ROTH’S THEOREM
THE COMBINATORIAL APPROACH

AKOS MAGYAR

We present Szemeredi’s proof on the existence of 3-progressions in large sets, which appeared
some 10 years later the Roth’ proof, and contain elements of his general result on the existence
of k-progressions.

The key observation again is to show that, if a set A C [1, N], |A] = dN does not contain
any 3-progressions, then there is a ”long’ progression P on which the density of A increases
to, say d + 62/20. This can be iterated, and if N is very large, then after a large number &
of iterations, the density of A would increase to d; > 1 on a progression P, which is clearly
impossible.

Some preparations are helpful before we start the actual proof.

Definition 1. Let A, B be to finite sets of integers. The density of A in B is defined by
|AN B
| B|

Proposition 1. Let A, B = By U... By be to finite sets such that B is partitioned into the
sets B;. Then

S(A|B) =

B B
5(A|B) = % S(AIBy) + ...+ % 5(A|By)

and in particular: 6(A|B) < max; 0(A|B;)

The proof of this is left as an exercise, however we prove a stronger version below.
Proposition 2. Let 1 < M < N. Let A C [1, N] such that |A| = éN.
Assume that there is a set B C [1, N] such that: A C B and |B| < (1 —46/10) N.
If B= By U...UBy is a partition, such that the number of parts k < N/M, then there is a
part B; such that:

S(A|B;) > (6 +0%/20)  and |B;| > 6°/20 M

Proof. Let us call a part B; small if |B;] < §3/20 M and large otherwise. Note that
|A]
S(AB) = +—— > —————
(4]18) |B| = 1-4/10
1

> §+6%/10
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Also
_ | Bi] . | Bi] ,
{i:B; small} {i:B; large}
however , )
| B;| N/M §°M /20 )
0(AB) < +—ur—"1— < —N
, Z |B| (A1B;) < ON — 20
{i:B; small}
Hence
0+ " > |Bi|5(A|B)< ax  O0(A|B))
— i) > max i
20 — 5 | | {i:B; large}
{i:B; large}
and this is what the proposition states. 0
At this point, it is enough to cover the set A, with a union of disjoint progressions By, . .., B
such that the number of them is not more then: & < —— and moreover their union B

— loglog (N)
has at most (1 —§/10) N elements. Indeed, then by the above proposition, one of them, say
B;, has the property that: |B;| > 6%/20 loglog (N) and §(A|B;) > (§ + 6%/20). Then we
achieved that the density of A increased in a ”long” arithmetic progression.

We have to establish a few simple facts about partitioning sets into progressions of a common
difference d, whose proof is again left as an exercise.

Definition 2. Let A C N be a finite set, and let d be a natural number. We say that a € A
and b € A are equivalent, and write a ~ b if there is a progression:

P={a,a+d,...,a+sd=b} CA or P={bb+d,....b+sd=a} CA

Proposition 3. One has

(i) The relation "~ is an equivalence relation. The equivalence classes are mazimal
progressions: A= Py U...U Py of common difference d.

(ii) One has: k = [(A+ d)\A|.
(i3) The complement of A is partitioned into at most k + d progressions, that is:
A°=ByU...UB; where [ <k+d

The last key ingredient of the proof is based on the notion

Definition 3. Let a,dy,...,d; be natural numbers. A k- cube is a set of the form

M(a,dy,...,dy) ={a+edi+...+epdy: e= 00r1V1<i<k}

Note, that a 1- cube is just a pair of points: M; = {a,a+d;} a 2- cube is of the form: M, =
{a,a+dy,a+dy,a+d; +dy}. In general a k- cube has 2% elements. If M; = M(a,dy, ..., d;)
then Mi+1 = Ml U (M,L -+ di+1).
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Lemma 1. Let 0 < 6 < 1 and k, N be natural numbers such that: N > (2/8)%. If A C [1, N]
and |A| = N then a contains a k- cube.

Proof. The number of pairsa < b, a € A, b€ Ais: IN(ON—1)/2 > §%/2 N(N—1). Since the
differences b—a can take at most N —1 possible values, the must be a difference, say d; which
is the common difference of at least k > 6%/2 N pairs. That isdy = by —ay; = ... = b, — ay.

Let Ay = {ay,...,ax} and &; = 6%/2, then
|A1| 2 51N and Al U (Al + dl) C A

This establishes the lemma for & = 1 as §2/2 N > 1 by our assumption on N. We proceed
by induction, assume the statement is true for £ — 1. Note that

(2/6) = (2/6:)"* 7V
hence A; contains a (k — 1)- cube My_1 = M(a,ds,...,dy). It follows that A contains the
k- cube: M(a,dy,ds, ..., dy) = Mg_1 U (My_1 + dy. This proves the lemma. O

Corollary 1. Let 0 < 0 <1 and let N be such that: N > 232 If AC[1,N] and |A| = 0N
then a contains a k- cube, where k > 3 loglog (N).

Proof. By the above lemma, A contains a k- cube where k is the largest integer such that:
N > (2/6)%, that is when k = [loglog (N) — loglog (2/6)]. Here [z] denotes the integer part
of z.

If N > 25 then +loglog (N) > loglog (2/6) thus k > 1loglog (N). O

After these preparations, we turn to Szemeredi’s proof of Roth’ theorem.

Lemma 2. Let Let 0 < § < 1 and let N be such that: N > 25 If AC[1,N] and |A| = 6N
then one of the following holds.

(i) A contains a 3-progression
(i) There is a progression P, such that |P| > 63/20 loglog (N) and §(A|P) > (6+46%/20)

Proof. Assume A does not contain a 3-progression. For i =0,1,2,3 let A; = AN[iN/4, (i +
1)N/4]). If |A;] < £ N/4 for some 4, then A; > (6 + £) N/4 for some j. But the interval
[iN/4, (i + 1)N/4] is a progression on which the density of A is increased to § + £, and case
(ii) is satisfied. So we assume now that |4;]2 N for all .

Decompose [N/4, N/2] into intervals of length VN, one of them, say I has the property that
d(A|I) > 6/2. By corollary 1, AN I contains a cube of dimension

1
k> 5 loglog (N)



4 AKOS MAGYAR

Indeed loglog sqrtN) = loglog (N) — 1, and |[ANI| > ¢/2|I|. Let us denote this cube
M(a,dy,...,dy), and for 1 <7 <k let M; = M(a,dy,...,d;). Introduce the sets:

le{Qb—c bEM,“ CEAO}

Then one has
(1) QinA=10
. 0
(i) 1@l > 14g] > £ N
(43) Qi U (Qi+ 2dis1) C Qiva

Indeed the points ¢, b, 2b — ¢ form a 3-progression, and if both ¢ and b are in A, then by our
assumption, 2b — ¢ is not in A, this shows (i). For a fixed b € M;, one gets |A| distinct
points in Q;. Finally if x = 2b — ¢ € @, then = + 2d;;1 = 2(b+ dj1) — ¢ € Qi1 since
b+dip1 € Miyq.

Now, the sets Q;11\Q; are disjoint, hence one of them have size:
N 2N
A < Lo«
Qi \Qil = k ~ loglog (N)
Let B = ()5, that is the complement of @);, and let d = 2d, ;. Partition B into progressions

of common difference d, as in definition 2: B = B;U...U B;. By proposition 3., the number
of parts is at most

< 3N
loglog (N) ~ loglog (N)
Indeed the number of parts in B is at most d more, then the number of parts in its comple-
ment ;, which is bounded by |Q;11\Q;|, using (i3).

[ <d+[Qi\Qil <2VN +

We are in position to apply proposition 2. Indeed A C B by (i), moreover
|B| = N — |Q;] < N(1—6/8). It follows that there is a part B; for which:

3
|B;| > % loglog (N) and  6(A|B;) > (6 + 6%/20).

Choosing P = B; the conditions of case (ii) are satisfied, and the lemma is proved. O

Finally one can do the induction argument as in the Fourier analytic proof.



