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We present Szemeredi’s proof on the existence of 3-progressions in large sets, which appeared
some 10 years later the Roth’ proof, and contain elements of his general result on the existence
of k-progressions.

The key observation again is to show that, if a set A ⊂ [1, N ], |A| = δN does not contain
any 3-progressions, then there is a ”long’ progression P on which the density of A increases
to, say δ + δ2/20. This can be iterated, and if N is very large, then after a large number k
of iterations, the density of A would increase to δk > 1 on a progression Pk, which is clearly
impossible.

Some preparations are helpful before we start the actual proof.

Definition 1. Let A, B be to finite sets of integers. The density of A in B is defined by

δ(A|B) =
|A ∩B|
|B|

Proposition 1. Let A, B = B1 ∪ . . . Bk be to finite sets such that B is partitioned into the
sets Bi. Then

δ(A|B) =
|B1|
|B|

δ(A|B1) + . . . +
|Bk|
|B|

δ(A|Bk)

and in particular: δ(A|B) ≤ maxi δ(A|Bi)

The proof of this is left as an exercise, however we prove a stronger version below.

Proposition 2. Let 1 ≤ M < N . Let A ⊂ [1, N ] such that |A| = δN .

Assume that there is a set B ⊂ [1, N ] such that: A ⊂ B and |B| ≤ (1− δ/10) N .

If B = B1 ∪ . . . ∪Bk is a partition, such that the number of parts k ≤ N/M , then there is a
part Bi such that:

δ(A|Bi) ≥ (δ + δ2/20) and |Bi| ≥ δ3/20 M

Proof. Let us call a part Bi small if |Bi| ≤ δ3/20 M and large otherwise. Note that

δ(A|B) =
|A|
|B|

≥ δ

1− δ/10
≥ δ + δ2/10
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Also

δ(A|B) =
∑

{i:Bi small}

|Bi|
|B|

δ(A|Bi) +
∑

{i:Bi large}

|Bi|
|B|

δ(A|Bi)

however ∑
{i:Bi small}

|Bi|
|B|

δ(A|Bi) ≤
N/M δ3M/20

δN
≤ δ2

20
N

Hence

δ +
δ2

20
≤

∑
{i:Bi large}

|Bi|
|B|

δ(A|Bi) ≤ max
{i:Bi large}

δ(A|Bi)

and this is what the proposition states. �

At this point, it is enough to cover the set A, with a union of disjoint progressions B1, . . . , Bk

such that the number of them is not more then: k ≤ N
log log (N)

, and moreover their union B

has at most (1− δ/10) N elements. Indeed, then by the above proposition, one of them, say
Bi, has the property that: |Bi| ≥ δ3/20 log log (N) and δ(A|Bi) ≥ (δ + δ2/20). Then we
achieved that the density of A increased in a ”long” arithmetic progression.

We have to establish a few simple facts about partitioning sets into progressions of a common
difference d, whose proof is again left as an exercise.

Definition 2. Let A ⊂ N be a finite set, and let d be a natural number. We say that a ∈ A
and b ∈ A are equivalent, and write a ∼ b if there is a progression:

P = {a, a + d, . . . , a + sd = b} ⊂ A or P = {b, b + d, . . . , b + sd = a} ⊂ A

Proposition 3. One has

(i) The relation ”∼” is an equivalence relation. The equivalence classes are maximal
progressions: A = P1 ∪ . . . ∪ Pk of common difference d.

(ii) One has: k = |(A + d)\A|.
(i3) The complement of A is partitioned into at most k + d progressions, that is:

Ac = B1 ∪ . . . ∪Bl where l ≤ k + d

The last key ingredient of the proof is based on the notion

Definition 3. Let a, d1, . . . , dk be natural numbers. A k- cube is a set of the form

M(a, d1, . . . , dk) = {a + ε1d1 + . . . + εkdk : εi = 0 or 1 ∀ 1 ≤ i ≤ k}

Note, that a 1- cube is just a pair of points: M1 = {a, a+d1} a 2- cube is of the form: M2 =
{a, a+ d1, a+ d2, a+ d1 + d2}. In general a k- cube has 2k elements. If Mi = M(a, d1, . . . , di)
then Mi+1 = Mi ∪ (Mi + di+1).
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Lemma 1. Let 0 < δ < 1 and k,N be natural numbers such that: N > (2/δ)2k
. If A ⊂ [1, N ]

and |A| = δN then a contains a k- cube.

Proof. The number of pairs a < b, a ∈ A, b ∈ A is: δN(δN−1)/2 ≥ δ2/2 N(N−1). Since the
differences b−a can take at most N−1 possible values, the must be a difference, say d1 which
is the common difference of at least k ≥ δ2/2 N pairs. That is d1 = b1 − a1 = . . . = bk − ak.

Let A1 = {a1, . . . , ak} and δ1 = δ2/2, then

|A1| ≥ δ1N and A1 ∪ (A1 + d1) ⊂ A

This establishes the lemma for k = 1 as δ2/2 N ≥ 1 by our assumption on N . We proceed
by induction, assume the statement is true for k − 1. Note that

(2/δ)2k

= (2/δ1)
2(k−1)

hence A1 contains a (k − 1)- cube Mk−1 = M(a, d2, . . . , dk). It follows that A contains the
k- cube: M(a, d1, d2, . . . , dk) = Mk−1 ∪ (Mk−1 + d1. This proves the lemma. �

Corollary 1. Let 0 < δ < 1 and let N be such that: N > 2
4

δ2 . If A ⊂ [1, N ] and |A| = δN
then a contains a k- cube, where k ≥ 1

2
log log (N).

Proof. By the above lemma, A contains a k- cube where k is the largest integer such that:
N > (2/δ)2k

, that is when k = [log log (N)− log log (2/δ)]. Here [x] denotes the integer part
of x.

If N > 2
2

δ2 then 1
2
log log (N) > log log (2/δ) thus k ≥ 1

2
log log (N). �

After these preparations, we turn to Szemeredi’s proof of Roth’ theorem.

Lemma 2. Let Let 0 < δ < 1 and let N be such that: N > 2
4

δ2 . If A ⊂ [1, N ] and |A| = δN
then one of the following holds.

(i) A contains a 3-progression

(ii) There is a progression P , such that |P | ≥ δ3/20 log log (N) and δ(A|P ) ≥ (δ+δ2/20)

Proof. Assume A does not contain a 3-progression. For i = 0, 1, 2, 3 let Ai = A∩ [iN/4, (i +
1)N/4]. If |Ai| ≤ D

2
N/4 for some i, then Aj ≥ (δ + D

6
) N/4 for some j. But the interval

[iN/4, (i + 1)N/4] is a progression on which the density of A is increased to δ + D
6
, and case

(ii) is satisfied. So we assume now that |Ai|D8 N for all i.

Decompose [N/4, N/2] into intervals of length
√

N , one of them, say I has the property that
δ(A|I) ≥ δ/2. By corollary 1, A ∩ I contains a cube of dimension

k ≥ 1

2
log log (N)
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Indeed log log sqrtN) = log log (N) − 1, and |A ∩ I| ≥ δ/2 |I|. Let us denote this cube
M(a, d1, . . . , dk), and for 1 ≤ i ≤ k let Mi = M(a, d1, . . . , di). Introduce the sets:

Qi = {2b− c : b ∈ Mi, c ∈ A0}
Then one has

(i) Qi ∩ A = ∅

(ii) |Qi| ≥ |A0| ≥
δ

8
N

(i3) |Qi ∪ (Qi + 2di+1) ⊂ Qi+1

Indeed the points c, b, 2b− c form a 3-progression, and if both c and b are in A, then by our
assumption, 2b − c is not in A, this shows (i). For a fixed b ∈ Mi, one gets |A0| distinct
points in Qi. Finally if x = 2b − c ∈ Qi, then x + 2di+1 = 2(b + di+1) − c ∈ Qi+1 since
b + di+1 ∈ Mi+1.

Now, the sets Qi+1\Qi are disjoint, hence one of them have size:

|Qi+1\Qi| ≤
N

k
≤ 2N

log log (N)

Let B = Qc
i , that is the complement of Qi, and let d = 2di+1. Partition B into progressions

of common difference d, as in definition 2: B = B1 ∪ . . .∪Bl. By proposition 3., the number
of parts is at most

l ≤ d + |Qi+1\Qi| ≤ 2
√

N +
2N

log log (N)
≤ 3N

log log (N)

Indeed the number of parts in B is at most d more, then the number of parts in its comple-
ment Qi, which is bounded by |Qi+1\Qi|, using (i3).

We are in position to apply proposition 2. Indeed A ⊂ B by (i), moreover
|B| = N − |Qi| ≤ N(1− δ/8). It follows that there is a part Bi for which:

|Bi| ≥
δ3

60
log log (N) and δ(A|Bi) ≥ (δ + δ2/20).

Choosing P = Bi the conditions of case (ii) are satisfied, and the lemma is proved. �

Finally one can do the induction argument as in the Fourier analytic proof.


