|^{\alpha}} \leq C_{\alpha} \delta A_{\alpha}(\delta) \iint_{1}^{2}\left|g_{t}(x)\right|^{2} d t \frac{d x}{|x|^{\alpha}}
$$

that is

$$
\left.\left.\int\left|\int_{1}^{2} S_{t}^{\delta}\left[\frac{g_{t}(\cdot)}{|\cdot|^{\alpha}}\right](x)\right| x\right|^{\alpha} d t\right|^{2} \frac{d x}{|x|^{\alpha}} \leq C_{\alpha} \delta A_{\alpha}(\delta) \iint_{1}^{2}\left|g_{t}(x)\right|^{2} d t \frac{d x}{|x|^{\alpha}}
$$

so if we let $f_{t}(x)=g_{t}(x)|x|^{-\alpha}$, this is equivalent to

$$
\left.\left.\int\left|\int_{1}^{2} S_{t}^{\delta} f_{t}(x)\right| x\right|^{\alpha} d t\right|^{2} \frac{d x}{|x|^{\alpha}} \leq C_{\alpha} \delta A_{\alpha}(\delta) \iint_{1}^{2}\left|f_{t}(x)\right|^{2}|x|^{2 \alpha} d t \frac{d x}{|x|^{\alpha}}
$$

So we have reduced matters to showing that Lemma 2 implies estimate (4).
For $0<\alpha<2$ we let

$$
\mathcal{D}^{\frac{\alpha}{2}} f(x)=\left(\int_{\mathbf{R}^{n}} \frac{|f(x+y)-f(x)|^{2}}{|y|^{\alpha}} \frac{d y}{|y|^{n}}\right)^{\frac{1}{2}}
$$

if $\alpha=2$ we replace f with ∇f and then for $2<\alpha<4$ define $\mathcal{D}^{\frac{\alpha}{2}} f$ as above but with f replaced by ∇f, etc. Then a simple application of Plancherel's theorem (see [2], p. 139) shows that

$$
\left\|\mathcal{D}^{\frac{\alpha}{2}} f\right\|_{2}^{2} \sim \int|\widehat{f}(\xi)|^{2}|\xi|^{\alpha} d \xi
$$

By Plancherel, estimate (4) is equivalent to

$$
\begin{equation*}
\left\|\mathcal{D}^{\frac{\alpha}{2}} \int_{1}^{2} m^{\delta}(t|\cdot|) \widehat{f_{t}}(\cdot) d t\right\|_{2}^{2} \leq C_{\alpha} \delta A_{\alpha}(\delta) \int_{1}^{2} \int\left|\mathcal{D}^{\frac{\alpha}{2}} \widehat{f}_{t}(\xi)\right|^{2} d \xi d t \tag{5}
\end{equation*}
$$

We shall now argue as we did in the model case where $\alpha=0$, we see that the left hand side of estimate (5)
$\int\left|\mathcal{D}^{\frac{\alpha}{2}} \int_{1}^{2} m^{\delta}(t|\xi|) \widehat{f}_{t}(\xi) d t\right|^{2} d \xi=\iint\left|\int_{1}^{2}\left[\eta_{\xi+y}(t) m^{\delta}(t|\xi+y|) \widehat{f}_{t}(\xi+y)-\eta_{\xi}(t) m^{\delta}(t|\xi|) \widehat{f}_{t}(\xi)\right] d t\right|^{2}|y|^{-n-\alpha} d y d \xi$.
Now we shall define $\chi_{E}(\xi, y)$ to be the characteristic function of the set

$$
E=\{(\xi, y):|\xi| \leq(1-\delta)|\xi+y|\} \cup\{(\xi, y):|\xi+y| \leq(1-\delta)|\xi|\}
$$

and notice that

$$
\operatorname{supp} \eta_{\xi+y} \cap \operatorname{supp} \eta_{\xi}=\emptyset \Longleftrightarrow(\xi, y) \in E .
$$

With this in mind we write

$$
\begin{aligned}
& \int \left\lvert\, \mathcal{D}^{\frac{\alpha}{2}}\right.\left.\int_{1}^{2} m^{\delta}(t|\xi|) \widehat{f}_{t}(\xi) d t\right|^{2} d \xi \\
&= \iint\left[\chi_{E}+\left(1-\chi_{E}\right)\right](\xi, y)\left|\int_{1}^{2}\left[\eta_{\xi+y}(t) m^{\delta}(t|\xi+y|) \widehat{f}_{t}(\xi+y)-\eta_{\xi}(t) m^{\delta}(t|\xi|) \widehat{f}_{t}(\xi)\right] d t\right|^{2}|y|^{-n-\alpha} d y d \xi \\
&= C \iint \chi_{E}(\xi, y)\left|\int_{1}^{2}\left[\eta_{\xi+y}(t)+\eta_{\xi}(t)\right]\left[m^{\delta}(t|\xi+y|) \widehat{f}_{t}(\xi+y)-m^{\delta}(t|\xi|) \widehat{f}_{t}(\xi)\right] d t\right|^{2}|y|^{-n-\alpha} d y d \xi \\
&+\left.\left.\iint\left(1-\chi_{E}(\xi, y)\right)\right|_{1} ^{2}\left[\tilde{\eta}_{\xi}(t)\right]\left[m^{\delta}(t|\xi+y|) \widehat{f}_{t}(\xi+y)-m^{\delta}(t|\xi|) \widehat{f}_{t}(\xi)\right] d t\right|^{2}|y|^{-n-\alpha} d y d \xi \\
& \leq C \iint \chi_{E}(\xi, y) \int_{1}^{2}\left[\eta_{\xi+y}(t)+\eta_{\xi}(t)\right]^{2} d t \cdot \int_{1}^{2}\left[m^{\delta}(t|\xi+y|) \widehat{f}_{t}(\xi+y)-m^{\delta}(t|\xi|) \widehat{f}_{t}(\xi)\right]^{2} d t|y|^{-n-\alpha} d y d \xi \\
&+\iint\left(1-\chi_{E}(\xi, y)\right) \int_{1}^{2}\left[\tilde{\eta}_{\xi}(t)\right]^{2} d t \cdot \int_{1}^{2}\left[m^{\delta}(t|\xi+y|) \widehat{f}_{t}(\xi+y)-m^{\delta}(t|\xi|) \widehat{f}_{t}(\xi)\right]^{2} d t|y|^{-n-\alpha} d y d \xi \\
& \leq C \iint \chi_{E}(\xi, y)\left[\frac{\delta}{\xi+y} \tilde{\eta}(|\xi+y|)+\frac{\delta}{|\xi|} \tilde{\eta}(|\xi|)\right] \int_{1}^{2}\left[m^{\delta}(t|\xi+y|) \widehat{f}_{t}(\xi+y)-m^{\delta}(t|\xi|) \widehat{f}_{t}(\xi)\right]^{2} d t|y|^{-n-\alpha} d y d \xi \\
& \leq \quad \iint\left(1-\chi_{E}(\xi, y)\right)\left[\frac{\delta}{\xi \xi \mid} \tilde{\eta}^{2}(|\xi|)\right] \int_{1}^{2}\left[m^{\delta}(t|\xi+y|) \widehat{f}_{t}(\xi+y)-m^{\delta}(t|\xi|) \widehat{f}_{t}(\xi)\right]^{2} d t|y|^{-n-\alpha} d y d \xi \\
& \leq C \delta \int_{1}^{2} \int\left|\mathcal{D}^{\frac{\alpha}{2}}\left[m^{\delta}(t|\xi|) \widehat{f}_{t}(\xi)\right]\right|^{2} d \xi d t .
\end{aligned}
$$

So we need to show that $m^{\delta}(t|\cdot|)$ is a pointwise multiplier of the homogeneous Sobolev space $L_{\frac{\alpha}{2}}^{2}=\left\{f:\left\|\mathcal{D}^{\frac{\alpha}{2}} f\right\|_{2}<\infty\right\}$ with a constant $\leq C_{\alpha} A_{\alpha}(\delta)^{\frac{1}{2}}$, that is

$$
\begin{equation*}
\int\left|\mathcal{D}^{\frac{\alpha}{2}}\left[m^{\delta}(t|\xi|) \widehat{f}_{t}(\xi)\right]\right|^{2} d \xi \leq C_{\alpha} A_{\alpha}(\delta) \int\left|\mathcal{D}^{\frac{\alpha}{2}} \widehat{f}_{t}(\xi)\right|^{2} d \xi \tag{6}
\end{equation*}
$$

uniformly in $1 \leq t \leq 2$. By homogeneity it suffices to prove (6) for $t=1$. Now by Plancherel again estimate (6) is equivalent to

$$
\int\left|S^{\delta} f(x)\right|^{2}|x|^{\alpha} d x \leq C_{\alpha} A_{\alpha}(\delta) \int|f(x)|^{2}|x|^{\alpha} d x
$$

and this follows from Lemma 2 by duality. Now for the integral I_{2} we note that

$$
t \frac{d}{d t} m^{\delta}(t|\xi|)=\left.s \frac{d}{d s} m^{\delta}(s)\right|_{s=t|\xi|}
$$

So if we define

$$
\widetilde{m}^{\delta}(s)=s \delta \frac{d}{d s} m^{\delta}(s),
$$

it is easy to see that \widetilde{m}^{δ} satisfies the same estimates as m^{δ}, if we now define

$$
\widehat{\widetilde{S}_{t}^{\delta} f}(\xi)=\widetilde{m}^{\delta}(t|\xi|) \widehat{f}(\xi),
$$

then we have $\widetilde{S}_{t}^{\delta} f(x)=t \delta \frac{d}{d t} S_{t}^{\delta} f(x)$. Now since $\widetilde{S}_{t}^{\delta}$ satisfies the same estimates as S_{t}^{δ} the argument above runs through with a lose of δ^{2}.

3. Proof of Lemma 2

In the proof of Lemma 2 we shall separate the cases where $0 \leq \alpha<1$ and where $1<\alpha<n$. In both cases the proof relies on the following two lemmas that we shall for the moment assume.

Lemma 3. For $0<\delta \leq \frac{1}{2}$ we have

$$
\int_{|1-|\xi|| \leq \delta}|\widehat{f}(\xi)|^{2} d \xi \leq C_{\alpha} A_{\alpha}(\delta) \delta^{\alpha} \int|f(x)|^{2}|x|^{\alpha} d x
$$

where C_{α} is independent of δ.

In particular, for $1<\alpha<n$ we have

$$
\int_{|\xi|=1}|\widehat{f}(\xi)|^{2} d \xi \leq C_{\alpha} \int|f(x)|^{2}|x|^{\alpha} d x
$$

and since $\widehat{f}(R \xi)=R^{-n} \widehat{f(\dot{\bar{R}})}(\xi)$, that

$$
\int_{|\xi|=1}|\widehat{f}(R \xi)|^{2} d \xi \leq C_{\alpha} R^{-2 n} \int\left|f\left(\frac{x}{R}\right)\right|^{2}|x|^{\alpha} d x=C_{\alpha} R^{\alpha-n} \int|f(x)|^{2}|x|^{\alpha} d x
$$

In the same way we can, for $0 \leq \alpha<n$, rescale the $\delta=\frac{1}{2}$ case to obtain

$$
\int_{\frac{1}{2} R \leq|\xi| \leq \frac{3}{2} R}|\widehat{f}(\xi)|^{2} d \xi=R^{n} \int_{\frac{1}{2} \leq|\xi| \leq \frac{3}{2}}|\widehat{f}(R \xi)|^{2} d \xi \leq C_{\alpha} R^{\alpha} \int|f(x)|^{2}|x|^{\alpha} d x
$$

We now let $K=K^{\delta}$ be the kernel such that $\widehat{K}=m^{\delta}(|\xi|)$ and dyadically decompose our kernel $K(x)=\sum_{j} K_{j}(x)$, where for each $j \geq 1$ we have that K_{j} is supported where $|x| \sim 2^{j} \delta^{-1}$ and K_{0} is supported where $|x| \leq C \delta^{-1}$. Then we see that the main contribution to K comes from K_{0}. The following Lemma makes this precise.

Lemma 4. For $0 \leq \alpha \leq n$ and all $m \in \mathbf{N}$ we have

$$
\left|\widehat{K_{j}}(\xi)\right| \leq C_{m, \alpha} 2^{-m j} \quad \text { and } \quad \int_{0}^{\infty}\left|\widehat{K_{j}}(r)\right| r^{\alpha-1} d r \leq C_{m, \alpha} 2^{-m j} \delta
$$

3.1. Proof of Lemma 2 for $\mathbf{1}<\boldsymbol{\alpha}<\boldsymbol{n}$. First notice that $A_{\alpha}(\delta)=\delta^{1-\alpha} \geq 1$ and that by Plancherel we trivially have

$$
\int\left|K_{j} * f(x)\right|^{2} d x \leq C 2^{-j} \int|f(x)|^{2} d x
$$

We of course would like to divide both sides by $|x|^{\alpha}$ and we can do this if $|x|$ is about a non-zero constant. With this in mind we shall divide \mathbf{R}^{n} into disjoint cubes $\left\{Q_{i}\right\}_{i=0}^{\infty}$ with sidelength $2^{j} \delta^{-1}$ each centered at x_{i} with $x_{0}=0$. It is immediate from the support properties of K_{j} that

$$
\int_{\left|x-x_{i}\right| \leq 2^{j} \delta^{-1}}\left|K_{j} * f(x)\right|^{2} d x \leq C 2^{-j} \int_{\left|x-x_{i}\right| \leq 10 \cdot 2^{j} \delta^{-1}}|f(x)|^{2} d x
$$

Therefore for $|x| \gg 2^{j} \delta^{-1}$ we have

$$
\int\left|K_{j} * f(x)\right|^{2} \frac{d x}{|x|^{\alpha}} \leq C 2^{-j} \int|f(x)|^{2} \frac{d x}{|x|^{\alpha}}
$$

Now for $|x| \leq C 2^{j} \delta^{-1}$ we use the fact that

$$
\begin{aligned}
\int\left|K_{j} * f\right|^{2} d x & =\int\left|\widehat{K_{j}}(\xi)\right|^{2}|\widehat{f}(\xi)|^{2} d \xi \\
& =\int_{0}^{\infty} \int_{S^{n-1}}|\widehat{f}(r \omega)|^{2} d \omega\left|\widehat{K}_{j}(r)\right|^{2} r^{n-1} d r \\
& \leq C_{\alpha} \int|f(x)|^{2}|x|^{\alpha} d x \int_{0}^{\infty}\left|\widehat{K}_{j}(r)\right|^{2} r^{\alpha-1} d r,
\end{aligned}
$$

by Lemma 3. Now $\left\|\widehat{K_{j}}\right\|_{\infty} \leq 1$, and so Lemma 4 gives that for each $m \in \mathbf{N}$,

$$
\int\left|K_{j} * f\right|^{2} d x \leq C_{m, \alpha} 2^{-m j} \delta \int|f(x)|^{2}|x|^{\alpha} d x
$$

and hence, by duality

$$
\int\left|K_{j} * f\right|^{2} \frac{d x}{|x|^{\alpha}} \leq C_{m, \alpha} 2^{-m j} \delta \int|f(x)|^{2} d x .
$$

Now using the fact that $|x|^{\alpha} \leq 2^{j \alpha} \delta^{-\alpha}$, we see that

$$
\int\left|K_{j} * f\right|^{2} \frac{d x}{|x|^{\alpha}} \leq C_{m, \alpha} 2^{(\alpha-m) j} \delta^{1-\alpha} \int|f(x)|^{2} \frac{d x}{|x|^{\alpha}}
$$

If we now pick $m \geq \alpha+1$, as we are free to do, then we have

$$
\begin{equation*}
\int\left|K_{j} * f\right|^{2} \frac{d x}{|x|^{\alpha}} \leq C_{\alpha} 2^{-j} \delta^{1-\alpha} \int|f(x)|^{2} \frac{d x}{|x|^{\alpha}} \tag{7}
\end{equation*}
$$

We are therefore done modulo verifying Lemmas 3 and 4 .
3.2. Proof of Lemma $\mathbf{2}$ for $\mathbf{0}<\boldsymbol{\alpha} \leq \mathbf{1}$. By (6) for $t=1$ it shall suffice to show that

$$
\left\|\mathcal{D}^{\frac{\alpha}{2}} m^{\delta} \widehat{f}\right\|_{2}^{2} \leq C_{\alpha} A_{\alpha}(\delta)\left\|\mathcal{D}^{\frac{\alpha}{2}} \widehat{f}\right\|_{2}^{2}
$$

Now using the following Leibniz rule for \mathcal{D}^{β}, namely

$$
\mathcal{D}^{\beta}[g h](x) \leq\|g\|_{\infty} \mathcal{D}^{\beta} h(x)+|h(x)| \mathcal{D}^{\beta} g(x),
$$

we see that

$$
\left\|\mathcal{D}^{\frac{\alpha}{2}} m^{\delta} \widehat{f}\right\|_{2}^{2} \leq\|m\|_{\infty}\left\|\mathcal{D}^{\frac{\alpha}{2}} \widehat{f}\right\|_{2}^{2}+\left\|\widehat{f} \mathcal{D}^{\frac{\alpha}{2}} m^{\delta}\right\|_{2}^{2}
$$

It therefore suffices to show that

$$
\begin{equation*}
\int|\widehat{f}(\xi)|^{2}\left|\mathcal{D}^{\frac{\alpha}{2}} m^{\delta}(\xi)\right|^{2} d \xi \leq C_{\alpha} A_{\alpha}(\delta) \int\left|\mathcal{D}^{\frac{\alpha}{2}} \widehat{f}(\xi)\right|^{2} d \xi \tag{8}
\end{equation*}
$$

Lemma 5. For $0<\alpha<2$ we have

$$
\left|\mathcal{D}^{\frac{\alpha}{2}} m^{\delta}(\xi)\right|^{2} \leq C_{\alpha} \begin{cases}\delta^{-\alpha} & \text { if }|1-|\xi|| \leq 2 \delta, \\ \delta|1-|\xi||^{-\alpha-1} & \text { if } 0 \leq|\xi| \leq 2, \\ \delta|\xi|^{-\alpha-n} & \text { if }|\xi| \geq 2\end{cases}
$$

Assuming Lemma 5 for the moment we see that the left hand side of equation (8) is dominated by

$$
I_{1}+I_{2}+I_{3}=\delta^{-\alpha} \int_{|1-|\xi| \leq 2 \delta}|\widehat{f}(\xi)|^{2} d \xi+\left.\delta \int_{|\xi| \leq 2}\left|1-|\xi|^{-\alpha-1}\right| \widehat{f}(\xi)\right|^{2} d \xi+\delta \int_{|\xi| \geq 2}|\xi|^{-\alpha-n}|\widehat{f}(\xi)|^{2} d \xi
$$

Now it clearly follows from Lemma 3 that

$$
I_{1} \leq C A_{\alpha}(\delta) \int|f(x)|^{2}|x|^{\alpha} d x
$$

While

$$
I_{2} \leq C \delta \sum_{k=1}^{\infty} 2^{k(\alpha+1)} \int_{|1-|\xi|| \leq 2^{-k}}|\widehat{f}(\xi)|^{2} d \xi+C \delta\left(\int_{0 \leq|\xi| \leq \frac{1}{2}}|\widehat{f}(\xi)|^{2} d \xi+\int_{\frac{3}{2} \leq|\xi| \leq 2}|\widehat{f}(\xi)|^{2} d \xi\right)
$$

and

$$
I_{3} \leq C \delta \sum_{k=1}^{\infty} 2^{-k(\alpha+n)} \int_{|\xi| \sim 2^{k}}|\widehat{f}(\xi)|^{2} d \xi
$$

It then follows from Lemma 3 and the remarks proceeding it that

$$
\begin{gathered}
\sum_{k=1}^{\infty} 2^{k(\alpha+1)} \int_{|1-|\xi|| \leq 2^{-k}}|\widehat{f}(\xi)|^{2} d \xi \leq \sum_{k=1}^{\infty} 2^{k} A_{\alpha}\left(2^{-k}\right) \int|f(x)|^{2}|x|^{\alpha} d x \\
\int_{0 \leq|\xi| \leq \frac{1}{2}}|\widehat{f}(\xi)|^{2} d \xi \leq C \sum_{k=1}^{\infty} \int_{|\xi| \sim 2^{-k}}|\widehat{f}(\xi)|^{2} d \xi \leq C \sum_{k=1}^{\infty} 2^{-k \alpha} \int|f(x)|^{2}|x|^{\alpha} d x, \\
\int_{\frac{3}{2} \leq|\xi| \leq 2}|\widehat{f}(\xi)|^{2} d \xi \leq \int_{\frac{1}{2} 2 \leq|\xi| \leq \frac{3}{2} 2}|\widehat{f}(\xi)|^{2} d \xi \leq C_{\alpha} \int|f(x)|^{2}|x|^{\alpha} d x,
\end{gathered}
$$

and

$$
\sum_{k=1}^{\infty} 2^{-k(\alpha+n)} \int_{|\xi| \sim 2^{k}}|\widehat{f}(\xi)|^{2} d \xi \leq C \sum_{k=1}^{\infty} 2^{-k n} \int|f(x)|^{2}|x|^{\alpha} d x
$$

It therefore follows that

$$
I_{2} \leq C A_{\alpha}(\delta) \int|f(x)|^{2}|x|^{\alpha} d x \quad \text { and } \quad I_{3} \leq C \delta \int|f(x)|^{2}|x|^{\alpha} d x
$$

and so (8) is established. This completes the proof of Lemma 2 modulo proving Lemma 3,4 and 5.

4. Proofs of Lemma 3, 4 and 5

4.1. Proof of Lemma 3. By the usual duality argument it suffice to show that

$$
\int|\widehat{g}(\xi)|^{2} \frac{d \xi}{|\xi|^{\alpha}} \leq C_{\alpha} A_{\alpha}(\delta) \delta^{\alpha} \int_{|1-|x|| \leq \delta}|g(x)|^{2} d x
$$

where $\operatorname{supp} g \subseteq\{x:|1-|x|| \leq \delta\}$. Now if $\alpha \neq 0$, then

$$
\begin{aligned}
\int|\widehat{g}(\xi)|^{2} \frac{d \xi}{|\xi|^{\alpha}}= & \int \widehat{g * \tilde{g}}(\xi) \frac{d \xi}{|\xi|^{\alpha}} \\
= & C \int g * \tilde{g}(x)|x|^{\alpha-n} d x \\
= & C \iint_{|1-|x|| \leq \delta} g(x) \overline{g(y)}|x-y|^{\alpha-n} d x d y \\
& |1-|y| \leq \delta \\
\leq & C\|g\|_{2}^{2} \sup _{x} \int_{|1-|y|| \leq \delta}|x-y|^{\alpha-n} d y
\end{aligned}
$$

by Schur's Lemma. Changing variables we see that

$$
\int_{|1-|y|| \leq \delta}|x-y|^{\alpha-n} d y=\int_{|1-|x-y|| \leq \delta}|y|^{\alpha-n} d y
$$

Now here we are integrating over an annulus centered at x and of width δ. The integral is clearly majorized if the origin falls inside the annulus, it is then controlled by

$$
\int_{\substack{\left|v_{n}\right| \leq \delta \\\left|v^{\prime}\right| \leq 1}}|v|^{\alpha-n} d v=\int_{\substack{\left|v_{n}\right| \leq \delta \\\left|v^{\prime}\right| \leq \delta}}|v|^{\alpha-n} d v+\int_{\substack{\left|v_{n}\right| \leq \delta \\ \delta \leq\left|v^{\prime}\right| \leq 1}}|v|^{\alpha-n} d v=I_{1}+I_{2}
$$

this is easily justified by a switch to tangential and normal coordinates and some error analysis. Now

$$
\left|I_{1}\right| \leq C \int_{0}^{\delta} r^{\alpha-1} d r=C \delta^{\alpha} \leq C A_{\alpha}(\delta) \delta^{\alpha}
$$

and

$$
\left|I_{2}\right| \leq C \int_{0}^{\delta} d v_{n} \int_{\left|v^{\prime}\right| \geq \delta}\left|v^{\prime}\right|^{\alpha-n} d v^{\prime}=C \delta \int_{\delta}^{1} r^{\alpha-2} d r=C A_{\alpha}(\delta) \delta^{\alpha}
$$

4.2. Proof of Lemma 4. Recall that $K=K^{\delta}$ satisfies $\widehat{K}(\xi)=m^{\delta}(\xi)$. We shall now make the decomposition of K precise, we define

$$
h_{j}(x)=\left\{\begin{array}{l}
\phi(|x|), \quad \text { if } j=0 \\
\phi\left(2^{-j}|x|\right)-\phi\left(2^{1-j}|x|\right), \quad \text { if } j \geq 1
\end{array}\right.
$$

where ϕ is a smooth function with $\operatorname{supp} \phi \subseteq\left[\frac{1}{2}, 2\right]$ and $\phi(t) \equiv 1$ for $\frac{3}{4} \leq t \leq \frac{3}{2}$. We decompose our kernel K as

$$
K(x)=\sum_{j=0}^{\infty} K_{j}(x) \quad \text { where } \quad K_{j}(x)=K(x) h_{j}(\delta x)
$$

We therefore have $\widehat{K_{j}}(\xi)=m^{\delta} * \widehat{h_{j}(\delta \cdot)}(\xi)$. If we now let $h(x)=\phi(|x|)-\phi(2|x|)$, then we get that

$$
\widehat{K_{j}}(\xi)=\int m^{\delta}\left(\xi-2^{-j} \delta \eta\right) \widehat{h}(\eta) d \eta
$$

Now since $h \equiv 0$ in a neighborhood of 0 it follows that $\int \eta^{\beta} \widehat{h}(\eta) d \eta=0$, for any multi-index β. Therefore, expanding m^{δ} in a Taylor series about 0 we get

$$
\widehat{K}_{j}(\xi)=\int R_{m}(\xi, \eta) \widehat{h}(\eta) d \eta
$$

where $\left|R_{m}(\xi, \eta)\right| \leq \sum_{|\beta|=m}\left\|D^{\beta} m^{\delta}\right\|_{\infty}\left|2^{-j} \delta \eta\right|^{m} \leq 2^{-j m}|\eta|^{m}$. Now since $\widehat{h} \in \mathcal{S}\left(\mathbf{R}^{n}\right)$, this implies

$$
\left|\widehat{K_{j}}(\xi)\right| \leq C_{m} 2^{-m j}
$$

for all $m \geq 0$ and $\xi \in \mathbf{R}^{n}$. However, looking at the definition of $\widehat{K_{j}}(\xi)$ and the fact that supp $m^{\delta} \subseteq$ $[1-\delta, 1]$ it follows that if $|\xi|<\frac{1}{2}$, then necessarily $|\eta|>2^{j-1} \delta^{-1}$ and it follows that

$$
\left|\widehat{K}_{j}(\xi)\right| \leq C \int(1+|\eta|)^{-m-n-1} d \eta \leq C 2^{-m j} \delta^{m}
$$

for any $m \geq 0$ and $|\xi|<\frac{1}{2}$. Thus

$$
\int_{0}^{\frac{1}{2}}\left|\widehat{K}_{j}(r)\right| r^{\alpha-1} d r \leq C_{\alpha, m} 2^{-m j} \delta^{m}
$$

On the other hand consider the set $S=\left\{\xi \in \mathbf{R}^{n}: 1-2 \delta<|\xi|<1+2 \delta\right\}$, and look at

$$
\begin{aligned}
\int_{\frac{1}{2}}^{\infty}\left|\widehat{K}_{j}(r)\right| r^{\alpha-1} d r & \leq C \int_{\mathbf{R}^{n}}\left|\widehat{K}_{j}(\xi)\right| d \xi \\
& =C \int_{S}\left|\widehat{K_{j}}(\xi)\right| d \xi+C \int_{\mathbf{R}^{n} \backslash S}\left|\widehat{K_{j}}(\xi)\right| d \xi \\
& \leq C_{m} 2^{-m j} \delta+\int_{|\eta|>2^{j}}|\widehat{h}(\eta)| \int m^{\delta}\left(\xi-2^{-j} \delta \eta\right) d \xi d \eta \\
& \leq C_{m} 2^{-m j} \delta+C\left\|m^{\delta}\right\|_{\infty} \int_{|\eta|>2^{j}}|\widehat{h}(\eta)| d \eta \\
& \leq C_{m} 2^{-m j} \delta
\end{aligned}
$$

4.3. Proof of Lemma 5. Let us first consider the case when $|1-|\xi|| \leq 2 \delta$; if $|y| \geq \delta$, then

$$
\int_{|y| \geq \delta}\left|m^{\delta}(\xi+y)-m^{\delta}(\xi)\right|^{2}|y|^{-n-\alpha} d y \leq \int_{|y| \geq \delta}|y|^{-n-\alpha} d y \leq \delta^{-\alpha}
$$

while if $|y| \leq \delta$, then

$$
\int_{|y| \leq \delta}\left|m^{\delta}(\xi+y)-m^{\delta}(\xi)\right|^{2}|y|^{-n-\alpha} d y \leq \delta^{-2} \int_{|y| \geq \delta}|y|^{2-n-\alpha} d y \leq \delta^{-\alpha}
$$

since $0<\alpha<2$. Let us now consider the case when $|\xi| \geq 2$; now this implies that $m^{\delta}(\xi)=0$, so if the integrand is to be non-zero we must have that

$$
|\xi+y| \sim 1 \Longleftrightarrow|y| \sim|\xi| \pm 1 \Longrightarrow|y|^{-n-\alpha} \leq C|\xi|^{-n-\alpha}
$$

therefore we have

$$
\left|\mathcal{D}^{\frac{\alpha}{2}} m^{\delta}(\xi)\right|^{2}=\int\left|m^{\delta}(\xi+y)-m^{\delta}(\xi)\right|^{2}|y|^{-n-\alpha} d y \leq C|\xi|^{-n-\alpha}
$$

Finally we must consider the case where $|\xi| \leq 2$ and $|1-|\xi|| \geq 2 \delta$; we are looking at

$$
I(\xi)=\int_{\{y:|1-|\xi+y|| \leq \delta\}}|y|^{-n-\alpha} d y
$$

Now $2 \delta \leq|1-|\xi|| \leq 1$ so we can break $I(\xi)$ into dyadic pieces where $|1-|\xi|| \sim 2^{-j}$ and $\delta \leq 2^{-j}$. Consider the contribution from the annuli $|y| \sim 2^{-j+r}$, it is straightforward to see that

$$
\left|\{y:|1-|\xi+y|| \leq \delta\} \cap\left\{|y| \sim 2^{-j+r}\right\}\right| \leq C \delta 2^{-(j-r)(n-1)}
$$

and hence that $I_{j}(\xi) \leq C \delta 2^{-(j-r)(\alpha+1)}$, if we now sum in r it follows that

$$
\int_{\{y:|1-|\xi+y|| \leq \delta\}}|y|^{-n-\alpha} d y \leq C \delta\left|1-|\xi|^{-\alpha-1}\right.
$$

Appendix

Here we prove that the Hardy-Littlewood Maximal function and the Littlewood-Paley square function are bounded on $L^{p}\left(|x|^{-\alpha}\right)$ whenever $n(1-p)<\alpha<n$. These two results will be essentially a consequence of the following weighted L^{p} mapping property of singular integrals.

Proposition 6. Suppose that $|K(x)| \leq C|x|^{-n}$ and that $T f=f * K$ is bounded on L^{p}, then

$$
\|T f\|_{L^{p}\left(|x|^{-\alpha}\right)} \leq C\|f\|_{L^{p}\left(|x|^{-\alpha}\right)} \quad \text { for } n(1-p)<\alpha<n .
$$

Proof. We shall smoothly break our operator into two pieces; a conic neighborhood of the diagonal $x=y$ of aperture ϵ and the complement of this. Inside the conic region we use the fact that T is bounded on L^{p} and off the diagonal we observe that $|K(x-y)| \leq C|x-y|^{-n} \approx(|x|+|y|)^{-n}$.
(a) Inside the conic neighborhood Γ_{ϵ} :

$$
\begin{aligned}
\left(\int|T f(x)|^{p} \frac{d x}{|x|^{\alpha}}\right)^{\frac{1}{p}} & =\left(\int\left|\int f(y) K(x-y) d y\right|^{p} \frac{d x}{|x|^{\alpha}}\right)^{\frac{1}{p}} \\
& =\left(\sum_{j} \int\left|\chi\left(\frac{|x|}{2^{j}}\right) \int f(y) K(x-y) \chi\left(\frac{|x-y|}{\epsilon 2^{j}}\right) d y\right|^{p} \frac{d x}{|x|^{\alpha}}\right)^{\frac{1}{p}} \\
& =\left(\sum_{j} \int\left|\chi\left(\frac{|x|}{2^{j}}\right) \int f(y) K(x-y) \chi\left(\frac{|x-y|}{\epsilon 2^{j}}\right) \tilde{\chi}\left(\frac{|y|}{2^{j}}\right) d y\right|^{p} \frac{d x}{|x|^{\alpha}}\right)^{\frac{1}{p}} \\
& \leq C\left(\sum_{j} 2^{-j \alpha} \int \left\lvert\,\left[f \tilde{\chi}\left(\frac{|\cdot|}{2^{j}}\right)\right] *\left[\left.K \chi\left(\frac{|\cdot|}{\epsilon 2^{j}}\right)\right|^{p} d x\right)^{\frac{1}{p}} .\right.\right.
\end{aligned}
$$

Now since T is bounded on L^{p} it follows that $f \mapsto f * K \chi\left(\frac{|\cdot|}{\epsilon 2^{j}}\right)$ is also bounded on L^{p} provided that $\widehat{\chi} \in L^{1}$. We therefore have that

$$
\begin{aligned}
\left(\int|T f(x)|^{p} \frac{d x}{|x|^{\alpha}}\right)^{\frac{1}{p}} & \leq C\left(\sum_{j} 2^{-j \alpha} \int|f(x)|^{p} \tilde{\chi}\left(\frac{|x|}{2^{j}}\right) d x\right)^{\frac{1}{p}} \\
& \leq C\left(\int|f(x)|^{p} \frac{d x}{|x|^{\alpha}}\right)^{\frac{1}{p}} .
\end{aligned}
$$

(b) Away from the conic neighborhood Γ_{ϵ} : here we have that

$$
\left(\int|T f(x)|^{p} \frac{d x}{|x|^{\alpha}}\right)^{\frac{1}{p}} \leq C\left(\int\left(\int|f(y)||x-y|^{-n} d y\right)^{p} \frac{d x}{|x|^{\alpha}}\right)^{\frac{1}{p}} .
$$

Now, of course, there are two main possibilities, where $|x-y|^{-n} \approx|x|^{-n}$ and $|x-y|^{-n} \approx|y|^{-n}$.
(i) $|x-y|^{-n} \approx|x|^{-n}$; here we have

$$
\begin{aligned}
\left(\int|T f(x)|^{p} \frac{d x}{|x|^{\alpha}}\right)^{\frac{1}{p}} & \leq C\left(\int\left(\int_{|y| \leq \frac{1}{2}|x|}|f(y)||x|^{-n-\frac{\alpha}{p}} d y\right)^{p} d x\right)^{\frac{1}{p}} \\
& =C\left(\int\left(\sum_{\ell \geq 1} \int_{|y| \sim 2^{-\ell}|x|}|f(y)||x|^{-n-\frac{\alpha}{p}} d y\right)^{p} d x\right)^{\frac{1}{p}} \\
& \leq C \sum_{\ell \geq 1}\left(\int|x|^{-n p-\alpha}\left(\int_{|y| \sim 2^{-\ell}|x|}|f(y)| d y\right)^{p} d x\right)^{\frac{1}{p}} \\
& =C \sum_{\ell \geq 1}\left(\int|x|^{-n p-\alpha}\left(2^{-\ell n}|x|^{n} \int_{|y| \sim 2^{-\ell}|x|}|f(y)|_{2^{-\ell n}|x|^{n}}\right)^{p} d x\right)^{\frac{1}{p}}
\end{aligned}
$$

Now it follow immediately from Hölder's inequality that

$$
\int_{|y| \sim 2^{-\ell}|x|}|f(y)|_{2^{-\ell n}|x|^{n}} \leq\left(\int_{|y| \sim 2^{-\ell}|x|}|f(y)|^{p} \frac{d y}{2^{-\ell n}|x|^{n}} d x\right)^{\frac{1}{p}}
$$

therefore

$$
\begin{aligned}
\left(\int|T f(x)|^{p} \frac{d x}{|x|^{\alpha}}\right)^{\frac{1}{p}} & \leq C \sum_{\ell \geq 1}\left(\int|x|^{-n p-\alpha} 2^{-\ell n p}|x|^{n p} \int_{|y| \sim 2^{-\ell}|x|}|f(y)|^{p} \frac{d y}{2^{-\ell n}|x|^{n}} d x\right)^{\frac{1}{p}} \\
& \leq C \sum_{\ell \geq 1} 2^{-\ell n\left(1-\frac{1}{p}\right)}\left(\int|f(y)|^{p} \int_{|x| \sim 2^{\ell}|y|}|x|^{-n-\alpha} d x d y\right)^{\frac{1}{p}} \\
& \leq C \sum_{\ell \geq 1} 2^{-\ell \frac{1}{p}(n p-n+\alpha)}\left(\int|f(y)|^{p}|y|^{-\alpha} d y\right)^{\frac{1}{p}} \\
& \leq C\left(\int|f(y)|^{p}|y|^{-\alpha} d y\right)^{\frac{1}{p}}
\end{aligned}
$$

provided $\alpha>n(1-p)$.
(ii) $|x-y|^{-n} \approx|y|^{-n}$; here we argue similarly to above and obtain the restriction that $\alpha<n$.

Remark. The above argument applies to our operators, as
(1) $f \mapsto M_{H L} f=\sup _{r>0}|f| * \frac{\chi_{B_{r}}}{\left|B_{r}\right|}$ and $\left|\frac{\chi_{B_{r}}}{\left|B_{r}\right|}\right| \leq C|x|^{-n}$.
(2) $f \mapsto\left(\sum_{k}\left|L_{k} f\right|^{2}\right)^{\frac{1}{2}} \leq \sum_{k}\left|L_{k} f\right| \leq|f| * \sum_{k} \frac{2^{k n}}{\left(1+2^{k}|x|\right)^{N}}$ and $\sum_{k} \frac{2^{k n}}{\left(1+2^{k}|x|\right)^{N}} \leq C|x|^{-n}$.

Note also that the ℓ^{∞} and ℓ^{2} norms respectively do not effect the argument inside Γ_{ϵ}.

References

1. Carbery, A., J. Rubio de Francia and L. Vega, Almost everywhere summability of Fourier integrals, J. London Math. Soc. (2) 38 (1988), 513-524.
2. Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press (1970).
3. \qquad , Harmonic Analysis, Princeton Univ. Press (1993).

[^0]: ${ }^{1}$ This condition ensures that $|x|^{-\alpha}$ is an A_{p} weight.

