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Abstract. In this expository note we present a result of Carbery, Rubio de Francia and Vega [1]
on the almost everywhere convergence of Bochner–Riesz means.

1. Introduction

We are interested in the pointwise convergence of Bochner–Riesz means T λ
R in Rn, these are defined

in terms of the Fourier transform for λ > 0 and 0 < R < ∞ by

T̂ λ
Rf(ξ) =

(
1− |ξ|2

R2

)λ

+
f̂(ξ).

We of course need only consider values of λ below the critical index of 1
2(n − 1). It follows from

the uniform boundedness principle and scaling that convergence of T λ
R in Lp is equivalent to the Lp

boundedness of T λ = T λ
1 , it is conjectured that this should hold for 0 < λ ≤ 1

2(n− 1) if and only if
2n

n + 1 + 2λ
= p′λ < p < pλ =

2n

n− 1− 2λ
.

It is easy to show that this inequality is necessary and well known that the conjecture is indeed a
theorem in R2; see [3]. There has been progress in higher dimensions but the problem is still open.
The following result in Rn for n ≥ 2 concerning almost everywhere convergence is due to Carbery,
Rubio de Francia and Vega [1].

Theorem A. If 2 ≤ p < pλ then lim
R→∞

T λ
Rf(x) = f(x) almost everywhere for all f ∈ Lp(Rn).

We naturally need to consider the maximal operator: T λ
∗ f(x) = supR>0 |T λ

Rf(x)|. Now for p > 2
almost everywhere convergence is no longer equivalent to the Lp boundedness of a corresponding
maximal operator. As a result we can avoid the hard problem of proving Lp boundedness, it will
in fact suffice to instead establish the following weighted L2 estimate.

Theorem B. If 0 ≤ α < 1 + 2λ ≤ n then ‖T λ
∗ f‖L2(|x|−α) ≤ Cα,λ‖f‖L2(|x|−α).

Note that 1 + 2λ = n(1 − 2
pλ

) and that Theorem B implies the almost everywhere convergence of
T λ

R(x) for all f ∈ L2(|x|−α) as Schwartz functions are dense in L2(|x|−α).

The key idea is then to use the fact that Lp ⊆ L2 +L2(|x|−α) whenever α > n(1− 2
p), which follows

immediately from Hölder’s inequality. Then for a fixed p such that 2 ≤ p < pλ we can certainly
choose α such that n(1− 2

p) < α < 1 + 2λ, almost everywhere convergence of T λ
R(x) for all f ∈ Lp

then follows from Theorem B.
1
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2. Reduction to basic estimate

In order to prove Theorem B we are going to decompose the multipliers on dyadic annuli whose
widths are approximately their distances to the sphere |ξ| = 1. To be precise: choose smooth
functions ϕ supported where 1

2 < t < 1 such that 0 ≤ ϕ ≤ 1, and
∑∞

k=1 ϕk(t) = 1 for 1
2 ≤ t ≤ 1,

where ϕk(t) = ϕ(2kt). Now define ϕ0(t) = 1−
∑∞

k=1 ϕk(t), for 0 ≤ t < 1
2 and ϕ0(t) = 0 otherwise.

Then we have

(1− |ξ|2)λ
+ =

∞∑
k=0

(1− |ξ|2)λϕk(1− |ξ|2) =
∞∑

k=0

2−kλm2−k
(|ξ|),

where
m2−k

(|ξ|) = 2kλ(1− |ξ|2)λϕk(1− |ξ|2).
This allows us to decompose the operator

(1) T λ
Rf(x) =

∞∑
k=0

2−kλF−1[m2−k
( |·|R )f̂ ](x).

For k = 0 and 1 the terms are controlled by the Hardy-Littlewood maximal operator which is
bounded in Lp(|x|−α) for n(1 − p) < α < n1; see Appendix. We will therefore study operators Sδ

t

defined by
Ŝδ

t f(ξ) = mδ(t|ξ|)f̂(ξ) and Sδ
∗f(x) = sup

t>0
|Sδ

t f(x)|,

for δ < 1
2 . Notice that given a small δ > 0, mδ(t) is a smooth function supported in [1 − δ, 1], we

have that 0 ≤ mδ(t) ≤ 1 and |Dlmδ(t)| ≤ Cδ−l for all l ∈ N.

Lemma 1. For δ > 0 and 0 ≤ α < n we have∫
|Sδ
∗f(x)|2 dx

|x|α
≤ CαAα(δ)

∫
|f(x)|2 dx

|x|α
,

where Cα is independent of δ and

Aα(δ) =


1, if 0 ≤ α < 1,

| log δ|, if α = 1,

δ1−α, if 1 < α < n.

Theorem B is an immediate consequence of Lemma 1; it is clear from (1) that

‖T λ
∗ f‖L2(|x|−α) ≤ C

∞∑
k=0

2−kλ‖S2k

∗ f‖L2(|x|−α),

so setting δ = 2−k we see that T λ
∗ is bounded on L2(|x|−α) provided that λ > 0 (in the 0 ≤ α < 1

case) or that λ > α−1
2 (in the case when 1 ≤ α < n).

Let Lkf be the usual Littlewood–Paley operator, defined by L̂kf(ξ) = φ(2k|ξ|)f̂(ξ) where suppφ ⊂
[14 , 4] and φ(t) = 1 for 1

2 ≤ t ≤ 2. If n(1− p) < α < n then we have, see Appendix, that

C1‖f‖Lp(|x|−α) ≤
∥∥∥( ∞∑

k=0

|Lkf(x)|2
) 1

2
∥∥∥

Lp(|x|−α)
≤ C2‖f‖Lp(|x|−α).

1 This condition ensures that |x|−α is an Ap weight.
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Using this fact we can reduce matters to establishing the local maximal operator estimate

(2)
∥∥ sup

1≤t≤2
|Sδ

t f(x)|
∥∥2

L2(|x|−α)
≤ CαAα(δ)

∥∥f
∥∥2

L2(|x|−α)
.

By homogeneity (2) also holds for Sδ
Rt for any R > 0. Lets now see that this estimate in fact implies

Lemma 1. ∥∥sup
t>0

|Sδ
t f(x)|

∥∥2

L2(|x|−α)
=

∥∥sup
k

sup
2k−1≤t≤2k

|Sδ
t f(x)|

∥∥2

L2(|x|−α)

≤
∥∥∥(∑

k

sup
2k−1≤t≤2k

|Sδ
t f(x)|2

) 1
2
∥∥∥2

L2(|x|−α)

=
∥∥∥(∑

k

sup
2k−1≤t≤2k

|Sδ
t (Lkf)(x)|2

) 1
2
∥∥∥2

L2(|x|−α)

=
∑

k

∥∥∥ sup
1≤t≤2

|Sδ
t (Lkf)(x)|

∥∥∥2

L2(|x|−α)

≤ CαAα(δ)
∑

k

∥∥Lkf
∥∥2

L2(|x|−α)

= CαAα(δ)
∥∥∥(∑

k

|Lkf |2
) 1

2
∥∥∥2

L2(|x|−α)

≤ CαAα(δ)‖f‖2
L2(|x|−α).

We are therefore left with verifying estimate (2). Let F (t) = |Sδ
t f(x)|, then by the Fundamental

Theorem of Calculus we have

sup
1≤t≤2

F (t) ≤ F (1) + c‖F‖
1
2
2 ‖F

′‖
1
2
2 .

Therefore (∫
sup

1≤t≤2
|F (t)|2 dx

|x|α
) 1

2 ≤
(∫

|F (1)|2 dx

|x|α
) 1

2 + c
(∫

‖F‖2‖F ′‖2
dx

|x|α
) 1

2
.

Of course by definition
‖F (1)‖L2(|x|−α) = ‖Sδf‖L2(|x|−α),

while ∫
‖F‖2‖F ′‖2

dx

|x|α
=

∫ (∫ 2

1
|Sδ

t f(x)|2dt
) 1

2
(∫ 2

1
| d
dtS

δ
t f(x)|2dt

) 1
2 dx

|x|α

≤
∥∥∥(∫ 2

1
|Sδ

t f |2dt
) 1

2
∥∥∥

L2(|x|−α)

∥∥∥(∫ 2

1
| d
dtS

δ
t f |2dt

) 1
2
∥∥∥

L2(|x|−α)

= I1 · I2

Argument for α = 0: Then we of course have by Plancherel that

‖F (1)‖2 = ‖Sδf‖2 = ‖mδ(| · |)f̂‖2 ≤ C‖f‖2.

Notice also that

I2
1 ≤

∫ 2

1
‖Sδ

t f‖2
2dt =

∫ 2

1

∫
|mδ(t|ξ|)f̂(ξ)|2dξdt =

∫
|f̂(ξ)|2

∫ 2

1
|mδ(t|ξ|)|2dtdξ.
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Now if for fixed ξ the t integrand is non–zero then necessarily [(1 − δ)|ξ|−1, |ξ|−1] ∩ [1, 2] must be
non–empty, which implies that 1 ≤ |ξ|−1 ≤ 4 and therefore that the effective size of the region of
integration is in fact bounded by 4δ. It therefore follows that

I2
1 ≤

∫
|f̂(ξ)|2

∫ 2

1
ηξ(t)|mδ(t|ξ|)|2dtdξ ≤

∫
δ
|ξ| η̃(|ξ|)|f̂(ξ)|2dξ ≤ Cδ‖f‖2

2.

Now for I2 notice that | d
dtm

δ(t|ξ|)| ≤ C|ξ|δ−1 so arguing as above we get that

I2
2 ≤

∫
|ξ|
δ η̃(|ξ|)|f̂(ξ)|2dξ ≤ Cδ−1‖f‖2

2,

we therefore have that I1 · I2 ≤ C‖f‖2
2, this establishes Lemma 1 in the special case where α = 0.

We of course wish to obtain this result for 0 ≤ α < n, we claim that proving estimate (2) holds
boils down to establishing the following result.

Lemma 2. For δ > 0 and 0 ≤ α < n we have∫
|Sδf(x)|2 dx

|x|α
≤ CαAα(δ)

∫
|f(x)|2 dx

|x|α
.

This clearly takes care of the F (1) term, we claim that it also implies I1 · I2 ≤ CAα(δ)‖f‖2
L2(|x|−α).

Claim. Lemma 2 implies that

I2
1 ≤ CδAα(δ)‖f‖2

L2(|x|−α) and I2
2 ≤ Cδ−1Aα(δ)‖f‖2

L2(|x|−α).

Proof of Claim. We shall first consider I1, we wish to show that Lemma 2 implies

(3)
∫ ∫ 2

1
|Sδ

t f(x)|2dt
dx

|x|α
≤ CαδAα(δ)

∫
|f(x)|2 dx

|x|α
.

It follows from duality that this is equivalent to

(4)
∫ ∣∣∣∫ 2

1
Sδ

t ft(x) dt
∣∣∣2|x|αdx ≤ CαδAα(δ)

∫ ∫ 2

1
|ft(x)|2dt|x|αdx.

Lets see this: let T := Sδ
t and G(x) := {gt(x)}, then T : L2(|x|−α) → L2

x,t(|x|−α) so

〈Tf,G〉L2
x,t(|x|−α) =

∫ ∫ 2

1
Sδ

t f(x)gt(x)dt
dx

|x|α

=
∫ ∫ 2

1

∫
Kδ

t (x− y)f(y)dy gt(x)dt
dx

|x|α

=
∫

f(y)
∫ 2

1

∫
Kδ

t (x− y)gt(x)
dx

|x|α
dtdy

=
∫

f(y)
∫ 2

1
|y|αSδ

t

[gt(·)
|·|α

]
dt

dy

|y|α
= 〈f, T ∗G〉L2(|x|−α),

where (since Kδ
t is even)

T ∗G(x) =
∫ 2

1
|x|αSδ

t

[gt(·)
|·|α

]
(x)dt.
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So estimate (3) is equivalent to

∫ ∣∣T ∗G(x)
∣∣2 dx

|x|α
≤ CαδAα(δ)

∫ ∫ 2

1
|gt(x)|2dt

dx

|x|α
,

that is ∫ ∣∣∣∫ 2

1
Sδ

t

[gt(·)
|·|α

]
(x)|x|αdt

∣∣∣2 dx

|x|α
≤ CαδAα(δ)

∫ ∫ 2

1
|gt(x)|2dt

dx

|x|α
,

so if we let ft(x) = gt(x)|x|−α, this is equivalent to

∫ ∣∣∣∫ 2

1
Sδ

t ft(x)|x|αdt
∣∣∣2 dx

|x|α
≤ CαδAα(δ)

∫ ∫ 2

1
|ft(x)|2|x|2αdt

dx

|x|α
.

So we have reduced matters to showing that Lemma 2 implies estimate (4).

For 0 < α < 2 we let

D
α
2 f(x) =

(∫
Rn

|f(x + y)− f(x)|2

|y|α
dy

|y|n

) 1
2

,

if α = 2 we replace f with ∇f and then for 2 < α < 4 define D
α
2 f as above but with f replaced by

∇f , etc. Then a simple application of Plancherel’s theorem (see [2], p. 139) shows that

‖D
α
2 f‖2

2 ∼
∫
|f̂(ξ)|2|ξ|αdξ.

By Plancherel, estimate (4) is equivalent to

(5)
∥∥∥D α

2

∫ 2

1
mδ(t| · |)f̂t(·)dt

∥∥∥2

2
≤ CαδAα(δ)

∫ 2

1

∫
|D

α
2 f̂t(ξ)|2dξdt.

We shall now argue as we did in the model case where α = 0, we see that the left hand side of
estimate (5)

∫ ∣∣∣D α
2

∫ 2

1
mδ(t|ξ|)f̂t(ξ)dt

∣∣∣2dξ =
∫ ∫ ∣∣∣∫ 2

1
[ηξ+y(t)mδ(t|ξ+y|)f̂t(ξ+y)−ηξ(t)mδ(t|ξ|)f̂t(ξ)]dt

∣∣∣2|y|−n−αdydξ.

Now we shall define χE(ξ, y) to be the characteristic function of the set

E = {(ξ, y) : |ξ| ≤ (1− δ)|ξ + y|} ∪ {(ξ, y) : |ξ + y| ≤ (1− δ)|ξ|},

and notice that

supp ηξ+y ∩ supp ηξ = ∅ ⇐⇒ (ξ, y) ∈ E.
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With this in mind we write∫ ∣∣∣D α
2

∫ 2

1
mδ(t|ξ|)f̂t(ξ)dt

∣∣∣2dξ

=
∫ ∫

[χE + (1− χE)](ξ, y)
∣∣∣∫ 2

1
[ηξ+y(t)mδ(t|ξ + y|)f̂t(ξ + y)− ηξ(t)mδ(t|ξ|)f̂t(ξ)]dt

∣∣∣2|y|−n−αdydξ

= C

∫ ∫
χE(ξ, y)

∣∣∣∫ 2

1
[ηξ+y(t) + ηξ(t)][mδ(t|ξ + y|)f̂t(ξ + y)−mδ(t|ξ|)f̂t(ξ)]dt

∣∣∣2|y|−n−αdydξ

+
∫ ∫

(1− χE(ξ, y))
∣∣∣∫ 2

1
[η̃ξ(t)][mδ(t|ξ + y|)f̂t(ξ + y)−mδ(t|ξ|)f̂t(ξ)]dt

∣∣∣2|y|−n−αdydξ

≤ C

∫ ∫
χE(ξ, y)

∫ 2

1
[ηξ+y(t) + ηξ(t)]2dt ·

∫ 2

1
[mδ(t|ξ + y|)f̂t(ξ + y)−mδ(t|ξ|)f̂t(ξ)]2dt|y|−n−αdydξ

+
∫ ∫

(1− χE(ξ, y))
∫ 2

1
[η̃ξ(t)]2dt ·

∫ 2

1
[mδ(t|ξ + y|)f̂t(ξ + y)−mδ(t|ξ|)f̂t(ξ)]2dt|y|−n−αdydξ

≤ C

∫ ∫
χE(ξ, y)[ δ

|ξ+y| η̃(|ξ + y|) + δ
|ξ| η̃(|ξ|)]

∫ 2

1
[mδ(t|ξ + y|)f̂t(ξ + y)−mδ(t|ξ|)f̂t(ξ)]2dt|y|−n−αdydξ

+
∫ ∫

(1− χE(ξ, y))[ δ
|ξ|

˜̃η(|ξ|)]
∫ 2

1
[mδ(t|ξ + y|)f̂t(ξ + y)−mδ(t|ξ|)f̂t(ξ)]2dt|y|−n−αdydξ

≤ Cδ

∫ ∫ ∫ 2

1
|mδ(t|ξ + y|)f̂t(ξ + y)−mδ(t|ξ|)f̂t(ξ)|2dt|y|−n−αdydξ

≤ Cδ

∫ 2

1

∫
|D

α
2 [mδ(t|ξ|)f̂t(ξ)]|2dξ dt.

So we need to show that mδ(t| · |) is a pointwise multiplier of the homogeneous Sobolev space
L2

α
2

= {f : ‖D
α
2 f‖2 < ∞} with a constant ≤ CαAα(δ)

1
2 , that is

(6)
∫
|D

α
2 [mδ(t|ξ|)f̂t(ξ)]|2dξ ≤ CαAα(δ)

∫
|D

α
2 f̂t(ξ)|2dξ,

uniformly in 1 ≤ t ≤ 2. By homogeneity it suffices to prove (6) for t = 1. Now by Plancherel again
estimate (6) is equivalent to∫

|Sδf(x)|2|x|αdx ≤ CαAα(δ)
∫
|f(x)|2|x|αdx,

and this follows from Lemma 2 by duality. Now for the integral I2 we note that

t
d

dt
mδ(t|ξ|) = s

d

ds
mδ(s)

∣∣∣
s=t|ξ|

.

So if we define
m̃δ(s) = sδ d

dsm
δ(s),

it is easy to see that m̃δ satisfies the same estimates as mδ, if we now definễ
Sδ

t f(ξ) = m̃δ(t|ξ|)f̂(ξ),

then we have S̃δ
t f(x) = tδ d

dtS
δ
t f(x). Now since S̃δ

t satisfies the same estimates as Sδ
t the argument

above runs through with a lose of δ2. �
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3. Proof of Lemma 2

In the proof of Lemma 2 we shall separate the cases where 0 ≤ α < 1 and where 1 < α < n. In
both cases the proof relies on the following two lemmas that we shall for the moment assume.

Lemma 3. For 0 < δ ≤ 1
2 we have∫∣∣1−|ξ|∣∣≤δ

|f̂(ξ)|2dξ ≤ CαAα(δ)δα

∫
|f(x)|2|x|αdx,

where Cα is independent of δ.

In particular, for 1 < α < n we have∫
|ξ|=1

|f̂(ξ)|2dξ ≤ Cα

∫
|f(x)|2|x|αdx,

and since f̂(Rξ) = R−nf̂( ·
R)(ξ), that∫

|ξ|=1
|f̂(Rξ)|2dξ ≤ CαR−2n

∫
|f( x

R)|2|x|αdx = CαRα−n

∫
|f(x)|2|x|αdx.

In the same way we can, for 0 ≤ α < n, rescale the δ = 1
2 case to obtain∫

1
2
R≤|ξ|≤ 3

2
R
|f̂(ξ)|2dξ = Rn

∫
1
2
≤|ξ|≤ 3

2

|f̂(Rξ)|2dξ ≤ CαRα

∫
|f(x)|2|x|αdx.

We now let K = Kδ be the kernel such that K̂ = mδ(|ξ|) and dyadically decompose our kernel
K(x) =

∑
j Kj(x), where for each j ≥ 1 we have that Kj is supported where |x| ∼ 2jδ−1 and K0 is

supported where |x| ≤ Cδ−1. Then we see that the main contribution to K comes from K0. The
following Lemma makes this precise.

Lemma 4. For 0 ≤ α ≤ n and all m ∈ N we have

|K̂j(ξ)| ≤ Cm,α2−mj and
∫ ∞

0
|K̂j(r)|rα−1dr ≤ Cm,α2−mjδ.

3.1. Proof of Lemma 2 for 1 < α < n. First notice that Aα(δ) = δ1−α ≥ 1 and that by
Plancherel we trivially have ∫

|Kj ∗ f(x)|2dx ≤ C2−j

∫
|f(x)|2dx.

We of course would like to divide both sides by |x|α and we can do this if |x| is about a non–zero
constant. With this in mind we shall divide Rn into disjoint cubes {Qi}∞i=0 with sidelength 2jδ−1

each centered at xi with x0 = 0. It is immediate from the support properties of Kj that∫
|x−xi|≤2jδ−1

|Kj ∗ f(x)|2dx ≤ C2−j

∫
|x−xi|≤10·2jδ−1

|f(x)|2dx.

Therefore for |x| � 2jδ−1 we have∫
|Kj ∗ f(x)|2 dx

|x|α
≤ C2−j

∫
|f(x)|2 dx

|x|α
.



8

Now for |x| ≤ C2jδ−1 we use the fact that∫
|Kj ∗ f |2dx =

∫
|K̂j(ξ)|2|f̂(ξ)|2dξ

=
∫ ∞

0

∫
Sn−1

|f̂(rω)|2dω|K̂j(r)|2rn−1dr

≤ Cα

∫
|f(x)|2|x|αdx

∫ ∞

0
|K̂j(r)|2rα−1dr,

by Lemma 3. Now ‖K̂j‖∞ ≤ 1, and so Lemma 4 gives that for each m ∈ N,∫
|Kj ∗ f |2dx ≤ Cm,α2−mjδ

∫
|f(x)|2|x|αdx,

and hence, by duality ∫
|Kj ∗ f |2 dx

|x|α
≤ Cm,α2−mjδ

∫
|f(x)|2dx.

Now using the fact that |x|α ≤ 2jαδ−α, we see that∫
|Kj ∗ f |2 dx

|x|α
≤ Cm,α2(α−m)jδ1−α

∫
|f(x)|2 dx

|x|α
.

If we now pick m ≥ α + 1, as we are free to do, then we have

(7)
∫
|Kj ∗ f |2 dx

|x|α
≤ Cα2−jδ1−α

∫
|f(x)|2 dx

|x|α
.

We are therefore done modulo verifying Lemmas 3 and 4.

3.2. Proof of Lemma 2 for 0 < α ≤ 1. By (6) for t = 1 it shall suffice to show that

‖D
α
2 mδf̂‖2

2 ≤ CαAα(δ)‖D
α
2 f̂‖2

2.

Now using the following Leibniz rule for Dβ, namely

Dβ [gh](x) ≤ ‖g‖∞Dβh(x) + |h(x)|Dβg(x),

we see that
‖D

α
2 mδf̂‖2

2 ≤ ‖m‖∞‖D
α
2 f̂‖2

2 + ‖f̂D
α
2 mδ‖2

2.

It therefore suffices to show that

(8)
∫
|f̂(ξ)|2|D

α
2 mδ(ξ)|2dξ ≤ CαAα(δ)

∫
|D

α
2 f̂(ξ)|2dξ.

Lemma 5. For 0 < α < 2 we have

|D
α
2 mδ(ξ)|2 ≤ Cα


δ−α if |1− |ξ|| ≤ 2δ,

δ|1− |ξ||−α−1 if 0 ≤ |ξ| ≤ 2,

δ|ξ|−α−n if |ξ| ≥ 2.

Assuming Lemma 5 for the moment we see that the left hand side of equation (8) is dominated by

I1 + I2 + I3 = δ−α

∫
|1−|ξ||≤2δ

|f̂(ξ)|2dξ + δ

∫
|ξ|≤2

|1− |ξ||−α−1|f̂(ξ)|2dξ + δ

∫
|ξ|≥2

|ξ|−α−n|f̂(ξ)|2dξ.
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Now it clearly follows from Lemma 3 that

I1 ≤ CAα(δ)
∫
|f(x)|2|x|αdx.

While

I2 ≤ Cδ

∞∑
k=1

2k(α+1)

∫
|1−|ξ||≤2−k

|f̂(ξ)|2dξ + Cδ
(∫

0≤|ξ|≤ 1
2

|f̂(ξ)|2dξ +
∫

3
2
≤|ξ|≤2

|f̂(ξ)|2dξ
)
,

and

I3 ≤ Cδ
∞∑

k=1

2−k(α+n)

∫
|ξ|∼2k

|f̂(ξ)|2dξ.

It then follows from Lemma 3 and the remarks proceeding it that
∞∑

k=1

2k(α+1)

∫
|1−|ξ||≤2−k

|f̂(ξ)|2dξ ≤
∞∑

k=1

2kAα(2−k)
∫
|f(x)|2|x|αdx,

∫
0≤|ξ|≤ 1

2

|f̂(ξ)|2dξ ≤ C
∞∑

k=1

∫
|ξ|∼2−k

|f̂(ξ)|2dξ ≤ C
∞∑

k=1

2−kα

∫
|f(x)|2|x|αdx,∫

3
2
≤|ξ|≤2

|f̂(ξ)|2dξ ≤
∫

1
2
2≤|ξ|≤ 3

2
2
|f̂(ξ)|2dξ ≤ Cα

∫
|f(x)|2|x|αdx,

and
∞∑

k=1

2−k(α+n)

∫
|ξ|∼2k

|f̂(ξ)|2dξ ≤ C
∞∑

k=1

2−kn

∫
|f(x)|2|x|αdx.

It therefore follows that

I2 ≤ CAα(δ)
∫
|f(x)|2|x|αdx and I3 ≤ Cδ

∫
|f(x)|2|x|αdx,

and so (8) is established. This completes the proof of Lemma 2 modulo proving Lemma 3, 4 and 5.

4. Proofs of Lemma 3, 4 and 5

4.1. Proof of Lemma 3. By the usual duality argument it suffice to show that∫
|ĝ(ξ)|2 dξ

|ξ|α
≤ CαAα(δ)δα

∫
|1−|x||≤δ

|g(x)|2dx,

where supp g ⊆ {x : |1− |x|| ≤ δ}. Now if α 6= 0, then∫
|ĝ(ξ)|2 dξ

|ξ|α
=

∫
ĝ ∗ g̃(ξ)

dξ

|ξ|α

= C

∫
g ∗ g̃(x)|x|α−ndx

= C

∫∫
|1−|x||≤δ
|1−|y||≤δ

g(x)g(y)|x− y|α−ndx dy

≤ C‖g‖2
2 sup

x

∫
|1−|y||≤δ

|x− y|α−ndy,
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by Schur’s Lemma. Changing variables we see that∫
|1−|y||≤δ

|x− y|α−ndy =
∫
|1−|x−y||≤δ

|y|α−ndy.

Now here we are integrating over an annulus centered at x and of width δ. The integral is clearly
majorized if the origin falls inside the annulus, it is then controlled by∫

|vn|≤δ
|v′|≤1

|v|α−ndv =
∫

|vn|≤δ
|v′|≤δ

|v|α−ndv +
∫

|vn|≤δ
δ≤|v′|≤1

|v|α−ndv = I1 + I2,

this is easily justified by a switch to tangential and normal coordinates and some error analysis.
Now

|I1| ≤ C

∫ δ

0
rα−1dr = Cδα ≤ CAα(δ)δα,

and

|I2| ≤ C

∫ δ

0
dvn

∫
|v′|≥δ

|v′|α−ndv′ = Cδ

∫ 1

δ
rα−2dr = CAα(δ)δα.

4.2. Proof of Lemma 4. Recall that K = Kδ satisfies K̂(ξ) = mδ(ξ). We shall now make the
decomposition of K precise, we define

hj(x) =

{
φ(|x|), if j = 0,

φ(2−j |x|)− φ(21−j |x|), if j ≥ 1,

where φ is a smooth function with suppφ ⊆ [12 , 2] and φ(t) ≡ 1 for 3
4 ≤ t ≤ 3

2 . We decompose our
kernel K as

K(x) =
∞∑

j=0

Kj(x) where Kj(x) = K(x)hj(δx).

We therefore have K̂j(ξ) = mδ ∗ ĥj(δ·)(ξ). If we now let h(x) = φ(|x|)− φ(2|x|), then we get that

K̂j(ξ) =
∫

mδ(ξ − 2−jδη)ĥ(η)dη.

Now since h ≡ 0 in a neighborhood of 0 it follows that
∫

ηβĥ(η)dη = 0, for any multi–index β.
Therefore, expanding mδ in a Taylor series about 0 we get

K̂j(ξ) =
∫

Rm(ξ, η)ĥ(η)dη,

where |Rm(ξ, η)| ≤
∑

|β|=m ‖Dβmδ‖∞|2−jδη|m ≤ 2−jm|η|m. Now since ĥ ∈ S(Rn), this implies

|K̂j(ξ)| ≤ Cm2−mj ,

for all m ≥ 0 and ξ ∈ Rn. However, looking at the definition of K̂j(ξ) and the fact that suppmδ ⊆
[1− δ, 1] it follows that if |ξ| < 1

2 , then necessarily |η| > 2j−1δ−1 and it follows that

|K̂j(ξ)| ≤ C

∫
(1 + |η|)−m−n−1dη ≤ C2−mjδm,
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for any m ≥ 0 and |ξ| < 1
2 . Thus∫ 1

2

0
|K̂j(r)|rα−1dr ≤ Cα,m2−mjδm.

On the other hand consider the set S = {ξ ∈ Rn : 1− 2δ < |ξ| < 1 + 2δ}, and look at∫ ∞

1
2

|K̂j(r)|rα−1dr ≤ C

∫
Rn

|K̂j(ξ)|dξ

= C

∫
S
|K̂j(ξ)|dξ + C

∫
Rn\S

|K̂j(ξ)|dξ

≤ Cm2−mjδ +
∫
|η|>2j

|ĥ(η)|
∫

mδ(ξ − 2−jδη)dξ dη

≤ Cm2−mjδ + C‖mδ‖∞
∫
|η|>2j

|ĥ(η)|dη

≤ Cm2−mjδ.

4.3. Proof of Lemma 5. Let us first consider the case when |1− |ξ|| ≤ 2δ; if |y| ≥ δ, then∫
|y|≥δ

|mδ(ξ + y)−mδ(ξ)|2|y|−n−αdy ≤
∫
|y|≥δ

|y|−n−αdy ≤ δ−α,

while if |y| ≤ δ, then∫
|y|≤δ

|mδ(ξ + y)−mδ(ξ)|2|y|−n−αdy ≤ δ−2

∫
|y|≥δ

|y|2−n−αdy ≤ δ−α,

since 0 < α < 2. Let us now consider the case when |ξ| ≥ 2; now this implies that mδ(ξ) = 0, so if
the integrand is to be non–zero we must have that

|ξ + y| ∼ 1 ⇐⇒ |y| ∼ |ξ| ± 1 =⇒ |y|−n−α ≤ C|ξ|−n−α,

therefore we have

|D
α
2 mδ(ξ)|2 =

∫
|mδ(ξ + y)−mδ(ξ)|2|y|−n−αdy ≤ C|ξ|−n−α.

Finally we must consider the case where |ξ| ≤ 2 and |1− |ξ|| ≥ 2δ; we are looking at

I(ξ) =
∫
{y:|1−|ξ+y||≤δ}

|y|−n−αdy.

Now 2δ ≤ |1− |ξ|| ≤ 1 so we can break I(ξ) into dyadic pieces where |1− |ξ|| ∼ 2−j and δ ≤ 2−j .
Consider the contribution from the annuli |y| ∼ 2−j+r, it is straightforward to see that

|{y : |1− |ξ + y|| ≤ δ} ∩ {|y| ∼ 2−j+r}| ≤ Cδ2−(j−r)(n−1),

and hence that Ij(ξ) ≤ Cδ2−(j−r)(α+1), if we now sum in r it follows that∫
{y:|1−|ξ+y||≤δ}

|y|−n−αdy ≤ Cδ|1− |ξ||−α−1.
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Appendix

Here we prove that the Hardy–Littlewood Maximal function and the Littlewood–Paley square
function are bounded on Lp(|x|−α) whenever n(1−p) < α < n. These two results will be essentially
a consequence of the following weighted Lp mapping property of singular integrals.

Proposition 6. Suppose that |K(x)| ≤ C|x|−n and that Tf = f ∗K is bounded on Lp, then

‖Tf‖Lp(|x|−α) ≤ C‖f‖Lp(|x|−α) for n(1− p) < α < n.

Proof. We shall smoothly break our operator into two pieces; a conic neighborhood of the diagonal
x = y of aperture ε and the complement of this. Inside the conic region we use the fact that T is
bounded on Lp and off the diagonal we observe that |K(x− y)| ≤ C|x− y|−n ≈ (|x|+ |y|)−n.

(a) Inside the conic neighborhood Γε:

(∫
|Tf(x)|p dx

|x|α
) 1

p =
(∫ ∣∣∣∫ f(y)K(x− y)dy

∣∣∣p dx

|x|α
) 1

p

=
(∑

j

∫ ∣∣∣χ( |x|
2j

) ∫
f(y)K(x− y)χ

( |x−y|
ε2j

)
dy

∣∣∣p dx

|x|α
) 1

p

=
(∑

j

∫ ∣∣∣χ( |x|
2j

) ∫
f(y)K(x− y)χ

( |x−y|
ε2j

)
χ̃
( |y|

2j

)
dy

∣∣∣p dx

|x|α
) 1

p

≤ C
(∑

j

2−jα

∫ ∣∣∣[fχ̃
( |·|

2j

)
] ∗ [Kχ

( |·|
ε2j

)∣∣∣pdx
) 1

p
.

Now since T is bounded on Lp it follows that f 7→ f ∗ Kχ
( |·|

ε2j

)
is also bounded on Lp provided

that χ̂ ∈ L1. We therefore have that

(∫
|Tf(x)|p dx

|x|α
) 1

p ≤ C
(∑

j

2−jα

∫
|f(x)|pχ̃

( |x|
2j

)
dx

) 1
p

≤ C
(∫

|f(x)|p dx

|x|α
) 1

p
.

(b) Away from the conic neighborhood Γε: here we have that

(∫
|Tf(x)|p dx

|x|α
) 1

p ≤ C
(∫ (∫

|f(y)||x− y|−ndy
)p dx

|x|α
) 1

p
.

Now, of course, there are two main possibilities, where |x− y|−n ≈ |x|−n and |x− y|−n ≈ |y|−n.
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(i) |x− y|−n ≈ |x|−n; here we have(∫
|Tf(x)|p dx

|x|α
) 1

p ≤ C
(∫ (∫

|y|≤ 1
2
|x|
|f(y)||x|−n−α

p dy
)p

dx
) 1

p

= C
(∫ (∑

`≥1

∫
|y|∼2−`|x|

|f(y)||x|−n−α
p dy

)p
dx

) 1
p

≤ C
∑
`≥1

(∫
|x|−np−α

(∫
|y|∼2−`|x|

|f(y)|dy
)p

dx
) 1

p

= C
∑
`≥1

(∫
|x|−np−α

(
2−`n|x|n

∫
|y|∼2−`|x|

|f(y)| dy
2−`n|x|n

)p
dx

) 1
p
.

Now it follow immediately from Hölder’s inequality that∫
|y|∼2−`|x|

|f(y)| dy
2−`n|x|n ≤

(∫
|y|∼2−`|x|

|f(y)|p dy
2−`n|x|n dx

) 1
p
,

therefore(∫
|Tf(x)|p dx

|x|α
) 1

p ≤ C
∑
`≥1

(∫
|x|−np−α2−`np|x|np

∫
|y|∼2−`|x|

|f(y)|p dy
2−`n|x|n dx

) 1
p

≤ C
∑
`≥1

2−`n(1− 1
p
)
(∫

|f(y)|p
∫
|x|∼2`|y|

|x|−n−αdx dy
) 1

p

≤ C
∑
`≥1

2−` 1
p
(np−n+α)

(∫
|f(y)|p|y|−αdy

) 1
p

≤ C
(∫

|f(y)|p|y|−αdy
) 1

p
,

provided α > n(1− p).

(ii) |x− y|−n ≈ |y|−n; here we argue similarly to above and obtain the restriction that α < n. �

Remark. The above argument applies to our operators, as

(1) f 7→ MHLf = supr>0 |f | ∗
χBr
|Br| and

∣∣∣χBr
|Br|

∣∣∣ ≤ C|x|−n.

(2) f 7→
(∑

k |Lkf |2
) 1

2 ≤
∑

k |Lkf | ≤ |f | ∗
∑

k
2kn

(1+2k|x|)N and
∑

k
2kn

(1+2k|x|)N ≤ C|x|−n.

Note also that the `∞ and `2 norms respectively do not effect the argument inside Γε.
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