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Abstract

We give a simple proof that for sufficiently large N, every subset of [N]* of
size at least § N2 contains three points of the form {(a, b), (a+d,b), (a,b+d)}.

In this note we give a simple proof for a theorem of Ajtai and Szemerédi [1].
In their proof Ajtai and Szemerédi used and iterated Szemerédi’s theorem
about long arithmetic progressions in dense sets of integers [8]. A more
general theorem of Fiirstenberg and Katznelson also implies Theorem 1, but
does not give bound on N as it uses ergodic theory [2]. After improving
the bound in Szemerédi’s theorem, Gowers asked for a quantitative proof of
Theorem 1 [3, 4].

Theorem 1 (Ajtai-Szemerédi) For any real number & > 0 there is a natural
number Ny such that for N > Ny every subset of [N]? of size at least IN?
contains a triple of the form {(a,b),(a + d,b),(a,b+ d)} for some integer
d#0.

The key of the proof is a lemma of Ruzsa and Szemerédi [7]. A subgraph of
a graph G is a matching if every vertex has degree one. A matching M is an
induced matching if there are no other edges of G between the vertices of M.

Lemma 2 (Ruzsa-Szemerédi) If G, is the union of n induced matchings,
then e(Gr) = o(n?).

The lemma, with a simple proof deduced from Szemerédi’s Regularity Lemma,
can be also found in a survey paper of Komlés and Simonovits [5].

Proof of Theorem 1: Let S be a subset of the grid [N]? of size at least
dN2. We refer to a point of the grid with its coordinates, which are pairs
(1,7);i,5 € {1,2,..., N}. Let us define a bipartite graph G(A4, B) with vertex
sets A = {v1,...,on} and B = {w1,...,wn}. Two vertices v; and w; are
connected by an edge iff (i,5) € S (see Fig. 1).

Let us partition the edges of G according to their length, (v;, w;) ~ (v;, wm)

iff i+j = l+m. Every partition class is a matching, so we can apply Lemma 2
to G. If N is large enough, then at least one matching is not induced. A triple
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Figure 1: Converting points into edges

of edges (v;, wn,), (vi,w;), (v, wn) such that (v;,w;) ~ (v, wy,,) guarantees a
triple in S, {(a,b), (a + d,b), (a,b+ d)} (see bold edges in Fig.1). O

The only known proof of Lemma 2 uses Szemerédi’s Regularity Lemma [§],
so while the proof is quantitative, it gives a tower-type bound on Ny =
No(6~1). It would be very important to find another, maybe analytical proof
for Lemma 2 to get a better bound.
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