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1. Combinatorial approach

Perhaps the first result in the subject belongs to I. Schur and dates back to 1916. One of his
motivation was to study ”the local version” of the famous equation of Fermat: xn +yn = zn.
If there are integers x, y, z satisfying the above equation, then for every prime p, they also
solve the congruence equation: xn + yn ≡ zn (mod p). He showed that the congruence
equation has a non-trivial solution for all large primes p

Theorem 1. Let n > 1. Then there exists an integer S(n) such that for all primes p > S(n)
the congruence xn + yn ≡ zn (mod p) has a solution in the integers, such that p does not
divide xyz.

The condition p does not divide xyz is to avoid trivial solutions of the congruence, such as
x ≡ y ≡ z ≡ 0 or x ≡ 0, y ≡ z (mod p).

The above result follows from a seemingly very different one.

Theorem 2. Let r ≥ 1. Then there is a natural number S(r), such as if N ≥ S(r) and if
the numbers {1, 2, . . . , N} are colored with r colors, then there are three of them x, y, z of the
same color satisfying the equation: x + y = z.

We’ll refer such numbers x, y, z as a monochromatic Schur triple, and S(r) is defined to be
the smallest natural number for which the above statement holds.

The proof is based on Ramsey’s theorem for coloring of the edges of complete graph on N
vertices, which you have read in the first chapter of the textbook.

Proof. Let c : [1, N ] → [1, r] be an r- coloring of the first N integers. Define a corresponding
coloring of the complete graph with vertices 1, 2, . . . , N by coloring the edge (i, j) to c(|i−j|).
By Ramsey’s theorem if N ≥ R(r, 3) then there is a monochromatic triangle. If i < j < k are
the vertices of this triangle, listed in increasing order, then writing x = j − i, y = k − j and
z = k − i we have that c(x) = c(y) = c(z) and x + y = z, thus they form a monochromatic
Schur triple. �

To prove Theorem 1, now requires only a bit of elementary algebra. Let p be a prime,
and let Zp denote the congruence classes modulo p. These congruence classes can be added
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and multiplied together (sums and products of congruent numbers stays congruent), and
Zp becomes a field under these operations. In particular Z∗

p = Zp − {0} is a group under
multiplication.

For given n, let Gn = {xn : x ∈ Z∗
p}. Then Gn is a subgroup of Z∗

p, thus there is a set of
elements a1, a2, . . . , ar, such that Z∗

p is partitioned as

Z∗
p = a1Gn ∪ a2Gn ∪ . . . ∪ arGn

If you don’t know this, just notice that the relation: x ∼ y if x = ay for some a ∈ Gn is an
equivalence relation, and aiGn are the equivalence classes. Also r is the number of x ∈ Z∗

p

such that xn = 1 in Zp (that is xn ≡ 1 (mod p)). This follows from the fact that x → xn is a
homomorphism of Z∗

p. So r is the number of roots of the polynomial xn − 1 in the field Zp,
hence r ≤ n.

Now, let c(x) = i if x ∈ aiGn, which gives an r coloring of Z∗
p = {1, 2, . . . , p − 1}. If

p − 1 ≥ S(n) ≥ S(r) then there is a monochromatic Schur triple, that is there are integers
x, y, z, none of which is divisible by p, such that

aix
n + aiy

n ≡ aiz
n (mod p)

since ai is not divisible by p it follows

xn + yn ≡ zn (mod p)

This proves Theorem 1.

2. Fourier analytic approach

In this section we give an alternative proof of Theorem 1, based purely on Fourier analysis
on the additive group Zp.

Let ω = e
2πi
p denote the p-th root of unity, and for k ∈ Zp consider the so-called exponential

sum:

Sk =
∑
x∈Zp

ω kxn

=

p−1∑
x=0

e2πi kxn

p

Let us make some simple observations first, whose proof is left as an exercise.

(i) If a ∈ Zp, a 6= 0 then Sk = Skan . Indeed by making a change of variables: x → ax,
Sk transforms into Skan .

(ii) There is a basic orthogonality trick, often used in Fourier analysis:

p−1∑
k=0

e2πi km
p =

{
p if m ≡ 0 (mod p)
0 otherwise
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Use this to show that:∑
k∈Zp

|Sk|2 =
∑

x,y∈Zp

∑
k∈Zp

e2πi
k(xn−yn)

p = pN

where N = |{x, y ∈ Zp : xn = yn}|., that is the number of solutions of the equation
xn = yn within the field Zp.

(iii) Show that N ≤ 1 + np. The idea is if x 6= 0 then writing y = ux where un = 1.
(iv) Let Gn = {an : a ∈ Z∗

p}, then |Gn| ≥ (p− 1)/n.

Lemma 1. If k ∈ Zp, k 6= 0 then one has the estimate

|
∑
x∈Zp

e
2πi
p

kxn

| ≤
√

2np
1
2

Proof. Using the above observations

|Gn||Sk|2 =
∑

an∈Gn

|Skan|2 ≤
∑
l∈Z∗p

|Sl|2 ≤ np2

Thus

|Sk|2 ≤
n2p2

p− 1
≤ 2n2p

This proves the lemma. �

Proof of Theorem 1. Let M denote the number of ordered triples x, y, z in Zp satisfying:
xn + yn = zn. Then using the orthogonality trick again, one can get an analytic expression
for M :

M =
∑

x,y,z∈Zp

1

p

p−1∑
k=0

e2πi
k(xn+yn−zn)

p =
1

p

p−1∑
k=0

S2
k S̄k

where S̄ denotes the complex conjugate. The second inequality is obtained by taking the
summation in x, y and z first. The dominating term in the above sum is S0 = p, indeed

M ≥ p2 − 1

p

p−1∑
k=1

|Sk|3 ≥ p2 − (2n2)
3
2 p

3
2 ≥ 1

2
p2

if the prime p is large enough: p ≥ 16n6. Finally we have to count the solutions where x, y or
z is the zero element of Zp. The number of such solutions is at most: 1 + 3np < 1

2
p2. Hence

there must be a solution x, y, z in Zp such that xyz 6= 0. This proves the theorem. �

Note that the Fourier analytic proof gives a much smaller bound p ≥ 16n6 then the combi-
natorial one p ≥ 3n!, on the prime p for large values of n. We’ll see that the Ramsey number
R(3, n) is exponentially large, so the bound on p cannot be essentially reduced in the first
argument. This phenomenon comes up in many different context; whenever Fourier analysis
can be used it often leads to much better bounds than combinatorics.
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3. Exercises

1. Prove that R(3, r) ≤ 3r! by using induction on r.

2. Prove that S(r) ≥ 3r+1
2

by completing the following steps;

(i) S(2) = 5

(ii) If c is an r coloring of [1, N ] such that there is no monochromatic Schur triple,
then define an r + 1 coloring of [1, 3N + 1] the following way. Color the two
blocks [1,N] and [2N+2,3N+1] the same way as original coloring, and color each
number in [N+1,2N+1] by a new color. Show that there is no monochromatic
Schur triple in the new coloring.

Conclude that S(r + 1) ≥ 3S(r)− 1, and do induction on r.

Note: A more detailed description of these steps are in the textbook, but it is
useful to try it by yourself first.

3. Show that if the edges complete graph on N vertices are colored with 2 colors, then
there are at least n3/24 monochromatic triangles, and this is the best possible lower
bound.

Hint: Estimate the number of 2-colored triangles from above. Notice that for a
2-colored triangle, there are exactly 2 vertices with different colored edges.

4. Show that for any 2-coloring of the first N integers, there are at least n2/48 Schur
triples. Use exercise 1.

Note: In the textbook, you find the best lower bound n2/22 for the number of
Schur triples in a 2-coloring of [1, N ]. It is worth to read the argument, after you
completed the previous exercise.

5. Prove that for any pair of integers r and n, there is a P (r, n), such that if p ≥ P (r, n)
is a prime, and Zp is colored with r colors, then there is a monochromatic triple
x, y, z in Zp such that xn + yn = zn and xyz 6= 0 in the field Zp. That is there exist
monochromatic Fermat triples mod p.

6. Let n be given. Prove that if q is such that all prime divisors p of q are larger then
S(n), then there exists a triple x, y, z such that xyz is relative prime to q and they
satisfy:

xn + yn ≡ zn (mod q)

by completing the following steps:

(i) Suppose x, y, z solves: xn +yn ≡ zn (mod pr) such that p - xyz. Show that there
exist a triple u, v, w such that X = pru+x, Y = prv +y and Z = prw+z solves:
Xn + Y n ≡ Zn (mod pr+1)
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(ii) Let q1, q2 be such that (q1, q2) = 1, that is relative primes. Show that to any
pair of congruence classes x1 (mod q1) and x2 (mod q2), there is a unique residue
class x (mod q1q2) such that: x ≡ x1 (mod q1) and x ≡ x2 (mod q2). Show
that to every pair of Fermat triples (mod q1) and (mod q2), there corresponds a
Fermat triple (mod q1q2).

7*. Let 0 < δ < 1, and n a positive integer. Show that there exists an N(δ, n) such that
if p > N(δ, n) is a prime, and A ⊂ Zp is a set of at least δp elements, then there exits
a triple x, y, z such that x ∈ A, y ∈ A, z ∈ Zp and xn + yn = zn in Zp.

This strengthens Schur’s theorem, one can find a Fermat triple such that two
elements is in a given set A of positive density δ. See the explanation of the notion
of density below.

Hint: Let A′ = {xn : x ∈ A}. Show that |A′| ≥ δ
n

p. Now it is enough to find a
solution of: x + y = zn where x, y ∈ A′.

Let N denote the number of such triples x, y, z in Zp. Find the following analytic
expression for N :

N =
1

p

∑
k∈Zp

χ̂A(k)2 Sk

where
χ̂A(k) =

∑
x∈A

e−2πi xk
p

is the Fourier transform of the indicator function χA of the set A, and Sk is the
exponential sum defined above.

Show that the main term in the sum is comes from k = 0 by using Plancherel’s
theorem in Zp.

8.** Is it true that for any pair of integers r and n, there is a Q(r, n), such that if
p ≥ Q(r, n) is a prime, and if A ⊂ Zp is a set of at least p/r elements, then there are
three elements x, y, z of A such that xn + yn = zn and xyz 6= 0 in Zp ?

Note: Problem 8 is the ”density version” of Exercise 5. If A is a subset of Zp = {1, 2, . . . , p}
then the ratio |A|/p is called the density of the set A. If you color the set {1, 2, . . . , p} with r
colors, or in other words if you partition it into r subsets, then one of them has to have density
at least 1/r. If you’re looking for subsets with certain nice property (such as Fermat triples,
arithmetic progressions, etc.) then you can ask both the coloring or the density question;
whether you find a monochromatic such subset, or whether every subset A of density at
least 1/r contains such a subset. By the remark above the density result always implies the
coloring one, and often is considerably harder. We’ll see a famous example, Roth’ theorem
which is the density version of Van der Waerden’s result for arithmetic 3-progressions.


